1
|
Tian H, Rajbhandari P, Tarolli J, Decker AM, Neelakantan TV, Angerer T, Zandkarimi F, Remotti H, Frache G, Winograd N, Stockwell BR. Multimodal mass spectrometry imaging identifies cell-type-specific metabolic and lipidomic variation in the mammalian liver. Dev Cell 2024; 59:869-881.e6. [PMID: 38359832 DOI: 10.1016/j.devcel.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 05/11/2023] [Accepted: 01/26/2024] [Indexed: 02/17/2024]
Abstract
Spatial single-cell omics provides a readout of biochemical processes. It is challenging to capture the transient lipidome/metabolome from cells in a native tissue environment. We employed water gas cluster ion beam secondary ion mass spectrometry imaging ([H2O]n>28K-GCIB-SIMS) at ≤3 μm resolution using a cryogenic imaging workflow. This allowed multiple biomolecular imaging modes on the near-native-state liver at single-cell resolution. Our workflow utilizes desorption electrospray ionization (DESI) to build a reference map of metabolic heterogeneity and zonation across liver functional units at tissue level. Cryogenic dual-SIMS integrated metabolomics, lipidomics, and proteomics in the same liver lobules at single-cell level, characterizing the cellular landscape and metabolic states in different cell types. Lipids and metabolites classified liver metabolic zones, cell types and subtypes, highlighting the power of spatial multi-omics at high spatial resolution for understanding celluar and biomolecular organizations in the mammalian liver.
Collapse
Affiliation(s)
- Hua Tian
- Environmental and Occupational Health, Pitt Public Health, Pittsburgh, PA 15261, USA; Children's Neuroscience Institute, School of Medicine, Pittsburgh, PA 15224, USA.
| | - Presha Rajbhandari
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | - Aubrianna M Decker
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | - Tina Angerer
- The Luxembourg Institute of Science and Technology, 4362 Esch-sur-Alzette, Luxembourg; Department of Pharmaceutical Biosciences, Uppsala University, 751 05 Uppsala, Sweden
| | | | - Helen Remotti
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Gilles Frache
- The Luxembourg Institute of Science and Technology, 4362 Esch-sur-Alzette, Luxembourg
| | - Nicholas Winograd
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Chemistry, Columbia University, New York, NY 10027, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
2
|
Mannella V, Chaabane L, Canu T, Zanardi A, Raia S, Conti A, Ferrini B, Caricasole A, Musco G, Alessio M. Lipid dysmetabolism in ceruloplasmin-deficient mice revealed both in vivo and ex vivo by MRI, MRS and NMR analyses. FEBS Open Bio 2024; 14:258-275. [PMID: 37986139 PMCID: PMC10839333 DOI: 10.1002/2211-5463.13740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023] Open
Abstract
Ceruloplasmin (Cp) is a ferroxidase that plays a role in cellular iron homeostasis and is mainly expressed in the liver and secreted into the blood. Cp is also produced by adipose tissue, which releases it as an adipokine. Although a dysfunctional interaction of iron with the metabolism of lipids has been associated with several metabolic diseases, the role of Cp in adipose tissue metabolism and in the interplay between hepatocytes and adipocytes has been poorly investigated. We previously found that Cp-deficient (CpKO) mice become overweight and demonstrate adipose tissue accumulation together with liver steatosis during aging, suggestive of lipid dysmetabolism. In the present study, we investigated the lipid alterations which occur during aging in adipose tissue and liver of CpKO and wild-type mice both in vivo and ex vivo. During aging of CpKO mice, we observed adipose tissue accumulation and liver lipid deposition, both of which are associated with macrophage infiltration. Liver lipid deposition was characterized by accumulation of triglycerides, fatty acids and ω-3 fatty acids, as well as by a switch from unsaturated to saturated fatty acids, which is characteristic of lipid storage. Liver steatosis was preceded by iron deposition and macrophage infiltration, and this was observed to be already occurring in younger CpKO mice. The accumulation of ω-3 fatty acids, which can only be acquired through diet, was associated with body weight increase in CpKO mice despite food intake being equal to that of wild-type mice, thus underlining the alterations in lipid metabolism/catabolism in Cp-deficient animals.
