1
|
Sonmez AI, Lewis CP, Port JD, Athreya AP, Choi DS, Zaccariello MJ, Shekunov J, Blacker CJ, Croarkin PE. A pilot spectroscopy study of adversity in adolescents. Biomark Neuropsychiatry 2021; 5:100043. [PMID: 35783196 PMCID: PMC9248870 DOI: 10.1016/j.bionps.2021.100043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background Childhood adversity is a global health problem affecting 25-50% of children worldwide. Few prior studies have examined the underlying neurochemistry of adversity in adolescents. This cross-sectional study examined spectroscopic markers of trauma in a cohort of adolescents with major depressive disorder (MDD) and healthy controls. We hypothesized that historical adversity would have a negative relationship with spectroscopic measures of glutamate metabolites in anterior cingulate cortex. Methods Adolescent participants (aged 13-21) underwent a semi-structured diagnostic interview and clinical assessment, which included the self-report Childhood Trauma Questionnaire (CTQ), a 28-item assessment of childhood adversity. Proton magnetic resonance spectroscopy (1H-MRS) scans at 3 Tesla of an anterior cingulate cortex (ACC) voxel (8 cm3) encompassing both hemispheres were collected using a 2-dimensional J-averaged sequence to assess N-acetylaspartate (NAA), Glx (glutamate+glutamine) and [NAA]/[Glx] concentrations. Generalized linear models assessed the relationships between CTQ scores and metabolite levels in ACC. Results Thirty-nine participants (17 healthy controls, 22 depressed participants) underwent 1H-MRS and completed the CTQ measures. There were decrements in [NAA]/[Glx] ratio in the ACC of participants with childhood adversity while no significant relationship between CTQ total score and any of the ACC metabolites was found in the combined sample. Exploratory results revealed a positive association between Glx levels and CTQ scores in depressed participants. Conversely the [NAA]/[Glx] ratio had a negative association with total CTQ scores in the depressed participants. Emotional Abuse Scale showed a significant negative relationship with [NAA]/[Glx] ratio in the combined sample when adjusted for depression severity. Conclusions Our findings suggest that childhood adversity may impact brain neurochemical profiles. Further longitudinal studies should examine neurochemical correlates of childhood adversity throughout development and in populations with other psychiatric disorders.
Collapse
Affiliation(s)
- A. Irem Sonmez
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Charles P. Lewis
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - John D. Port
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Arjun P. Athreya
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, USA
| | - Doo-Sop Choi
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, USA
| | - Michael J. Zaccariello
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Julia Shekunov
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Caren J. Blacker
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Paul E. Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
2
|
Bottino F, Lucignani M, Napolitano A, Dellepiane F, Visconti E, Rossi Espagnet MC, Pasquini L. In Vivo Brain GSH: MRS Methods and Clinical Applications. Antioxidants (Basel) 2021; 10:antiox10091407. [PMID: 34573039 PMCID: PMC8468877 DOI: 10.3390/antiox10091407] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/22/2021] [Accepted: 08/30/2021] [Indexed: 01/31/2023] Open
Abstract
Glutathione (GSH) is an important antioxidant implicated in several physiological functions, including the oxidation−reduction reaction balance and brain antioxidant defense against endogenous and exogenous toxic agents. Altered brain GSH levels may reflect inflammatory processes associated with several neurologic disorders. An accurate and reliable estimation of cerebral GSH concentrations could give a clear and thorough understanding of its metabolism within the brain, thus providing a valuable benchmark for clinical applications. In this context, we aimed to provide an overview of the different magnetic resonance spectroscopy (MRS) technologies introduced for in vivo human brain GSH quantification both in healthy control (HC) volunteers and in subjects affected by different neurological disorders (e.g., brain tumors, and psychiatric and degenerative disorders). Additionally, we aimed to provide an exhaustive list of normal GSH concentrations within different brain areas. The definition of standard reference values for different brain areas could lead to a better interpretation of the altered GSH levels recorded in subjects with neurological disorders, with insights into the possible role of GSH as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Francesca Bottino
- Medical Physics Department, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy; (F.B.); (M.L.)
| | - Martina Lucignani
- Medical Physics Department, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy; (F.B.); (M.L.)
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy; (F.B.); (M.L.)
