1
|
Lan H, Yang X, Wang M, Wang M, Huang X, Wang X. Iron overload regulates cognitive function in rats with minimal hepatic encephalopathy by inducing an increase in frontal butyrylcholinesterase activity. Front Aging Neurosci 2024; 16:1447965. [PMID: 39399316 PMCID: PMC11466795 DOI: 10.3389/fnagi.2024.1447965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
Background and aims This study aimed to investigate the effect of iron overload on acetylcholinesterase activity in the frontal lobe tissue of rats with minimal hepatic encephalopathy (MHE) and its relation to cognitive ability. By elucidating the potential mechanisms of cognitive impairment, this study may offer insights into novel therapeutic targets for MHE. Materials and methods Twelve Sprague-Dawley rats were purchased and randomly assigned to either the experimental or control group with six rats in each group. Following the induction of MHE, the Morris Water Maze (MWM) was utilized to assess spatial orientation and memory capacity. Subsequently, Magnetic Resonance Imaging (MRI) scans were performed to capture Quantitative Susceptibility Mapping (QSM) images of all rats' heads. Results Compared to the control group rats, the MHE model rats showed significantly reduced learning and memory capabilities as well as spatial orientation abilities (P < 0.05). Furthermore, the susceptibility values in the frontal lobe tissue of MHE model rats was significantly higher than that of the control group rats (P < 0.05), and the corresponding BuChE activity in the frontal lobe extract of model rats was significantly increased while BuChE activity in the peripheral blood serum was significantly decreased compared to the control group rats (P < 0.05). Meanwhile, our findings indicate a significant positive correlation between latency period and BuChE activity with susceptibility values in the MHE group. Conclusion The changes in BuChE activity in frontal lobe extract may be related to changes in spatial orientation and behavioral changes in MHE, and iron overload in the frontal lobe tissue may regulate changes in BuChE activity, BuChE levels appear to be iron-dependent.
Collapse
Affiliation(s)
- Hua Lan
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xuhong Yang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging and Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Minxing Wang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Minglei Wang
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xueying Huang
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaodong Wang
- General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
2
|
Lipovsek M, Marcovich I, Elgoyhen AB. The Hair Cell α9α10 Nicotinic Acetylcholine Receptor: Odd Cousin in an Old Family. Front Cell Neurosci 2021; 15:785265. [PMID: 34867208 PMCID: PMC8634148 DOI: 10.3389/fncel.2021.785265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are a subfamily of pentameric ligand-gated ion channels with members identified in most eumetazoan clades. In vertebrates, they are divided into three subgroups, according to their main tissue of expression: neuronal, muscle and hair cell nAChRs. Each receptor subtype is composed of different subunits, encoded by paralogous genes. The latest to be identified are the α9 and α10 subunits, expressed in the mechanosensory hair cells of the inner ear and the lateral line, where they mediate efferent modulation. α9α10 nAChRs are the most divergent amongst all nicotinic receptors, showing marked differences in their degree of sequence conservation, their expression pattern, their subunit co-assembly rules and, most importantly, their functional properties. Here, we review recent advances in the understanding of the structure and evolution of nAChRs. We discuss the functional consequences of sequence divergence and conservation, with special emphasis on the hair cell α9α10 receptor, a seemingly distant cousin of neuronal and muscle nicotinic receptors. Finally, we highlight potential links between the evolution of the octavolateral system and the extreme divergence of vertebrate α9α10 receptors.
Collapse
Affiliation(s)
- Marcela Lipovsek
- Ear Institute, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Irina Marcovich
- Departments of Otolaryngology & Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
3
|
Moglie MJ, Marcovich I, Corradi J, Carpaneto Freixas AE, Gallino S, Plazas PV, Bouzat C, Lipovsek M, Elgoyhen AB. Loss of Choline Agonism in the Inner Ear Hair Cell Nicotinic Acetylcholine Receptor Linked to the α10 Subunit. Front Mol Neurosci 2021; 14:639720. [PMID: 33613194 PMCID: PMC7892445 DOI: 10.3389/fnmol.2021.639720] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
The α9α10 nicotinic acetylcholine receptor (nAChR) plays a fundamental role in inner ear physiology. It mediates synaptic transmission between efferent olivocochlear fibers that descend from the brainstem and hair cells of the auditory sensory epithelium. The α9 and α10 subunits have undergone a distinct evolutionary history within the family of nAChRs. Predominantly in mammalian vertebrates, the α9α10 receptor has accumulated changes at the protein level that may ultimately relate to the evolutionary history of the mammalian hearing organ. In the present work, we investigated the responses of α9α10 nAChRs to choline, the metabolite of acetylcholine degradation at the synaptic cleft. Whereas choline is a full agonist of chicken α9α10 receptors it is a partial agonist of the rat receptor. Making use of the expression of α9α10 heterologous receptors, encompassing wild-type, heteromeric, homomeric, mutant, chimeric, and hybrid receptors, and in silico molecular docking, we establish that the mammalian (rat) α10 nAChR subunit underscores the reduced efficacy of choline. Moreover, we show that whereas the complementary face of the α10 subunit does not play an important role in the activation of the receptor by ACh, it is strictly required for choline responses. Thus, we propose that the evolutionary changes acquired in the mammalian α9α10 nAChR resulted in the loss of choline acting as a full agonist at the efferent synapse, without affecting the triggering of ACh responses. This may have accompanied the fine-tuning of hair cell post-synaptic responses to the high-frequency activity of efferent medial olivocochlear fibers that modulate the cochlear amplifier.
Collapse
Affiliation(s)
- Marcelo J. Moglie
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Irina Marcovich
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Jeremías Corradi
- Departamento de Biología, Bioquímica y Farmacia, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur y Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Agustín E. Carpaneto Freixas
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sofía Gallino
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paola V. Plazas
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cecilia Bouzat
- Departamento de Biología, Bioquímica y Farmacia, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur y Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Marcela Lipovsek
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Centre for Developmental Neurobiology, King’s College London, Institute of Psychiatry, Psychology, and Neuroscience, Guy’s Campus, London, United Kingdom
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
4
|
The multiple biological roles of the cholinesterases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 162:41-56. [PMID: 33307019 DOI: 10.1016/j.pbiomolbio.2020.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022]
Abstract
It is tacitly assumed that the biological role of acetylcholinesterase is termination of synaptic transmission at cholinergic synapses. However, together with its structural homolog, butyrylcholinesterase, it is widely distributed both within and outside the nervous system, and, in many cases, the role of both enzymes remains obscure. The transient appearance of the cholinesterases in embryonic tissues is especially enigmatic. The two enzymes' extra-synaptic roles, which are known as 'non-classical' roles, are the topic of this review. Strong evidence has been presented that AChE and BChE play morphogenetic roles in a variety of eukaryotic systems, and they do so either by acting as adhesion proteins, or as trophic factors. As trophic factors, one mode of action is to directly regulate morphogenesis, such as neurite outgrowth, by poorly understood mechanisms. The other mode is by regulating levels of acetylcholine, which acts as the direct trophic factor. Alternate substrates have been sought for the cholinesterases. Quite recently, it was shown that levels of the aggression hormone, ghrelin, which also controls appetite, are regulated by butyrylcholinesterase. The rapid hydrolysis of acetylcholine by acetylcholinesterase generates high local proton concentrations. The possible biophysical and biological consequences of this effect are discussed. The biological significance of the acetylcholinesterases secreted by parasitic nematodes is reviewed, and, finally, the involvement of acetylcholinesterase in apoptosis is considered.
Collapse
|
5
|
Leung MR, Zeev-Ben-Mordehai T. Cryo-electron microscopy of cholinesterases, present and future. J Neurochem 2020; 158:1236-1243. [PMID: 33222205 PMCID: PMC8518539 DOI: 10.1111/jnc.15245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) exist in a variety of oligomeric forms, each with defined cellular and subcellular distributions. Although crystal structures of AChE and BChE have been available for many years, structures of the physiologically relevant ChE tetramer were only recently solved by cryo‐electron microscopy (cryo‐EM) single‐particle analysis. Here, we briefly review how these structures contribute to our understanding of cholinesterase oligomerization, highlighting the advantages of using cryo‐EM to resolve structures of protein assemblies that cannot be expressed recombinantly. We argue that the next frontier in cholinesterase structural biology is to image membrane‐anchored ChE oligomers directly in their native environment—the cell.
Collapse
Affiliation(s)
- Miguel Ricardo Leung
- Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.,The Division of Structural Biology, Wellcome Centre for Human Genetics, The University of Oxford, Oxford, UK
| | - Tzviya Zeev-Ben-Mordehai
- Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.,The Division of Structural Biology, Wellcome Centre for Human Genetics, The University of Oxford, Oxford, UK
| |
Collapse
|
6
|
The NMJ as a model synapse: New perspectives on formation, synaptic transmission and maintenance: Acetylcholinesterase at the neuromuscular junction. Neurosci Lett 2020; 735:135157. [PMID: 32540360 DOI: 10.1016/j.neulet.2020.135157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/28/2022]
Abstract
Acetylcholinesterase (AChE) is an essential enzymatic component of the neuromuscular junction where it is responsible for terminating neurotransmission by the cholinergic motor neurons. The enzyme at the neuromuscular junction (NMJ) is contributed primarily by the skeletal muscle where it is produced at higher levels in the post-synaptic region of the fibers. The major form of AChE at the NMJ is a large asymmetric form consisting of three tetramers covalently attached to a three-stranded collagen-like tail which is responsible for anchoring it to the synaptic basal lamina. Its location and expression is regulated to a large extent by the motor neurons and occurs at the transcriptional, translational and post-translational levels. While its expression can be quite rapid in tissue cultured cells, its half-life in vivo appears to be quite long, about three weeks, although more rapidly turning over pools have been described. Finally the essential nature of this enzyme is underscored by the fact that no naturally occurring null mutations of the catalytic subunit have been described in higher organisms and the few dozen humans carrying mutations in the collagen tail responsible for anchoring the enzyme at the NMJ are severely affected.
