1
|
Cagnetta R, Flanagan JG, Sonenberg N. Control of Selective mRNA Translation in Neuronal Subcellular Compartments in Health and Disease. J Neurosci 2023; 43:7247-7263. [PMID: 37914402 PMCID: PMC10621772 DOI: 10.1523/jneurosci.2240-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 11/03/2023] Open
Abstract
In multiple cell types, mRNAs are transported to subcellular compartments, where local translation enables rapid, spatially localized, and specific responses to external stimuli. Mounting evidence has uncovered important roles played by local translation in vivo in axon survival, axon regeneration, and neural wiring, as well as strong links between dysregulation of local translation and neurologic disorders. Omic studies have revealed that >1000 mRNAs are present and can be selectively locally translated in the presynaptic and postsynaptic compartments from development to adulthood in vivo A large proportion of the locally translated mRNAs is specifically upregulated or downregulated in response to distinct extracellular signals. Given that the local translatome is large, selectively translated, and cue-specifically remodeled, a fundamental question concerns how selective translation is achieved locally. Here, we review the emerging regulatory mechanisms of local selective translation in neuronal subcellular compartments, their mRNA targets, and their orchestration. We discuss mechanisms of local selective translation that remain unexplored. Finally, we describe clinical implications and potential therapeutic strategies in light of the latest advances in gene therapy.
Collapse
Affiliation(s)
- Roberta Cagnetta
- Department of Biochemistry and Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - John G Flanagan
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada
| |
Collapse
|
2
|
Sullivan KG, Bashaw GJ. Intracellular Trafficking Mechanisms that Regulate Repulsive Axon Guidance. Neuroscience 2023; 508:123-136. [PMID: 35863679 PMCID: PMC9839465 DOI: 10.1016/j.neuroscience.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 01/17/2023]
Abstract
Friedrich Bonhoeffer made seminal contributions to the study of axon guidance in the developing nervous system. His discoveries of key cellular and molecular mechanisms that dictate wiring specificity laid the foundation for countless investigators who have followed in his footsteps. Perhaps his most significant contribution was the cloning and characterization of members of the conserved ephrin family of repulsive axon guidance cues. In this review, we highlight the major contributions that Bonhoeffer and his colleagues made to the field of axon guidance, and discuss ongoing investigations into the diverse array of mechanisms that ensure that axon repulsion is precisely regulated to allow for accurate pathfinding. Specifically, we focus our discussion on the post-translational regulation of two major families of repulsive axon guidance factors: ephrin ligands and their Eph receptors, and slit ligands and their Roundabout (Robo) receptors. We will give special emphasis to the ways in which regulated endocytic trafficking events allow navigating axons to adjust their responses to repellant signals and how these trafficking events are intimately related to receptor signaling. By highlighting parallels and differences between the regulation of these two important repulsive axon guidance pathways, we hope to identify key outstanding questions for future investigation.
Collapse
Affiliation(s)
- Kelly G Sullivan
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, United States
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, United States.
| |
Collapse
|
3
|
Santos RA, Del Rio R, Alvarez AD, Romero G, Vo BZ, Cohen-Cory S. DSCAM is differentially patterned along the optic axon pathway in the developing Xenopus visual system and guides axon termination at the target. Neural Dev 2022; 17:5. [PMID: 35422013 PMCID: PMC9011933 DOI: 10.1186/s13064-022-00161-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Xenopus retinotectal circuit is organized topographically, where the dorsal-ventral axis of the retina maps respectively on to the ventral-dorsal axis of the tectum; axons from the nasal-temporal axis of the retina project respectively to the caudal-rostral axis of the tectum. Studies throughout the last two decades have shown that mechanisms involving molecular recognition of proper termination domains are at work guiding topographic organization. Such studies have shown that graded distribution of molecular cues is important for topographic mapping. However, the complement of molecular cues organizing topography along the developing optic nerve, and as retinal axons cross the chiasm and navigate towards and innervate their target in the tectum, remains unknown. Down syndrome cell adhesion molecule (DSCAM) has been characterized as a key molecule in axon guidance, making it a strong candidate involved in the topographic organization of retinal fibers along the optic path and at their target. METHODS Using a combination of whole-brain clearing and immunohistochemistry staining techniques we characterized DSCAM expression and the projection of ventral and dorsal retinal fibers starting from the eye, following to the optic nerve and chiasm, and into the terminal target in the optic tectum in Xenopus laevis tadpoles. We then assessed the effects of DSCAM on the establishment of retinotopic maps through spatially and temporally targeted DSCAM knockdown on retinal ganglion cells (RGCs) with axons innervating the optic tectum. RESULTS Highest expression of DSCAM was localized to the ventral posterior region of the optic nerve and chiasm; this expression pattern coincides with ventral fibers derived from ventral RGCs. Targeted downregulation of DSCAM expression on ventral RGCs affected the segregation of medial axon fibers from their dorsal counterparts within the tectal neuropil, indicating that DSCAM plays a role in retinotopic organization. CONCLUSION These findings together with previous studies demonstrating cell-autonomous roles for DSCAM during the development of pre- and postsynaptic arbors in the Xenopus retinotectal circuit indicates that DSCAM exerts multiple roles in coordinating axon targeting and structural connectivity in the developing vertebrate visual system.
Collapse
Affiliation(s)
- Rommel Andrew Santos
- Department of Neurobiology and Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA 92697-4550 USA
| | - Rodrigo Del Rio
- Department of Neurobiology and Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA 92697-4550 USA
| | - Alexander Delfin Alvarez
- Department of Neurobiology and Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA 92697-4550 USA
| | - Gabriela Romero
- Department of Neurobiology and Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA 92697-4550 USA
| | - Brandon Zarate Vo
- Department of Neurobiology and Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA 92697-4550 USA
| | - Susana Cohen-Cory
- Department of Neurobiology and Behavior, University of California Irvine, 2205 McGaugh Hall, Irvine, CA 92697-4550 USA
| |
Collapse
|
4
|
Koppers M, Holt CE. Receptor-Ribosome Coupling: A Link Between Extrinsic Signals and mRNA Translation in Neuronal Compartments. Annu Rev Neurosci 2022; 45:41-61. [DOI: 10.1146/annurev-neuro-083021-110015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Axons receive extracellular signals that help to guide growth and synapse formation during development and to maintain neuronal function and survival during maturity. These signals relay information via cell surface receptors that can initiate local intracellular signaling at the site of binding, including local messenger RNA (mRNA) translation. Direct coupling of translational machinery to receptors provides an attractive way to activate this local mRNA translation and change the local proteome with high spatiotemporal resolution. Here, we first discuss the increasing evidence that different external stimuli trigger translation of specific subsets of mRNAs in axons via receptors and thus play a prominent role in various processes in both developing and mature neurons. We then discuss the receptor-mediated molecular mechanisms that regulate local mRNA translational with a focus on direct receptor-ribosome coupling. We advance the idea that receptor-ribosome coupling provides several advantages over other translational regulation mechanisms and is a common mechanism in cell communication. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Max Koppers
- Department of Biology, Division of Cell Biology, Neurobiology and Biophysics, Utrecht University, Utrecht, The Netherlands
| | - Christine E. Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Koppers M, Cagnetta R, Shigeoka T, Wunderlich LCS, Vallejo-Ramirez P, Qiaojin Lin J, Zhao S, Jakobs MAH, Dwivedy A, Minett MS, Bellon A, Kaminski CF, Harris WA, Flanagan JG, Holt CE. Receptor-specific interactome as a hub for rapid cue-induced selective translation in axons. eLife 2019; 8:e48718. [PMID: 31746735 PMCID: PMC6894925 DOI: 10.7554/elife.48718] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022] Open
Abstract
Extrinsic cues trigger the local translation of specific mRNAs in growing axons via cell surface receptors. The coupling of ribosomes to receptors has been proposed as a mechanism linking signals to local translation but it is not known how broadly this mechanism operates, nor whether it can selectively regulate mRNA translation. We report that receptor-ribosome coupling is employed by multiple guidance cue receptors and this interaction is mRNA-dependent. We find that different receptors associate with distinct sets of mRNAs and RNA-binding proteins. Cue stimulation of growing Xenopus retinal ganglion cell axons induces rapid dissociation of ribosomes from receptors and the selective translation of receptor-specific mRNAs. Further, we show that receptor-ribosome dissociation and cue-induced selective translation are inhibited by co-exposure to translation-repressive cues, suggesting a novel mode of signal integration. Our findings reveal receptor-specific interactomes and suggest a generalizable model for cue-selective control of the local proteome.