- Correspondence: ; Tel.: +39-333-3214614
| | - Francesco Dellepiane
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, 00189 Rome, Italy; (F.D.); (M.C.R.E.); (L.P.)
| | - Emiliano Visconti
- Neuroradiology Unit, Surgery and Trauma Department, Maurizio Bufalini Hospital, 47521 Cesena, Italy;
| | - Maria Camilla Rossi Espagnet
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, 00189 Rome, Italy; (F.D.); (M.C.R.E.); (L.P.)
- Neuroradiology Unit, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy
| | - Luca Pasquini
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, 00189 Rome, Italy; (F.D.); (M.C.R.E.); (L.P.)
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
3
|
Cooper JA, Nuutinen MR, Lawlor VM, DeVries BAM, Barrick EM, Hossein S, Cole DJ, Leonard CV, Hahn EC, Teer AP, Shields GS, Slavich GM, Ongur D, Jensen JE, Du F, Pizzagalli DA, Treadway MT. Reduced adaptation of glutamatergic stress response is associated with pessimistic expectations in depression. Nat Commun 2021; 12:3166. [PMID: 34039978 PMCID: PMC8155144 DOI: 10.1038/s41467-021-23284-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 04/19/2021] [Indexed: 01/20/2023] Open
Abstract
Stress is a significant risk factor for the development of major depressive disorder (MDD), yet the underlying mechanisms remain unclear. Preclinically, adaptive and maladaptive stress-induced changes in glutamatergic function have been observed in the medial prefrontal cortex (mPFC). Here, we examine stress-induced changes in human mPFC glutamate using magnetic resonance spectroscopy (MRS) in two healthy control samples and a third sample of unmedicated participants with MDD who completed the Maastricht acute stress task, and one sample of healthy control participants who completed a no-stress control manipulation. In healthy controls, we find that the magnitude of mPFC glutamate response to the acute stressor decreases as individual levels of perceived stress increase. This adaptative glutamate response is absent in individuals with MDD and is associated with pessimistic expectations during a 1-month follow-up period. Together, this work shows evidence for glutamatergic adaptation to stress that is significantly disrupted in MDD.
Collapse
Affiliation(s)
| | | | | | | | - Elyssa M Barrick
- Center for Depression, Anxiety and Stress Research, McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - Shabnam Hossein
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Daniel J Cole
- Department of Psychology, Emory University, Atlanta, GA, USA
| | | | - Evan C Hahn
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Andrew P Teer
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Grant S Shields
- Department of Psychological Science, University of Arkansas, Fayetteville, AR, USA
| | - George M Slavich
- Cousins Center for Psychoneuroimmunology and Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Dost Ongur
- Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - J Eric Jensen
- McLean Imaging Center, McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - Fei Du
- McLean Imaging Center, McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - Diego A Pizzagalli
- Center for Depression, Anxiety and Stress Research, McLean Hospital/Harvard Medical School, Belmont, MA, USA
- Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA, USA
- McLean Imaging Center, McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - Michael T Treadway
- Department of Psychology, Emory University, Atlanta, GA, USA.
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA.
| |
Collapse
|
4
|
Mapping Disease Course Across the Mood Disorder Spectrum Through a Research Domain Criteria Framework. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:706-715. [PMID: 33508498 DOI: 10.1016/j.bpsc.2021.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/25/2020] [Accepted: 01/07/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND The National Institute of Mental Health Research Domain Criteria (RDoC) initiative aims to establish a neurobiologically valid framework for classifying mental illness. Here, we examined whether the RDoC construct of reward learning and three aspects of its underlying neurocircuitry predicted symptom trajectories in individuals with mood pathology. METHODS Aligning with the RDoC approach, we recruited individuals (n = 80 with mood disorders [58 unipolar and 22 bipolar] and n = 32 control subjects; 63.4% female) based on their performance on a laboratory-based reward learning task rather than clinical diagnosis. We then assessed 1) anterior cingulate cortex prediction errors using electroencephalography, 2) striatal reward prediction errors using functional magnetic resonance imaging, and 3) medial prefrontal cortex glutamatergic function (mPFC Gln/Glu) using 1H magnetic resonance spectroscopy. Severity of anhedonia, (hypo)mania, and impulsivity were measured at baseline, 3 months, and 6 months. RESULTS Greater homogeneity in aspects of brain function (mPFC Gln/Glu) was observed when individuals were classified according to reward learning ability rather than diagnosis. Furthermore, mPFC Gln/Glu levels predicted more severe (hypo)manic symptoms cross-sectionally, predicted worsening (hypo)manic symptoms longitudinally, and explained greater variance in future (hypo)manic symptoms than diagnostic information. However, rather than being transdiagnostic, this effect was specific to individuals with bipolar disorder. Prediction error indices were unrelated to symptom severity. CONCLUSIONS Although findings are preliminary and require replication, they suggest that heightened mPFC Gln/Glu warrants further consideration as a predictor of future (hypo)mania. Importantly, this work highlights the value of an RDoC approach that works in tandem with, rather than independent of, traditional diagnostic frameworks.
