1
|
Rohrbach EW, Asuncion JD, Meera P, Kralovec M, Deshpande SA, Schweizer FE, Krantz DE. Heterogeneity in the projections and excitability of tyraminergic/octopaminergic neurons that innervate the Drosophila reproductive tract. Front Mol Neurosci 2024; 17:1374896. [PMID: 39156129 PMCID: PMC11327148 DOI: 10.3389/fnmol.2024.1374896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/27/2024] [Indexed: 08/20/2024] Open
Abstract
Aminergic nuclei in mammals are generally composed of relatively small numbers of cells with broad projection patterns. Despite the gross similarity of many individual neurons, recent transcriptomic, anatomic and behavioral studies suggest previously unsuspected diversity. Smaller clusters of aminergic neurons in the model organism Drosophila melanogaster provide an opportunity to explore the ramifications of neuronal diversity at the level of individual cells. A group of approximately 10 tyraminergic/octopaminergic neurons innervates the female reproductive tract in flies and has been proposed to regulate multiple activities required for fertility. The projection patterns of individual neurons within the cluster are not known and it remains unclear whether they are functionally heterogenous. Using a single cell labeling technique, we show that each region of the reproductive tract is innervated by a distinct subset of tyraminergic/octopaminergic cells. Optogenetic activation of one subset stimulates oviduct contractions, indicating that the cluster as a whole is not required for this activity, and underscoring the potential for functional diversity across individual cells. Using whole cell patch clamp, we show that two adjacent and morphologically similar cells are tonically inhibited, but each responds differently to injection of current or activation of the inhibitory GluCl receptor. GluCl appears to be expressed at relatively low levels in tyraminergic/octopaminergic neurons within the cluster, suggesting that it may regulate their excitability via indirect pathways. Together, our data indicate that specific tyraminergic/octopaminergic cells within a relatively homogenous cluster have heterogenous properties and provide a platform for further studies to determine the function of each cell.
Collapse
Affiliation(s)
- Ethan W. Rohrbach
- Interdepartmental Program in Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - James D. Asuncion
- Medical Scientist Training Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Pratap Meera
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Mason Kralovec
- UCLA College of Arts and Sciences, Los Angeles, CA, United States
| | - Sonali A. Deshpande
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Gonda (Goldschmied) Neuroscience and Genetics Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Felix E. Schweizer
- Interdepartmental Program in Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - David E. Krantz
- Interdepartmental Program in Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Gonda (Goldschmied) Neuroscience and Genetics Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
2
|
Andrés M, Seifert M, Spalthoff C, Warren B, Weiss L, Giraldo D, Winkler M, Pauls S, Göpfert M. Auditory Efferent System Modulates Mosquito Hearing. Curr Biol 2016; 26:2028-2036. [DOI: 10.1016/j.cub.2016.05.077] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/13/2016] [Accepted: 05/31/2016] [Indexed: 11/30/2022]
|
3
|
Ormerod KG, Hadden JK, Deady LD, Mercier AJ, Krans JL. Action of octopamine and tyramine on muscles of Drosophila melanogaster larvae. J Neurophysiol 2013; 110:1984-96. [DOI: 10.1152/jn.00431.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Octopamine (OA) and tyramine (TA) play important roles in homeostatic mechanisms, behavior, and modulation of neuromuscular junctions in arthropods. However, direct actions of these amines on muscle force production that are distinct from effects at the neuromuscular synapse have not been well studied. We utilize the technical benefits of the Drosophila larval preparation to distinguish the effects of OA and TA on the neuromuscular synapse from their effects on contractility of muscle cells. In contrast to the slight and often insignificant effects of TA, the action of OA was profound across all metrics assessed. We demonstrate that exogenous OA application decreases the input resistance of larval muscle fibers, increases the amplitude of excitatory junction potentials (EJPs), augments contraction force and duration, and at higher concentrations (10−5 and 10−4 M) affects muscle cells 12 and 13 more than muscle cells 6 and 7. Similarly, OA increases the force of synaptically driven contractions in a cell-specific manner. Moreover, such augmentation of contractile force persisted during direct muscle depolarization concurrent with synaptic block. OA elicited an even more profound effect on basal tonus. Application of 10−5 M OA increased synaptically driven contractions by ∼1.1 mN but gave rise to a 28-mN increase in basal tonus in the absence of synaptic activation. Augmentation of basal tonus exceeded any physiological stimulation paradigm and can potentially be explained by changes in intramuscular protein mechanics. Thus we provide evidence for independent but complementary effects of OA on chemical synapses and muscle contractility.