Collapse
|
7
|
Mis K, Grubic Z, Lorenzon P, Sciancalepore M, Mars T, Pirkmajer S. In Vitro Innervation as an Experimental Model to Study the Expression and Functions of Acetylcholinesterase and Agrin in Human Skeletal Muscle. Molecules 2017; 22:molecules22091418. [PMID: 28846617 PMCID: PMC6151842 DOI: 10.3390/molecules22091418] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/18/2017] [Accepted: 08/23/2017] [Indexed: 12/19/2022] Open
Abstract
Acetylcholinesterase (AChE) and agrin, a heparan-sulfate proteoglycan, reside in the basal lamina of the neuromuscular junction (NMJ) and play key roles in cholinergic transmission and synaptogenesis. Unlike most NMJ components, AChE and agrin are expressed in skeletal muscle and α-motor neurons. AChE and agrin are also expressed in various other types of cells, where they have important alternative functions that are not related to their classical roles in NMJ. In this review, we first focus on co-cultures of embryonic rat spinal cord explants with human skeletal muscle cells as an experimental model to study functional innervation in vitro. We describe how this heterologous rat-human model, which enables experimentation on highly developed contracting human myotubes, offers unique opportunities for AChE and agrin research. We then highlight innovative approaches that were used to address salient questions regarding expression and alternative functions of AChE and agrin in developing human skeletal muscle. Results obtained in co-cultures are compared with those obtained in other models in the context of general advances in the field of AChE and agrin neurobiology.
Collapse
Affiliation(s)
- Katarina Mis
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| | - Zoran Grubic
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| | - Paola Lorenzon
- Department of Life Sciences, University of Trieste, via A. Fleming 22, I-34127 Trieste, Italy.
| | - Marina Sciancalepore
- Department of Life Sciences, University of Trieste, via A. Fleming 22, I-34127 Trieste, Italy.
| | - Tomaz Mars
- Department of Life Sciences, University of Trieste, via A. Fleming 22, I-34127 Trieste, Italy.
| | - Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
8
|
Rotundo RL. Biogenesis, assembly and trafficking of acetylcholinesterase. J Neurochem 2017; 142 Suppl 2:52-58. [PMID: 28326552 PMCID: PMC5550332 DOI: 10.1111/jnc.13982] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/31/2017] [Indexed: 11/29/2022]
Abstract
Acetylcholinesterase (AChE) is expressed as several homomeric and heterooligomeric forms in a wide variety of tissues such as neurons in the central and peripheral nervous systems and their targets including skeletal muscle, endocrine and exocrine glands. In addition, glycolipid-anchored forms are expressed in erythropoietic and lymphopoietic cells. While transcriptional and post-transcriptional regulation is important for determining which AChE oligomeric forms are expressed in a given tissue, translational and post-translational regulatory mechanisms at the level of protein folding, assembly and sorting play equally important roles in assuring that the AChE molecules reach their intended sites on the cell surface in the appropriate numbers. This brief review will focus on the latter events in the cell with the goal of providing novel therapeutic interventional strategies for the treatment of organophosphate and carbamate pesticide and nerve agent exposure. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
Collapse
Affiliation(s)
- Richard L Rotundo
- Department of Cell Biology and Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
9
|
Zimowska M, Kasprzycka P, Bocian K, Delaney K, Jung P, Kuchcinska K, Kaczmarska K, Gladysz D, Streminska W, Ciemerych MA. Inflammatory response during slow- and fast-twitch muscle regeneration. Muscle Nerve 2016; 55:400-409. [PMID: 27396429 DOI: 10.1002/mus.25246] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 06/29/2016] [Accepted: 07/07/2016] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Skeletal muscles are characterized by their unique ability to regenerate. Injury of a so-called fast-twitch muscle, extensor digitorum longus (EDL), results in efficient regeneration and reconstruction of the functional tissue. In contrast, slow-twitch muscle (soleus) fails to properly reconstruct and develops fibrosis. This study focuses on soleus and EDL muscle regeneration and associated inflammation. METHODS We determined differences in the activity of neutrophils and M1 and M2 macrophages using flow cytometry and differences in the levels of proinflammatory cytokines using Western blotting and immunolocalization at different times after muscle injury. RESULTS Soleus muscle repair is accompanied by increased and prolonged inflammation, as compared to EDL. The proinflammatory cytokine profile is different in the soleus and ED muscles. CONCLUSIONS Muscle repair efficiency differs by muscle fiber type. The inflammatory response affects the repair efficiency of slow- and fast-twitch muscles. Muscle Nerve 55: 400-409, 2017.
Collapse
Affiliation(s)
- Malgorzata Zimowska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Paulina Kasprzycka
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Katarzyna Bocian
- Department of Immunology, Institute of Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Kamila Delaney
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Piotr Jung
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Kinga Kuchcinska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Karolina Kaczmarska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Daria Gladysz
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Wladyslawa Streminska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Maria Anna Ciemerych
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| |
Collapse
|
10
|
Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. Alzheimer's disease: Targeting the Cholinergic System. Curr Neuropharmacol 2016; 14:101-15. [PMID: 26813123 PMCID: PMC4787279 DOI: 10.2174/1570159x13666150716165726] [Citation(s) in RCA: 895] [Impact Index Per Article: 111.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 07/01/2015] [Accepted: 07/14/2015] [Indexed: 12/16/2022] Open
Abstract
Acetylcholine (ACh) has a crucial role in the peripheral and central nervous
systems. The enzyme choline acetyltransferase (ChAT) is responsible for
synthesizing ACh from acetyl-CoA and choline in the cytoplasm and the vesicular
acetylcholine transporter (VAChT) uptakes the neurotransmitter into synaptic
vesicles. Following depolarization, ACh undergoes exocytosis reaching the
synaptic cleft, where it can bind its receptors, including muscarinic and
nicotinic receptors. ACh present at the synaptic cleft is promptly hydrolyzed by
the enzyme acetylcholinesterase (AChE), forming acetate and choline, which is
recycled into the presynaptic nerve terminal by the high-affinity choline
transporter (CHT1). Cholinergic neurons located in the basal forebrain,
including the neurons that form the nucleus basalis of Meynert, are severely
lost in Alzheimer’s disease (AD). AD is the most ordinary cause of dementia
affecting 25 million people worldwide. The hallmarks of the disease are the
accumulation of neurofibrillary tangles and amyloid plaques. However, there is
no real correlation between levels of cortical plaques and AD-related cognitive
impairment. Nevertheless, synaptic loss is the principal correlate of disease
progression and loss of cholinergic neurons contributes to memory and attention
deficits. Thus, drugs that act on the cholinergic system represent a promising
option to treat AD patients.
Collapse
Affiliation(s)
| | | | | | - Fabiola M Ribeiro
- Departamento de Bioquimica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
11
|
SRSF1 and hnRNP H antagonistically regulate splicing of COLQ exon 16 in a congenital myasthenic syndrome. Sci Rep 2015; 5:13208. [PMID: 26282582 PMCID: PMC4539547 DOI: 10.1038/srep13208] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/22/2015] [Indexed: 12/28/2022] Open
Abstract
The catalytic subunits of acetylcholinesterase (AChE) are anchored in the basal lamina of the neuromuscular junction using a collagen-like tail subunit (ColQ) encoded by COLQ. Mutations in COLQ cause endplate AChE deficiency. An A-to-G mutation predicting p.E415G in COLQ exon 16 identified in a patient with endplate AChE deficiency causes exclusive skipping of exon 16. RNA affinity purification, mass spectrometry, and siRNA-mediated gene knocking down disclosed that the mutation disrupts binding of a splicing-enhancing RNA-binding protein, SRSF1, and de novo gains binding of a splicing-suppressing RNA-binding protein, hnRNP H. MS2-mediated artificial tethering of each factor demonstrated that SRSF1 and hnRNP H antagonistically modulate splicing by binding exclusively to the target in exon 16. Further analyses with artificial mutants revealed that SRSF1 is able to bind to degenerative binding motifs, whereas hnRNP H strictly requires an uninterrupted stretch of poly(G). The mutation compromised splicing of the downstream intron. Isolation of early spliceosome complex revealed that the mutation impairs binding of U1-70K (snRNP70) to the downstream 5′ splice site. Global splicing analysis with RNA-seq revealed that exons carrying the hnRNP H-binding GGGGG motif are predisposed to be skipped compared to those carrying the SRSF1-binding GGAGG motif in both human and mouse brains.
