1
|
Anadón R, Rodríguez-Moldes I, Adrio F. Distribution of gamma-aminobutyric acid immunoreactivity in the brain of the Siberian sturgeon (Acipenser baeri): Comparison with other fishes. J Comp Neurol 2024; 532:e25590. [PMID: 38335045 DOI: 10.1002/cne.25590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 02/12/2024]
Abstract
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the central nervous system (CNS) of vertebrates. Immunohistochemical techniques with specific antibodies against GABA or against its synthesizing enzyme, glutamic acid decarboxylase (GAD) allowed characterizing GABAergic neurons and fibers in the CNS. However, studies on the CNS distribution of GABAergic neurons and fibers of bony fishes are scant and were done in teleost species. With the aim of understanding the early evolution of this system in bony vertebrates, we analyzed the distribution of GABA-immunoreactive (-ir) and GAD-ir neurons and fibers in the CNS of a basal ray-finned fish, the Siberian sturgeon (Chondrostei, Acipenseriformes), using immunohistochemical techniques. Our results revealed the presence and distribution of GABA/GAD-ir cells in different regions of the CNS such as olfactory bulbs, pallium and subpallium, hypothalamus, thalamus, pretectum, optic tectum, tegmentum, cerebellum, central grey, octavolateralis area, vagal lobe, rhombencephalic reticular areas, and the spinal cord. Abundant GABAergic innervation was observed in most brain regions, and GABAergic fibers were very abundant in the hypothalamic floor along the hypothalamo-hypophyseal tract and neurohypophysis. In addition, GABA-ir cerebrospinal fluid-contacting cells were observed in the alar and basal hypothalamus, saccus vasculosus, and spinal cord central canal. The distribution of GABAergic systems in the sturgeon brain shows numerous similarities to that observed in lampreys, but also to those of teleosts and tetrapods.
Collapse
Affiliation(s)
- Ramón Anadón
- Área de Bioloxía Celular, Departamento de Bioloxía Funcional, CIBUS, Facultade de Bioloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Isabel Rodríguez-Moldes
- Área de Bioloxía Celular, Departamento de Bioloxía Funcional, CIBUS, Facultade de Bioloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Fátima Adrio
- Área de Bioloxía Celular, Departamento de Bioloxía Funcional, CIBUS, Facultade de Bioloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
2
|
Craft MF, Barreiro AK, Gautam SH, Shew WL, Ly C. Odor modality is transmitted to cortical brain regions from the olfactory bulb. J Neurophysiol 2023; 130:1226-1242. [PMID: 37791383 PMCID: PMC10994644 DOI: 10.1152/jn.00101.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/05/2023] Open
Abstract
Odor perception is the impetus for important animal behaviors with two predominate modes of processing: odors pass through the front of the nose (orthonasal) while inhaling and sniffing, or through the rear (retronasal) during exhalation and while eating. Despite the importance of olfaction for an animal's well-being and that ortho and retro naturally occur, it is unknown how the modality (ortho vs. retro) is even transmitted to cortical brain regions, which could significantly affect how odors are processed and perceived. Using multielectrode array recordings in tracheotomized anesthetized rats, which decouples ortho-retro modality from breathing, we show that mitral cells in rat olfactory bulb can reliably and directly transmit orthonasal versus retronasal modality with ethyl butyrate, a common food odor. Drug manipulations affecting synaptic inhibition via GABAA lead to worse decoding of ortho versus retro, independent of whether overall inhibition increases or decreases, suggesting that the olfactory bulb circuit may naturally favor encoding this important aspect of odors. Detailed data analysis paired with a firing rate model that captures population trends in spiking statistics shows how this circuit can encode odor modality. We have not only demonstrated that ortho/retro information is encoded to downstream brain regions but also used modeling to demonstrate a plausible mechanism for this encoding; due to synaptic adaptation, it is the slower time course of the retronasal stimulation that causes retronasal responses to be stronger and less sensitive to inhibitory drug manipulations than orthonasal responses.NEW & NOTEWORTHY Whether ortho (sniffing odors) versus retro (exhalation and eating) is encoded from the olfactory bulb to other brain areas is not completely known. Using multielectrode array recordings in anesthetized rats, we show that the olfactory bulb transmits this information downstream via spikes. Altering inhibition degrades ortho/retro information on average. We use theory and computation to explain our results, which should have implications on cortical processing considering that only food odors occur retronasally.