Collapse
Affiliation(s)
- Max Koppers
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Roberta Cagnetta
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Toshiaki Shigeoka
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Lucia CS Wunderlich
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Pedro Vallejo-Ramirez
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Julie Qiaojin Lin
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Sixian Zhao
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Maximilian AH Jakobs
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Asha Dwivedy
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Michael S Minett
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Anaïs Bellon
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Clemens F Kaminski
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUnited Kingdom
| | - William A Harris
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - John G Flanagan
- Department of Cell BiologyHarvard Medical SchoolBostonUnited States
| | - Christine E Holt
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
6
|
Ceci M, Mariano V, Romano N. Zebrafish as a translational regeneration model to study the activation of neural stem cells and role of their environment. Rev Neurosci 2019; 30:45-66. [PMID: 30067512 DOI: 10.1515/revneuro-2018-0020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/27/2018] [Indexed: 02/07/2023]
Abstract
The review is an overview of the current knowledge of neuronal regeneration properties in mammals and fish. The ability to regenerate the damaged parts of the nervous tissue has been demonstrated in all vertebrates. Notably, fish and amphibians have the highest capacity for neurogenesis, whereas reptiles and birds are able to only regenerate specific regions of the brain, while mammals have reduced capacity for neurogenesis. Zebrafish (Danio rerio) is a promising model of study because lesions in the brain or complete cross-section of the spinal cord are followed by an effective neuro-regeneration that successfully restores the motor function. In the brain and the spinal cord of zebrafish, stem cell activity is always able to re-activate the molecular programs required for central nervous system regeneration. In mammals, traumatic brain injuries are followed by reduced neurogenesis and poor axonal regeneration, often insufficient to functionally restore the nervous tissue, while spinal injuries are not repaired at all. The environment that surrounds the stem cell niche constituted by connective tissue and stimulating factors, including pro-inflammation molecules, seems to be a determinant in triggering stem cell proliferation and/or the trans-differentiation of connective elements (mainly fibroblasts). Investigating and comparing the neuronal regeneration in zebrafish and mammals may lead to a better understanding of the mechanisms behind neurogenesis, and the failure of the regenerative response in mammals, first of all, the role of inflammation, considered the main inhibitor of the neuronal regeneration.
Collapse
Affiliation(s)
- Marcello Ceci
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell'Università, I-01100 Viterbo, Italy
| | - Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Nicla Romano
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell'Università, I-01100 Viterbo, Italy
| |
Collapse
|
7
|
Gouveia Roque C, Holt CE. Growth Cone Tctp Is Dynamically Regulated by Guidance Cues. Front Mol Neurosci 2018; 11:399. [PMID: 30459552 PMCID: PMC6232380 DOI: 10.3389/fnmol.2018.00399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/12/2018] [Indexed: 12/19/2022] Open
Abstract
Translationally controlled tumor protein (Tctp) contributes to retinal circuitry formation by promoting axon growth and guidance, but it remains unknown to what extent axonal Tctp specifically influences axon development programs. Various genome-wide profiling studies have ranked tctp transcripts among the most enriched in the axonal compartment of distinct neuronal populations, including embryonic retinal ganglion cells (RGCs), suggesting its expression can be regulated locally and that this may be important during development. Here, we report that growth cone Tctp levels change rapidly in response to Netrin-1 and Ephrin-A1, two guidance cues encountered by navigating RGC growth cones. This regulation is opposite in effect, as we observed protein synthesis- and mTORC1-dependent increases in growth cone Tctp levels after acute treatment with Netrin-1, but a decline upon exposure to Ephrin-A1, an inhibitor of mTORC1. Live imaging with translation reporters further showed that Netrin-1-induced synthesis of Tctp in growth cones is driven by a short 3'untranslated region (3'UTR) tctp mRNA isoform. However, acute inhibition of de novo Tctp synthesis in axons did not perturb the advance of retinal projections through the optic tract in vivo, indicating that locally produced Tctp is not necessary for normal axon growth and guidance.
Collapse
Affiliation(s)
- Cláudio Gouveia Roque
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Christine E Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Madeo M, Colbert PL, Vermeer DW, Lucido CT, Cain JT, Vichaya EG, Grossberg AJ, Muirhead D, Rickel AP, Hong Z, Zhao J, Weimer JM, Spanos WC, Lee JH, Dantzer R, Vermeer PD. Cancer exosomes induce tumor innervation. Nat Commun 2018; 9:4284. [PMID: 30327461 PMCID: PMC6191452 DOI: 10.1038/s41467-018-06640-0] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 09/18/2018] [Indexed: 12/16/2022] Open
Abstract
Patients with densely innervated tumors suffer with increased metastasis and decreased survival as compared to those with less innervated tumors. We hypothesize that in some tumors, nerves are acquired by a tumor-induced process, called axonogenesis. Here, we use PC12 cells as an in vitro neuronal model, human tumor samples and murine in vivo models to test this hypothesis. When appropriately stimulated, PC12 cells extend processes, called neurites. We show that patient tumors release vesicles, called exosomes, which induce PC12 neurite outgrowth. Using a cancer mouse model, we show that tumors compromised in exosome release are less innervated than controls. Moreover, in vivo pharmacological blockade of exosome release similarly attenuates tumor innervation. We characterize these nerves as sensory in nature and demonstrate that axonogenesis is potentiated by the exosome-packaged axonal guidance molecule, EphrinB1. These findings indicate that tumor released exosomes induce tumor innervation and exosomes containing EphrinB1 potentiate this activity.
Collapse
Affiliation(s)
- Marianna Madeo
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
| | - Paul L Colbert
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
| | - Daniel W Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
| | - Christopher T Lucido
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
| | - Jacob T Cain
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
| | - Elisabeth G Vichaya
- Department of Symptom Research, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384, Houston, TX, 77030, USA
| | - Aaron J Grossberg
- Department of Symptom Research, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384, Houston, TX, 77030, USA
- Department of Radiation Medicine, Cancer Early Detection Advanced Research Center, Oregon Health and Science University, 2720 SW Moody Ave KR-CEDR, Portland, OR, 97201, USA
| | - DesiRae Muirhead
- Sanford Health Pathology Clinic, Sanford Health, 1305 West 18th St, Sioux Falls, SD, 57105, USA
| | - Alex P Rickel
- Biomedical Engineering Program, University of South Dakota, 4800 North Career Ave, Sioux Falls, SD, 57107, USA
| | - Zhongkui Hong
- Biomedical Engineering Program, University of South Dakota, 4800 North Career Ave, Sioux Falls, SD, 57107, USA
| | - Jing Zhao
- Population Health Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
| | - Jill M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
| | - William C Spanos
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
- Sanford Ears, Nose and Throat, 1310 West 22nd St, Sioux Falls, SD, 57105, USA
| | - John H Lee
- NantKwest, 9920 Jefferson Blvd, Culver City, CA, 90232, USA
| | - Robert Dantzer
- Department of Symptom Research, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384, Houston, TX, 77030, USA
| | - Paola D Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA.
| |
Collapse
|
9
|
López-Leal R, Alvarez J, Court FA. Origin of axonal proteins: Is the axon-schwann cell unit a functional syncytium? Cytoskeleton (Hoboken) 2016; 73:629-639. [DOI: 10.1002/cm.21319] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/28/2016] [Accepted: 08/02/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Rodrigo López-Leal
- Faculty of Sciences, Center for Integrative Biology; Universidad Mayor; Santiago Chile
- Geroscience Center for Brain Health and Metabolism; Santiago Chile
- Millenium Nucleus for Regenerative Biology; Santiago Chile
| | - Jaime Alvarez
- Faculty of Sciences, Center for Integrative Biology; Universidad Mayor; Santiago Chile
- Millenium Nucleus for Regenerative Biology; Santiago Chile
| | - Felipe A. Court
- Faculty of Sciences, Center for Integrative Biology; Universidad Mayor; Santiago Chile
- Geroscience Center for Brain Health and Metabolism; Santiago Chile
- Millenium Nucleus for Regenerative Biology; Santiago Chile
| |
Collapse
|
10
|
Das G, Yu Q, Hui R, Reuhl K, Gale NW, Zhou R. EphA5 and EphA6: regulation of neuronal and spine morphology. Cell Biosci 2016; 6:48. [PMID: 27489614 PMCID: PMC4971699 DOI: 10.1186/s13578-016-0115-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/12/2016] [Indexed: 12/20/2022] Open
Abstract
Background The Eph family of receptor tyrosine kinases plays important roles in neural development. Previous studies have implicated Eph receptors and their ligands, the ephrins, in neuronal migration, axon bundling and guidance to specific targets, dendritic spine formation and neural plasticity. However, specific contributions of EphA5 and EphA6 receptors to the regulation of neuronal cell morphology have not been well studied. Results Here we show that deletion of EphA5 and EphA6 results in abnormal Golgi staining patterns of cells in the brain, and abnormal spine morphology. Conclusion These observations suggest novel functions of these Eph receptors in the regulation of neuronal and spine structure in brain development and function.