Collapse
Affiliation(s)
- Kiel G. Ormerod
- Department of Biological Sciences, Brock University, Saint Catharines, Ontario, Canada; and
| | - Julia K. Hadden
- Department of Neuroscience, Western New England University, Springfield, Massachusetts
| | - Lylah D. Deady
- Department of Neuroscience, Western New England University, Springfield, Massachusetts
| | - A. Joffre Mercier
- Department of Biological Sciences, Brock University, Saint Catharines, Ontario, Canada; and
| | - Jacob L. Krans
- Department of Neuroscience, Western New England University, Springfield, Massachusetts
| |
Collapse
|
4
|
Busch S, Tanimoto H. Cellular configuration of single octopamine neurons in Drosophila. J Comp Neurol 2010; 518:2355-64. [PMID: 20437532 DOI: 10.1002/cne.22337] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Individual median octopamine neurons in the insect central nervous system serve as an excellent model system for comparative neuroanatomy of single identified cells. The median octopamine cluster of the subesophageal ganglion consists of defined sets of paired and unpaired interneurons, which supply the brain and subesophageal ganglion with extensive ramifications. The developmental program underlying the complex cellular network is unknown. Here we map the segmental location and developmental origins of individual octopamine neurons in the Drosophila subesophageal ganglion. We demonstrate that two sets of unpaired median neurons, located in the mandibular and maxillary segments, exhibit the same projection patterns in the brain. Furthermore, we show that the paired and unpaired neurons belong to distinct lineages. Interspecies comparison of median neurons revealed that many individual octopamine neurons in different species project to equivalent target regions. Such identified neurons with similar morphology can derive from distinct lineages in different species (i.e., paired and unpaired neurons).
Collapse
Affiliation(s)
- Sebastian Busch
- Max-Planck-Institut für Neurobiologie, D-82152 Martinsried, Germany, and Lehrstuhl für Genetik und Neurobiologie, Universität Würzburg, D-97074 Würzburg, Germany
| | | |
Collapse
|
5
|
Hess CR, McGuirl MM, Klinman JP. Mechanism of the insect enzyme, tyramine beta-monooxygenase, reveals differences from the mammalian enzyme, dopamine beta-monooxygenase. J Biol Chem 2007; 283:3042-3049. [PMID: 18032384 DOI: 10.1074/jbc.m705911200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tyramine beta-monooxygenase (TbetaM) catalyzes the synthesis of the neurotransmitter, octopamine, in insects. Kinetic and isotope effect studies have been carried out to determine the kinetic mechanism of TbetaM for comparison with the homologous mammalian enzymes, dopamine beta-monooxygenase and peptidylglycine alpha-hydroxylating monooxygenase. A new and distinctive feature of TbetaM is very strong substrate inhibition that is dependent on the level of the co-substrate, O(2), and reductant as well as substrate deuteration. This has led to a model in which tyramine can bind to either the Cu(I) or Cu(II) forms of TbetaM, with substrate inhibition ameliorated at very high ascorbate levels. The rate of ascorbate reduction of the E-Cu(II) form of TbetaM is also reduced at high tyramine, leading us to propose the existence of a binding site for ascorbate to this class of enzymes. These findings may be relevant to the control of octopamine production in insect cells.