Collapse
Affiliation(s)
- Michelle F Craft
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Andrea K Barreiro
- Department of Mathematics, Southern Methodist University, Dallas, Texas, United States
| | - Shree Hari Gautam
- Department of Physics, University of Arkansas, Fayetteville, Arkansas, United States
| | - Woodrow L Shew
- Department of Physics, University of Arkansas, Fayetteville, Arkansas, United States
| | - Cheng Ly
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, Virginia, United States
| |
Collapse
|
3
|
Zhao Y, Duan J, Han Z, Engström Y, Hartenstein V. Identification of a GABAergic neuroblast lineage modulating sweet and bitter taste sensitivity. Curr Biol 2022; 32:5354-5363.e3. [PMID: 36347251 PMCID: PMC10728805 DOI: 10.1016/j.cub.2022.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/16/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
In Drosophila melanogaster, processing of gustatory information and controlling feeding behavior are executed by neural circuits located in the subesophageal zone (SEZ) of the brain.1 Gustatory receptor neurons (GRNs) project their axons in the primary gustatory center (PGC), which is located in the SEZ.1,2,3,4 To address the function of the PGC, we need detailed information about the different classes of gustatory interneurons that frame the PGC. In this work, we screened large collections of driver lines for SEZ interneuron-specific labeling and subsequently used candidate lines to access the SEZ neuroblast lineages. We converted 130 Gal4 lines to LexA drivers and carried out functional screening using calcium imaging. We found one neuroblast lineage, TRdm, whose neurons responded to both sweet and bitter tastants, and formed green fluorescent protein (GFP) reconstitution across synaptic partners (GRASP)-positive synapses with sweet sensory neurons. TRdm neurons express the inhibitory transmitter GABA, and silencing these neurons increases appetitive feeding behavior. These results demonstrate that TRdm generates a class of inhibitory local neurons that control taste sensitivity in Drosophila.
Collapse
Affiliation(s)
- Yunpo Zhao
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden; Biozentrum, University of Basel, 4056 Basel, Switzerland; Center for Precision Disease Modeling, University of Maryland School of Medicine, Baltimore 21201, USA.
| | - Jianli Duan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden; Center for Precision Disease Modeling, University of Maryland School of Medicine, Baltimore 21201, USA
| | - Zhe Han
- Center for Precision Disease Modeling, University of Maryland School of Medicine, Baltimore 21201, USA
| | - Ylva Engström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles 90095-1606, USA.
| |
Collapse
|
4
|
Boxwell A, Terman D, Frank M, Yanagawa Y, Travers JB. A computational analysis of signal fidelity in the rostral nucleus of the solitary tract. J Neurophysiol 2018; 119:771-785. [PMID: 29093172 PMCID: PMC5899313 DOI: 10.1152/jn.00624.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 02/07/2023] Open
Abstract
Neurons in the rostral nucleus of the solitary tract (rNST) convey taste information to both local circuits and pathways destined for forebrain structures. This nucleus is more than a simple relay, however, because rNST neurons differ in response rates and tuning curves relative to primary afferent fibers. To systematically study the impact of convergence and inhibition on firing frequency and breadth of tuning (BOT) in rNST, we constructed a mathematical model of its two major cell types: projection neurons and inhibitory neurons. First, we fit a conductance-based neuronal model to data derived from whole cell patch-clamp recordings of inhibitory and noninhibitory neurons in a mouse expressing Venus under the control of the VGAT promoter. We then used in vivo chorda tympani (CT) taste responses as afferent input to modeled neurons and assessed how the degree and type of convergence influenced model cell output frequency and BOT for comparison with in vivo gustatory responses from the rNST. Finally, we assessed how presynaptic and postsynaptic inhibition impacted model cell output. The results of our simulations demonstrated 1) increasing numbers of convergent afferents (2-10) result in a proportional increase in best-stimulus firing frequency but only a modest increase in BOT, 2) convergence of afferent input selected from the same best-stimulus class of CT afferents produced a better fit to real data from the rNST compared with convergence of randomly selected afferent input, and 3) inhibition narrowed the BOT to more realistically model the in vivo rNST data. NEW & NOTEWORTHY Using a combination of in vivo and in vitro neurophysiology together with conductance-based modeling, we show how patterns of convergence and inhibition interact in the rostral (gustatory) solitary nucleus to maintain signal fidelity. Although increasing convergence led to a systematic increase in firing frequency, tuning specificity was maintained with a pattern of afferent inputs sharing the best-stimulus compared with random inputs. Tonic inhibition further enhanced response fidelity.