Collapse
|
5
|
Fisher E, Gillam J, Upthegrove R, Aldred S, Wood SJ. Role of magnetic resonance spectroscopy in cerebral glutathione quantification for youth mental health: A systematic review. Early Interv Psychiatry 2020; 14:147-162. [PMID: 31148383 PMCID: PMC7065077 DOI: 10.1111/eip.12833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/27/2019] [Accepted: 04/14/2019] [Indexed: 01/01/2023]
Abstract
AIM Oxidative stress is strongly implicated in many psychiatric disorders, which has resulted in the development of new interventions to attempt to perturb this pathology. A great deal of attention has been paid to glutathione, which is the brain's dominant antioxidant and plays a fundamental role in removing free radicals and other reactive oxygen species. Measurement of glutathione concentration in the brain in vivo can provide information on redox status and potential for oxidative stress to develop. Glutathione might also represent a marker to assess treatment response. METHODS This paper systematically reviews studies that assess glutathione concentration (measured using magnetic resonance spectroscopy) in various mental health conditions. RESULTS There is limited evidence showing altered brain glutathione concentration in mental disorders; the best evidence suggests glutathione is decreased in depression, but is not altered in bipolar disorder. The review then outlines the various methodological options for acquiring glutathione data using spectroscopy. CONCLUSIONS Analysis of the minimum effect size measurable in existing studies indicates that increased number of participants is required to measure subtle but possibly important differences and move the field forward.
Collapse
Affiliation(s)
- Emily Fisher
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamEdgbastonUK
| | - John Gillam
- Orygenthe National Centre of Excellence in Youth Mental HealthMelbourneVictoriaAustralia
- Centre for Youth Mental HealthUniversity of MelbourneMelbourneVictoriaAustralia
| | - Rachel Upthegrove
- Institute for Mental HealthUniversity of BirminghamEdgbastonUK
- Department of PsychiatryUniversity of BirminghamBirminghamUK
| | - Sarah Aldred
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamEdgbastonUK
| | - Stephen J. Wood
- Orygenthe National Centre of Excellence in Youth Mental HealthMelbourneVictoriaAustralia
- Centre for Youth Mental HealthUniversity of MelbourneMelbourneVictoriaAustralia
- Institute for Mental HealthUniversity of BirminghamEdgbastonUK
| |
Collapse
|
6
|
Su Y, Bian S, Sawan M. Real-time in vivo detection techniques for neurotransmitters: a review. Analyst 2020; 145:6193-6210. [DOI: 10.1039/d0an01175d] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Functional synapses in the central nervous system depend on a chemical signal exchange process that involves neurotransmitter delivery between neurons and receptor cells in the neuro system.