Collapse
Affiliation(s)
- Valeria Mannella
- COSR‐Centre for Omics SciencesIRCCS‐San Raffaele HospitalMilanoItaly
| | - Linda Chaabane
- Preclinical Imaging, Experimental Imaging CentreIRCCS‐San Raffaele HospitalMilanoItaly
- Present address:
LC, Euro‐BioImaging ERIC, Med‐Hub section, Institute of Biostructures and Bioimaging (IBB)Italian National Research Council (CNR)TorinoItaly
- Present address:
SR, Deloitte & Touche SpAMilanoItaly
| | - Tamara Canu
- Preclinical Imaging, Experimental Imaging CentreIRCCS‐San Raffaele HospitalMilanoItaly
| | - Alan Zanardi
- Proteome Biochemistry, COSR‐Centre for Omics SciencesIRCCS‐San Raffaele HospitalMilanoItaly
| | - Sara Raia
- Proteome Biochemistry, COSR‐Centre for Omics SciencesIRCCS‐San Raffaele HospitalMilanoItaly
- Present address:
LC, Euro‐BioImaging ERIC, Med‐Hub section, Institute of Biostructures and Bioimaging (IBB)Italian National Research Council (CNR)TorinoItaly
- Present address:
SR, Deloitte & Touche SpAMilanoItaly
| | - Antonio Conti
- Proteome Biochemistry, COSR‐Centre for Omics SciencesIRCCS‐San Raffaele HospitalMilanoItaly
| | - Barbara Ferrini
- Proteome Biochemistry, COSR‐Centre for Omics SciencesIRCCS‐San Raffaele HospitalMilanoItaly
| | - Andrea Caricasole
- Department of Research & Innovation, Kedrion S.p.A.Loc BolognanaGallicanoItaly
| | - Giovanna Musco
- Biomolecular Nuclear Magnetic Resonance, Division of Genetics and Cell BiologyIRCCS‐San Raffaele HospitalMilanoItaly
| | - Massimo Alessio
- Proteome Biochemistry, COSR‐Centre for Omics SciencesIRCCS‐San Raffaele HospitalMilanoItaly
| |
Collapse
|
3
|
Tff3 Deficiency Protects against Hepatic Fat Accumulation after Prolonged High-Fat Diet. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081288. [PMID: 36013467 PMCID: PMC9409972 DOI: 10.3390/life12081288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022]
Abstract
Trefoil factor 3 (Tff3) protein is a small secretory protein expressed on various mucosal surfaces and is involved in proper mucosal function and recovery via various mechanisms, including immune response. However, Tff3 is also found in the bloodstream and in various other tissues, including the liver. Its complete attenuation was observed as the most prominent event in the early phase of diabetes in the polygenic Tally Ho mouse model of diabesity. Since then, its role in metabolic processes has emerged. To elucidate the complex role of Tff3, we used a new Tff3-deficient mouse model without additional metabolically relevant mutations (Tff3-/-/C57BL/6NCrl) and exposed it to a high-fat diet (HFD) for a prolonged period (8 months). The effect was observed in male and female mice compared to wild-type (WT) counter groups (n = 10 animals per group). We monitored the animals’ general metabolic parameters, liver morphology, ultrastructure and molecular genes in relevant lipid and inflammatory pathways. Tff3-deficient male mice had reduced body weight and better glucose utilization after 17 weeks of HFD, but longer HFD exposure (32 weeks) resulted in no such change. We found a strong reduction in lipid accumulation in male Tff3-/-/C57BL/6NCrl mice and a less prominent reduction in female mice. This was associated with downregulated peroxisome proliferator-activated receptor gamma (Pparγ) and upregulated interleukin-6 (Il-6) gene expression, although protein level difference did not reach statistical significance due to higher individual variations. Tff3-/-/C57Bl6N mice of both sex had reduced liver steatosis, without major fatty acid content perturbations. Our research shows that Tff3 protein is clearly involved in complex metabolic pathways. Tff3 deficiency in C57Bl6N genetic background caused reduced lipid accumulation in the liver; further research is needed to elucidate its precise role in metabolism-related events.