Collapse
Affiliation(s)
- Alison Boxwell
- College of Medicine, Ohio State University , Columbus, Ohio
| | - David Terman
- Department of Mathematics, Ohio State University , Columbus, Ohio
| | - Marion Frank
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center , Farmington, Connecticut
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | | |
Collapse
|
5
|
Chen Z, Travers SP, Travers JB. Inhibitory modulation of optogenetically identified neuron subtypes in the rostral solitary nucleus. J Neurophysiol 2016; 116:391-403. [PMID: 27146980 DOI: 10.1152/jn.00168.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/27/2016] [Indexed: 12/27/2022] Open
Abstract
Inhibition is presumed to play an important role in gustatory processing in the rostral nucleus of the solitary tract (rNST). One source of inhibition, GABA, is abundant within the nucleus and comes both from local, intrasolitary sources and from outside the nucleus. In addition to the receptor-mediated effects of GABA on rNST neurons, the hyperpolarization-sensitive currents, Ih and IA, have the potential to further modulate afferent signals. To elucidate the effects of GABAergic modulation on solitary tract (ST)-evoked responses in phenotypically defined rNST neurons and to define the presence of IA and Ih in the same cells, we combined in vitro recording and optogenetics in a transgenic mouse model. This mouse expresses channelrhodopsin 2 (ChR2) in GAD65-expressing GABAergic neurons throughout the rNST. GABA positive (GABA+) neurons differed from GABA negative (GABA-) neurons in their response to membrane depolarization and ST stimulation. GABA+ neurons had lower thresholds to direct membrane depolarization compared with GABA- neurons, but GABA- neurons responded more faithfully to ST stimulation. Both IA and Ih were present in subsets of GABA+ and GABA- neurons. Interestingly, GABA+ neurons with Ih were more responsive to afferent stimulation than inhibitory neurons devoid of these currents, whereas GABA- neurons with IA were more subject to inhibitory modulation. These results suggest that the voltage-gated channels underlying IA and Ih play an important role in modulating rNST output through a circuit of feedforward inhibition.
Collapse
Affiliation(s)
- Z Chen
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - S P Travers
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - J B Travers
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| |
Collapse
|
6
|
Vendrell-Llopis N, Yaksi E. Evolutionary conserved brainstem circuits encode category, concentration and mixtures of taste. Sci Rep 2015; 5:17825. [PMID: 26639368 PMCID: PMC4671064 DOI: 10.1038/srep17825] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/06/2015] [Indexed: 11/23/2022] Open
Abstract
Evolutionary conserved brainstem circuits are the first relay for gustatory information in the vertebrate brain. While the brainstem circuits act as our life support system and they mediate vital taste related behaviors, the principles of gustatory computations in these circuits are poorly understood. By a combination of two-photon calcium imaging and quantitative animal behavior in juvenile zebrafish, we showed that taste categories are represented by dissimilar brainstem responses and generate different behaviors. We also showed that the concentration of sour and bitter tastes are encoded by different principles and with different levels of sensitivity. Moreover, we observed that the taste mixtures lead to synergistic and suppressive interactions. Our results suggest that these interactions in early brainstem circuits can result in non-linear computations, such as dynamic gain modulation and discrete representation of taste mixtures, which can be utilized for detecting food items at broad range of concentrations of tastes and rejecting inedible substances.
Collapse
Affiliation(s)
| | - Emre Yaksi
- NERF, Leuven, Belgium.,KU Leuven, Leuven, Belgium.,VIB, Leuven, Belgium.,Kavli Institute for Systems Neuroscience and Centre for the Biology of Memory, Norwegian Brain Centre, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
7
|
Pushchina EV, Varaksin AA, Obukhov DK. Cystathionine β-synthase in the CNS of masu salmon Oncorhynchus masou (Salmonidae) and carp Cyprinus carpio (Cyprinidae). NEUROCHEM J+ 2011. [DOI: 10.1134/s1819712411010090] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Ikenaga T, Ogura T, Finger TE. Vagal gustatory reflex circuits for intraoral food sorting behavior in the goldfish: cellular organization and neurotransmitters. J Comp Neurol 2009; 516:213-25. [PMID: 19598285 DOI: 10.1002/cne.22097] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The sense of taste is crucial in an animal's determination as to what is edible and what is not. This gustatory function is especially important in goldfish, who utilize a sophisticated oropharyngeal sorting mechanism to separate food from substrate material. The computational aspects of this detection are carried out by the medullary vagal lobe, which is a large, laminated structure combining elements of both the gustatory nucleus of the solitary tract and the nucleus ambiguus. The sensory layers of the vagal lobe are coupled to the motor layers via a simple reflex arc. Details of this reflex circuit were investigated with histology and calcium imaging. Biocytin injections into the motor layer labeled vagal reflex interneurons that have radially directed dendrites ramifying within the layers of primary afferent terminals. Axons of reflex interneurons extend radially inward to terminate onto both vagal motoneurons and small, GABAergic interneurons in the motor layer. Functional imaging shows increases in intracellular Ca++ of vagal motoneurons following electrical stimulation in the sensory layer. These responses were suppressed under Ca(++)-free conditions and by interruption of the axons bridging between the sensory and motor layers. Pharmacological experiments showed that glutamate acting via (+/-)-alpha-amino-3-hydroxy- 5-ethylisoxazole-4-propioinc acid (AMPA)/kainate and N-methyl-D-aspartic acid (NMDA) receptors mediate neurotransmission between reflex interneurons and vagal motoneurons. Thus, the vagal gustatory portion of the viscerosensory complex is linked to branchiomotor neurons of the pharynx via a glutamatergic interneuronal system.