Collapse
|
12
|
Abstract
The pathophysiology of heart failure (HF) is characterized by hemodynamic abnormalities that result in neurohormonal activation and autonomic imbalance with increase in sympathetic activity and withdrawal of vagal activity. Alterations in receptor activation from this autonomic imbalance may have profound effects on cardiac function and structure. Inhibition of the sympathetic drive to the heart through β-receptor blockade has become a standard component of therapy for HF with a dilated left ventricle because of its effectiveness in inhibiting the ventricular structural remodeling process and in prolonging life. Several devices for selective modulation of sympathetic and vagal activity have recently been developed in an attempt to alter the natural history of HF. The optimal counteraction of the excessive sympathetic activity is still unclear. A profound decrease in adrenergic support with excessive blockade of the sympathetic nervous system may result in adverse outcomes in clinical HF. In this review, we analyze the data supporting a contributory role of the autonomic functional alterations on the course of HF, the techniques used to assess autonomic nervous system activity, the evidence for clinical effectiveness of pharmacological and device interventions, and the potential future role of autonomic nervous system modifiers in the management of this syndrome.
Collapse
Affiliation(s)
- Viorel G Florea
- From the Minneapolis VA Health Care System, Section of Cardiology (V.G.F.) and Rasmussen Center for Cardiovascular Disease Prevention, Department of Medicine (J.N.C.), University of Minnesota Medical School
| | - Jay N Cohn
- From the Minneapolis VA Health Care System, Section of Cardiology (V.G.F.) and Rasmussen Center for Cardiovascular Disease Prevention, Department of Medicine (J.N.C.), University of Minnesota Medical School.
| |
Collapse
|
13
|
Arredondo J, Lara M, Ng F, Gochez DA, Lee DC, Logia SP, Nguyen J, Maselli RA. COOH-terminal collagen Q (COLQ) mutants causing human deficiency of endplate acetylcholinesterase impair the interaction of ColQ with proteins of the basal lamina. Hum Genet 2013; 133:599-616. [PMID: 24281389 DOI: 10.1007/s00439-013-1391-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 11/03/2013] [Indexed: 02/06/2023]
Abstract
Collagen Q (ColQ) is a key multidomain functional protein of the neuromuscular junction (NMJ), crucial for anchoring acetylcholinesterase (AChE) to the basal lamina (BL) and accumulating AChE at the NMJ. The attachment of AChE to the BL is primarily accomplished by the binding of the ColQ collagen domain to the heparan sulfate proteoglycan perlecan and the COOH-terminus to the muscle-specific receptor tyrosine kinase (MuSK), which in turn plays a fundamental role in the development and maintenance of the NMJ. Yet, the precise mechanism by which ColQ anchors AChE at the NMJ remains unknown. We identified five novel mutations at the COOH-terminus of ColQ in seven patients from five families affected with endplate (EP) AChE deficiency. We found that the mutations do not affect the assembly of ColQ with AChE to form asymmetric forms of AChE or impair the interaction of ColQ with perlecan. By contrast, all mutations impair in varied degree the interaction of ColQ with MuSK as well as basement membrane extract (BME) that have no detectable MuSK. Our data confirm that the interaction of ColQ to perlecan and MuSK is crucial for anchoring AChE to the NMJ. In addition, the identified COOH-terminal mutants not only reduce the interaction of ColQ with MuSK, but also diminish the interaction of ColQ with BME. These findings suggest that the impaired attachment of COOH-terminal mutants causing EP AChE deficiency is in part independent of MuSK, and that the COOH-terminus of ColQ may interact with other proteins at the BL.
Collapse
Affiliation(s)
- Juan Arredondo
- Department of Neurology, University of California Davis, 1515 Newton Court, Room 510, Davis, CA, 95618, USA,
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Maselli RA, Arredondo J, Ferns MJ, Wollmann RL. Synaptic basal lamina-associated congenital myasthenic syndromes. Ann N Y Acad Sci 2013; 1275:36-48. [PMID: 23278576 DOI: 10.1111/j.1749-6632.2012.06807.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Proteins associated with the basal lamina (BL) participate in complex signal transduction processes that are essential for the development and maintenance of the neuromuscular junction (NMJ). Most important junctional BL proteins are collagens, such as collagen IV (α3-6), collagen XIII, and ColQ; laminins; nidogens; and heparan sulfate proteoglycans, such as perlecan and agrin. Mice lacking Colq (Colq(-/-)), laminin β2 (Lamb2(-/-)), or collagen XIII (Col13a1(-/-)) show immature nerve terminals enwrapped by Schwann cell projections that invaginate into the synaptic cleft and decrease contact surface for neurotransmission. Human mutations in COLQ, LAMB2, and AGRN cause congenital myasthenic syndromes (CMSs) owing to deficiency of ColQ, laminin-β2, and agrin, respectively. In these syndromes the NMJ ultrastructure shows striking resemblance to that of mice lacking the corresponding protein; furthermore, the extracellular localization of mutant proteins may provide favorable conditions for replacement strategies based on gene therapy and stem cells.
Collapse
Affiliation(s)
- Ricardo A Maselli
- Department of Neurology, University of California, Davis, California, USA.
| | | | | | | |
Collapse
|
15
|
Garcia L, Verdière-Saruqué M, Dreyfus PA, Nicolet M, Rieger F. Association of tailed acetylcholinesterase to lipidic membranes in mammalian skeletal muscle. Neurochem Int 2012; 13:231-6. [PMID: 20501292 DOI: 10.1016/0197-0186(88)90059-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/1987] [Accepted: 03/10/1988] [Indexed: 10/27/2022]
Abstract
Tailed acetylcholinesterase (AChE) was studied in three subcellular membrane fractions of mouse skeletal muscle: a fraction enriched in isolated motor endplates (C), an extrasynaptic membrane fraction (A) and a microsomal fraction (S). In the (C) fraction, tailed asymmetric 16S AChE required high salt conditions to be extracted, while in (A) and (S) microsomal membranes, a collagenase sensitive 16S form, was extracted by detergent alone. This apparent "hydrophobic" property suggests that there is a pool of 16S AChE which is probably bound to lipidic membranes. The detergent extractable (DE) 16S AChE was not concentrated in motor endplate-rich regions and differential inhibition of external and internal AChE demonstrated that it could have both intra- and extracellular locations in the adult differentiated muscle fibres.
Collapse
Affiliation(s)
- L Garcia
- Institut National de la Santé et de la Recherche Médicale U.153, 17 rue du Fer-à-Moulin, 75005 Paris France
| | | | | | | | | |
Collapse
|
16
|
Singhal N, Martin PT. Role of extracellular matrix proteins and their receptors in the development of the vertebrate neuromuscular junction. Dev Neurobiol 2012; 71:982-1005. [PMID: 21766463 DOI: 10.1002/dneu.20953] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The vertebrate neuromuscular junction (NMJ) remains the best-studied model for understanding the mechanisms involved in synaptogenesis, due to its relatively large size, its simplicity of patterning, and its unparalleled experimental accessibility. During neuromuscular development, each skeletal myofiber secretes and deposits around its extracellular surface an assemblage of extracellular matrix (ECM) proteins that ultimately form a basal lamina. This is also the case at the NMJ, where the motor nerve contributes additional factors. Before most of the current molecular components were known, it was clear that the synaptic ECM of adult skeletal muscles was unique in composition and contained factors sufficient to induce the differentiation of both pre- and postsynaptic membranes. Biochemical, genetic, and microscopy studies have confirmed that agrin, laminin (221, 421, and 521), collagen IV (α3-α6), collagen XIII, perlecan, and the ColQ-bound form of acetylcholinesterase are all synaptic ECM proteins with important roles in neuromuscular development. The roles of their many potential receptors and/or binding proteins have been more difficult to assess at the genetic level due to the complexity of membrane interactions with these large proteins, but roles for MuSK-LRP4 in agrin signaling and for integrins, dystroglycan, and voltage-gated calcium channels in laminin-dependent phenotypes have been identified. Synaptic ECM proteins and their receptors are involved in almost all aspects of synaptic development, including synaptic initiation, topography, ultrastructure, maturation, stability, and transmission.
Collapse
Affiliation(s)
- Neha Singhal
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, Ohio State University College of Medicine, Columbus, Ohio 43205, USA
| | | |
Collapse
|
17
|
Abstract
The receptor tyrosine kinase MuSK is indispensable for nerve-muscle synapse formation and maintenance. MuSK is necessary for prepatterning of the endplate zone anlage and as a signaling receptor for agrin-mediated postsynaptic differentiation. MuSK-associated proteins such as Dok7, LRP4, and Wnt11r are involved in these early events in neuromuscular junction formation. However, the mechanisms regulating synapse stability are poorly understood. Here we examine a novel role for the extracellular matrix protein biglycan in synapse stability. Synaptic development in fetal and early postnatal biglycan null (bgn(-/o)) muscle is indistinguishable from wild-type controls. However, by 5 weeks after birth, nerve-muscle synapses in bgn(-/o) mice are abnormal as judged by the presence of perijunctional folds, increased segmentation, and focal misalignment of acetylcholinesterase and AChRs. These observations indicate that previously occupied presynaptic and postsynaptic territory has been vacated. Biglycan binds MuSK and the levels of this receptor tyrosine kinase are selectively reduced at bgn(-/o) synapses. In bgn(-/o) myotubes, the initial stages of agrin-induced MuSK phosphorylation and AChR clustering are normal, but the AChR clusters are unstable. This stability defect can be substantially rescued by the addition of purified biglycan. Together, these results indicate that biglycan is an extracellular ligand for MuSK that is important for synapse stability.