Collapse
Affiliation(s)
- Gitanjali Das
- Susan L. Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 USA
| | - Qili Yu
- Susan L. Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 USA
| | - Ryan Hui
- Susan L. Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 USA
| | - Kenneth Reuhl
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 USA
| | | | - Renping Zhou
- Susan L. Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 USA
| |
Collapse
|
11
|
Abstract
Compelling new findings have revealed that receptor tyrosine kinases of the Eph family, along with their ephrin ligands, play an essential role in regulating the properties of developing mature excitatory synapses in the central nervous system. The cell surface localization of both the Eph receptors and the ephrins enables these proteins to signal bidirectionally at sites of cell-to-cell contact, such as synapses. Eph receptors and ephrins have indeed been implicated in multiple aspects of synaptic function, including clustering and modulating N-methyl-D-aspartate receptors, modifying the geometry of postsynaptic terminals, and influencing long-term synaptic plasticity and memory. In this review, we discuss how Eph receptors and ephrins are integrated into the molecular machinery that supports synaptic function.
Collapse
Affiliation(s)
- Keith K Murai
- Centre for Research in Neuroscience, McGill University Health Centre, Montreal General Hospital, Montreal, Canada
| | | |
Collapse
|
12
|
Konopacki FA, Wong HHW, Dwivedy A, Bellon A, Blower MD, Holt CE. ESCRT-II controls retinal axon growth by regulating DCC receptor levels and local protein synthesis. Open Biol 2016; 6:150218. [PMID: 27248654 PMCID: PMC4852451 DOI: 10.1098/rsob.150218] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/13/2016] [Indexed: 01/08/2023] Open
Abstract
Endocytosis and local protein synthesis (LPS) act coordinately to mediate the chemotropic responses of axons, but the link between these two processes is poorly understood. The endosomal sorting complex required for transport (ESCRT) is a key regulator of cargo sorting in the endocytic pathway, and here we have investigated the role of ESCRT-II, a critical ESCRT component, in Xenopus retinal ganglion cell (RGC) axons. We show that ESCRT-II is present in RGC axonal growth cones (GCs) where it co-localizes with endocytic vesicle GTPases and, unexpectedly, with the Netrin-1 receptor, deleted in colorectal cancer (DCC). ESCRT-II knockdown (KD) decreases endocytosis and, strikingly, reduces DCC in GCs and leads to axon growth and guidance defects. ESCRT-II-depleted axons fail to turn in response to a Netrin-1 gradient in vitro and many axons fail to exit the eye in vivo. These defects, similar to Netrin-1/DCC loss-of-function phenotypes, can be rescued in whole (in vitro) or in part (in vivo) by expressing DCC. In addition, ESCRT-II KD impairs LPS in GCs and live imaging reveals that ESCRT-II transports mRNAs in axons. Collectively, our results show that the ESCRT-II-mediated endocytic pathway regulates both DCC and LPS in the axonal compartment and suggest that ESCRT-II aids gradient sensing in GCs by coupling endocytosis to LPS.
Collapse
Affiliation(s)
- Filip A Konopacki
- Department of Physiology Development Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Hovy Ho-Wai Wong
- Department of Physiology Development Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Asha Dwivedy
- Department of Physiology Development Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Anaïs Bellon
- Department of Physiology Development Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Michael D Blower
- Department of Molecular Biology, Harvard Medical School, Simches Research Center, Boston, MA 02114, USA
| | - Christine E Holt
- Department of Physiology Development Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
13
|
Mechanisms of ephrin-Eph signalling in development, physiology and disease. Nat Rev Mol Cell Biol 2016; 17:240-56. [PMID: 26790531 DOI: 10.1038/nrm.2015.16] [Citation(s) in RCA: 444] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eph receptor Tyr kinases and their membrane-tethered ligands, the ephrins, elicit short-distance cell-cell signalling and thus regulate many developmental processes at the interface between pattern formation and morphogenesis, including cell sorting and positioning, and the formation of segmented structures and ordered neural maps. Their roles extend into adulthood, when ephrin-Eph signalling regulates neuronal plasticity, homeostatic events and disease processes. Recently, new insights have been gained into the mechanisms of ephrin-Eph signalling in different cell types, and into the physiological importance of ephrin-Eph in different organs and in disease, raising questions for future research directions.
Collapse
|
14
|
Klingler E, Martin PM, Garcia M, Moreau-Fauvarque C, Falk J, Chareyre F, Giovannini M, Chédotal A, Girault JA, Goutebroze L. The cytoskeleton-associated protein SCHIP1 is involved in axon guidance, and is required for piriform cortex and anterior commissure development. Development 2015; 142:2026-36. [DOI: 10.1242/dev.119248] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 04/10/2015] [Indexed: 01/14/2023]
Abstract
ABSTRACT
SCHIP1 is a cytoplasmic partner of cortical cytoskeleton ankyrins. The IQCJ-SCHIP1 isoform is a component of axon initial segments and nodes of Ranvier of mature axons in peripheral and central nervous systems, where it associates with membrane complexes comprising cell adhesion molecules. SCHIP1 is also expressed in the mouse developing central nervous system during embryonic stages of active axonogenesis. Here, we identify a new and early role for SCHIP1 during axon development and establishment of the anterior commissure (AC). The AC is composed of axons from the piriform cortex, the anterior olfactory nucleus and the amygdala. Schip1 mutant mice displayed early defects in AC development that might result from impaired axon growth and guidance. In addition, mutant mice presented a reduced thickness of the piriform cortex, which affected projection neurons in layers 2/3 and was likely to result from cell death rather than from impairment of neuron generation or migration. Piriform cortex neurons from E14.5 mutant embryos displayed axon initiation/outgrowth delay and guidance defects in vitro. The sensitivity of growth cones to semaphorin 3F and Eph receptor B2, two repulsive guidance cues crucial for AC development, was increased, providing a possible basis for certain fiber tract alterations. Thus, our results reveal new evidence for the involvement of cortical cytoskeleton-associated proteins in the regulation of axon development and their importance for the formation of neuronal circuits.
Collapse
Affiliation(s)
- Esther Klingler
- INSERM, UMR-S 839, Paris F-75005, France
- Sorbonne Universités, UPMC Univ Paris 06, Paris F-75005, France
- Institut du Fer à Moulin, Paris F-75005, France
| | - Pierre-Marie Martin
- INSERM, UMR-S 839, Paris F-75005, France
- Sorbonne Universités, UPMC Univ Paris 06, Paris F-75005, France
- Institut du Fer à Moulin, Paris F-75005, France
| | - Marta Garcia
- INSERM, UMR-S 839, Paris F-75005, France
- Sorbonne Universités, UPMC Univ Paris 06, Paris F-75005, France
- Institut du Fer à Moulin, Paris F-75005, France
| | - Caroline Moreau-Fauvarque
- Sorbonne Universités, UPMC Univ Paris 06, Paris F-75005, France
- Institut de la Vision, INSERM, UMR-S 968, Paris F-75012, France
- CNRS, UMR 7210, Paris F-75012, France
| | - Julien Falk
- Université Claude Bernard Lyon 1, CNRS, UMR 5534, CGphiMC, Lyon F-69622, France
| | - Fabrice Chareyre
- House Research Institute, Center for Neural Tumor Research, Los Angeles, CA 90095-1624, USA
| | - Marco Giovannini
- Department of Head and Neck Surgery, David Geffen School of Medicine, UCLA, Los Angeles, CA 90027, USA
| | - Alain Chédotal
- Sorbonne Universités, UPMC Univ Paris 06, Paris F-75005, France
- Institut de la Vision, INSERM, UMR-S 968, Paris F-75012, France
- CNRS, UMR 7210, Paris F-75012, France
| | - Jean-Antoine Girault
- INSERM, UMR-S 839, Paris F-75005, France
- Sorbonne Universités, UPMC Univ Paris 06, Paris F-75005, France
- Institut du Fer à Moulin, Paris F-75005, France
| | - Laurence Goutebroze
- INSERM, UMR-S 839, Paris F-75005, France
- Sorbonne Universités, UPMC Univ Paris 06, Paris F-75005, France
- Institut du Fer à Moulin, Paris F-75005, France
| |
Collapse
|
15
|
Tojima T, Kamiguchi H. Exocytic and endocytic membrane trafficking in axon development. Dev Growth Differ 2015; 57:291-304. [DOI: 10.1111/dgd.12218] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 04/09/2015] [Accepted: 04/09/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Takuro Tojima
- Laboratory for Neuronal Growth Mechanisms; RIKEN Brain Science Institute; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Hiroyuki Kamiguchi
- Laboratory for Neuronal Growth Mechanisms; RIKEN Brain Science Institute; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| |
Collapse
|
16
|
González-Forero D, Moreno-López B. Retrograde response in axotomized motoneurons: nitric oxide as a key player in triggering reversion toward a dedifferentiated phenotype. Neuroscience 2014; 283:138-65. [PMID: 25168733 DOI: 10.1016/j.neuroscience.2014.08.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 08/03/2014] [Accepted: 08/14/2014] [Indexed: 12/11/2022]
Abstract
The adult brain retains a considerable capacity to functionally reorganize its circuits, which mainly relies on the prevalence of three basic processes that confer plastic potential: synaptic plasticity, plastic changes in intrinsic excitability and, in certain central nervous system (CNS) regions, also neurogenesis. Experimental models of peripheral nerve injury have provided a useful paradigm for studying injury-induced mechanisms of central plasticity. In particular, axotomy of somatic motoneurons triggers a robust retrograde reaction in the CNS, characterized by the expression of plastic changes affecting motoneurons, their synaptic inputs and surrounding glia. Axotomized motoneurons undergo a reprograming of their gene expression and biosynthetic machineries which produce cell components required for axonal regrowth and lead them to resume a functionally dedifferentiated phenotype characterized by the removal of afferent synaptic contacts, atrophy of dendritic arbors and an enhanced somato-dendritic excitability. Although experimental research has provided valuable clues to unravel many basic aspects of this central response, we are still lacking detailed information on the cellular/molecular mechanisms underlying its expression. It becomes clear, however, that the state-switch must be orchestrated by motoneuron-derived signals produced under the direction of the re-activated growth program. Our group has identified the highly reactive gas nitric oxide (NO) as one of these signals, by providing robust evidence for its key role to induce synapse elimination and increases in intrinsic excitability following motor axon damage. We have elucidated operational principles of the NO-triggered downstream transduction pathways mediating each of these changes. Our findings further demonstrate that de novo NO synthesis is not only "necessary" but also "sufficient" to promote the expression of at least some of the features that reflect reversion toward a dedifferentiated state in axotomized adult motoneurons.