Collapse
Affiliation(s)
- Corinna R Hess
- Department of Chemistry , University of California, Berkeley, California 94720
| | - Michele M McGuirl
- Division of Biological Sciences and the Biomolecular Structure and Dynamics Program, University of Montana, Missoula, Montana 59812
| | - Judith P Klinman
- Department of Chemistry , University of California, Berkeley, California 94720; Molecular and Cell Biology, University of California, Berkeley, California 94720.
| |
Collapse
|
6
|
Richardson CA, Leitch B. Identification of the neurotransmitters involved in modulation of transmitter release from the central terminals of the locust wing hinge stretch receptor. J Comp Neurol 2007; 502:794-809. [PMID: 17436309 DOI: 10.1002/cne.21323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The flight motor system of the locust represents a model preparation for the investigation of neuromodulation. At the wing hinges are stretch receptors important in generating and controlling the flight motor pattern. The forewing stretch receptor (fSR) makes direct cholinergic synapses with depressor motor neurons (MN) controlling that wing, including the first basalar MN (BA1). The fSR/BA1 synapse is modulated by muscarinic cholinergic receptors located on gamma-aminobutyric acid (GABA)-ergic interneurons (Judge and Leitch [1999a] J. Comp. Neurol. 407:103-114; Judge and Leitch [1999b] J. Neurobiol. 40:420-431). However, electrophysiology has shown that fSR/BA is also modulated by biogenic amines (Leitch et al. [2003] J. Comp. Neurol. 462:55-70). We have used electron microscopic immunocytochemistry (ICC) to identify the neurotransmitters in neurons presynaptic to the fSR and to determine the relative proportion of these different classes of modulatory inputs. Approximately 55% of all inputs to the fSR are glutamate-IR, indicating that glutamatergic neurons may also play an important role in presynaptically modulating the fSR terminals. Anti-GABA ICC confirmed that over 40% of inputs to the fSR are GABA-IR (Judge and Leitch [1999a] J. Comp. Neurol. 407:103-114). Labelling sections with an antioctopamine antibody revealed neurons containing distinctive large, electron-dense granules, which could reliably be used to identify them. Aminergic neurons that modulate the synapse may have very few morphologically recognizable synaptic outputs. Although putative octopaminergic processes were found in close contact to horseradish peroxidase-filled fSR profiles, no morphologically recognizable synaptic inputs to the fSR were evident. Collectively, these data suggest that most inputs to the fSR are from either glutamatergic or GABAergic neurons.
Collapse
|
7
|
Farooqui T. Octopamine-mediated neuromodulation of insect senses. Neurochem Res 2007; 32:1511-29. [PMID: 17484052 DOI: 10.1007/s11064-007-9344-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Accepted: 04/03/2007] [Indexed: 11/28/2022]
Abstract
Octopamine functions as a neuromodulator, neurotransmitter, and neurohormone in insect nervous systems. Octopamine has a prominent role in influencing multiple physiological events: (a) as a neuromodulator, it regulates desensitization of sensory inputs, arousal, initiation, and maintenance of various rhythmic behaviors and complex behaviors such as learning and memory; (b) as a neurotransmitter, it regulates endocrine gland activity; and (c) as a neurohormone, it induces mobilization of lipids and carbohydrates. Octopamine exerts its effects by binding to specific proteins that belong to the superfamily of G protein-coupled receptors and share the structural motif of seven transmembrane domains. The activation of octopamine receptors is coupled with different second messenger pathways depending on species, tissue source, receptor type and cell line used for the expression of cloned receptor. The second messengers include adenosine 3',5'-cyclic monophosphate (cAMP), calcium, diacylglycerol (DAG), and inositol 1,4,5-trisphosphate (IP3). The cAMP activates protein kinase A, calcium and DAG activate protein kinase C, and IP3 mobilizes calcium from intracellular stores. Octopamine-mediated generation of these second messengers is associated with changes in cellular response affecting insect behaviors. The main objective of this review is to discuss significance of octopamine-mediated neuromodulation in insect sensory systems.
