1
|
Agarwal S, Gordon J, Bok RA, von Morze C, Vigneron DB, Kurhanewicz J, Ohliger MA. Distinguishing metabolic signals of liver tumors from surrounding liver cells using hyperpolarized 13 C MRI and gadoxetate. Magn Reson Med 2024; 91:2114-2125. [PMID: 38270193 DOI: 10.1002/mrm.29918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 01/26/2024]
Abstract
PURPOSE To use the hepatocyte-specific gadolinium-based contrast agent gadoxetate combined with hyperpolarized (HP) [1-13 C]pyruvate MRI to selectively suppress metabolic signals from normal hepatocytes while preserving the signals arising from tumors. METHODS Simulations were performed to determine the expected changes in HP 13 C MR signal in liver and tumor under the influence of gadoxetate. CC531 colon cancer cells were implanted into the livers of five Wag/Rij rats. Liver and tumor metabolism were imaged at 3 T using HP [1-13 C] pyruvate chemical shift imaging before and 15 min after injection of gadoxetate. Area under the curve for pyruvate and lactate were measured from voxels containing at least 75% of normal-appearing liver or tumor. RESULTS Numerical simulations predicted a 36% decrease in lactate-to-pyruvate (L/P) ratio in liver and 16% decrease in tumor. In vivo, baseline L/P ratio was 0.44 ± 0.25 in tumors versus 0.21 ± 0.08 in liver (p = 0.09). Following administration of gadoxetate, mean L/P ratio decreased by an average of 0.11 ± 0.06 (p < 0.01) in normal-appearing liver. In tumors, mean L/P ratio post-gadoxetate did not show a statistically significant change from baseline. Compared to baseline levels, the relative decrease in L/P ratio was significantly greater in liver than in tumors (-0.52 ± 0.16 vs. -0.19 ± 0.25, p < 0.05). CONCLUSIONS The intracellular hepatobiliary contrast agent showed a greater effect suppressing HP 13 C MRI metabolic signals (through T1 shortening) in normal-appearing liver when compared to tumors. The combined use of HP MRI with selective gadolinium contrast agents may allow more selective imaging in HP 13 C MRI.
Collapse
Affiliation(s)
- Shubhangi Agarwal
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Jeremy Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Robert A Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Cornelius von Morze
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
- Liver Center, University of California, San Francisco, San Francisco, California, USA
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Michael A Ohliger
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
- Liver Center, University of California, San Francisco, San Francisco, California, USA
- Department of Radiology, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| |
Collapse
|
2
|
Chen HY, Bok RA, Cooperberg MR, Nguyen HG, Shinohara K, Westphalen AC, Wang ZJ, Ohliger MA, Gebrezgiabhier D, Carvajal L, Gordon JW, Larson PEZ, Aggarwal R, Kurhanewicz J, Vigneron DB. Improving multiparametric MR-transrectal ultrasound guided fusion prostate biopsies with hyperpolarized 13 C pyruvate metabolic imaging: A technical development study. Magn Reson Med 2022; 88:2609-2620. [PMID: 35975978 PMCID: PMC9794017 DOI: 10.1002/mrm.29399] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE To develop techniques and establish a workflow using hyperpolarized carbon-13 (13 C) MRI and the pyruvate-to-lactate conversion rate (kPL ) biomarker to guide MR-transrectal ultrasound fusion prostate biopsies. METHODS The integrated multiparametric MRI (mpMRI) exam consisted of a 1-min hyperpolarized 13 C-pyruvate EPI acquisition added to a conventional prostate mpMRI exam. Maps of kPL values were calculated, uploaded to a picture archiving and communication system and targeting platform, and displayed as color overlays on T2 -weighted anatomic images. Abdominal radiologists identified 13 C research biopsy targets based on the general recommendation of focal lesions with kPL >0.02(s-1 ), and created a targeting report for each study. Urologists conducted transrectal ultrasound-guided MR fusion biopsies, including the standard 1 H-mpMRI targets as well as 12-14 core systematic biopsies informed by the research 13 C-kPL targets. All biopsy results were included in the final pathology report and calculated toward clinical risk. RESULTS This study demonstrated the safety and technical feasibility of integrating hyperpolarized 13 C metabolic targeting into routine 1 H-mpMRI and transrectal ultrasound fusion biopsy workflows, evaluated via 5 men (median age 71 years, prostate-specific antigen 8.4 ng/mL, Cancer of the Prostate Risk Assessment score 2) on active surveillance undergoing integrated scan and subsequent biopsies. No adverse event was reported. Median turnaround time was less than 3 days from scan to 13 C-kPL targeting, and scan-to-biopsy time was 2 weeks. Median number of 13 C targets was 1 (range: 1-2) per patient, measuring 1.0 cm (range: 0.6-1.9) in diameter, with a median kPL of 0.0319 s-1 (range: 0.0198-0.0410). CONCLUSIONS This proof-of-concept work demonstrated the safety and feasibility of integrating hyperpolarized 13 C MR biomarkers to the standard mpMRI workflow to guide MR-transrectal ultrasound fusion biopsies.