Collapse
|
4
|
Schiffrin M, Winkler C, Quignodon L, Naldi A, Trötzmüller M, Köfeler H, Henry H, Parini P, Desvergne B, Gilardi F. Sex Dimorphism of Nonalcoholic Fatty Liver Disease (NAFLD) in Pparg-Null Mice. Int J Mol Sci 2021; 22:9969. [PMID: 34576136 PMCID: PMC8467431 DOI: 10.3390/ijms22189969] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/12/2022] Open
Abstract
Men with nonalcoholic fatty liver disease (NAFLD) are more exposed to nonalcoholic steatohepatitis (NASH) and liver fibrosis than women. However, the underlying molecular mechanisms of NALFD sex dimorphism are unclear. We combined gene expression, histological and lipidomic analyses to systematically compare male and female liver steatosis. We characterized hepatosteatosis in three independent mouse models of NAFLD, ob/ob and lipodystrophic fat-specific (PpargFΔ/Δ) and whole-body PPARγ-null (PpargΔ/Δ) mice. We identified a clear sex dimorphism occurring only in PpargΔ/Δ mice, with females showing macro- and microvesicular hepatosteatosis throughout their entire life, while males had fewer lipid droplets starting from 20 weeks. This sex dimorphism in hepatosteatosis was lost in gonadectomized PpargΔ/Δ mice. Lipidomics revealed hepatic accumulation of short and highly saturated TGs in females, while TGs were enriched in long and unsaturated hydrocarbon chains in males. Strikingly, sex-biased genes were particularly perturbed in both sexes, affecting lipid metabolism, drug metabolism, inflammatory and cellular stress response pathways. Most importantly, we found that the expression of key sex-biased genes was severely affected in all the NAFLD models we tested. Thus, hepatosteatosis strongly affects hepatic sex-biased gene expression. With NAFLD increasing in prevalence, this emphasizes the urgent need to specifically address the consequences of this deregulation in humans.
Collapse
Affiliation(s)
- Mariano Schiffrin
- Center of Integrative Genomics, Genopode, Lausanne Faculty of Biology and Medicine, CH-1015 Lausanne, Switzerland; (M.S.); (C.W.); (L.Q.); (A.N.); (B.D.)
| | - Carine Winkler
- Center of Integrative Genomics, Genopode, Lausanne Faculty of Biology and Medicine, CH-1015 Lausanne, Switzerland; (M.S.); (C.W.); (L.Q.); (A.N.); (B.D.)
| | - Laure Quignodon
- Center of Integrative Genomics, Genopode, Lausanne Faculty of Biology and Medicine, CH-1015 Lausanne, Switzerland; (M.S.); (C.W.); (L.Q.); (A.N.); (B.D.)
| | - Aurélien Naldi
- Center of Integrative Genomics, Genopode, Lausanne Faculty of Biology and Medicine, CH-1015 Lausanne, Switzerland; (M.S.); (C.W.); (L.Q.); (A.N.); (B.D.)
| | - Martin Trötzmüller
- Core Facility Mass Spectrometry, Medical University of Graz, 8036 Graz, Austria; (M.T.); (H.K.)
| | - Harald Köfeler
- Core Facility Mass Spectrometry, Medical University of Graz, 8036 Graz, Austria; (M.T.); (H.K.)