Collapse
Affiliation(s)
- Tahira Farooqui
- Department of Entomology, The Ohio State University, 400 Aronoff Laboratory, 318 West 12th Ave., Columbus, OH 43210-1220, USA.
| |
Collapse
|
8
|
Sinakevitch I, Niwa M, Strausfeld NJ. Octopamine-like immunoreactivity in the honey bee and cockroach: Comparable organization in the brain and subesophageal ganglion. J Comp Neurol 2005; 488:233-54. [PMID: 15952163 DOI: 10.1002/cne.20572] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A serum raised against octopamine reveals in cockroaches and honey bees structurally comparable systems of perikarya and their extensive yet discrete systems of arborizations in neuropils. Numerous and prominent clusters of lateral cell bodies in the brain as well as many midline perikarya provide octopamine-like immunoreactive processes to circumscribed regions of the subesophageal ganglion, antennal lobe glomeruli, optic neuropils, and neuropils of the protocerebrum. There is dense octopaminergic innervation in the protocerebral bridge and ellipsoid body of the central complex. The antennal lobes are supplied by at least three octopamine-immunoreactive neurons. In contrast, the mushroom bodies show the fewest immunoreactive elements. In Apis a single axon supplies sparse immunoreactive processes to the calyces' basal ring, collar, and lip. A diffuse arrangement of immunoreactive processes invades all zones of the mushroom body calyces in Periplaneta. These processes derive from an ascending axon ascribed to a dorsal unpaired median neuron at the maxillary segment of the subesophageal ganglion. In both taxa octopamine-immunoreactive processes invade only the gamma lobes of the mushroom bodies, omitting their other divisions. The present observations are discussed with respect to possible roles of octopamine in sensory integration and association.
Collapse
Affiliation(s)
- Irina Sinakevitch
- Arizona Research Laboratories, Division of Neurobiology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | |
Collapse
|
9
|
Biserova NM, Pflüger HJ. The ultrastructure of locust pleuroaxillary “steering” muscles in comparison to other skeletal muscles. ZOOLOGY 2004; 107:229-42. [PMID: 16351941 DOI: 10.1016/j.zool.2004.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 04/19/2004] [Accepted: 04/20/2004] [Indexed: 11/20/2022]
Abstract
The ultrastructure of locust muscles with different function is examined: the pleuroaxillary flight steering muscle is compared with a typical flight (power muscle) and a typical leg muscle, in particular with respect to sarcomere length, tracheation, mitochondria, and sarcoplasmatic reticulum. The pleuroaxillary muscle exhibits some features characteristic of flight muscles but most of the ultrastructure resembles that of leg muscles. This is in agreement with the innervation of this muscle by an octopaminergic neuron, which also innervates leg muscles but no other flight muscles. It also supports the hypothesis that octopaminergic neurons are important metabolic regulators and that the above muscle types exhibit important differences in energy metabolism.
Collapse
Affiliation(s)
- Natalia M Biserova
- Department of Invertebrate Zoology, Biology Faculty, Institute for Biology of Inland Waters, RAS, Borok, Yaroslavl District, Russia.