Collapse
Affiliation(s)
- Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California United States
| | - Robert A. Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California United States
| | - Matthew R. Cooperberg
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California United States
| | - Hao G. Nguyen
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California United States
| | - Katsuto Shinohara
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California United States
| | - Antonio C. Westphalen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California United States
| | - Zhen J. Wang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California United States
| | - Michael A. Ohliger
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California United States
| | - Daniel Gebrezgiabhier
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California United States
| | - Lucas Carvajal
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California United States
| | - Jeremy W. Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California United States
| | - Peder E. Z. Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California United States
| | - Rahul Aggarwal
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California United States
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California United States
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California United States
| |
Collapse
|
3
|
Hu JY, Kim Y, Autry AW, Frost MM, Bok RA, Villanueva-Meyer JE, Xu D, Li Y, Larson PEZ, Vigneron DB, Gordon JW. Kinetic analysis of multi-resolution hyperpolarized 13 C human brain MRI to study cerebral metabolism. Magn Reson Med 2022; 88:2190-2197. [PMID: 35754148 PMCID: PMC9420752 DOI: 10.1002/mrm.29354] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/15/2022] [Accepted: 05/23/2022] [Indexed: 11/10/2022]
Abstract
PURPOSE To investigate multi-resolution hyperpolarized (HP) 13 C pyruvate MRI for measuring kinetic conversion rates in the human brain. METHODS HP [1-13 C]pyruvate MRI was acquired in 6 subjects with a multi-resolution EPI sequence at 7.5 × 7.5 mm2 resolution for pyruvate and 15 × 15 mm2 resolution for lactate and bicarbonate. With the same lactate data, 2 quantitative maps of pyruvate-to-lactate conversion (kPL ) maps were generated: 1 using 7.5 × 7.5 mm2 resolution pyruvate data and the other using synthetic 15 × 15 mm2 resolution pyruvate data to simulate a standard constant resolution acquisition. To examine local kPL values, 4 voxels were manually selected in each study representing brain tissue near arteries, brain tissue near veins, white matter, and gray matter. RESULTS High resolution 7.5 × 7.5 mm2 pyruvate images increased the spatial delineation of brain structures and decreased partial volume effects compared to coarser resolution 15 × 15 mm2 pyruvate images. Voxels near arteries, veins and in white matter exhibited higher calculated kPL for multi-resolution images. CONCLUSION Acquiring HP 13 C pyruvate metabolic data with a multi-resolution approach minimized partial volume effects from vascular pyruvate signals while maintaining the SNR of downstream metabolites. Higher resolution pyruvate images for kinetic fitting resulted in increased kinetic rate values, particularly around the superior sagittal sinus and cerebral arteries, by reducing extracellular pyruvate signal contributions from adjacent blood vessels. This HP 13 C study showed that acquiring pyruvate with finer resolution improved the quantification of kinetic rates throughout the human brain.