Collapse
Affiliation(s)
- D González-Forero
- Grupo de Neurodegeneración y Neuroreparación (GRUNEDERE), Área de Fisiología, Instituto de Biomoléculas (INBIO), Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.
| | - B Moreno-López
- Grupo de Neurodegeneración y Neuroreparación (GRUNEDERE), Área de Fisiología, Instituto de Biomoléculas (INBIO), Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.
| |
Collapse
|
17
|
Abstract
The elongation rate of axons is tightly regulated during development. Recycling of the plasma membrane is known to regulate axon extension; however, the specific molecules involved in recycling within the growth cone have not been fully characterized. Here, we investigated whether the small GTPases Rab4 and Rab5 involved in short-loop recycling regulate the extension of Xenopus retinal axons. We report that, in growth cones, Rab5 and Rab4 proteins localize to endosomes, which accumulate markers that are constitutively recycled. Fluorescence recovery after photo-bleaching experiments showed that Rab5 and Rab4 are recruited to endosomes in the growth cone, suggesting that they control recycling locally. Dynamic image analysis revealed that Rab4-positive carriers can bud off from Rab5 endosomes and move to the periphery of the growth cone, suggesting that both Rab5 and Rab4 contribute to recycling within the growth cone. Inhibition of Rab4 function with dominant-negative Rab4 or Rab4 morpholino and constitutive activation of Rab5 decreases the elongation of retinal axons in vitro and in vivo, but, unexpectedly, does not disrupt axon pathfinding. Thus, Rab5- and Rab4-mediated control of endosome trafficking appears to be crucial for axon growth. Collectively, our results suggest that recycling from Rab5-positive endosomes via Rab4 occurs within the growth cone and thereby supports axon elongation.
Collapse
|
18
|
Shigeoka T, Lu B, Holt CE. Cell biology in neuroscience: RNA-based mechanisms underlying axon guidance. ACTA ACUST UNITED AC 2013; 202:991-9. [PMID: 24081488 PMCID: PMC3787380 DOI: 10.1083/jcb.201305139] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Axon guidance plays a key role in establishing neuronal circuitry. The motile tips of growing axons, the growth cones, navigate by responding directionally to guidance cues that pattern the embryonic neural pathways via receptor-mediated signaling. Evidence in vitro in the last decade supports the notion that RNA-based mechanisms contribute to cue-directed steering during axon guidance. Different cues trigger translation of distinct subsets of mRNAs and localized translation provides precise spatiotemporal control over the growth cone proteome in response to localized receptor activation. Recent evidence has now demonstrated a role for localized translational control in axon guidance decisions in vivo.
Collapse
Affiliation(s)
- Toshiaki Shigeoka
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, England, UK
| | | | | |
Collapse
|
19
|
Salvucci O, Tosato G. Essential roles of EphB receptors and EphrinB ligands in endothelial cell function and angiogenesis. Adv Cancer Res 2012; 114:21-57. [PMID: 22588055 DOI: 10.1016/b978-0-12-386503-8.00002-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Eph receptor tyrosine kinases and their Ephrin ligands represent an important signaling system with widespread roles in cell physiology and disease. Receptors and ligands in this family are anchored to the cell surface; thus Eph/Ephrin interactions mainly occur at sites of cell-to-cell contact. EphB4 and EphrinB2 are the Eph/Ephrin molecules that play essential roles in vascular development and postnatal angiogenesis. Analysis of expression patterns and function has linked EphB4/EphrinB2 to endothelial cell growth, survival, migration, assembly, and angiogenesis. Signaling from these molecules is complex, with the potential for being bidirectional, emanating both from the Eph receptors (forward signaling) and from the Ephrin ligands (reverse signaling). In this review, we describe recent advances on the roles of EphB/EphrinB protein family in endothelial cell function and outline potential approaches to inhibit pathological angiogenesis based on this understanding.
Collapse
Affiliation(s)
- Ombretta Salvucci
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | |
Collapse
|
20
|
Affiliation(s)
- Pei-lin Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan;
| | - Mu-ming Poo
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, California, 94720, USA;
| |
Collapse
|
21
|
Tojima T. Intracellular signaling and membrane trafficking control bidirectional growth cone guidance. Neurosci Res 2012; 73:269-74. [PMID: 22684022 DOI: 10.1016/j.neures.2012.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/16/2012] [Accepted: 05/17/2012] [Indexed: 10/28/2022]
Abstract
The formation of precise neuronal networks is critically dependent on the motility of axonal growth cones. Extracellular gradients of guidance cues evoke localized Ca(2+) elevations to attract or repel the growth cone. Recent studies strongly suggest that the polarity of growth cone guidance, with respect to the localization of Ca(2+) signals, is determined by Ca(2+) release from the endoplasmic reticulum (ER) in the following manner: Ca(2+) signals containing ER Ca(2+) release cause growth cone attraction, while Ca(2+) signals without ER Ca(2+) release cause growth cone repulsion. Recent studies have also shown that exocytic and endocytic membrane trafficking can drive growth cone attraction and repulsion, respectively, downstream of Ca(2+) signals. Most likely, these two mechanisms underlie cue-induced axon guidance, in which a localized imbalance between exocytosis and endocytosis dictates bidirectional growth cone steering. In this Update Article, I summarize recent advances in growth cone research and propose that polarized membrane trafficking plays an instructive role to spatially localize steering machineries, such as cytoskeletal components and adhesion molecules.
Collapse
Affiliation(s)
- Takuro Tojima
- Laboratory for Neuronal Growth Mechanisms, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
22
|
Horowitz A, Seerapu HR. Regulation of VEGF signaling by membrane traffic. Cell Signal 2012; 24:1810-20. [PMID: 22617029 DOI: 10.1016/j.cellsig.2012.05.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 05/09/2012] [Indexed: 01/13/2023]
Abstract
Recent findings have drawn attention to the role of membrane traffic in the signaling of vascular endothelial growth factor (VEGF). The significance of this development stems from the pivotal function of VEGF in vasculogenesis and angiogenesis. The outline of the regulation of VEGF receptor (VEGFR) signaling by membrane traffic is similar to that of the epidermal growth factor receptor (EGFR), a prototype of the intertwining between membrane traffic and signaling. There are, however, unique features in VEGFR signaling that are conferred in part by the involvement of the co-receptor neuropilin (Nrp). Nrp1 and VEGFR2 are integrated into membrane traffic through the adaptor protein synectin, which recruits myosin VI, a molecular motor that drives inward trafficking [17,21,64]. The recent detection of only mild vascular defects in a knockin mouse model that expresses Nrp1 lacking a cytoplasmic domain [104], questions the co-receptor's role in VEGF signaling and membrane traffic. The regulation of endocytosis by ephrin-B2 is another feature unique to VEGR2/3 [18,19], but it awaits a mechanistic explanation. Current models do not fully explain how membrane traffic bridges between VEGFR and the downstream effectors that produce its functional outcome, such as cell migration. VEGF-A appears to accomplish this task in part by recruiting endocytic vesicles carrying RhoA to internalized active VEGFR2 [58].
Collapse
Affiliation(s)
- Arie Horowitz
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | | |
Collapse
|
23
|
Jung H, Yoon BC, Holt CE. Axonal mRNA localization and local protein synthesis in nervous system assembly, maintenance and repair. Nat Rev Neurosci 2012; 13:308-24. [PMID: 22498899 PMCID: PMC3682205 DOI: 10.1038/nrn3210] [Citation(s) in RCA: 337] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
mRNAs can be targeted to specific neuronal subcellular domains, which enables rapid changes in the local proteome through local translation. This mRNA-based mechanism links extrinsic signals to spatially restricted cellular responses and can mediate stimulus-driven adaptive responses such as dendritic plasticity. Local mRNA translation also occurs in growing axons where it can mediate directional responses to guidance signals. Recent profiling studies have revealed that both growing and mature axons possess surprisingly complex and dynamic transcriptomes, thereby suggesting that axonal mRNA localization is highly regulated and has a role in a broad range of processes, a view that is increasingly being supported by new experimental evidence. Here, we review current knowledge on the roles and regulatory mechanisms of axonal mRNA translation and discuss emerging links to axon guidance, survival, regeneration and neurological disorders.