Collapse
|
18
|
The asymmetric molecular forms of AChE and the expression of collagen Q in mature and immature fast and slow rat muscles. Chem Biol Interact 2010; 187:90-5. [PMID: 20188715 DOI: 10.1016/j.cbi.2010.02.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 02/19/2010] [Accepted: 02/22/2010] [Indexed: 11/21/2022]
Abstract
There is a major difference between fast and slow rat muscles in regard to acetylcholinesterase (AChE) expression in their extrajunctional regions: the activity of the asymmetric forms of AChE (A(8) and A(12)) is quite high extrajunctionally in slow muscles but virtually absent in fast muscles. The latter is due to the nearly complete suppression of the expression of AChE-associated collagen Q (ColQ) in the extrajunctional regions of fast muscle fibers, in contrast to its ample expression in slow muscles. This difference is partly caused by different neural activation patterns of fast vs. slow muscle fibers, which determine the levels of mRNA of ColQ. Whereas the changes of the levels of ColQ mRNA in slow muscles, observed in response to different electrical stimulation patterns, are completely reversible, the extrajunctional suppression of ColQ expression in fast muscle fibers seems to be irreversible in this respect. Calcineurin signaling pathway in slow muscle fibers, activated by high average sarcoplasmic calcium concentration resulting from tonic low-frequency muscle fiber activation pattern, maintains high mRNA levels of ColQ in the extrajunctional regions of the slow soleus muscles. A different, calcineurin-independent regulatory pathway is responsible for maintaining high ColQ expression in the neuromuscular junctions of fast muscle fibers. Immature rat muscle fibers, both fast and slow, however, display relatively high levels of the A forms of AChE and ColQ mRNA during the early postnatal period. Four days after birth, ColQ mRNA levels are already 2-fold higher in slow than in fast muscle fibers. Muscle regeneration after injury is a repetition of its ontogenetic development, originating from the muscle satellite cells. The extrajunctional levels of ColQ mRNA in non-innervated regenerating fast and slow muscles, however, are not significantly different, but they become about 2- to 3-fold higher in the regenerating soleus than in the fast STM already after several days of innervation by their respective nerves. We are currently testing a hypothesis that intrinsic differences exist between fast and slow muscle fibers in regard to their capacity to express ColQ extrajunctionally, and that these differences may originate in the stem cells of these muscle fibers.
Collapse
|
19
|
Trinkaus M, Pregelj P, Trkov S, Sketelj J. Neural regulation of acetylcholinesterase-associated collagen Q in rat skeletal muscles. J Neurochem 2010; 105:2535-44. [PMID: 18373559 DOI: 10.1111/j.1471-4159.2008.05328.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acetylcholinesterase-associated collagen Q is expressed also outside of neuromuscular junctions in the slow soleus muscle, but not in fast muscles. We examined the nerve dependence of muscle collagen Q expression and mechanisms responsible for these differences. Denervation decreased extrajunctional collagen Q mRNA levels in the soleus muscles and junctional levels in fast sternomastoid muscles to about one third. Cross-innervation of denervated soleus muscles by a fast muscle nerve, or electrical stimulation by 'fast' impulse pattern, reduced their extrajunctional collagen Q mRNA levels by 70-80%. In contrast, stimulation of fast muscles by 'slow' impulse pattern had no effect on collagen Q expression. Calcineurin inhibitors tacrolimus and cyclosporin A decreased collagen Q mRNA levels in the soleus muscles to about 35%, but did not affect collagen Q expression in denervated soleus muscles or the junctional expression in fast muscles. Therefore, high extrajunctional expression of collagen Q in the soleus muscle is maintained by its tonic nerve-induced activation pattern via the activated Ca(2+)-calcineurin signaling pathway. The extrajunctional collagen Q expression in fast muscles is independent of muscle activation pattern and seems irreversibly suppressed. The junctional expression of collagen Q in fast muscles is partly nerve-dependent, but does not encompass the Ca(2+)-calcineurin signaling pathway.
Collapse
Affiliation(s)
- Miha Trinkaus
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | |
Collapse
|
20
|
Ruiz CA, Rotundo RL. Limiting role of protein disulfide isomerase in the expression of collagen-tailed acetylcholinesterase forms in muscle. J Biol Chem 2009; 284:31753-63. [PMID: 19758986 DOI: 10.1074/jbc.m109.038471] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expression of acetylcholinesterase (AChE) in skeletal muscle is regulated by muscle activity; however, the underlying molecular mechanisms are incompletely understood. We show here that the expression of the synaptic collagen-tailed AChE form (ColQ-AChE) in quail muscle cultures can be regulated by muscle activity post-translationally. Inhibition of thiol oxidoreductase activity decreases expression of all active AChE forms. Likewise, primary quail myotubes transfected with protein disulfide isomerase (PDI) short hairpin RNAs showed a significant decrease of both the intracellular pool of all collagen-tailed AChE forms and cell surface AChE clusters. Conversely, overexpression of PDI, endoplasmic reticulum protein 72, or calnexin in muscle cells enhanced expression of all collagen-tailed AChE forms. Overexpression of PDI had the most dramatic effect with a 100% increase in the intracellular ColQ-AChE pool and cell surface enzyme activity. Moreover, the levels of PDI are regulated by muscle activity and correlate with the levels of ColQ-AChE and AChE tetramers. Finally, we demonstrate that PDI interacts directly with AChE intracellularly. These results show that collagen-tailed AChE form levels induced by muscle activity can be regulated by molecular chaperones and suggest that newly synthesized exportable proteins may compete for chaperone assistance during the folding process.
Collapse
Affiliation(s)
- Carlos A Ruiz
- Department of Cell Biology and Anatomy and the Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | |
Collapse
|
21
|
Trinkaus M, Pregelj P, Sketelj J. Reciprocal neural regulation of extrajunctional acetylcholinesterase and collagen Q in rat muscles—The role of calcineurin signaling. Chem Biol Interact 2008; 175:45-9. [DOI: 10.1016/j.cbi.2008.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 05/08/2008] [Accepted: 05/08/2008] [Indexed: 11/26/2022]
|
22
|
Anglister L, McMahan UJ. Extracellular matrix components involved in neuromuscular transmission and regeneration. CIBA FOUNDATION SYMPOSIUM 2008; 108:163-78. [PMID: 6097420 DOI: 10.1002/9780470720899.ch11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The portion of a skeletal muscle fibre's basal lamina sheath that lies in the synaptic cleft at the neuromuscular junction contains a high concentration of certain molecules that distinguish it from non-junctional portions of the sheath. Among the molecules are acetylcholinesterase, which terminates the action of the transmitter, acetylcholine, on the postsynaptic membrane, and factors that direct differentiation at neuromuscular junctions regenerating after trauma. In this communication the evidence that acetylcholinesterase and synapse differentiation factors are associated with synaptic cleft basal lamina is reviewed and the results of current experiments aimed at characterizing these extracellular matrix molecules are described.
Collapse
|
23
|
|
24
|
Rogozhin AA, Pang KK, Bukharaeva E, Young C, Slater CR. Recovery of mouse neuromuscular junctions from single and repeated injections of botulinum neurotoxin A. J Physiol 2008; 586:3163-82. [PMID: 18467364 PMCID: PMC2538785 DOI: 10.1113/jphysiol.2008.153569] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Botulinum neurotoxin type A (BoNT/A) paralyses muscles by blocking acetylcholine (ACh) release from motor nerve terminals. Although highly toxic, it is used clinically to weaken muscles whose contraction is undesirable, as in dystonias. The effects of an injection of BoNT/A wear off after 3–4 months so repeated injections are often used. Recovery of neuromuscular transmission is accompanied by the formation of motor axon sprouts, some of which form new synaptic contacts. However, the functional importance of these new contacts is unknown. Using intracellular and focal extracellular recording we show that in the mouse epitrochleoanconeus (ETA), quantal release from the region of the original neuromuscular junction (NMJ) can be detected as soon as from new synaptic contacts, and generally accounts for > 80% of total release. During recovery the synaptic delay and the rise and decay times of endplate potentials (EPPs) become prolonged approximately 3-fold, but return to normal after 2–3 months. When studied after 3–4 months, the response to repetitive stimulation at frequencies up to 100 Hz is normal. When two or three injections of BoNT/A are given at intervals of 3–4 months, quantal release returns to normal values more slowly than after a single injection (11 and 15 weeks to reach 50% of control values versus 6 weeks after a single injection). In addition, branching of the intramuscular muscular motor axons, the distribution of the NMJs and the structure of many individual NMJs remain abnormal. These findings highlight the plasticity of the mammalian NMJ but also suggest important limits to it.