Collapse
Affiliation(s)
- Jasmine Y Hu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
| | - Yaewon Kim
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Adam W Autry
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Mary M Frost
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Robert A Bok
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
| | - Yan Li
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
4
|
Initial Experience on Hyperpolarized [1-13C]Pyruvate MRI Multicenter Reproducibility—Are Multicenter Trials Feasible? Tomography 2022; 8:585-595. [PMID: 35314625 PMCID: PMC8938827 DOI: 10.3390/tomography8020048] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/31/2022] Open
Abstract
Background: Magnetic resonance imaging (MRI) with hyperpolarized [1-13C]pyruvate allows real-time and pathway specific clinical detection of otherwise unimageable in vivo metabolism. However, the comparability between sites and protocols is unknown. Here, we provide initial experiences on the agreement of hyperpolarized MRI between sites and protocols by repeated imaging of same healthy volunteers in Europe and the US. Methods: Three healthy volunteers traveled for repeated multicenter brain MRI exams with hyperpolarized [1-13C]pyruvate within one year. First, multisite agreement was assessed with the same echo-planar imaging protocol at both sites. Then, this was compared to a variable resolution echo-planar imaging protocol. In total, 12 examinations were performed. Common metrics of 13C-pyruvate to 13C-lactate conversion were calculated, including the kPL, a model-based kinetic rate constant, and its model-free equivalents. Repeatability was evaluated with intraclass correlation coefficients (ICC) for absolute agreement computed using two-way random effects models. Results: The mean kPL across all examinations in the multisite comparison was 0.024 ± 0.0016 s−1. The ICC of the kPL was 0.83 (p = 0.14) between sites and 0.7 (p = 0.09) between examinations of the same volunteer at any of the two sites. For the model-free metrics, the lactate Z-score had similar site-to-site ICC, while it was considerably lower for the lactate-to-pyruvate ratio. Conclusions: Estimation of metabolic conversion from hyperpolarized [1-13C]pyruvate to lactate using model-based metrics such as kPL suggests close agreement between sites and examinations in volunteers. Our initial results support harmonization of protocols, support multicenter studies, and inform their design.
Collapse
|
5
|
Varma G, Seth P, de Souza PC, Callahan C, Pinto J, Vaidya M, Sonzogni O, Sukhatme V, Wulf GM, Grant AK. Visualizing the effects of lactate dehydrogenase (LDH) inhibition and LDH-A genetic ablation in breast and lung cancer with hyperpolarized pyruvate NMR. NMR IN BIOMEDICINE 2021; 34:e4560. [PMID: 34086382 PMCID: PMC8764798 DOI: 10.1002/nbm.4560] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 05/12/2023]
Abstract
In many tumors, cancer cells take up large quantities of glucose and metabolize it into lactate, even in the presence of sufficient oxygen to support oxidative metabolism. It has been hypothesized that this malignant metabolic phenotype supports cancer growth and metastasis, and that reversal of this so-called "Warburg effect" may selectively harm cancer cells. Conversion of glucose to lactate can be reduced by ablation or inhibition of lactate dehydrogenase (LDH), the enzyme responsible for conversion of pyruvate to lactate at the endpoint of glycolysis. Recently developed inhibitors of LDH provide new opportunities to investigate the role of this metabolic pathway in cancer. Here we show that magnetic resonance spectroscopic imaging of hyperpolarized pyruvate and its metabolites in models of breast and lung cancer reveal that inhibition of LDH was readily visualized through reduction in label exchange between pyruvate and lactate, while genetic ablation of the LDH-A isoform alone had smaller effects. During the acute phase of LDH inhibition in breast cancer, no discernible bicarbonate signal was observed and small signals from alanine were unchanged.