| | - Hugues Henry
- Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne Faculty of Biology and Medicine, CH-1011 Lausanne, Switzerland;
| | - Paolo Parini
- CardioMetabolic Unit, Department of Medicine and Department of Laboratory Medicine, Karolinska Insititutet and Theme Inflammation and Ageing Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden;
| | - Béatrice Desvergne
- Center of Integrative Genomics, Genopode, Lausanne Faculty of Biology and Medicine, CH-1015 Lausanne, Switzerland; (M.S.); (C.W.); (L.Q.); (A.N.); (B.D.)
| | - Federica Gilardi
- Center of Integrative Genomics, Genopode, Lausanne Faculty of Biology and Medicine, CH-1015 Lausanne, Switzerland; (M.S.); (C.W.); (L.Q.); (A.N.); (B.D.)
- Faculty Unit of Toxicology, University Center of Legal Medicine, Faculty of Biology and Medicine, Lausanne University Hospital, CH-1000 Lausanne, Switzerland
| |
Collapse
|
5
|
Kunze S, Cecil A, Prehn C, Möller G, Ohlmann A, Wildner G, Thurau S, Unger K, Rößler U, Hölter SM, Tapio S, Wagner F, Beyerlein A, Theis F, Zitzelsberger H, Kulka U, Adamski J, Graw J, Dalke C. Posterior subcapsular cataracts are a late effect after acute exposure to 0.5 Gy ionizing radiation in mice. Int J Radiat Biol 2021; 97:529-540. [PMID: 33464160 DOI: 10.1080/09553002.2021.1876951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/28/2020] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE The long-term effect of low and moderate doses of ionizing radiation on the lens is still a matter of debate and needs to be evaluated in more detail. MATERIAL AND METHODS We conducted a detailed histological analysis of eyes from B6C3F1 mice cohorts after acute gamma irradiation (60Co source; 0.063 Gy/min) at young adult age of 10 weeks with doses of 0.063, 0.125, and 0.5 Gy. Sham irradiated (0 Gy) mice were used as controls. To test for genetic susceptibility heterozygous Ercc2 mutant mice were used and compared to wild-type mice of the same strain background. Mice of both sexes were included in all cohorts. Eyes were collected 4 h, 12, 18 and 24 months after irradiation. For a better understanding of the underlying mechanisms, metabolomics analyses were performed in lenses and plasma samples of the same mouse cohorts at 4 and 12 h as well as 12, 18 and 24 months after irradiation. For this purpose, a targeted analysis was chosen. RESULTS This analysis revealed histological changes particularly in the posterior part of the lens that rarely can be observed by using Scheimpflug imaging, as we reported previously. We detected a significant increase of posterior subcapsular cataracts (PSCs) 18 and 24 months after irradiation with 0.5 Gy (odds ratio 9.3; 95% confidence interval 2.1-41.3) independent of sex and genotype. Doses below 0.5 Gy (i.e. 0.063 and 0.125 Gy) did not significantly increase the frequency of PSCs at any time point. In lenses, we observed a clear effect of sex and aging but not of irradiation or genotype. While metabolomics analyses of plasma from the same mice showed only a sex effect. CONCLUSIONS This article demonstrates a significant radiation-induced increase in the incidence of PSCs, which could not be identified using Scheimpflug imaging as the only diagnostic tool.