Collapse
Affiliation(s)
- A A Rogozhin
- Kazan State Medical Academy, Kazan, Russia 420012
| | | | | | | | | |
Collapse
|
25
|
Reliability of neuromuscular transmission and how it is maintained. HANDBOOK OF CLINICAL NEUROLOGY 2008; 91:27-101. [PMID: 18631840 DOI: 10.1016/s0072-9752(07)01502-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Nazarian J, Hathout Y, Vertes A, Hoffman EP. The proteome survey of an electricity-generating organ (Torpedo californica electric organ). Proteomics 2007; 7:617-627. [PMID: 17309107 DOI: 10.1002/pmic.200600686] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Torpedo californica is a species in class Chondrichthyes. Electric rays have evolved the electric organ, which is similar to the mammalian neuromuscular junction (NMJ). Here, we took a combined cDNA sequencing and proteomic approach to define the molecular constituents of the T. californica electric organ. For soluble proteins, 2-DE was used and 224 protein spots were mapped. Plasma membrane fractions were analyzed using the shotgun approach (LC-MS/MS). A Torpedo cDNA library was constructed and 607 cDNA clones were sequenced. Identification of electric organ proteins was done using cross-species comparisons, and a custom database was constructed from cDNA translations. We unambiguously identified 121 proteins and transcripts, 103 of which were novel additions to the existing databases of Torpedo fish. Fifteen proteins of known function, but not previously associated with either the electroplaque or NMJ, were present at high abundance. These included the heat shock and oxidative stress proteins, annexin V (calelectrin), and plectin 1. Most interesting were the unambiguous matches to 11 human ORFs of unknown function, including four potential RNA splicing proteins, a vacuolar sorting protein, and a tetraspanin containing protein. This analysis identified proteins that may play a role in the higher vertebrate neuromuscular junction or other electrical synapses.
Collapse
Affiliation(s)
- Javad Nazarian
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA
| | - Yetrib Hathout
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA
| | - Akos Vertes
- Department of Chemistry, George Washington University, Washington, DC, USA
| | - Eric P Hoffman
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA
| |
Collapse
|
27
|
Pregelj P, Trinkaus M, Zupan D, Trontelj JJ, Sketelj J. The role of muscle activation pattern and calcineurin in acetylcholinesterase regulation in rat skeletal muscles. J Neurosci 2007; 27:1106-13. [PMID: 17267565 PMCID: PMC6673202 DOI: 10.1523/jneurosci.4182-06.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 12/01/2006] [Accepted: 12/19/2006] [Indexed: 11/21/2022] Open
Abstract
Acetylcholinesterase (AChE) expression in fast rat muscles is approximately fourfold higher than in slow muscles. We examined whether different muscle activation patterns are responsible for this difference and whether the calcineurin signaling pathway is involved in AChE regulation. The slow soleus and fast extensor digitorum longus (EDL) muscles were directly or indirectly stimulated by a tonic low-frequency or a phasic high-frequency pattern of electric impulses. The phasic, but not tonic, stimulation increased the AChE mRNA levels in denervated soleus muscles to those in the normal EDL and maintained high levels of AChE mRNA in denervated EDL muscles. Therefore, muscle activation pattern is the predominant regulator of extrajunctional AChE expression in rat muscles. Indirect phasic stimulation of innervated muscles, imposed on their natural pattern of neural activation, did not increase the AChE transcript levels in the soleus, whereas a 30% reduction was observed in the EDL muscles. A low number of impulses per day is therefore prerequisite for high AChE expression. Treatment by tacrolimus and cyclosporin A, two inhibitors of calcineurin (but not by a related substance rapamycin, which does not inhibit calcineurin), increased the levels of AChE transcripts in the control soleus muscles and in tonically electrically stimulated soleus and EDL muscles, even to reach those in the control EDL muscles. Therefore, tonic muscle activation reduces the extrajunctional levels of AChE transcripts by activating the calcineurin signaling pathway. In denervated soleus and EDL muscles, tacrolimus did not prevent the reduction of AChE mRNA levels, indicating that a calcineurin-independent suppressive mechanism was involved.
Collapse
Affiliation(s)
- Peter Pregelj
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, and
| | - Miha Trinkaus
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, and
| | - Daša Zupan
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, and
| | - Jože J. Trontelj
- Institute of Clinical Neurophysiology, Clinical Center, SI-1000 Ljubljana, Slovenia
| | - Janez Sketelj
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, and
| |
Collapse
|
28
|
Rosenberry TL. Acetylcholinesterase. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 43:103-218. [PMID: 891 DOI: 10.1002/9780470122884.ch3] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Crne-Finderle N, Pregelj P, Sketelj J. Junctional and extrajunctional acetylcholinesterase in skeletal muscle fibers. Chem Biol Interact 2005; 157-158:23-7. [PMID: 16303120 DOI: 10.1016/j.cbi.2005.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The asymmetric A12 acetylcholinesterase (AChE) molecular form, consisting of three tetrameric catalytic oligomers and three non-catalytic subunits of collagen Q (ColQ), is the functional AChE form in the neuromuscular junction. Its extremely high concentration and sharp localization in the junction is mostly due to the binding of this AChE form to perlecan in the synaptic basal lamina. In the rat neuromuscular junctions, about two-thirds of AChE molecules appear to be bound by ionic interactions involving calcium and the rest is probably bound covalently. In immature rat muscles, the A12 AChE forms are expressed also extrajunctionally. During the early post-natal period, this expression is completely suppressed in rat fast muscles, whereas it extends into adulthood in the slow soleus muscles because of the differences in the extrajunctional expression of ColQ between fast and slow muscles. The level of the A12 molecular forms of AChE in the extrajunctional muscle regions is regulated by the motor nerve, probably via the pattern of muscle fibre activations triggered by the nerve. The pattern of muscle activations also regulates the extrajunctional expression of the catalytic subunits of AChE: phasic, infrequent, high frequency activations enhance expression, whereas prolonged tonic low-frequency activations tend to decrease it. Calcineurin signalling pathway seems to be involved.
Collapse
Affiliation(s)
- Neva Crne-Finderle
- Medical Faculty, Institute of Pathophysiology, University of Ljubljana, Zaloska 4, 1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
30
|
Guerra M, Cartaud A, Cartaud J, Legay C. Acetylcholinesterase and molecular interactions at the neuromuscular junction. Chem Biol Interact 2005; 157-158:57-61. [PMID: 16289501 DOI: 10.1016/j.cbi.2005.10.110] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The efficiency and the tight control of neurotransmission require the accumulation of synaptic proteins in discrete domains. In neuromuscular junctions, the main form of acetylcholinesterase (AChE) is a hetero-oligomer in which the catalytic subunits are associated to a specific collagen, ColQ. This structural protein is responsible for the insertion and the accumulation of AChE in the synaptic basal lamina. We have analyzed the time-course of acetylcholinesterase and acetylcholine receptors (AChR) mRNAs during mouse muscle cell differentiation in culture. In parallel, we have visualized the formation of AChE and AChR aggregates. We show that AChR clusters form first which correlates with high gamma-subunit mRNA levels. Then, AChE clusters appear with the onset of contraction and correlate with a dramatic increase in AChE, ColQ1 and ColQ1A mRNA levels in muscle cells. At that stage, AChR gamma-subunit levels drop while the expression level of epsilon-subunits increase. AChE aggregates are organized by a ternary complex, which involves direct interactions between ColQ, perlecan and MuSK.
Collapse
Affiliation(s)
- M Guerra
- Biologie des Jonctions Neuromusculaires, INSERM U686, Université Paris Descartes, Paris, France
| | | | | | | |
Collapse
|
31
|
Kishi M, Kummer TT, Eglen SJ, Sanes JR. LL5beta: a regulator of postsynaptic differentiation identified in a screen for synaptically enriched transcripts at the neuromuscular junction. ACTA ACUST UNITED AC 2005; 169:355-66. [PMID: 15851520 PMCID: PMC2171857 DOI: 10.1083/jcb.200411012] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
In both neurons and muscle fibers, specific mRNAs are concentrated beneath and locally translated at synaptic sites. At the skeletal neuromuscular junction, all synaptic RNAs identified to date encode synaptic components. Using microarrays, we compared RNAs in synapse-rich and -free regions of muscles, thereby identifying transcripts that are enriched near synapses and that encode soluble membrane and nuclear proteins. One gene product, LL5β, binds to both phosphoinositides and a cytoskeletal protein, filamin, one form of which is concentrated at synaptic sites. LL5β is itself associated with the cytoplasmic face of the postsynaptic membrane; its highest levels border regions of highest acetylcholine receptor (AChR) density, which suggests a role in “corraling” AChRs. Consistent with this idea, perturbing LL5β expression in myotubes inhibits AChR aggregation. Thus, a strategy designed to identify novel synaptic components led to identification of a protein required for assembly of the postsynaptic apparatus.