Collapse
Affiliation(s)
- Gopal Varma
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Pankaj Seth
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Patricia Coutinho de Souza
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Cody Callahan
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jocelin Pinto
- Department of Hematology and Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Manushka Vaidya
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Hematology and Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Olmo Sonzogni
- Department of Hematology and Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Vikas Sukhatme
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gerburg M. Wulf
- Department of Hematology and Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Aaron K. Grant
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Corresponding author: Aaron K. Grant, PhD, Department of Radiology, Division of MR Research, Beth Israel Deaconess Medical Center, Harvard Medical School, AN-232, 330 Brookline Avenue, Boston, MA 02215, USA,
| |
Collapse
|
6
|
Crane JC, Gordon JW, Chen HY, Autry AW, Li Y, Olson MP, Kurhanewicz J, Vigneron DB, Larson PEZ, Xu D. Hyperpolarized 13 C MRI data acquisition and analysis in prostate and brain at University of California, San Francisco. NMR IN BIOMEDICINE 2021; 34:e4280. [PMID: 32189442 PMCID: PMC7501204 DOI: 10.1002/nbm.4280] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Based on the expanding set of applications for hyperpolarized carbon-13 (HP-13 C) MRI, this work aims to communicate standardized methodology implemented at the University of California, San Francisco, as a primer for conducting reproducible metabolic imaging studies of the prostate and brain. Current state-of-the-art HP-13 C acquisition, data processing/reconstruction and kinetic modeling approaches utilized in patient studies are presented together with the rationale underpinning their usage. Organized around spectroscopic and imaging-based methods, this guide provides an extensible framework for handling a variety of HP-13 C applications, which derives from two examples with dynamic acquisitions: 3D echo-planar spectroscopic imaging of the human prostate and frequency-specific 2D multislice echo-planar imaging of the human brain. Details of sequence-specific parameters and processing techniques contained in these examples should enable investigators to effectively tailor studies around individual-use cases. Given the importance of clinical integration in improving the utility of HP exams, practical aspects of standardizing data formats for reconstruction, analysis and visualization are also addressed alongside open-source software packages that enhance institutional interoperability and validation of methodology. To facilitate the adoption and further development of this methodology, example datasets and analysis pipelines have been made available in the supporting information.
Collapse
Affiliation(s)
- Jason C Crane
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Adam W Autry
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Yan Li
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Marram P Olson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| |
Collapse
|
7
|
Tyler A, Lau JYC, Ball V, Timm KN, Zhou T, Tyler DJ, Miller JJ. A 3D hybrid-shot spiral sequence for hyperpolarized 13 C imaging. Magn Reson Med 2020; 85:790-801. [PMID: 32894618 PMCID: PMC7611357 DOI: 10.1002/mrm.28462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/30/2020] [Accepted: 07/14/2020] [Indexed: 01/30/2023]
Abstract
Purpose Hyperpolarized imaging experiments have conflicting requirements of high spatial, temporal, and spectral resolution. Spectral-spatial RF excitation has been shown to form an attractive magnetization-efficient method for hyperpolarized imaging, but the optimum readout strategy is not yet known. Methods In this work, we propose a novel 3D hybrid-shot spiral sequence which features two constant density regions that permit the retrospective reconstruction of either high spatial or high temporal resolution images post hoc, (adaptive spatiotemporal imaging) allowing greater flexibility in acquisition and reconstruction. Results We have implemented this sequence, both via simulation and on a preclinical scanner, to demonstrate its feasibility, in both a 1H phantom and with hyperpolarized 13C pyruvate in vivo. Conclusions This sequence forms an attractive method for acquiring hyperpolarized imaging datasets, providing adaptive spatiotemporal imaging to ameliorate the conflict of spatial and temporal resolution, with significant potential for clinical translation.