Collapse
Affiliation(s)
- Hosung Jung
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | | | | |
Collapse
|
24
|
Concentration-dependent requirement for local protein synthesis in motor neuron subtype-specific response to axon guidance cues. J Neurosci 2012; 32:1496-506. [PMID: 22279234 DOI: 10.1523/jneurosci.4176-11.2012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Formation of functional motor circuits relies on the ability of distinct spinal motor neuron subtypes to project their axons with high precision to appropriate muscle targets. While guidance cues contributing to motor axon pathfinding have been identified, the intracellular pathways underlying subtype-specific responses to these cues remain poorly understood. In particular, it remains controversial whether responses to axon guidance cues depend on axonal protein synthesis. Using a growth cone collapse assay, we demonstrate that mouse embryonic stem cell-derived spinal motor neurons (ES-MNs) respond to ephrin-A5, Sema3f, and Sema3a in a concentration-dependent manner. At low doses, ES-MNs exhibit segmental or subtype-specific responses, while this selectivity is lost at higher concentrations. Response to high doses of semaphorins and to all doses of ephrin-A5 is protein synthesis independent. In contrast, using microfluidic devices and stripe assays, we show that growth cone collapse and guidance at low concentrations of semaphorins rely on local protein synthesis in the axonal compartment. Similar bimodal response to low and high concentrations of guidance cues is observed in human ES-MNs, pointing to a general mechanism by which neurons increase their repertoire of responses to the limited set of guidance cues involved in neural circuit formation.
Collapse
|
25
|
Estrada-Bernal A, Sanford SD, Sosa LJ, Simon GC, Hansen KC, Pfenninger KH. Functional complexity of the axonal growth cone: a proteomic analysis. PLoS One 2012; 7:e31858. [PMID: 22384089 PMCID: PMC3288056 DOI: 10.1371/journal.pone.0031858] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 01/17/2012] [Indexed: 11/19/2022] Open
Abstract
The growth cone, the tip of the emerging neurite, plays a crucial role in establishing the wiring of the developing nervous system. We performed an extensive proteomic analysis of axonal growth cones isolated from the brains of fetal Sprague-Dawley rats. Approximately 2000 proteins were identified at ≥ 99% confidence level. Using informatics, including functional annotation cluster and KEGG pathway analysis, we found great diversity of proteins involved in axonal pathfinding, cytoskeletal remodeling, vesicular traffic and carbohydrate metabolism, as expected. We also found a large and complex array of proteins involved in translation, protein folding, posttranslational processing, and proteasome/ubiquitination-dependent degradation. Immunofluorescence studies performed on hippocampal neurons in culture confirmed the presence in the axonal growth cone of proteins representative of these processes. These analyses also provide evidence for rough endoplasmic reticulum and reveal a reticular structure equipped with Golgi-like functions in the axonal growth cone. Furthermore, Western blot revealed the growth cone enrichment, relative to fetal brain homogenate, of some of the proteins involved in protein synthesis, folding and catabolism. Our study provides a resource for further research and amplifies the relatively recently developed concept that the axonal growth cone is equipped with proteins capable of performing a highly diverse range of functions.
Collapse
Affiliation(s)
- Adriana Estrada-Bernal
- Department of Pediatrics and Colorado Intellectual and Developmental Disabilities Research Center, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Staci D. Sanford
- Department of Pediatrics and Colorado Intellectual and Developmental Disabilities Research Center, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Lucas J. Sosa
- Department of Pediatrics and Colorado Intellectual and Developmental Disabilities Research Center, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Glenn C. Simon
- Department of Pediatrics and Colorado Intellectual and Developmental Disabilities Research Center, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Karl H. Pfenninger
- Department of Pediatrics and Colorado Intellectual and Developmental Disabilities Research Center, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
26
|
Steketee MB, Goldberg JL. Signaling endosomes and growth cone motility in axon regeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012; 106:35-73. [PMID: 23211459 DOI: 10.1016/b978-0-12-407178-0.00003-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During development and regeneration, growth cones guide neurites to their targets by altering their motility in response to extracellular guidance cues. One class of cues critical to nervous system development is the neurotrophins. Neurotrophin binding to their cognate receptors stimulates their endocytosis into signaling endosomes. Current data indicate that the spatiotemporal localization of signaling endosomes can direct diverse processes regulating cell motility, including membrane trafficking, cytoskeletal remodeling, adhesion dynamics, and local translation. Recent experiments manipulating signaling endosome localization in neuronal growth cones support these views and place the neurotrophin signaling endosome in a central role regulating growth cone motility during axon growth and regeneration.
Collapse
|
27
|
Jung H, O'Hare CM, Holt CE. Translational regulation in growth cones. Curr Opin Genet Dev 2011; 21:458-64. [PMID: 21530230 PMCID: PMC3683644 DOI: 10.1016/j.gde.2011.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 03/31/2011] [Accepted: 04/01/2011] [Indexed: 10/18/2022]
Abstract
Axonal growth cones (GCs) steer in response to extrinsic cues using mechanisms that include local protein synthesis. This adaptive form of gene regulation occurs with spatial precision and depends on subcellular mRNA localisation. Recent genome-wide studies have shown unexpectedly complex and dynamically changing mRNA repertoires in growing axons and GCs. Axonal targeting of some transcripts seems to be highly selective and involves sequence diversity in non-coding regions generated by transcriptional and/or post-transcriptional mechanisms. New evidence reports direct coupling of a guidance receptor to the protein synthesis machinery and other findings demonstrate that some guidance cues can repress translation. The recent findings shed further light on the exquisitely regulated process that enables distant cellular compartments to respond to local stimuli.
Collapse
Affiliation(s)
- Hosung Jung
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, United Kingdom
| | | | | |
Collapse
|
28
|
Itofusa R, Kamiguchi H. Polarizing membrane dynamics and adhesion for growth cone navigation. Mol Cell Neurosci 2011; 48:332-8. [PMID: 21459144 DOI: 10.1016/j.mcn.2011.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 03/23/2011] [Accepted: 03/24/2011] [Indexed: 10/18/2022] Open
Abstract
Neuronal network formation relies on the motile behavior of growth cones at the tip of navigating axons. Accumulating evidence indicates that growth cone motility requires spatially controlled endocytosis and exocytosis that can redistribute bulk membrane and functional cargos such as cell adhesion molecules. For axon elongation, the growth cone recycles cell adhesion molecules from its rear to its leading front through endosomes, thereby polarizing growth cone adhesiveness along the axis of migration direction. In response to extracellular guidance cues, the growth cone turns by retrieving membrane components from the retractive side or by supplying them to the side facing the new direction. We propose that polarized membrane trafficking creates adhesion gradients along and across the front-to-rear axis of growth cones that are essential for axon elongation and turning, respectively. This review will examine how growth cone adhesiveness can be patterned by spatially coordinated endocytosis and exocytosis of cell adhesion molecules. This article is part of a Special Issue entitled 'Neuronal Function'.
Collapse
Affiliation(s)
- Rurika Itofusa
- Laboratory for Neuronal Growth Mechanisms, RIKEN Brain Science Institute, 2–1 Hirosawa, Wako, Saitama 351–0198, Japan
| | | |
Collapse
|
29
|
Second messengers and membrane trafficking direct and organize growth cone steering. Nat Rev Neurosci 2011; 12:191-203. [PMID: 21386859 DOI: 10.1038/nrn2996] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Graded distributions of extracellular cues guide developing axons toward their targets. A network of second messengers - Ca(2+) and cyclic nucleotides - shapes cue-derived information into either attractive or repulsive signals that steer growth cones bidirectionally. Emerging evidence suggests that such guidance signals create a localized imbalance between exocytosis and endocytosis, which in turn redirects membrane, adhesion and cytoskeletal components asymmetrically across the growth cone to bias the direction of axon extension. These recent advances allow us to propose a unifying model of how the growth cone translates shallow gradients of environmental information into polarized activity of the steering machinery for axon guidance.
Collapse
|
30
|
Jung H, Holt CE. Local translation of mRNAs in neural development. WILEY INTERDISCIPLINARY REVIEWS. RNA 2011; 2:153-65. [PMID: 21956974 PMCID: PMC3683645 DOI: 10.1002/wrna.53] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Growing axons encounter numerous developmental signals to which they must promptly respond in order to properly form complex neural circuitry. In the axons, these signals are often transduced into a local increase or decrease in protein levels. Contrary to the traditional view that the cell bodies are the exclusive source of axonal proteins, it is becoming increasingly clear not only that de novo protein synthesis takes place in axons, but also that it is required for the axons to respond to certain signals. Here we review the current knowledge of local mRNA translation in developing neurons with a special focus on protein synthesis occurring in axons and growth cones.