Collapse
Affiliation(s)
- Masashi Kishi
- Department of Anatomy and Neurobiology, Washington University Medical Center, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
32
|
Deschênes-Furry J, Bélanger G, Mwanjewe J, Lunde JA, Parks RJ, Perrone-Bizzozero N, Jasmin BJ. The RNA-binding protein HuR binds to acetylcholinesterase transcripts and regulates their expression in differentiating skeletal muscle cells. J Biol Chem 2005; 280:25361-8. [PMID: 15878846 DOI: 10.1074/jbc.m410929200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During myogenic differentiation, acetylcholinesterase (AChE) transcript levels are known to increase dramatically. Although this increase can be attributed in part to increased transcriptional activity, posttranscriptional mechanisms have also been implicated in the high levels of AChE mRNA in myotubes. In this study, we observed that transfection of a luciferase reporter construct containing the full-length AChE 3'-untranslated region (UTR) resulted in significantly higher (5-fold) luciferase activity in differentiated myotubes versus myoblasts. RNA-electrophoretic mobility shift assays (REMSAs) performed with a full-length AChE 3'-UTR probe and the AU-rich element revealed that the intensity of RNA-binding protein complexes increased as myogenic differentiation proceeded. Using several complementary approaches including supershift REMSA, mRNA-binding protein pull-down assays, and immunoprecipitation followed by reverse transcription-PCR, we found that the mRNA-stabilizing protein HuR interacts directly with AChE transcripts. Stable overexpression of HuR in C2C12 cells increased the expression of endogenous AChE transcripts as well as that of the luciferase reporter construct containing the AChE 3'-UTR. In vitro stability assays performed with protein extracts from these cells versus controls resulted in a slower rate of AChE mRNA decay. The down-regulation of HuR expression mediated through small interfering RNA further confirmed the role of HuR in the regulation of AChE mRNA levels. Taken together, these studies demonstrate that HuR interacts with the AChE 3'-UTR to regulate posttranscriptionally the expression of AChE mRNA during myogenic differentiation.
Collapse
Affiliation(s)
- Julie Deschênes-Furry
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | | | | | |
Collapse
|
33
|
De Pedro JA, Pérez-Caballer AJ, Dominguez J, Collía F, Blanco J, Salvado M. Pulsed electromagnetic fields induce peripheral nerve regeneration and endplate enzymatic changes. Bioelectromagnetics 2004; 26:20-7. [PMID: 15605398 DOI: 10.1002/bem.20049] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An experimental study was carried out in rats with the purpose of demonstrating the capacity of pulsed electromagnetic fields (PEMFs) to stimulate regeneration of the peripheral nervous system (PNS). Wistar and Brown Norway (BN) rats were used. Direct sciatic nerve anastomoses were performed after section or allograft interposition. Treatment groups then received 4 weeks of PEMFs. Control groups received no stimulation. The evaluation of the results was carried out by quantitative morphometric analysis, demonstrating a statistically significant increase in regeneration indices (P < 0.05) in the stimulated groups (9000 +/- 5000 and 4000 +/- 6000) compared to the non-stimulated groups (2000 +/- 4000 and 700 +/- 200). An increase of NAD specific isocitrate dehydrogenase (IDH) activity was found along with an increase in the activity of acetyl cholinesterase at the motor plate. The present study might lead to the search for new alternatives in the stimulation of axonal regenerative processes in the PNS and other possible clinical applications.
Collapse
Affiliation(s)
- J A De Pedro
- Department of Orthopaedics, University Hospital of Salamanca, Salamanca, Spain.
| | | | | | | | | | | |
Collapse
|
34
|
Aldunate R, Casar JC, Brandan E, Inestrosa NC. Structural and functional organization of synaptic acetylcholinesterase. ACTA ACUST UNITED AC 2004; 47:96-104. [PMID: 15572165 DOI: 10.1016/j.brainresrev.2004.07.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2004] [Indexed: 10/26/2022]
Abstract
The expression of the synaptic asymmetric form of the enzyme acetylcholinesterase (AChE) depends of two different genes: the gene that encodes for the catalytic subunit and the gene that encodes for the collagenic tail, ColQ. Asymmetric AChE is specifically localized to the basal lamina at the neuromuscular junction (NMJ). This highly organized distribution pattern suggests the existence of one or more specific binding sites in ColQ required for its anchorage to the synaptic basal lamina. Recent evidence support this notion: first, the presence of two heparin-binding domains in ColQ that interact with heparan sulfate proteoglycans (HSPGs) at the synaptic basal lamina; and second, a knockout mouse for perlecan, a HSPG concentrated in nerve-muscle contact, in which absence of asymmetric AChE at the NMJ is observed. The physiological importance of collagen-tailed AChE form in skeletal muscle has been illustrated by the identification of several mutations in the ColQ gene. These mutations determine end-plate acetylcholinesterase deficiency and induce one type of synaptic functional disorders observed in Congenital Myasthenic Syndromes (CMSs).
Collapse
Affiliation(s)
- Rebeca Aldunate
- Centro FONDAP de Regulación Celular y Patología Joaquín V. Luco, MIFAB, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 114-D Santiago, Chile
| | | | | | | |
Collapse
|
35
|
Kimbell LM, Ohno K, Engel AG, Rotundo RL. C-terminal and Heparin-binding Domains of Collagenic Tail Subunit Are Both Essential for Anchoring Acetylcholinesterase at the Synapse. J Biol Chem 2004; 279:10997-1005. [PMID: 14702351 DOI: 10.1074/jbc.m305462200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The collagen-tailed form of acetylcholinesterase (A(12)-AChE) appears to be localized at the neuromuscular junction in association with the transmembrane dystroglycan complex through binding of its collagenic tail (ColQ) to the proteoglycan perlecan. The heparan sulfate binding domains (HSBD) of ColQ are thought to be involved in anchoring ColQ to the synaptic basal lamina. The C-terminal domain (CTD) of ColQ is also likely involved, but there has been no direct evidence. Mutations in COLQ cause endplate AChE deficiency in humans. Nine previously reported and three novel mutations are in CTD of ColQ, and most CTD mutations do not abrogate formation of A(12)-AChE in transfected COS cells. Patient endplates, however, are devoid of AChE, suggesting that CTD mutations affect anchoring of ColQ to the synaptic basal lamina. Based on our observations that purified AChE can be transplanted to the heterologous frog neuromuscular junction, we tested insertion competence of nine naturally occurring CTD mutants and two artificial HSBD mutants. Wild-type human A(12)-AChE inserted into the frog neuromuscular junction, whereas six CTD mutants and two HSBD mutants did not. Our studies establish that the CTD mutations indeed compromise anchoring of ColQ and that both HSBD and CTD are essential for anchoring ColQ to the synaptic basal lamina.
Collapse
Affiliation(s)
- Lewis M Kimbell
- Department of Cell Biology and Anatomy and Neuroscience Program, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | |
Collapse
|
36
|
Rossi SG, Dickerson IM, Rotundo RL. Localization of the calcitonin gene-related peptide receptor complex at the vertebrate neuromuscular junction and its role in regulating acetylcholinesterase expression. J Biol Chem 2003; 278:24994-5000. [PMID: 12707285 DOI: 10.1074/jbc.m211379200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The calcitonin gene-related peptide (CGRP) is released by motor neurons where it exerts both short and long term effects on skeletal muscle fibers. In addition, sensory neurons release CGRP on the surrounding vasculature where it is in part responsible for local vasodilation following muscle contraction. Although CGRP-binding sites have been demonstrated in whole muscle tissue, the type of CGRP receptor and its associated proteins or its cellular localization within the tissue have not been described. Here we show that the CGRP-binding protein referred to as the calcitonin receptor-like receptor is highly concentrated at the avian neuromuscular junction together with its two accessory proteins, receptor activity modifying protein 1 and CGRP-receptor component protein, required for ligand specificity and signal transduction. Using tissue-cultured skeletal muscle we show that CGRP stimulates an increase in intracellular cAMP that in turn initiates down-regulation of acetylcholinesterase expression at the transcriptional level, and, more specifically, inhibits expression of the synaptically localized collagen-tailed form of the enzyme. Together, these studies suggest a specific role for CGRP released by spinal cord motoneurons in modulating synaptic transmission at the neuromuscular junction by locally inhibiting the expression of acetylcholinesterase, the enzyme responsible for terminating acetylcholine neurotransmission.
Collapse
Affiliation(s)
- Susana G Rossi
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, Florida 33101, USA
| | | | | |
Collapse
|
37
|
Pregelj P, Crne-Finderle N, Sketelj J. Effect of thyroid hormones on acetylcholinesterase mRNA levels in the slow soleus and fast extensor digitorum longus muscles of the rat. Neuroscience 2003; 116:657-67. [PMID: 12573709 DOI: 10.1016/s0306-4522(02)00693-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the rat, the level of acetylcholinesterase messenger RNA in the typical slow soleus muscles is only about 20-30% of that in the fast extensor digitorum longus muscles. The expression of contractile proteins in muscles is influenced by thyroid hormones and hyperthyroidism makes the slow soleus muscle faster. The influence of thyroid hormones on the levels of acetylcholinesterase messenger RNA level in the slow soleus and fast extensor digitorum longus muscle of the rat was studied in order to examine the effect of thyroid hormones on muscle acetylcholinesterase expression. Hyperthyroidism was induced in rats by daily thyroid hormone injection or thyroid hormone releasing tablet implantation. Hind-limb suspension was applied to produce muscle unloading. Muscle denervation or reinnervation was achieved by sciatic nerve transection or crush. Acetylcholinesterase messenger RNA levels were analyzed by Northern blots and evaluated densitometrically. Hyperthyroidism increased the levels of acetylcholinesterase messenger RNA in the slow soleus muscles close to the levels in the fast extensor digitorum longus. The effect was the same in the unloaded soleus muscles. Acetylcholinesterase expression increased also in the absence of innervation (denervation), in the presence of changed nerve activation pattern (reinnervation), and under enhanced tonic neural activation of the soleus muscle (electrical stimulation). However, the changes were substantially smaller than those observed in the control soleus muscles. Enhancement of acetylcholinesterase expression in the soleus muscles by the thyroid hormones is, therefore, at last in part due to hormonal effect on the muscle itself. On the contrary, increased level of the thyroid hormones had no influence on acetylcholinesterase expression in the normal fast extensor digitorum longus muscles. However, some enhancing influence was apparent whenever the total number of nerve-induced muscle activations per day in the extensor digitorum longus muscle was increased. Thyroid hormones seem to be an independent extrinsic factor of acetylcholinesterase regulation in the slow soleus muscle.