Collapse
Affiliation(s)
- Andrew Tyler
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom.,Oxford Centre for Clinical Cardiac Magnetic Resonance Research (OCMR), Level 0, John Radcliffe Hospital, Headington, United Kingdom
| | - Justin Y C Lau
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom.,Oxford Centre for Clinical Cardiac Magnetic Resonance Research (OCMR), Level 0, John Radcliffe Hospital, Headington, United Kingdom
| | - Vicky Ball
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Kerstin N Timm
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Tony Zhou
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom.,Oxford Centre for Clinical Cardiac Magnetic Resonance Research (OCMR), Level 0, John Radcliffe Hospital, Headington, United Kingdom
| | - Damian J Tyler
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom.,Oxford Centre for Clinical Cardiac Magnetic Resonance Research (OCMR), Level 0, John Radcliffe Hospital, Headington, United Kingdom
| | - Jack J Miller
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom.,Oxford Centre for Clinical Cardiac Magnetic Resonance Research (OCMR), Level 0, John Radcliffe Hospital, Headington, United Kingdom.,Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Autry AW, Gordon JW, Chen HY, LaFontaine M, Bok R, Van Criekinge M, Slater JB, Carvajal L, Villanueva-Meyer JE, Chang SM, Clarke JL, Lupo JM, Xu D, Larson PEZ, Vigneron DB, Li Y. Characterization of serial hyperpolarized 13C metabolic imaging in patients with glioma. NEUROIMAGE-CLINICAL 2020; 27:102323. [PMID: 32623139 PMCID: PMC7334458 DOI: 10.1016/j.nicl.2020.102323] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/15/2020] [Accepted: 06/21/2020] [Indexed: 01/07/2023]
Abstract
Serial HP 13C MRI was evaluated for data consistency and abnormal metabolism. Metabolism of [1-13C]pyruvate to lactate and bicarbonate was kinetically modeled. Conversion rates within NAWM were consistent in healthy volunteer and patient scans Progressed tumor lesions showed higher relative conversion rates to [1-13C]lactate. Globally elevated rate constants were observed with anti-angiogenic treatment.
Background Hyperpolarized carbon-13 (HP-13C) MRI is a non-invasive imaging technique for probing brain metabolism, which may improve clinical cancer surveillance. This work aimed to characterize the consistency of serial HP-13C imaging in patients undergoing treatment for brain tumors and determine whether there is evidence of aberrant metabolism in the tumor lesion compared to normal-appearing tissue. Methods Serial dynamic HP [1-13C]pyruvate MRI was performed on 3 healthy volunteers (6 total examinations) and 5 patients (21 total examinations) with diffuse infiltrating glioma during their course of treatment, using a frequency-selective echo-planar imaging (EPI) sequence. HP-13C imaging at routine clinical timepoints overlapped treatment, including radiotherapy (RT), temozolomide (TMZ) chemotherapy, and anti-angiogenic/investigational agents. Apparent rate constants for [1-13C]pyruvate conversion to [1-13C]lactate (kPL) and [13C]bicarbonate (kPB) were simultaneously quantified based on an inputless kinetic model within normal-appearing white matter (NAWM) and anatomic lesions defined from 1H MRI. The inter/intra-subject consistency of kPL-NAWM and kPB-NAWM was measured in terms of the coefficient of variation (CV). Results When excluding scans following anti-angiogenic therapy, patient values of kPL-NAWM and kPB-NAWM were 0.020 s−1 ± 23.8% and 0.0058 s−1 ± 27.7% (mean ± CV) across 17 HP-13C MRIs, with intra-patient serial kPL-NAWM/kPB-NAWM CVs ranging 6.8–16.6%/10.6–40.7%. In 4/5 patients, these values (0.018 s−1 ± 13.4% and 0.0058 s−1 ± 24.4%; n = 13) were more similar to those from healthy volunteers (0.018 s−1 ± 5.0% and 0.0043 s−1 ± 12.6%; n = 6) (mean ± CV). The anti-angiogenic agent bevacizumab was associated with global elevations in apparent rate constants, with maximum kPL-NAWM in 2 patients reaching 0.047 ± 0.001 and 0.047 ± 0.003 s−1 (±model error). In 3 patients with progressive disease, anatomic lesions showed elevated kPL relative to kPL-NAWM of 0.024 ± 0.001 s−1 (±model error) in the absence of gadolinium enhancement, and 0.032 ± 0.008, 0.040 ± 0.003 and 0.041 ± 0.009 s−1 with gadolinium enhancement. The lesion kPB in patients was reduced to unquantifiable values compared to kPB-NAWM. Conclusion Serial measures of HP [1-13C]pyruvate metabolism displayed consistency in the NAWM of healthy volunteers and patients. Both kPL and kPB were globally elevated following bevacizumab treatment, while progressive disease demonstrated elevated kPL in gadolinium-enhancing and non-enhancing lesions. Larger prospective studies with homogeneous patient populations are planned to evaluate metabolic changes following treatment.