Collapse
Affiliation(s)
- Hosung Jung
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Christine E. Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
31
|
Moreno-López B, Sunico CR, González-Forero D. NO orchestrates the loss of synaptic boutons from adult "sick" motoneurons: modeling a molecular mechanism. Mol Neurobiol 2010; 43:41-66. [PMID: 21190141 DOI: 10.1007/s12035-010-8159-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 12/02/2010] [Indexed: 12/14/2022]
Abstract
Synapse elimination is the main factor responsible for the cognitive decline accompanying many of the neuropathological conditions affecting humans. Synaptic stripping of motoneurons is also a common hallmark of several motor pathologies. Therefore, knowledge of the molecular basis underlying this plastic process is of central interest for the development of new therapeutic tools. Recent advances from our group highlight the role of nitric oxide (NO) as a key molecule triggering synapse loss in two models of motor pathologies. De novo expression of the neuronal isoform of NO synthase (nNOS) in motoneurons commonly occurs in response to the physical injury of a motor nerve and in the course of amyotrophic lateral sclerosis. In both conditions, this event precedes synaptic withdrawal from motoneurons. Strikingly, nNOS-synthesized NO is "necessary" and "sufficient" to induce synaptic detachment from motoneurons. The mechanism involves a paracrine/retrograde action of NO on pre-synaptic structures, initiating a downstream signaling cascade that includes sequential activation of (1) soluble guanylyl cyclase, (2) cyclic guanosine monophosphate-dependent protein kinase, and (3) RhoA/Rho kinase (ROCK) signaling. Finally, ROCK activation promotes phosphorylation of regulatory myosin light chain, which leads to myosin activation and actomyosin contraction. This latter event presumably contributes to the contractile force to produce ending axon retraction. Several findings support that this mechanism may operate in the most prevalent neurodegenerative diseases.
Collapse
Affiliation(s)
- Bernardo Moreno-López
- Grupo de NeuroDegeneración y NeuroReparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Plaza Falla, 9, 11003 Cádiz, Spain.
| | | | | |
Collapse
|
32
|
Subcellular profiling reveals distinct and developmentally regulated repertoire of growth cone mRNAs. J Neurosci 2010; 30:15464-78. [PMID: 21084603 DOI: 10.1523/jneurosci.1800-10.2010] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cue-directed axon guidance depends partly on local translation in growth cones. Many mRNA transcripts are known to reside in developing axons, yet little is known about their subcellular distribution or, specifically, which transcripts are in growth cones. Here laser capture microdissection (LCM) was used to isolate the growth cones of retinal ganglion cell (RGC) axons of two vertebrate species, mouse and Xenopus, coupled with unbiased genomewide microarray profiling. An unexpectedly large pool of mRNAs defined predominant pathways in protein synthesis, oxidative phosphorylation, cancer, neurological disease, and signaling. Comparative profiling of "young" (pathfinding) versus "old" (target-arriving) Xenopus growth cones revealed that the number and complexity of transcripts increases dramatically with age. Many presynaptic protein mRNAs are present exclusively in old growth cones, suggesting that functionally related sets of mRNAs are targeted to growth cones in a developmentally regulated way. Remarkably, a subset of mRNAs was significantly enriched in the growth cone compared with the axon compartment, indicating that mechanisms exist to localize mRNAs selectively to the growth cone. Furthermore, some receptor transcripts (e.g., EphB4), present exclusively in old growth cones, were equally abundant in young and old cell bodies, indicating that RNA trafficking from the soma is developmentally regulated. Our findings show that the mRNA repertoire in growth cones is regulated dynamically with age and suggest that mRNA localization is tailored to match the functional demands of the growing axon tip as it transforms into the presynaptic terminal.
Collapse
|
33
|
Petros TJ, Bryson JB, Mason C. Ephrin-B2 elicits differential growth cone collapse and axon retraction in retinal ganglion cells from distinct retinal regions. Dev Neurobiol 2010; 70:781-94. [PMID: 20629048 DOI: 10.1002/dneu.20821] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The circuit for binocular vision and stereopsis is established at the optic chiasm, where retinal ganglion cell (RGC) axons diverge into the ipsilateral and contralateral optic tracts. In the mouse retina, ventrotemporal (VT) RGCs express the guidance receptor EphB1, which interacts with the repulsive guidance cue ephrin-B2 on radial glia at the optic chiasm to direct VT RGC axons ipsilaterally. RGCs in the ventral retina also express EphB2, which interacts with ephrin-B2, whereas dorsal RGCs express low levels of EphB receptors. To investigate how growth cones of RGCs from different retinal regions respond upon initial contact with ephrin-B2, we utilized time-lapse imaging to characterize the effects of ephrin-B2 on growth cone collapse and axon retraction in real time. We demonstrate that bath application of ephrin-B2 induces rapid and sustained growth cone collapse and axon retraction in VT RGC axons, whereas contralaterally-projecting dorsotemporal RGCs display moderate growth cone collapse and little axon retraction. Dose response curves reveal that contralaterally-projecting ventronasal axons are less sensitive to ephrin-B2 treatment compared to VT axons. Additionally, we uncovered a specific role for Rho kinase signaling in the retraction of VT RGC axons but not in growth cone collapse. The detailed characterization of growth cone behavior in this study comprises an assay for the study of Eph signaling in RGCs, and provides insight into the phenomena of growth cone collapse and axon retraction in general.
Collapse
Affiliation(s)
- Timothy J Petros
- Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | |
Collapse
|
34
|
Abstract
The development, homeostasis, and regeneration of complex organ systems require extensive cell-cell communication to ensure that different cells proliferate, migrate, differentiate, assemble, and function in a coordinated and timely fashion. Eph receptor tyrosine kinases and their ephrin ligands are critical regulators of cell contact-dependent signaling and patterning. Eph/ephrin binding can lead to very diverse biological readouts such as adhesion versus repulsion, or increased versus decreased motility. Accordingly, depending on cell type and context, a limited and conserved set of receptor-ligand interactions is translated into a large variety of downstream signaling processes. Recent evidence indicates that the endocytosis of Eph/ephrin molecules, together with the internalization of various associated tissue-specific effectors, might be one of the key principles responsible for such highly diverse and adaptable biological roles. Here, we summarize recent insights into Eph/ephrin signaling and endocytosis in three biological systems; i.e., the brain, intestine, and vasculature.
Collapse
Affiliation(s)
- Mara E Pitulescu
- Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, and Faculty of Medicine, University of Münster, Münster, Germany
| | | |
Collapse
|
35
|
Abstract
Ephrin ligands interact with Eph receptors to regulate a wide variety of biological and pathological processes. Recent studies have identified several downstream pathways that mediate the functions of these receptors. Activation of the receptors by ephrin binding results in the phosphorylation of the receptor tyrosine residues. These phosphorylated residues serve as docking sites for many of the downstream signaling pathways. However, the relative contributions of different phospho-tyrosine residues remain undefined. In the present study, we mutated each individual tyrosine residues in the cytoplasmic domain of EphA3 receptor and studied the effects using cell migration, process retraction, and growth cone collapse assays. Stimulation of the EphA3 receptor with ephrin-A5 inhibits 293 cell migration, reduces NG108-15 cell neurite outgrowth, and induces growth cone collapse in hippocampal neurons. Mutation of either Y602 or Y779 alone partially decreases EphA3-induced responses. Full abrogation can only be achieved with mutations of both Y602 and Y779. These observations suggest a collaborative model of different downstream pathways.
Collapse
|
36
|
Nitric oxide induces pathological synapse loss by a protein kinase G-, Rho kinase-dependent mechanism preceded by myosin light chain phosphorylation. J Neurosci 2010; 30:973-84. [PMID: 20089906 DOI: 10.1523/jneurosci.3911-09.2010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The molecular signaling that underpins synapse loss in neuropathological conditions remains unknown. Concomitant upregulation of the neuronal nitric oxide (NO) synthase (nNOS) in neurodegenerative processes places NO at the center of attention. We found that de novo nNOS expression was sufficient to induce synapse loss from motoneurons at adult and neonatal stages. In brainstem slices obtained from neonatal animals, this effect required prolonged activation of the soluble guanylyl cyclase (sGC)/protein kinase G (PKG) pathway and RhoA/Rho kinase (ROCK) signaling. Synapse elimination involved paracrine/retrograde action of NO. Furthermore, before bouton detachment, NO increased synapse myosin light chain phosphorylation (p-MLC), which is known to trigger actomyosin contraction and neurite retraction. NO-induced MLC phosphorylation was dependent on cGMP/PKG-ROCK signaling. In adulthood, motor nerve injury induced NO/cGMP-dependent synaptic stripping, strongly affecting ROCK-expressing synapses, and increased the percentage of p-MLC-expressing inputs before synapse destabilization. We propose that this molecular cascade could trigger synapse loss underlying early cognitive/motor deficits in several neuropathological states.