Collapse
Affiliation(s)
- P Pregelj
- Institute of Pathophysiology, School of Medicine, University of Ljubljana, Slovenia.
| | | | | |
Collapse
|
38
|
Abstract
Efficient and accurate synaptic transmission requires proper localization of numerous signaling proteins in the synaptic membrane. At the neuromuscular junction, the nicotinic ACh receptor mediates postsynaptic depolarization, and acetylcholinesterase (AChE) terminates this process by hydrolyzing ACh. The mechanism by which the nerve directs receptor localization is understood in considerable detail; AChE clustering, by contrast, has received much less attention. Now, in a recent paper in Nature Neuroscience, the laboratories of Yoshiko Yamada and Richard Rotundo report that AChE clustering at the postsynaptic membrane requires perlecan, which binds both AChE and dystroglycan.
Collapse
Affiliation(s)
- Michelle S Steen
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
39
|
Bon S, Ayon A, Leroy J, Massoulié J. Trimerization domain of the collagen tail of acetylcholinesterase. Neurochem Res 2003; 28:523-35. [PMID: 12675141 DOI: 10.1023/a:1022821306722] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the collagen-tailed forms of cholinesterases, each subunit of a specific triple helical collagen, ColQ, may be attached through a proline-rich domain (PRAD) situated in its N-terminal noncollagenous region, to tetramers of acetylcholinesterase (AChE) or butyrylcholinesterase (BChE). This heteromeric assembly ensures the functional anchoring of AChE in extracellulare matrices, for example, at the neuromuscular junction. In this study, we analyzed the influence of deletions in the noncollagenous C-terminal region of ColQ on its capacity to form a triple helix. We show that an 80-residue segment located downstream of the collagenous regions contains the trimerization domain, that it can form trimers without the collagenous regions, and that a pair of cysteines located at the N-boundary of this domain facilitates oligomerization, although it is not absolutely required. We further show that AChE subunits can associate with nonhelical collagen ColQ monomers, forming ColQ-associated tetramers (G4-Q), which are secreted or are anchored at the cell surface when the C-terminal domain of ColQ is replaced by a GPI-addition signal.
Collapse
Affiliation(s)
- Suzanne Bon
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS UMR 8544, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| | | | | | | |
Collapse
|
40
|
Chitlaru T, Kronman C, Velan B, Shafferman A. Overloading and removal of N-glycosylation targets on human acetylcholinesterase: effects on glycan composition and circulatory residence time. Biochem J 2002; 363:619-31. [PMID: 11964163 PMCID: PMC1222515 DOI: 10.1042/0264-6021:3630619] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Optimization of post-translational modifications was shown to affect the ability of recombinant human acetylcholinesterase (rHuAChE) produced in HEK-293 cells to be retained in the circulation for prolonged periods of time [Kronman, Velan, Marcus, Ordentlich, Reuveny and Shafferman (1995) Biochem. J. 311, 959-967; Chitlaru, Kronman, Zeevi, Kam, Harel, Ordentlich, Velan and Shafferman (1998) Biochem. J. 336, 647-658; Chitlaru, Kronman, Velan and Shafferman (2001) Biochem. J. 354, 613-625]. To evaluate the possible contribution of the number of appended N-glycans in determining the pharmacokinetic behaviour of AChE, a series of sixteen recombinant human AChE glycoforms, differing in their number of appended N-glycans (2, 3, 4 or 5 glycans), state of assembly (dimeric or tetrameric) and terminal glycan sialylation (partially or fully sialylated) were generated. Extensive structural analysis of N-glycans demonstrated that the various glycan types associated with all the different rHuAChE glycoforms are essentially similar both in structure and abundance, and that production of the various glycoforms in the sialyltransferase-overexpressing 293ST-2D6 cell line resulted in the generation of enzyme species that carry glycans sialylated to the same extent. Pharmacokinetic profiling of the rHuAChE glycoforms in their fully tetramerized and sialylated state clearly demonstrated that circulatory longevity correlated directly with the number of attached N-glycans (mean residence times for rHuAChE glycoforms harbouring 2, 3, and 4 glycans=200, 740, and 1055 min respectively). This study provides evidence that glycan loading, together with N-glycan terminal processing and enzyme subunit oligomerization, operate in a hierarchical and concerted manner in determining the pharmacokinetic characteristics of AChE.
Collapse
Affiliation(s)
- Theodor Chitlaru
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, 74100, Israel
| | | | | | | |
Collapse
|
41
|
Minic J, Molgó J, Karlsson E, Krejci E. Regulation of acetylcholine release by muscarinic receptors at the mouse neuromuscular junction depends on the activity of acetylcholinesterase. Eur J Neurosci 2002; 15:439-48. [PMID: 11876771 DOI: 10.1046/j.0953-816x.2001.01875.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Muscarinic acetylcholine receptors (mAChRs) play an important role in regulating the release of acetylcholine (ACh) in various tissues. We used subtype-specific antibodies and a fluorescent-labelled muscarinic toxin to demonstrate that mammalian neuromuscular junction expresses mAChR subtypes M1 to M4, and that localization of all subtypes is highly restricted to the innervated part of the muscle. To elucidate the roles of the mAChR subtypes regulating ACh release, we measured the mean quantal content of endplate potentials in isolated mouse phrenic--hemidiaphragm preparations in which release was reduced by a low Ca2+/high Mg2+ medium. Muscarine decreased evoked ACh release in normal junctions but, depending on the concentration, reduced or increased transmitter release in collagen Q-deficient junctions completely lacking acetylcholinesterase (AChE). Both effects were also seen in normal junctions when AChE was inhibited by various doses of fasciculin-2. Block of mAChRs by atropine had no effect on evoked release at normal junctions, but decreased release at junctions lacking AChE. The muscarine-elicited depression of ACh release in normal junctions was completely abolished by pertussis toxin or methoctramine pretreatment, but was not affected by muscarinic toxin MT-3, thus indicating the involvement of the M2 mAChR. The muscarine-induced increase of ACh release in AChE-deficient junctions was not affected by pertussis toxin, but was completely blocked by MT-7, a specific M1 mAChR antagonist. Our results show that the M1 and M2 mAChRs have opposite presynaptic functions in modulating quantal ACh release, and that regulation of release by the two receptor subtypes depends on the functional state of AChE at the neuromuscular junction.
Collapse
Affiliation(s)
- Jasmina Minic
- Institut Fédératif de Neurobiologie Alfred Fessard, Laboratoire de Neurobiologie Cellulaire et Moléculaire, C.N.R.S., U.P.R. 9040, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | | | | | | |
Collapse
|
42
|
Arikawa-Hirasawa E, Rossi SG, Rotundo RL, Yamada Y. Absence of acetylcholinesterase at the neuromuscular junctions of perlecan-null mice. Nat Neurosci 2002; 5:119-23. [PMID: 11802174 DOI: 10.1038/nn801] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The collagen-tailed form of acetylcholinesterase (AChE) is concentrated at the vertebrate neuromuscular junction (NMJ), where it is responsible for rapidly terminating neurotransmission. This unique oligomeric form of AChE, consisting of three tetramers covalently attached to a collagen-like tail, is more highly expressed in innervated regions of skeletal muscle fibers, where it is externalized and attached to the synaptic basal lamina interposed between the nerve terminal and the receptor-rich postsynaptic membrane. Although it is clear that the enzyme is preferentially synthesized in regions of muscle contacted by the motoneuron, the molecular events underlying its localization to the NMJ are not known. Here we show that perlecan, a multifunctional heparan sulfate proteoglycan concentrated at the NMJ, is the unique acceptor molecule for collagen-tailed AChE at sites of nerve-muscle contact and is the principal mechanism for localizing AChE to the synaptic basal lamina.