Collapse
Affiliation(s)
- Yi Su
- Zhejiang university
- Hangzhou, 310058
- China
- CENBRAIN Lab
- School of Engineering
| | - Sumin Bian
- CENBRAIN Lab
- School of Engineering
- Westlake University
- Hangzhou
- China
| | - Mohamad Sawan
- CENBRAIN Lab
- School of Engineering
- Westlake University
- Hangzhou
- China
| |
Collapse
|
7
|
Auerbach RP, Pizzagalli DA. Localized MRS reliability of in vivo glutamate at 3 T in shortened scan times: A feasibility study - Efforts to improve rigor and reproducibility. NMR IN BIOMEDICINE 2019; 32:e4093. [PMID: 30897247 PMCID: PMC6525048 DOI: 10.1002/nbm.4093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 02/16/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Randy P. Auerbach
- Department of Psychiatry, Columbia University, New York, NY, USA
- Division of Clinical Developmental Neuroscience, Sackler Institute, New York, NY, USA
| | - Diego A. Pizzagalli
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Imaging Center, McLean Hospital, Belmont, MA, USA
| |
Collapse
|
8
|
Iranpour S, Sabour S. Localized MRS reliability of in vivo glutamate at 3 T in shortened scan times: A feasibility study; methodological and statistical issue to avoid misinterpretation and mismanagement. NMR IN BIOMEDICINE 2019; 32:e4094. [PMID: 30897252 DOI: 10.1002/nbm.4094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Sohrab Iranpour
- Department of Community Medicine, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
- Social Determinants of Health Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Siamak Sabour
- Department of Clinical Epidemiology, School of Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, I, Iran
- Safety Promotions and Injury Prevention Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, I, Iran
| |
Collapse
|
9
|
Carlin D, Babourina-Brooks B, Arvanitis TN, Wilson M, Peet AC. Short-acquisition-time JPRESS and its application to paediatric brain tumours. MAGMA (NEW YORK, N.Y.) 2019; 32:247-258. [PMID: 30460431 PMCID: PMC6424926 DOI: 10.1007/s10334-018-0716-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To develop and assess a short-duration JPRESS protocol for detection of overlapping metabolite biomarkers and its application to paediatric brain tumours at 3 Tesla. MATERIALS AND METHODS The short-duration protocol (6 min) was optimised and compared for spectral quality to a high-resolution (38 min) JPRESS protocol in a phantom and five healthy volunteers. The 6-min JPRESS was acquired from four paediatric brain tumours and compared with short-TE PRESS. RESULTS Metabolite identification between the 6- and 38-min protocols was comparable in phantom and volunteer data. For metabolites with Cramer-Rao lower bounds > 50%, interpretation of JPRESS increased confidence in assignment of lactate, myo-Inositol and scyllo-Inositol. JPRESS also showed promise for the detection of glycine and taurine in paediatric brain tumours when compared to short-TE MRS. CONCLUSION A 6-min JPRESS protocol is well tolerated in paediatric brain tumour patients. Visual inspection of a 6-min JPRESS spectrum enables identification of a range of metabolite biomarkers of clinical interest.
Collapse
Affiliation(s)
- Dominic Carlin
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, West Midlands, UK
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, West Midlands, UK
| | - Ben Babourina-Brooks
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, West Midlands, UK
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, West Midlands, UK
| | - Theodoros N Arvanitis
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, West Midlands, UK
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, West Midlands, UK
- Institute of Digital Healthcare, WMG, University of Warwick, Coventry, UK
| | - Martin Wilson
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, West Midlands, UK
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, West Midlands, UK
| | - Andrew C Peet
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, West Midlands, UK.
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, West Midlands, UK.
- Clinical Research Block, Institute of Child Health, Whittall Street, Birmingham, B4 6NH, UK.
| |
Collapse
|
10
|
Dhamala E, Abdelkefi I, Nguyen M, Hennessy TJ, Nadeau H, Near J. Validation of in vivo MRS measures of metabolite concentrations in the human brain. NMR IN BIOMEDICINE 2019; 32:e4058. [PMID: 30663818 DOI: 10.1002/nbm.4058] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 05/05/2023]
Abstract
PURPOSE In vivo magnetic resonance spectroscopy (MRS) is the only technique capable of non-invasively assessing metabolite concentrations in the brain. The lack of alternative methods makes validation of MRS measures challenging. The aim of this study is to assess the validity of MRS measures of human brain metabolite concentrations by comparing multiple MRS measures acquired using different MRS acquisition sequences. METHODS Single-voxel SPECIAL and MEGA-PRESS MR spectra were acquired from both the dorsolateral prefrontal cortex and primary motor cortices in 15 healthy subjects. The SPECIAL spectrum, as well as both the edit-off and difference spectra of MEGA-PRESS were each analyzed in LCModel to obtain estimates of the absolute concentrations of total choline (TCh; glycerophosphocholine + phosphocholine), total creatine (TCr; creatine + phosphocreatine), N-acetylaspartate (NAA), N-acetylaspartylglutamate (NAAG), NAA + NAAG, glutamate (Glu), glutamine (Gln), Glu + Gln, scyllo-inositol (Scyllo), myo-inositol (Ins), glutathione (GSH), γ-aminobutyric acid (GABA), lactate (Lac) and aspartate (Asp). Then, having obtained up to three independent measures of each metabolite per brain region per subject, correlations between the different measures were assessed. RESULTS The degree of correlation between measures varied greatly across both the metabolites and sequences tested. As expected, metabolites with the most prominent spectral peaks (TCh, TCr, NAA + NAAG, Ins and Glu) had the most well-correlated measures between methods, while metabolites with less prominent spectral peaks (Lac, Gln, GABA, Asp, and NAAG) tended to have poorly-correlated measures between methods. Some metabolites with relatively less prominent spectral peaks (GSH, Scyllo) had fairly well-correlated measures between some methods. Combining metabolites improved the agreement between methods for measures of NAA + NAAG, but not for Glu + Gln. CONCLUSIONS Given that the ground truth for in vivo MRS measures is never known, the method proposed here provides a promising means to assess the validity of in vivo MRS measures, which has not yet been explored widely.