Collapse
Affiliation(s)
- Adam W Autry
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Marisa LaFontaine
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Mark Van Criekinge
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - James B Slater
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Lucas Carvajal
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, USA
| | - Jennifer L Clarke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, USA
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, USA
| | - Yan Li
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA.
| |
Collapse
|
9
|
Topping GJ, Hundshammer C, Nagel L, Grashei M, Aigner M, Skinner JG, Schulte RF, Schilling F. Acquisition strategies for spatially resolved magnetic resonance detection of hyperpolarized nuclei. MAGMA (NEW YORK, N.Y.) 2020; 33:221-256. [PMID: 31811491 PMCID: PMC7109201 DOI: 10.1007/s10334-019-00807-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/08/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Hyperpolarization is an emerging method in magnetic resonance imaging that allows nuclear spin polarization of gases or liquids to be temporarily enhanced by up to five or six orders of magnitude at clinically relevant field strengths and administered at high concentration to a subject at the time of measurement. This transient gain in signal has enabled the non-invasive detection and imaging of gas ventilation and diffusion in the lungs, perfusion in blood vessels and tissues, and metabolic conversion in cells, animals, and patients. The rapid development of this method is based on advances in polarizer technology, the availability of suitable probe isotopes and molecules, improved MRI hardware and pulse sequence development. Acquisition strategies for hyperpolarized nuclei are not yet standardized and are set up individually at most sites depending on the specific requirements of the probe, the object of interest, and the MRI hardware. This review provides a detailed introduction to spatially resolved detection of hyperpolarized nuclei and summarizes novel and previously established acquisition strategies for different key areas of application.
Collapse
Affiliation(s)
- Geoffrey J Topping
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian Hundshammer
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Luca Nagel
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Martin Grashei
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maximilian Aigner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jason G Skinner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Franz Schilling
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
10
|
Barrett T, Riemer F, McLean MA, Kaggie JD, Robb F, Warren AY, Graves MJ, Gallagher FA. Molecular imaging of the prostate: Comparing total sodium concentration quantification in prostate cancer and normal tissue using dedicated 13 C and 23 Na endorectal coils. J Magn Reson Imaging 2020; 51:90-97. [PMID: 31081564 DOI: 10.1002/jmri.26788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/30/2019] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND There has been recent interest in nonproton MRI including hyperpolarized carbon-13 (13 C) imaging. Prostate cancer has been shown to have a higher tissue sodium concentration (TSC) than normal tissue. Sodium (23 Na) and 13 C nuclei have a frequency difference of only 1.66 MHz at 3T, potentially enabling 23 Na imaging with a 13 C-tuned coil and maximizing the metabolic information obtained from a single study. PURPOSE To compare TSC measurements from a 13 C-tuned endorectal coil to those quantified with a dedicated 23 Na-tuned coil. STUDY TYPE Prospective. POPULATION Eight patients with biopsy-proven, intermediate/high risk prostate cancer imaged prior to prostatectomy. SEQUENCE 3T MRI with separate dual-tuned 1 H/23 Na and 1 H/13 C endorectal receive coils to quantify TSC. ASSESSMENT Regions-of-interest for TSC quantification were defined for normal peripheral zone (PZ), normal transition zone (TZ), and tumor, with reference to histopathology maps. STATISTICAL TESTS Two-sided Wilcoxon rank sum with additional measures of