Collapse
Affiliation(s)
- Takanori Ikenaga
- Rocky Mountain Taste & Smell Center, Department of Cell and Developmental Biology, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
9
|
Hallock RM, Martyniuk CJ, Finger TE. Group III metabotropic glutamate receptors (mGluRs) modulate transmission of gustatory inputs in the brain stem. J Neurophysiol 2009; 102:192-202. [PMID: 19369363 DOI: 10.1152/jn.00135.2009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glutamate is the principal neurotransmitter at the primary sensory afferent synapse in the medulla for the taste system. At this synapse, glutamate activates N-methyl-D-aspartate (NMDA) and non-NMDA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid [AMPA] and kainate) ionotropic receptors to effect a response in the second-order neurons. The current experiment is the first to examine the role of metabotropic glutamate receptors (mGluRs) in the transmission of taste information. In an in vitro slice preparation of the primary vagal gustatory nucleus in goldfish, primary gustatory afferent fibers were stimulated electrically, whereas evoked dendritic field potentials were recorded in the sensory layers. Recordings were made before, during, and after bath application of mGluR agonists for various mGluR groups and subtypes. Whereas L-AP4, a group III agonist, reduced the field potential, group I and group II agonists had no effect. Furthermore, the selective mGluR4 agonist ACPT-III and mGluR8 agonist PPG were effective at reducing the field potential, whereas agonists selective for mGluR6 and 7 were not. MAP4, a group III mGluR antagonist, attenuated frequency-dependent depression, indicating that endogenous glutamate binds to presynaptic mGluRs under normal conditions. Furthermore, polymerase chain reaction showed that mRNA for mGluR4 and 8 is expressed in the vagal ganglia, a prerequisite if those receptors are expressed presynaptically in the vagal lobe. Collectively, these experiments indicate that mGluR4 and 8 are presynaptic at the primary gustatory afferent synapse and that their activation inhibits glutamatergic release.
Collapse
Affiliation(s)
- Robert M Hallock
- Rocky Mountain Taste and Smell Center, Department of Cell and Developmental Biology, Room L18-11403-G, RC-1, 12801 E. 17th Ave., MS 8108, P.O. Box 6511, Aurora, CO 80045-6511, USA.
| | | | | |
Collapse
|
10
|
Pirone A, Giannaccini G, Betti L, Lucacchini A, Mascia G, Fabbrini L, Italiani P, Uccelli A, Lenzi C, Fabiani O. [3H] muscimol receptors sites in the carp (Cyprinus carpio L.) brain: Binding assay and autoradiographic distribution. Comp Biochem Physiol A Mol Integr Physiol 2007; 148:324-31. [PMID: 17553715 DOI: 10.1016/j.cbpa.2007.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 05/04/2007] [Accepted: 05/05/2007] [Indexed: 01/02/2023]
Abstract
Autoradiographic and binding techniques were used to study the presence of [(3)H]muscimol receptors sites in the carp brain. The radioligand was distributed with an high degree of anatomical selectivity. We found abundant labelling in the cerebellum, in the nucleus diffusus lobi inferioris, and in the torus longitudinalis. No labelling was detected within the epithalamus, thalamus and hypothalamus, while the telencephalon and the rhombencephalon displayed a low density of [(3)H]muscimol receptors sites. Binding assay showed the highest concentration of receptor sites in the nucleus diffusus lobi inferioris and the lowest in the medulla oblongata. Presence of [(3)H]muscimol binding sites within the visceral sensory area was noted. The rank order of displacement efficacy of unlabelled ligands observed, suggested that in brain membranes of carp the receptor binding of [(3)H]muscimol has the same pharmacological specificity previously reported in a large number of experiments with tissue homogenates. A general agreement in binding and autoradiography was observed. The present findings suggested that muscimol receptor could be involved in neuronal pathway controlling basic central actions like gustatory signal processing or spatial learning acquisition and retention.