Collapse
Affiliation(s)
- Sarah Kunze
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany
| | - Alexander Cecil
- Research Unit Molecular Endocrinology and Metabolism, Genome Analysis Center, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | - Cornelia Prehn
- Research Unit Molecular Endocrinology and Metabolism, Genome Analysis Center, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | - Gabriele Möller
- Research Unit Molecular Endocrinology and Metabolism, Genome Analysis Center, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | - Andreas Ohlmann
- Department of Ophthalmology, University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Gerhild Wildner
- Department of Ophthalmology, University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Stephan Thurau
- Department of Ophthalmology, University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | - Ute Rößler
- Department Radiation Protection and Health, Federal Office of Radiation Protection, Oberschleissheim, Germany
| | - Sabine M Hölter
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany
| | - Soile Tapio
- Institute of Radiation Biology, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
- School of Medicine, Technical University of Munich, Munich, Germany
| | - Florian Wagner
- Institute of Radiation Medicine, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Fabian Theis
- Institute of Computational Biology, Neuherberg, Germany
| | - Horst Zitzelsberger
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | - Ulrike Kulka
- Department Radiation Protection and Health, Federal Office of Radiation Protection, Oberschleissheim, Germany
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Genome Analysis Center, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
- Lehrstuhl für Experimentelle Genetik, Technical University of Munich, Freising-Weihenstephan, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jochen Graw
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany
| | - Claudia Dalke
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
6
|
Freire T, Senior AM, Perks R, Pulpitel T, Clark X, Brandon AE, Wahl D, Hatchwell L, Le Couteur DG, Cooney GJ, Larance M, Simpson SJ, Solon-Biet SM. Sex-specific metabolic responses to 6 hours of fasting during the active phase in young mice. J Physiol 2020; 598:2081-2092. [PMID: 32198893 DOI: 10.1113/jp278806] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
KEY POINTS Night time/active phase food restriction for 6 h impaired glucose intolerance in young male and female mice. Females displayed increased capacity for lipogenesis and triglyceride storage in response to a short daily fast. Females had lower fasting insulin levels and an increased potential for utilizing fat for energy through β-oxidation compared to males. The need for the inclusion of both sexes, and the treatment of sex as an independent variable, is emphasized within the context of this fasting regime. ABSTRACT There is growing interest in understanding the mechanistic significance and benefits of fasting physiology in combating obesity. Increasing the fasting phase of a normal day can promote restoration and repair mechanisms that occur during the post-absorptive period. Most studies exploring the effect of restricting food access on mitigating obesity have done so with a large bias towards the use of male mice. Here, we disentangle the roles of sex, food intake and food withdrawal in the response to a short-term daily fasting intervention, in which food was removed for 6 h in the dark/active phase of young, 8-week-old mice. We showed that the removal of food during the dark phase impaired glucose tolerance in males and females, possibly due to the circadian disruption induced by this feeding protocol. Although both sexes demonstrated similar patterns of food intake, body composition and various metabolic markers, there were clear sex differences in the magnitude and extent of these responses. While females displayed enhanced capacity for lipogenesis and triglyceride storage, they also had low fasting insulin levels and an increased potential for utilizing available energy sources such as fat for energy through β-oxidation. Our results highlight the intrinsic biological and metabolic disparities between male and female mice, emphasizing the growing need for the inclusion of both sexes in scientific research. Furthermore, our results illustrate sex-specific metabolic pathways that regulate lipogenesis, obesity and overall metabolic health.