correlation, coefficient of variation, and Bland-Altman plots to assess for between-test differences. RESULTS Mean TSC for normal PZ and TZ were 39.2 and 33.9 mM, respectively, with the 23 Na coil and 40.1 and 36.3 mM, respectively, with the 13 C coil (P = 0.22 and P = 0.11 for the intercoil comparison, respectively). For tumor tissue, there was no statistical difference between the overall mean tumor TSC measured with the 23 Na coil (41.8 mM) and with the 13 C coil (46.6 mM; P = 0.38). Bland-Altman plots showed good repeatability for tumor TSC measurements between coils, with a reproducibility coefficient of 9 mM; the coefficient of variation between the coils was 12%. The Pearson correlation coefficient for TSC between coils for all measurements was r = 0.71 (r2 = 0.51), indicating a strong positive linear relationship. The mean TSC within PZ tumors was significantly higher compared with normal PZ for both the 23 Na coil (45.4 mM; P = 0.02) and the 13 C coil (49.4 mM; P = 0.002). DATA CONCLUSION We demonstrated the feasibility of using a carbon-tuned coil to quantify TSC, enabling dual metabolic information from a single coil. This approach could make the acquisition of both 23 Na-MRI and 13 C-MRI feasible in a single clinical imaging session. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:90-97.
Collapse
Affiliation(s)
- Tristan Barrett
- Department of Radiology, University of Cambridge, Cambridge, UK
- Department of Radiology, Cambridge University Hospitals, Cambridge, UK
| | - Frank Riemer
- Department of Radiology, University of Cambridge, Cambridge, UK
| | | | - Joshua D Kaggie
- Department of Radiology, University of Cambridge, Cambridge, UK
| | | | - Anne Y Warren
- Department of Histopathology, Cambridge University Hospitals and University of Cambridge, Cambridge, UK
| | - Martin J Graves
- Department of Radiology, Cambridge University Hospitals, Cambridge, UK
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge, Cambridge, UK
- Department of Radiology, Cambridge University Hospitals, Cambridge, UK
| |
Collapse
|
11
|
Ardenkjaer-Larsen JH. Hyperpolarized MR - What's up Doc? JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:124-127. [PMID: 31307893 DOI: 10.1016/j.jmr.2019.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Hyperpolarized MR by dissolution Dynamic Nuclear Polarization (dDNP) appeared on the scene in 2003. Since then, it has been translated to the clinic and several sites are now conducting human studies. This has happened at record pace despite all its complexities. The method has reached a pivotal point, and the coming years will be critical in realizing its full potential. Though the field has been characterized by strong collaboration between academia, government and industry, the key message of this perspective paper is that accelerated consensus building is of the essence in fulfilling the original vision for the method and ensuring widespread adoption. The challenge is to gain acceptance among clinicians based on strong indications and clear evidence. The future appears bright; initial clinical data looks promising and the scope for improvement is significant.
Collapse
Affiliation(s)
- Jan H Ardenkjaer-Larsen
- Technical University of Denmark, Department of Health Technology, Denmark; GE Healthcare, Denmark.
| |
Collapse
|
12
|
Hansen RB, Sánchez‐Heredia JD, Bøgh N, Hansen ESS, Laustsen C, Hanson LG, Ardenkjær‐Larsen JH. Coil profile estimation strategies for parallel imaging with hyperpolarized
13
C MRI. Magn Reson Med 2019; 82:2104-2117. [DOI: 10.1002/mrm.27892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Rie B. Hansen
- Department of Health Technology Technical University of Denmark Kongens Lyngby Denmark
| | | | - Nikolaj Bøgh
- MR Research Centre Aarhus University Aarhus Denmark
| | | | | | - Lars G. Hanson
- Department of Health Technology Technical University of Denmark Kongens Lyngby Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research Copenhagen University Hospital Hvidovre Copenhagen Denmark
| | - Jan H. Ardenkjær‐Larsen
- Department of Health Technology Technical University of Denmark Kongens Lyngby Denmark
- GE Healthcare Brøndby Denmark
| |
Collapse
|