Collapse
Affiliation(s)
- Andrea Pirone
- Department of Animal Productions-Section of Anatomy, University of Pisa, Via Matteotti, 5, 56100 Pisa, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ikenaga T, Huesa G, Finger TE. Co-occurrence of calcium-binding proteins and calcium-permeable glutamate receptors in the primary gustatory nucleus of goldfish. J Comp Neurol 2006; 499:90-105. [PMID: 16958099 DOI: 10.1002/cne.21079] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Primary vagal gustatory afferents utilize glutamate as a neurotransmitter acting on AMPA/kainate receptors of second-order neurons. Some forms of ionotropic glutamate receptors permit passage of Ca++ ions upon activation by appropriate ligands. Calcium-binding proteins (CaBPs) play a buffering role for regulating the concentration of intracellular calcium. In the present study, we used immunohistochemistry to examine the distribution and morphology of neurons with CaBPs, including calretinin, calbindin, and parvalbumin, and to compare this distribution with neurons exhibiting Ca++-permeable glutamate receptors as determined by kainate-stimulated uptake of Co++ in the vagal lobe of goldfish. Calretinin- and calbindin-positive neurons occurred throughout the sensory zone including round unipolar, horizontal; and perpendicular bipolar or multipolar somata. Parvalbumin neurons were mainly round monopolar neurons, especially common in the superficial layers of the sensory zone. In the motor zone, while parvalbumin labeled nearly all motoneurons, calretinin labeled only external motoneurons. In double labeling with calretinin and parvalbumin, few neurons in the sensory layer labeled with both antisera. Immunocytochemistry following kainate-stimulate uptake of Co++ showed that most calretinin, but few parvalbumin immunopositive neurons also were labeled by cobalt in the central and deep layers of the sensory zone. All motoneurons were labeled by Co++, including those immunoreactive for calretinin or parvalbumin. These results indicate that calretinin expression is strongly correlated with calcium-permeable ionotropic glutamate receptors in the neurons of the sensory zone of the goldfish vagal lobe, but even within this limited region, not all Ca++-permeable neurons possess any of the CaBPs examined.
Collapse
Affiliation(s)
- Takanori Ikenaga
- Department of Cell and Developmental Biology, University of Colorado Medical School, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
12
|
N/A, 闫 剑, 施 京, 杨 雪. N/A. Shijie Huaren Xiaohua Zazhi 2006; 14:1906-1911. [DOI: 10.11569/wcjd.v14.i19.1906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
13
|
Castro A, Becerra M, Manso MJ, Anadón R. Calretinin immunoreactivity in the brain of the zebrafish,Danio rerio: Distribution and comparison with some neuropeptides and neurotransmitter-synthesizing enzymes. II. Midbrain, hindbrain, and rostral spinal cord. J Comp Neurol 2005; 494:792-814. [PMID: 16374815 DOI: 10.1002/cne.20843] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The distribution of calretinin (CR) in the brainstem and rostral spinal cord of the adult zebrafish was studied by using immunocytochemical techniques. For analysis of some brainstem nuclei and regions, CR distribution was compared with that of complementary markers (choline acetyltransferase, glutamic acid decarboxylase, tyrosine hydroxylase, neuropeptide Y). The results reveal that CR is a marker of various neuronal populations distributed throughout the brainstem, including numerous cells in the optic tectum, torus semicircularis, secondary gustatory nucleus, reticular formation, somatomotor column, gustatory lobes, octavolateral area, and inferior olive, as well as of characteristic tracts of fibers and neuropil. These results indicate that CR may prove useful for characterizing a number of neuronal subpopulations in zebrafish. Comparison of the distribution of CR observed in the brainstem of zebrafish with that reported in an advanced teleost (the gray mullet) revealed a number of similarities, and also some interesting differences. Our results indicate that many brainstem neuronal populations have maintained the CR phenotype in widely divergent teleost lines, so CR studies may prove very useful for comparative analysis.
Collapse
Affiliation(s)
- Antonio Castro
- Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, 15071-A Coruña, Spain
| | | | | | | |
Collapse
|