| | | |
Collapse
|
10
|
Consoulas C, Johnston RM, Pflüger HJ, Levine RB. Peripheral distribution of presynaptic sites of abdominal motor and modulatory neurons in Manduca sexta larvae. J Comp Neurol 1999; 410:4-19. [PMID: 10397391 DOI: 10.1002/(sici)1096-9861(19990719)410:1<4::aid-cne2>3.0.co;2-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Insect muscle fibers are commonly innervated by multiple motor neurons and efferent unpaired median (UM) neurons. The role of UM neurons in the modulation rather than rapid activation of muscle contraction (Evans and O'Shea [1977] Nature 270:257-259) suggests that their terminal varicosities may differ structurally and functionally from the presynaptic terminals of motor neurons. Furthermore, differences in the characteristics of UM neuron terminal varicosities may be correlated with functional differences among their diverse target muscles. Larval abdominal body wall muscles in the hawkmoth, Manduca sexta, consist of large, elongated fibers that are multiterminally innervated by one and occasionally two motor neurons (Levine and Truman [1985] J. Neurosci. 5:2424-2431). The fibers are also innervated by one of two efferent UM neurons that bifurcate to innervate targets on both sides of the abdomen (Pflüger et al. [1993] J. Comp. Neurol. 335:508-522). In this study, the intracellular tracer biocytin was used to identify the targets of the UM neurons and to distinguish their terminal axonal varicosities on the muscle fibers. An antiserum to the synaptic vesicle protein, synaptotagmin, was used to label synaptic vesicles, and the styryl dye FM1-43 was used to demonstrate release and recycling. Most of the abdominal muscles in a given hemisegment were found to be supplied by one of the two UM neurons. Terminal varicosities of the excitatory motor neurons were large (3-7 pm) and were found in rows of rosettes that extended to every aspect of the muscle fiber; these varicosities were designated as type I terminals. The UM neuron terminal varicosities also occupied every aspect of the fiber but were smaller (1-3 microm) and more separated from each other; these were designated as type II terminals. Both type I and type II terminals are synaptotagmin immunoreactive and, as shown by FM1-43 staining, are sites of synaptic vesicle recycling. The excitatory motor neuron terminals (type I) could easily be loaded and unloaded with FM1-43, which indicates their capacity for repeated vesicular exocytosis and recycling. In contrast, the dye could not as readily be unloaded from UM neuron terminals (type II), which may indicate that they have a slower turnover of synaptic vesicles.
Collapse
Affiliation(s)
- C Consoulas
- Division of Neurobiology, University of Arizona, Tucson 85721, USA.
| | | | | | | |
Collapse
|
11
|
Abstract
The present article provides a comparative neuroanatomical description of the cellular localization of the biogenic amines histamine, dopamine, serotonin and octopamine in the ventral nerve cord of an insect, namely the cricket, Gryllus bimaculatus. Generally, different immunocytochemical staining techniques reveal a small number of segmentally distributed immunoreactive (-IR) amine-containing neurons allowing single cell reconstruction of prominent elements. Aminergic neurons share common morphological features in that they innervate large portions of neurophil and often connect different neuromeres by intersegmental 'wide-field' projections of varicose appearance. In many cases aminergic terminals are also found on the surface of peripheral nerves suggesting additional neurohemal release sites. Despite such morphological similarities histological analysis demonstrates for any given amine functionally distinct neuron types with specific innervation patterns establishing discrete pathways. Histamine-IR interneurons are characterized by both ascending and descending projections forming central and peripheral terminals. The descending branches from dopamine-IR cells mainly converge within the terminal ganglion, whereas serotonin-IR interneurons with ascending projections often terminate within the brain. Serotonin is also present in sensory and motor neurons. In contrast to other aminergic neurons, most octopamine-IR cells represent unpaired neurons projecting through motor nerves of the soma-containing neuromere. Octopamine-IR cells with intersegmental branches are only rarely found. Based on these findings, a colocalization of different amines within the same neuron seems to be unlikely to occur in the cricket ventral nerve cord. With respect to the neuroanatomical description of amine-containing neurons known physiological effects of biogenic amines and their possible neuromodulatory functions in insects are discussed.
Collapse
Affiliation(s)
- M Hörner
- Institut für Zoologie und Anthropologie, Abteilung für Zellbiologie, Georg-August-Universität Göttingen, Germany.
| |
Collapse
|
12
|
Csoknya M, Barna J, Bánvölgyi T, Hiripi L, Eckert M, Hámori J, Elekes K. Octopamine-containing neurons in the alimentary tract of the earthworm (Eisenia fetida). Brain Res 1997; 778:414-7. [PMID: 9459562 DOI: 10.1016/s0006-8993(97)01117-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Octopamine-containing nerve cells have been demonstrated in the enteric plexus of the earthworm (Eisenia fetida), applying immunocytochemistry and HPLC assay. A few octopamine-immunoreactive neurons occurred in the fore- and hindgut, whereas their number in the midgut was considerably greater. Octopamine levels detected by HPLC correlated with the distribution of octopamine-containing nerve cells. A regulatory role for these intrinsic octopaminergic neurons is suggested in the enteric plexus in the earthworm alimentary tract. This is the first report on the occurrence of octopamine-containing nerve cells in the peripheral nervous system of an invertebrate.