Collapse
|
37
|
Bush JO, Soriano P. Ephrin-B1 regulates axon guidance by reverse signaling through a PDZ-dependent mechanism. Genes Dev 2009; 23:1586-99. [PMID: 19515977 DOI: 10.1101/gad.1807209] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mutations in the ephrin-B1 gene result in craniofrontonasal syndrome (CFNS) in humans, a congenital disorder that includes a wide range of craniofacial, skeletal, and neurological malformations. In addition to the ability of ephrin-B1 to forward signal through its cognate EphB tyrosine kinase receptors, ephrin-B1 can also act as a receptor and transduce a reverse signal by either PDZ-dependent or phosphorylation-dependent mechanisms. To investigate how ephrin-B1 acts to influence development and congenital disease, we generated mice harboring a series of targeted point mutations in the ephrin-B1 gene that independently ablate specific reverse signaling pathways, while maintaining forward signaling capacity. We demonstrate that both PDZ and phosphorylation-dependent reverse signaling by ephrin-B1 are dispensable for craniofacial and skeletal development, whereas PDZ-dependent reverse signaling by ephrin-B1 is critical for the formation of a major commissural axon tract, the corpus callosum. Ephrin-B1 is strongly expressed within axons of the corpus callosum, and reverse signaling acts autonomously in cortical axons to mediate an avoidance response to its signaling partner EphB2. These results demonstrate the importance of PDZ-dependent reverse signaling for a subset of Ephrin-B1 developmental roles in vivo.
Collapse
Affiliation(s)
- Jeffrey O Bush
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|
38
|
Scicolone G, Ortalli AL, Carri NG. Key roles of Ephs and ephrins in retinotectal topographic map formation. Brain Res Bull 2009; 79:227-47. [PMID: 19480983 DOI: 10.1016/j.brainresbull.2009.03.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 02/16/2009] [Accepted: 03/24/2009] [Indexed: 01/06/2023]
Abstract
Cellular and molecular mechanisms involved in the development of topographic ordered connections in the central nervous system (CNS) constitute a key issue in neurobiology because neural connectivities are the base of the CNS normal function. We discuss the roles of the Eph/ephrin system in the establishment of retinotopic projections onto the tectum/colliculus, the most detailed studied model of topographic mapping. The expression patterns of Ephs and ephrins in opposing gradients both in the retina and the tectum/colliculus, label the local addresses on the target and give specific sensitivities to growth cones according to their topographic origin in the retina. We postulate that the highest levels of these gradients could signal both the entry as well as the limiting boundaries of the target. Since Ephs and ephrins are membrane-bound molecules, they may function as both receptors and ligands producing repulsive or attractant responses according to their microenvironment and play central roles in a variety of developmental events such as axon guidance, synapse formation and remodeling. Due to different experimental approaches and the inherent species-specific differences, some results appear contradictory and should be reanalyzed. Nevertheless, these studies about the roles of the Eph/ephrin system in retinotectal/collicular mapping support general principles in order to understand CNS development and could be useful to design regeneration therapies.
Collapse
Affiliation(s)
- Gabriel Scicolone
- Institute of Cell Biology and Neuroscience "Prof. E. De Robertis", School of Medicine, University of Buenos Aires, 1121 Buenos Aires, Argentina.
| | | | | |
Collapse
|
39
|
Yoon BC, Zivraj KH, Holt CE. Local translation and mRNA trafficking in axon pathfinding. Results Probl Cell Differ 2009; 48:269-88. [PMID: 19343311 PMCID: PMC3682209 DOI: 10.1007/400_2009_5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Axons and their growth cones are specialized neuronal sub-compartments that possess translation machinery and have distinct messenger RNAs (mRNAs). Several classes of mRNAs have been identified using candidate-based, as well as unbiased genome-wide-based approaches. Axonal mRNA localization serves to regulate spatially the protein synthesis; thereby, providing axons with a high degree of functional autonomy from the soma during axon pathfinding. Importantly, de novo protein synthesis in navigating axonal growth cones is necessary for chemotropic responses to various axon guidance cues. This chapter discusses the molecular components involved in regulating axonal mRNA trafficking, targeting, and translation, and focuses on RNA binding proteins (RNBPs) and microRNAs. The functional significance of local mRNA translation in the directional response of growth cones to a gradient is highlighted along with the downstream signaling events that mediate local protein synthesis. The view that emerges is that local translation is tightly coupled to extracellular cues, enabling growth cones to respond to new signals with exquisite adaptability and spatiotemporal control.
Collapse
Affiliation(s)
- Byung C Yoon
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | | | | |
Collapse
|
40
|
Yue X, Dreyfus C, Kong TAN, Zhou R. A subset of signal transduction pathways is required for hippocampal growth cone collapse induced by ephrin-A5. Dev Neurobiol 2008; 68:1269-86. [PMID: 18563700 DOI: 10.1002/dneu.20657] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Eph family tyrosine kinase receptors and their ligands, ephrins, play key roles in a wide variety of physiological and pathological processes including tissue patterning, angiogenesis, bone development, carcinogenesis, axon guidance, and neural plasticity. However, the signaling mechanisms underlying these diverse functions of Eph receptors have not been well understood. In this study, effects of Eph receptor activation on several important signal transduction pathways are examined. In addition, the roles of these pathways in ephrin-A5-induced growth cone collapse were assessed with a combination of biochemical analyses, pharmacological inhibition, and overexpression of dominant-negative and constitutively active mutants. These analyses showed that ephrin-A5 inhibits Erk activity but activates c-Jun N-terminal kinase. However, regulation of these two pathways is not required for ephrin-A5-induced growth cone collapse in hippocampal neurons. Artificial Erk activation by expression of constitutively active Mek1 and B-Raf failed to block ephrin-A5 effects on growth cones, and inhibitors of the Erk pathway also failed to inhibit collapse by ephrin-A5. Inhibition of JNK had no effects on ephrin-A5-induced growth cone collapse either. In addition, inhibitors to PKA and PI3-K showed no effects on ephrin-A5-induced growth cone collapse. However, pharmacological blockade of phosphotyrosine phosphatase activity, the Src family kinases, cGMP-dependent protein kinase, and myosin light chain kinase significantly inhibited ephrin-A5-induced growth cone collapse. These observations indicate that only a subset of signal transduction pathways is required for ephrin-A5-induced growth cone collapse.
Collapse
Affiliation(s)
- Xin Yue
- Department of Chemical Biology, College of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
41
|
Petros TJ, Rebsam A, Mason CA. Retinal axon growth at the optic chiasm: to cross or not to cross. Annu Rev Neurosci 2008; 31:295-315. [PMID: 18558857 DOI: 10.1146/annurev.neuro.31.060407.125609] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
At the optic chiasm, retinal ganglion cell axons from each eye converge and segregate into crossed and uncrossed projections, a pattern critical for binocular vision. Here, we review recent findings on optic chiasm development, highlighting the specific transcription factors and guidance cues that implement retinal axon divergence into crossed and uncrossed pathways. Although mechanisms underlying the formation of the uncrossed projection have been identified, the means by which retinal axons are guided across the midline are still unclear. In addition to directives provided by transcription factors and receptors in the retina, gene expression in the ventral diencephalon influences chiasm formation. Throughout this review, we compare guidance mechanisms at the optic chiasm with those in other midline models and highlight unanswered questions both for retinal axon growth and axon guidance in general.
Collapse
Affiliation(s)
- Timothy J Petros
- Department of Pathology and Cell Biology, Department of Neuroscience, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | |
Collapse
|
42
|
Togashi K, von Schimmelmann MJ, Nishiyama M, Lim CS, Yoshida N, Yun B, Molday RS, Goshima Y, Hong K. Cyclic GMP-gated CNG channels function in Sema3A-induced growth cone repulsion. Neuron 2008; 58:694-707. [PMID: 18549782 DOI: 10.1016/j.neuron.2008.03.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 02/06/2008] [Accepted: 03/17/2008] [Indexed: 10/22/2022]
Abstract
Cyclic nucleotide-gated channels (CNGCs) transduce external signals required for sensory processes, e.g., photoreception, olfaction, and taste. Nerve growth cone guidance by diffusible attractive and repulsive molecules is regulated by differential growth cone Ca2+ signaling. However, the Ca2+-conducting ion channels that transduce guidance molecule signals are largely unknown. We show that rod-type CNGC-like channels function in the repulsion of cultured Xenopus spinal neuron growth cones by Sema3A, which triggers the production of the cGMP that activates the Xenopus CNGA1 (xCNGA1) subunit-containing channels in interneurons. Downregulation of xCNGA1 or overexpression of a mutant xCNGA1 incapable of binding cGMP abolished CNG currents and converted growth cone repulsion to attraction in response to Sema3A. We also show that Ca2+ entry through xCNGCs is required to mediate the repulsive Sema3A signal. These studies extend our knowledge of the function of CNGCs by demonstrating their requirement for signal transduction in growth cone guidance.