Collapse
Affiliation(s)
- Eri Arikawa-Hirasawa
- Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland, 20892 USA
| | | | | | | |
Collapse
|
43
|
Ohno K, Engel AG, Brengman JM, Shen XM, Heidenreich F, Vincent A, Milone M, Tan E, Demirci M, Walsh P, Nakano S, Akiguchi I. The spectrum of mutations causing end-plate acetylcholinesterase deficiency. Ann Neurol 2001. [DOI: 10.1002/1531-8249(200002)47:2<162::aid-ana5>3.0.co;2-q] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
44
|
Lintern MC, Wetherell JR, Smith ME. Effect of halothane administration on acetylcholinesterase activity in guinea-pig muscle and brain. Neurosci Lett 2000; 284:101-4. [PMID: 10771172 DOI: 10.1016/s0304-3940(00)00986-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The effect of halothane administration on the activity of acetylcholinesterase molecular forms was studied in diaphragm, extensor digitorum longus (EDL), and soleus muscles, and six regions of the brain (striatum, cerebellum, cortex, hippocampus, medulla-pons, midbrain) of guinea-pigs. Six days after the anaesthetic, the activity of the G4 form was significantly increased in all three muscles and the A12 form was significantly increased in EDL. The G1 precursor form was significantly decreased in soleus. The G4 form was significantly increased in medulla-pons, and the G1 form was significantly decreased in hippocampus and midbrain. These findings show that halothane can have prolonged effects on acetylcholinesterase activity in both muscle and brain, and may have important implications for the use of halothane and other volatile anaesthetics in studies of the cholinergic system.
Collapse
Affiliation(s)
- M C Lintern
- Department of Physiology, Division of Medical Sciences, Medical School, University of Birmingham, Birmingham, UK
| | | | | |
Collapse
|
45
|
Differences in expression of acetylcholinesterase and collagen Q control the distribution and oligomerization of the collagen-tailed forms in fast and slow muscles. J Neurosci 2000. [PMID: 10594051 DOI: 10.1523/jneurosci.19-24-10672.1999] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The collagen-tailed forms of acetylcholinesterase (AChE) are accumulated at mammalian neuromuscular junctions. The A(4), A(8), and A(12) forms are expressed differently in the rat fast and slow muscles; the sternomastoid muscle contains essentially the A(12) form at end plates, whereas the soleus muscle also contains extrajunctional A(4) and A(8) forms. We show that collagen Q (ColQ) transcripts become exclusively junctional in the adult sternomastoid but remain uniformly expressed in the soleus. By coinjecting Xenopus oocytes with AChE(T) and ColQ mRNAs, we reproduced the muscle patterns of collagen-tailed forms. The soleus contains transcripts ColQ1 and ColQ1a, whereas the sternomastoid only contains ColQ1a. Collagen-tailed AChE represents the first evidence that synaptic components involved in cholinergic transmission may be differently regulated in fast and slow muscles.
Collapse
|
46
|
Deprez P, Inestrosa NC. Molecular modeling of the collagen-like tail of asymmetric acetylcholinesterase. PROTEIN ENGINEERING 2000; 13:27-34. [PMID: 10679527 DOI: 10.1093/protein/13.1.27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The asymmetric form of acetylcholinesterase comprises three catalytic tetramers attached to ColQ, a collagen-like tail responsible for the anchorage of the enzyme to the synaptic basal lamina. ColQ is composed of an N-terminal domain which interacts with the catalytic subunits of the enzyme, a central collagen-like domain and a C-terminal globular domain. In particular, the collagen-like domain of ColQ contains two heparin-binding domains which interact with heparan sulfate proteoglycans in the basal lamina. A three-dimensional model of the collagen-like domain of the tail of asymmetric acetylcholinesterase was constructed. The model presents an undulated shape that results from the presence of a substitution and an insertion in the Gly-X-Y repeating pattern, as well as from low imino-acid regions. Moreover, this model permits the analysis of interactions between the heparin-binding domains of ColQ and heparin, and could also prove useful in the prediction of interaction domains with other putative basal lamina receptors.
Collapse
Affiliation(s)
- P Deprez
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | |
Collapse
|
47
|
Hand D, Dias D, Haynes LW. Stabilization of collagen-tailed acetylcholinesterase in muscle cells through extracellular anchorage by transglutaminase-catalyzed cross-linking. Mol Cell Biochem 2000; 204:65-76. [PMID: 10718626 DOI: 10.1023/a:1007068017315] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A component of collagen-tailed acetylcholinesterase (asymmetric; A-AChE) in muscle forms a metabolically-stable pool which can be released from the cell surface only by collagenase, suggesting that part of the enzyme is covalently bound by its tail (COLQ) subunits. We have investigated whether this insoluble pool forms through covalent cross-linking of A-AChE to extracellular matrix glycoproteins by tissue transglutaminase (Tg; type 2 transglutaminase). Tg catalyzed the incorporation of the polyamine substrate 3[H]-putrescine into the collagen tail of affinity-purified avian A12-AChE. Complexes between A12-AChE and cellular fibronectin were also formed in vitro by Tg. In quail myotubes, retinoic acid, which stimulates the formation of epsilon(gamma-glutamyl)lysine isodipeptide bonds by Tg in myotubes, increased the proportion of extraction-resistant (er) A-AChE. Following irreversible inactivation of AChE by diisopropylfluorophosphate, entry of newly-synthesized A-AChE into the extraction-resistant pool was inhibited by a competitive Tg inactivator RS48373-007. The quantity of exogenously-added A 12 AChE incorporated into the extraction-resistant pool in living myotubes was increased by Tg in the presence of calcium. The inhibition of cross-bridge formation in fibrillar collagen by beta-aminopropionitrile, and pre-exposure of myotubes to a monoclonal antibody to fibronectin, resulted in a reduction in the size of the erA-AChE pool present on the cell-surface. The evidence supports the hypothesis that a component of insoluble collagen-tailed AChE, once subject to clustering influences mediated via reversible docking to proteoglycans and their receptors, is anchored at the cell surface through covalent cross-linking by Tg. The high stability of the epsilon(gamma-glutamyl)lysine isopeptide bond is likely to contribute to the observed low turnover of the erA-AChE fraction.
Collapse
Affiliation(s)
- D Hand
- School of Biological Sciences, University of Bristol, UK
| | | | | |
Collapse
|
48
|
Ohno K, Brengman JM, Felice KJ, Cornblath DR, Engel AG. Congenital end-plate acetylcholinesterase deficiency caused by a nonsense mutation and an A-->G splice-donor-site mutation at position +3 of the collagenlike-tail-subunit gene (COLQ): how does G at position +3 result in aberrant splicing? Am J Hum Genet 1999; 65:635-44. [PMID: 10441569 PMCID: PMC1377969 DOI: 10.1086/302551] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Congenital end-plate acetylcholinesterase (AChE) deficiency (CEAD), the cause of a disabling myasthenic syndrome, arises from defects in the COLQ gene, which encodes the AChE triple-helical collagenlike-tail subunit that anchors catalytic subunits of AChE to the synaptic basal lamina. Here we describe a patient with CEAD with a nonsense mutation (R315X) and a splice-donor-site mutation at position +3 of intron 16 (IVS16+3A-->G) of COLQ. Because both A and G are consensus nucleotides at the +3 position of splice-donor sites, we constructed a minigene that spans exons 15-17 and harbors IVS16+3A-->G for expression in COS cells. We found that the mutation causes skipping of exon 16. The mutant splice-donor site of intron 16 harbors five discordant nucleotides (at -3, -2, +3, +4, and +6) that do not base-pair with U1 small-nuclear RNA (snRNA), the molecule responsible for splice-donor-site recognition. Versions of the minigene harboring, at either +4 or +6, nucleotides complementary to U1 snRNA restore normal splicing. Analysis of 1,801 native splice-donor sites reveals that presence of a G nucleotide at +3 is associated with preferential usage, at positions +4 to +6, of nucleotides concordant to U1 snRNA. Analysis of 11 disease-associated IVS+3A-->G mutations indicates that, on average, two of three nucleotides at positions +4 to +6 fail to base-pair, and that the nucleotide at +4 never base-pairs, with U1 snRNA. We conclude that, with G at +3, normal splicing generally depends on the concordance that residues at +4 to +6 have with U1 snRNA, but other cis-acting elements may also be important in assuring the fidelity of splicing.
Collapse
Affiliation(s)
- K Ohno
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
49
|
|
50
|
Gaspersic R, Koritnik B, Crne-Finderle N, Sketelj J. Acetylcholinesterase in the neuromuscular junction. Chem Biol Interact 1999; 119-120:301-8. [PMID: 10421465 DOI: 10.1016/s0009-2797(99)00040-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
New findings regarding acetylcholinesterase (AChE) in the neuromuscular junction (NMJ), obtained in the last decade, are briefly reviewed. AChE is highly concentrated in the NMJs of vertebrates. Its location remains stable after denervation in mature rat muscles but not in early postnatal muscles. Agrin in the synaptic basal lamina is able to induce sarcolemmal differentiations accumulating AChE even in the absence of a nerve ending. Asymmetric A12 AChE form is the major molecular form of AChE in vertebrate NMJs. Extrajunctional suppression of this form is a developmental phenomenon. Motor nerve is able to reinduce expression of the A12 AChE form in the ectopic NMJs even in muscles with complete extrajunctional suppression of this form. The 'tail' of the A12 AChE form is made of collagen Q. It contains domains for binding AChE to basal lamina with ionic and covalent interactions. Muscle activity is required for normal AChE expression in muscles and its accumulation in the NMJs. In addition, the pattern of muscle activation also regulates AChE activity in the NMJs, demonstrating that the pattern of synaptic transmission is able to modulate one of the key synaptic components.
Collapse
Affiliation(s)
- R Gaspersic
- Institute of Pathophysiology, School of Medicine, University of Ljubljana, Slovenia
| | | | | | | |
Collapse
|