Collapse
Affiliation(s)
- M Csoknya
- Department of General Zoology and Neurobiology, Janus Pannonius University, Pécs, Hungary.
| | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Monastirioti M, Gorczyca M, Rapus J, Eckert M, White K, Budnik V. Octopamine immunoreactivity in the fruit fly Drosophila melanogaster. J Comp Neurol 1995; 356:275-87. [PMID: 7629319 PMCID: PMC4664080 DOI: 10.1002/cne.903560210] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Octopamine has been proposed as a neurotransmitter/modulator/hormone serving a variety of physiological functions in invertebrates. We have initiated a study of octopamine in the fruit fly Drosophila melanogaster, which provides an excellent system for genetic and molecular analysis of neuroactive molecules. As a first step, the distribution of octopamine immunoreactivity was studied by means of an octopamine-specific antiserum. We focused on the central nervous system (CNS) and on the innervation of the larval body wall muscles. The larval octopamine neuronal pattern was composed of prominent neurons along the midline of the ventral ganglion, whereas brain lobes were devoid of immunoreactive somata. However, intense immunoreactive neuropil was observed both in the ventral ganglion and in the brain lobes. Some of the immunoreactive neurons sent peripheral fibers that innervated most of the muscles of the larval body wall. Octopamine immunoreactivity was observed at neuromuscular junctions in all larval stages, being present in a well-defined subset of synaptic boutons, type II. Octopamine immunoreactivity in the adult CNS revealed many additional neurons compared to the larval CNS, indicating that at least a subset of adult octopamine neurons may differentiate during metamorphosis. Major octopamine-immunoreactive neuronal clusters and neuronal processes were observed in the subesophageal ganglion, deutocerebrum, and dorsal protocerebrum, and intense neuropil staining was detected primarily in the optic lobes and in the central complex.
Collapse
Affiliation(s)
- M Monastirioti
- Department of Biology, Brandeis University, Waltham, Massachusetts 02254, USA
| | | | | | | | | | | |
Collapse
|
15
|
Pflüger HJ, Watson AH. GABA and glutamate-like immunoreactivity at synapses received by dorsal unpaired median neurones in the abdominal nerve cord of the locust. Cell Tissue Res 1995; 280:325-33. [PMID: 7781030 DOI: 10.1007/bf00307805] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Dorsal unpaired median (DUM) neurones in the abdominal ganglia of the locust were impaled with microelectrodes and some were injected intracellularly with horseradish peroxidase so that their synapses could be identified in the electron microscope. Simultaneous recordings from DUM neurones in different abdominal ganglia revealed that they received common postsynaptic potentials from descending interneurones. Post-embedding immunocytochemistry using antibodies against GABA and glutamate was carried out on ganglia containing HRP-stained neurones. GABA-like immunoreactivity was found in 39% (n = 82) of processes presynaptic to abdominal DUM neurones and glutamate-like immunoreactivity in 21% (n = 42) of presynaptic processes. Output synapses from the DUM neurites were rarely observed within the neuropile. Structures resembling presynaptic dense bars but not associated with synaptic vesicles, were seen in some large diameter neurites.