Collapse
Affiliation(s)
- Kazunobu Togashi
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016-6402, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Farrar NR, Spencer GE. Pursuing a 'turning point' in growth cone research. Dev Biol 2008; 318:102-11. [PMID: 18436201 DOI: 10.1016/j.ydbio.2008.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 03/05/2008] [Accepted: 03/06/2008] [Indexed: 01/13/2023]
Abstract
Growth cones are highly motile structures found at the leading edge of developing and regenerating nerve processes. Their role in axonal pathfinding has been well established and many guidance cues that influence growth cone behavior have now been identified. Many studies are now providing insights into the transduction and integration of signals in the growth cone, though a full understanding of growth cone behavior still eludes us. This review focuses on recent studies adding to the growing body of literature on growth cone behavior, focusing particularly on the level of autonomy the growth cone possesses and the role of local protein synthesis.
Collapse
Affiliation(s)
- Nathan R Farrar
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, Canada L2S 3A1
| | | |
Collapse
|
44
|
Šatkauskas S, Bagnard D. Local protein synthesis in axonal growth cones: what is next? Cell Adh Migr 2007; 1:179-84. [PMID: 19262143 PMCID: PMC2634104 DOI: 10.4161/cam.1.4.5561] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 01/11/2008] [Indexed: 01/17/2023] Open
Abstract
While initially thought to be essentially a developmental characteristic, observed in artificial in vitro models, local protein synthesis in growth cones has been described in the adult, and more interestingly, during nerve regeneration. This emerging field is under intense investigation, revealing new functions of localized protein synthesis that include axon guidance, growth cone adaptation and sensitivity modulation at intermediate targets or axon regeneration. Here, we will review these functions and provide a short survey of the current knowledge on mechanisms of mRNA transport and regulation of localized protein synthesis. In addition, we will consider what lessons can be learned from localized protein synthesis in dendrites, and what developments can be expected next in the field. This latter question relates to the crucial point of which technical strategy to adopt for an ideal and pertinent analysis of the phenomenon.
Collapse
Affiliation(s)
- Saulius Šatkauskas
- INSERM U575 Physiopathologie du Système Nerveux; Strasbourg, France
- Department of Biology; Vytautas Magnus University; Kaunas, Lithuania
| | | |
Collapse
|
45
|
Lin AC, Holt CE. Local translation and directional steering in axons. EMBO J 2007; 26:3729-36. [PMID: 17660744 PMCID: PMC1952223 DOI: 10.1038/sj.emboj.7601808] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 07/02/2007] [Indexed: 01/28/2023] Open
Abstract
The assembly of functional neural circuits in the developing brain requires neurons to extend axons to the correct targets. This in turn requires the navigating tips of axons to respond appropriately to guidance cues present along the axonal pathway, despite being cellular 'outposts' far from the soma. Work over the past few years has demonstrated a critical role for local translation within the axon in this process in vitro, making axon guidance another process that requires spatially localized translation, among others such as synaptic plasticity, cell migration, and cell polarity. This article reviews recent findings in local axonal translation and discusses how new protein synthesis may function in growth cone guidance, with a comparative view toward models of local translation in other systems.
Collapse
Affiliation(s)
- Andrew C Lin
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
46
|
Groeger G, Nobes C. Co-operative Cdc42 and Rho signalling mediates ephrinB-triggered endothelial cell retraction. Biochem J 2007; 404:23-9. [PMID: 17300218 PMCID: PMC1868826 DOI: 10.1042/bj20070146] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cell repulsion responses to Eph receptor activation are linked to rapid actin cytoskeletal reorganizations, which in turn are partially mediated by Rho-ROCK (Rho kinase) signalling, driving actomyosin contractility. In the present study, we show that Rho alone is not sufficient for this repulsion response. Rather, Cdc42 (cell division cycle 42) and its effector MRCK (myotonic dystrophy kinase-related Cdc42-binding kinase) are also critical for ephrinB-induced cell retraction. Stimulation of endothelial cells with ephrinB2 triggers rapid, but transient, cell retraction. We show that, although membrane retraction is fully blocked by blebbistatin (a myosin-II ATPase inhibitor), it is only partially blocked by inhibiting Rho-ROCK signalling, suggesting that there is ROCK-independent signalling to actomyosin contractility downstream of EphBs. We find that a combination of either Cdc42 or MRCK inhibition with ROCK inhibition completely abolishes the repulsion response. Additionally, endocytosis of ephrin-Eph complexes is not required for initial cell retraction, but is essential for subsequent Rac-mediated re-spreading of cells. Our data reveal a complex interplay of Rho, Rac and Cdc42 in the process of EphB-mediated cell retraction-recovery responses.
Collapse
Affiliation(s)
- Gillian Groeger
- *Department of Physiology, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - Catherine D. Nobes
- *Department of Physiology, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, U.K
- †Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
47
|
Erskine L, Herrera E. The retinal ganglion cell axon's journey: insights into molecular mechanisms of axon guidance. Dev Biol 2007; 308:1-14. [PMID: 17560562 DOI: 10.1016/j.ydbio.2007.05.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 05/02/2007] [Accepted: 05/10/2007] [Indexed: 02/02/2023]
Abstract
The developing visual system has proven to be one of the most informative models for studying axon guidance decisions. The pathway is composed of the axons of a single neuronal cell type, the retinal ganglion cell (RGC), that navigate through a series of intermediate targets on route to their final destination. The molecular basis of optic pathway development is beginning to be elucidated with cues such as netrins, Slits and ephrins playing a key role. Other factors best characterised for their role as morphogens in patterning developing tissues, such as sonic hedgehog (Shh) and Wnts, also act directly on RGC axons to influence guidance decisions. The transcriptional basis of the spatial-temporal expression of guidance cues and their cognate receptors within the developing optic pathway as well as mechanisms underlying the plasticity of guidance responses also are starting to be understood. This review will focus on our current understanding of the molecular mechanisms directing the early development of functional connections in the developing visual system and the insights these studies have provided into general mechanisms of axon guidance.
Collapse
Affiliation(s)
- Lynda Erskine
- Division of Visual Science, Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | | |
Collapse
|
48
|
Hoskins SG, Stevens LM, Nehm RH. Selective use of the primary literature transforms the classroom into a virtual laboratory. Genetics 2007; 176:1381-9. [PMID: 17483426 PMCID: PMC1931557 DOI: 10.1534/genetics.107.071183] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CREATE (consider, read, elucidate hypotheses, analyze and interpret the data, and think of the next experiment) is a new method for teaching science and the nature of science through primary literature. CREATE uses a unique combination of novel pedagogical tools to guide undergraduates through analysis of journal articles, highlighting the evolution of scientific ideas by focusing on a module of four articles from the same laboratory. Students become fluent in the universal language of data analysis as they decipher the figures, interpret the findings, and propose and defend further experiments to test their own hypotheses about the system under study. At the end of the course students gain insight into the individual experiences of article authors by reading authors' responses to an e-mail questionnaire generated by CREATE students. Assessment data indicate that CREATE students gain in ability to read and critically analyze scientific data, as well as in their understanding of, and interest in, research and researchers. The CREATE approach demystifies the process of reading a scientific article and at the same time humanizes scientists. The positive response of students to this method suggests that it could make a significant contribution to retaining undergraduates as science majors.
Collapse
Affiliation(s)
- Sally G Hoskins
- Biology Department and The Graduate Center, The City College of the City University of New York, New York, New York 10031, USA.
| | | | | |
Collapse
|
49
|
Egea J, Klein R. Bidirectional Eph–ephrin signaling during axon guidance. Trends Cell Biol 2007; 17:230-8. [DOI: 10.1016/j.tcb.2007.03.004] [Citation(s) in RCA: 309] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 01/19/2007] [Accepted: 03/23/2007] [Indexed: 12/01/2022]
|
50
|
Mann F, Rougon G. Mechanisms of axon guidance: membrane dynamics and axonal transport in semaphorin signalling. J Neurochem 2007; 102:316-23. [PMID: 17442048 DOI: 10.1111/j.1471-4159.2007.04578.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The intricate geometry of neuronal networks poses many unique cell-biological problems regarding the way a growing axon responds to its environment. Several groups of ligand-receptor pairs have been identified to regulate such processes. In this study, we take class 3 semaphorins as an example and review what is known about the intracellular movements of semaphorins throughout neuronal cells, transport support structures and location of release sites. We discuss how their receptor trafficking may contribute to regulate membrane dynamics underlying growth cone motility and the physiological contribution made by class 3 semaphorins-induced acceleration of axoplasmic transport on neurite development.
Collapse
Affiliation(s)
- Fanny Mann
- Developmental Biology Institute of Marseille Luminy, CNRS UMR 6216, Université de la Méditerranée, Parc Scientifique de Luminy, Marseille cedex, France
| | | |
Collapse
|