Collapse
Affiliation(s)
- Elvisha Dhamala
- Centre d'Imagerie Cérébrale, Douglas Mental Health University Institute, Montreal, Canada
| | | | - Mavesa Nguyen
- Department of Physics, Dawson College, Montreal, Canada
- Department of Mechanical Engineering, McGill University, Montreal, Canada
| | - T Jay Hennessy
- Centre d'Imagerie Cérébrale, Douglas Mental Health University Institute, Montreal, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Canada
| | - Hélène Nadeau
- Department of Physics, Dawson College, Montreal, Canada
| | - Jamie Near
- Centre d'Imagerie Cérébrale, Douglas Mental Health University Institute, Montreal, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Canada
| |
Collapse
|
11
|
Brennan BP, Admon R, Perriello C, LaFlamme EM, Athey AJ, Pizzagalli DA, Hudson JI, Pope HG, Jensen JE. Acute change in anterior cingulate cortex GABA, but not glutamine/glutamate, mediates antidepressant response to citalopram. Psychiatry Res 2017; 269:9-16. [PMID: 28892734 PMCID: PMC5642118 DOI: 10.1016/j.pscychresns.2017.08.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/31/2017] [Accepted: 08/24/2017] [Indexed: 12/28/2022]
Abstract
Little is known about the acute effects of antidepressant treatments on brain glutamate and gamma-amino-butyric acid (GABA) levels, and their association with clinical response. Using proton magnetic resonance spectroscopy (1H-MRS) we examined longitudinally the effects of citalopram on glutamine/glutamate ratios and GABA levels in the pregenual anterior cingulate cortex (pgACC) of individuals with major depressive disorder (MDD). We acquired 1H-MRS scans at baseline and at days 3, 7, and 42 of citalopram treatment in nineteen unmedicated individuals with MDD. Ten age- and sex-matched non-depressed comparison individuals were scanned once. The association between 1) baseline metabolites and 2) change in metabolites from baseline to each time point and clinical response (change in Montgomery-Åsberg Depression Rating Scale (MADRS) score from baseline to day 42) was assessed by longitudinal regression analysis using generalized estimating equations. Contrary to our hypotheses, no significant associations emerged between glutamate metabolites and clinical response; however, greater increases (or smaller decreases) in pgACC GABA levels from baseline to days 3 and 7 of citalopram treatment were significantly associated with clinical response. These findings suggest that an acute change in GABA levels in pgACC predicts, and possibly mediates, later clinical response to citalopram treatment in individuals with MDD.
Collapse
Affiliation(s)
- Brian P Brennan
- Biological Psychiatry Laboratory, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Roee Admon
- Department of Psychology, University of Haifa, Haifa, Israel
| | - Chris Perriello
- Biological Psychiatry Laboratory, McLean Hospital, Belmont, MA, USA
| | - Erin M LaFlamme
- Biological Psychiatry Laboratory, McLean Hospital, Belmont, MA, USA
| | - Alison J Athey
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Diego A Pizzagalli
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA; McLean Imaging Center, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - James I Hudson
- Biological Psychiatry Laboratory, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Harrison G Pope
- Biological Psychiatry Laboratory, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - J Eric Jensen
- McLean Imaging Center, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|