Collapse
Affiliation(s)
- H J Pflüger
- Institut für Neurobiologie, Freie Universität, Berlin, Germany
| | | |
Collapse
|
16
|
Ultrastructural and immunocytochemical studies of neuromuscular junctions in oviduct of Locusta migratoria. Cell Tissue Res 1995. [DOI: 10.1007/bf00318171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Miksys S, Orchard I. Immunogold labelling of serotonin-like and FMRFamide-like immunoreactive material in neurohaemal areas on abdominal nerves of Rhodnius prolixus. Cell Tissue Res 1994; 278:145-51. [PMID: 7954695 DOI: 10.1007/bf00305786] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The ultrastructure of neurohaemal areas on abdominal nerves of the blood-sucking bug Rhodnius prolixus was investigated. Four types of axon terminals were found, distinguished by the morphology of their neurosecretory granules. By use of post-embedding immunogold labelling, granules in Type I axon terminals were shown to contain serotonin-like immunoreactive material, and granules in Type II axon terminals were shown to contain FMRFamide-like immunoreactive material. There was no colocalization of these materials. It is suggested that Type III terminals contain peptidergic diuretic hormone, which has previously been reported to be present in electron-dense neurosecretory granules in this neurohaemal area. The identity of material in Type IV terminals is unknown.
Collapse
Affiliation(s)
- S Miksys
- Department of Zoology, University of Toronto, Ontario, Canada
| | | |
Collapse
|
18
|
Watson AH, Pflüger HJ. Distribution of input synapses from processes exhibiting GABA- or glutamate-like immunoreactivity onto terminals of prosternal filiform afferents in the locust. J Comp Neurol 1994; 343:617-29. [PMID: 7913475 DOI: 10.1002/cne.903430411] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The locust prosternum carries a population of long filiform hairs that are very sensitive to air currents. The sensory afferent neurones that innervate the hairs make strong monosynaptic connections with an identified intersegmental interneurone (A4I1) which is known to contact motor neurones that supply muscles controlling wing angle during flight. In order discover how the synapse between the afferents and interneurone A4I1 might be modulated, the afferents were labelled intracellularly by backfilling with horseradish peroxidase to reveal their central terminals which lie in the prothoracic ganglion. A postembedding immunogold method was used to make a quantitative assessment of the prevalence of immunoreactivity for GABA and glutamate in processes presynaptic to the afferent terminals. In one afferent neurone, where 77 synapses were examined, 40 (52%) of the presynaptic processes were immunoreactive for GABA. When adjacent sections through the same terminal branches were labelled with the two antibodies, it was demonstrated that GABA- and glutamate-like immunoreactivity was present in different populations of presynaptic processes. A series of 110 ultrathin sections was cut through one set of afferent terminal branches and alternate grids were stained with GABA and glutamate antibodies. From these sections, the terminals were reconstructed and the position of 35 input and 21 output synapses mapped. Of the 35 input synapses, 18 (51%) were immunoreactive for GABA, 14 (40%) were immunoreactive for glutamate and 3 (9%) were unlabelled by either antibody. On these terminals, the different classes of input synapses appeared to be intermingled at random with the output synapses made by the afferent, and no pattern governing synapse distribution could be discerned.