Collapse
Affiliation(s)
- Therese Freire
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Alistair M Senior
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Ruth Perks
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Tamara Pulpitel
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Ximonie Clark
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Amanda E Brandon
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, Sydney, NSW, Australia
| | - Devin Wahl
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, Sydney, NSW, Australia
| | - Luke Hatchwell
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - David G Le Couteur
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,Ageing and Alzheimer's Institute and Centre for Education and Research on Ageing, Concord Hospital, Concord, NSW, Australia
| | - Gregory J Cooney
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, Sydney, NSW, Australia
| | - Mark Larance
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Samantha M Solon-Biet
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Huang MC, Douillet C, Dover EN, Zhang C, Beck R, Tejan-Sie A, Krupenko SA, Stýblo M. Metabolic Phenotype of Wild-Type and As3mt-Knockout C57BL/6J Mice Exposed to Inorganic Arsenic: The Role of Dietary Fat and Folate Intake. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:127003. [PMID: 30675811 PMCID: PMC6371649 DOI: 10.1289/ehp3951] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
BACKGROUND Inorganic arsenic (iAs) is a diabetogen. Interindividual differences in iAs metabolism have been linked to susceptibility to diabetes in iAs-exposed populations. Dietary folate intake has been shown to influence iAs metabolism, but to our knowledge its role in iAs-associated diabetes has not been studied. OBJECTIVE The goal of this study was to assess how folate intake, combined with low-fat (LFD) and high-fat diets (HFD), affects the metabolism and diabetogenic effects of iAs in wild-type (WT) mice and in As3mt-knockout (KO) mice that have limited capacity for iAs detoxification. METHODS Male and female WT and KO mice were exposed to 0 or [Formula: see text] iAs in drinking water. Mice were fed the LFD containing [Formula: see text] or [Formula: see text] folate for 24 weeks, followed by the HFD with the same folate levels for 13 weeks. Metabolic phenotype and iAs metabolism were examined before and after switching to the HFD. RESULTS iAs exposure had little effect on the phenotype of mice fed LFD regardless of folate intake. High folate intake stimulated iAs metabolism, but only in WT females. KO mice accumulated more fat than WT mice and were insulin resistant, with males more insulin resistant than females despite similar %fat mass. Feeding the HFD increased adiposity and insulin resistance in all mice. However, iAs-exposed male and female WT mice with low folate intake were more insulin resistant than unexposed controls. High folate intake alleviated insulin resistance in both sexes, but stimulated iAs metabolism only in female mice. CONCLUSIONS Exposure to [Formula: see text] iAs in drinking water resulted in insulin resistance in WT mice only when combined with a HFD and low folate intake. The protective effect of high folate intake may be independent of iAs metabolism, at least in male mice. KO mice were more prone to developing insulin resistance, possibly due to the accumulation of iAs in tissues. https://doi.org/10.1289/EHP3951.
Collapse
Affiliation(s)
- Madelyn C Huang
- Curriculum in Toxicology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Christelle Douillet
- Department of Nutrition, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ellen N Dover
- Curriculum in Toxicology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Chongben Zhang
- Department of Nutrition, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rowan Beck
- Curriculum of Genetics and Molecular Biology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ahmad Tejan-Sie
- Department of Nutrition, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sergey A Krupenko
- Department of Nutrition, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA
| | - Miroslav Stýblo
- Curriculum in Toxicology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Nutrition, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
8
|
Soares AF, Lei H. Non-invasive diagnosis and metabolic consequences of congenital portosystemic shunts in C57BL/6 J mice. NMR IN BIOMEDICINE 2018; 31:e3873. [PMID: 29266459 DOI: 10.1002/nbm.3873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 06/07/2023]
Abstract
This study demonstrates the suitability of magnetic resonance imaging (MRI) and magnetic resonance angiography (MRA) for the imaging of congenital portosystemic shunts (PSS) in mice, a vascular abnormality in which mesenteric blood bypasses the liver and is instead drained directly to the systemic circulation. The non-invasive diagnosis performed in tandem with other experimental assessments permits further characterization of liver, whole-body and brain metabolic defects associated with PSS. Magnetic resonance measurements were performed in a 26-cm, horizontal-bore, 14.1-T magnet. MRA was obtained with a three-dimensional gradient echo sequence (GRE; in-plane resolution, 234 × 250 × 234 μm3 ) using a birdcage coil. Two-dimensional GRE MRI with high spatial resolution (in-plane resolution, 100 × 130 μm2 ; slices, 30 × 0.3 mm) was performed using a surface coil. Brain- (dorsal hippocampus) and liver-localized 1 H magnetic resonance spectroscopy (MRS) was also performed with the surface coil. Whole-body metabolic status was evaluated with an oral glucose tolerance test (OGTT). Both MRA and anatomical MRI allowed the identification of hepatic vessels and the diagnosis of PSS in mice. The incidence of PSS was about 10%. Hepatic lipid content was higher in PSS than in control mice (5.1 ± 2.8% versus 1.8 ± 0.6%, p = 0.02). PSS mice had higher brain glutamine concentration than controls (7.3 ± 1.0 μmol/g versus 2.7 ± 0.6 μmol/g, p < 0.0001) and, conversely, lower myo-inositol (4.2 ± 0.6 μmol/g versus 6.0 ± 0.4 μmol/g, p < 0.0001), taurine (9.7 ± 1.2 μmol/g versus 11.0 ± 0.4 μmol/g, p < 0.01) and total choline (0.9 ± 0.1 μmol/g versus 1.2 ± 0.1 μmol/g, p < 0.001) concentrations. Fasting blood glucose and plasma insulin were lower in PSS than in control mice (4.7 ± 0.5mM versus 8.8 ± 0.6mM, p < 0.0001; and 0.04 ± 0.03 μg/L versus 0.3 ± 0.2 μg/L, p = 0.02, respectively). Glucose clearance during OGTT was delayed and less efficient in PSS mice than in controls. Thus, given the non-negligible incidence of PSS in inbred mice, the undiagnosed presence of PSS will, importantly, have an impact on experimental outcomes, notably in studies addressing brain, liver or whole-body metabolism.
Collapse
Affiliation(s)
- Ana Francisca Soares
- École Polytechnique Fédérale de Lausanne - Laboratory for Functional and Metabolic Imaging (LIFMET), Lausanne, Switzerland
| | - Hongxia Lei
- École Polytechnique Fédérale de Lausanne, Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
- University of Geneva, Department of Radiology, Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
9
|
ERRATUM. NMR IN BIOMEDICINE 2017; 30:e3857. [PMID: 29134787 DOI: 10.1002/nbm.3857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
|
10
|
Soares AF, Duarte JMN, Gruetter R. Increased hepatic fatty acid polyunsaturation precedes ectopic lipid deposition in the liver in adaptation to high-fat diets in mice. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2017; 31:341-354. [PMID: 29027041 DOI: 10.1007/s10334-017-0654-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE We monitored hepatic lipid content (HLC) and fatty acid (FA) composition in the context of enhanced lipid handling induced by a metabolic high-fat diet (HFD) challenge and fasting. MATERIALS AND METHODS Mice received a control diet (10% of kilocalories from fat, N = 14) or an HFD (45% or 60% of kilocalories from fat, N = 10 and N = 16, respectively) for 26 weeks. A subset of five mice receiving an HFD (60% of kilocalories from fat) were switched to the control diet for the final 7 weeks. At nine time points, magnetic resonance spectroscopy was performed in vivo at 14.1 T, interleaved with glucose tolerance tests. RESULTS Glucose intolerance promptly developed with the HFD, followed by a progressive increase of fasting insulin level, simultaneously with that of HLC. These metabolic defects were normalized by dietary reversal. HFD feeding immediately increased polyunsaturation of hepatic FA, before lipid accumulation. Fasting-induced changes in hepatic lipids (increased HLC and FA polyunsaturation, decreased FA monounsaturation) in control-diet-fed mice were not completely reproduced in HFD-fed mice, not even after dietary reversal. CONCLUSION A similar adaptation of hepatic lipids to both fasting and an HFD suggests common mechanisms of lipid trafficking from adipose tissue to the liver. Altered hepatic lipid handling with fasting indicates imperfect metabolic recovery from HFD exposure.
Collapse
Affiliation(s)
- Ana Francisca Soares
- Laboratory for Functional and Metabolic Imaging, Swiss Federal Institute of Technology, Bâtiment CH, Station 6, 1015, Lausanne, Switzerland.
| | - João M N Duarte
- Laboratory for Functional and Metabolic Imaging, Swiss Federal Institute of Technology, Bâtiment CH, Station 6, 1015, Lausanne, Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, Swiss Federal Institute of Technology, Bâtiment CH, Station 6, 1015, Lausanne, Switzerland.,Department of Radiology, University of Geneva, Geneva, Switzerland.,Department of Radiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|