Collapse
Affiliation(s)
- A H Watson
- Department of Anatomy, University of Wales College of Cardiff
| | | |
Collapse
|
19
|
Blau C, Wegener G. Metabolic integration in locust flight: the effect of octopamine on fructose 2,6-bisphosphate content of flight muscle in vivo. J Comp Physiol B 1994. [DOI: 10.1007/bf00714565] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Lee SC, Krasne FB. Ultrastructure of the circuit providing input to the crayfish lateral giant neurons. J Comp Neurol 1993; 327:271-88. [PMID: 8425945 DOI: 10.1002/cne.903270209] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Labeled or otherwise identified neurons of the crayfish lateral giant escape reaction circuit were examined electron microscopically and the findings compared to expectations from physiology. Terminals of primary afferents contained clear, approximately 45 nm, irregularly round synaptic vesicles, while sensory interneuron terminals had slightly larger, 50 nm, more strictly round vesicles, permitting tentative classification based on anatomical criteria. Excitatory synapses on the lateral giants, believed from physiology to be electrical, generally had some gap junctions, but these were almost invariably paralleled by more prominent chemical junctional regions of unknown function. There may also be a class of interneurons making purely chemical synapses on the lateral giants. Synapses from primary afferents to sensory interneurons, believed from physiology to be cholinergic, had purely chemical morphology. Synapses with narrow elongated vesicles, similar to GABAergic vesicles seen in other neurons, frequently occurred on terminals of primary afferents. These synapses provide a basis for known presynaptic inhibition of afferent input. Consistent with physiology, such inhibitors sometimes also contacted the postsynaptic targets of the primary afferents and sometimes received input from other primary afferents. Afferent terminals also received some input from profiles rich in large dense cored vesicles. Presumptive inhibitory input found on proximal dendrites of lateral giants provides a basis for known recurrent inhibition. However, similar inhibitory synapses that sometimes received local input from excitors of the lateral giants were also found distally mixed with excitatory inputs. These provide a basis for recently discovered distal inhibitory input following excitation and for tonic inhibition.
Collapse
Affiliation(s)
- S C Lee
- Department of Psychology, University of California, Los Angeles 90024
| | | |
Collapse
|
21
|
Casagrand JL, Ritzmann RE. Biogenic amines modulate synaptic transmission between identified giant interneurons and thoracic interneurons in the escape system of the cockroach. JOURNAL OF NEUROBIOLOGY 1992; 23:644-55. [PMID: 1331317 DOI: 10.1002/neu.480230604] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the escape system of the cockroach, Periplaneta americana, a population of uniquely identifiable thoracic interneurons (type A or TIAs) receive information about wind via chemical synapses from a population of ventral giant interneurons (vGIs). The TIAs are involved in the integration of sensory information necessary for orienting the animal during escape. It is likely that there are times in an animal's life when it is advantageous to modify the effectiveness of synaptic transmission between the vGIs and the TIAs. Given the central position of the TIAs in the escape system, this would greatly alter associated motor outputs. We tested the ability of octopamine, serotonin, and dopamine to modulate synaptic transmission between vGIs and TIAs. Both octopamine and dopamine significantly increased the amplitude of vGI-evoked excitatory postsynaptic potentials (EPSPs) in TIAs at 10(-4)-10(-2) M, and 10(-3) M, respectively. On the other hand, serotonin significantly decreased the vGI-evoked EPSPs in TIAs at 10(-4)-10(-3) M. These results indicate that octopamine, serotonin, and dopamine are capable of modulating the efficacy of transmission of important neural connections within this circuit.
Collapse
Affiliation(s)
- J L Casagrand
- Department of Biology, Case Western Reserve University, Cleveland, Ohio 44106
| | | |
Collapse
|
22
|
Swales LS, Cournil I, Evans PD. The innervation of the closer muscle of the mesothoracic spiracle of the locust. Tissue Cell 1992; 24:547-58. [PMID: 1440578 DOI: 10.1016/0040-8166(92)90070-n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The closer muscle of the mesothoracic spiracle of the locust, Schistocerca gregaria is innervated by two excitatory motoneurones and also by processes of a peripherally located neurosecretory cell. Within the muscle, ultrastructural studies show the presence of two types of excitatory nerve terminal which differ in the content of dense cored vesicles and in their distribution. The ventral segment of the muscle is innervated predominantly by terminals with small clear vesicles and only an occasional dense-cored vesicle. The central part of the muscle is innervated predominantly by terminals with small clear vesicles and larger numbers of dense-cored vesicles. The dorsal segment of the muscle is innervated exclusively by a neurosecretory type innervation. The small neurohaemal organ of the median nerve close to the spiracle muscle is immunoreactive to an antibody raised against bovine pancreatic polypeptide but no immunoreactive processes enter the muscle itself. The muscle possesses specific octopaminergic receptors that increase cyclic AMP levels and the possibility that the neurosecretory input to the muscle is provided by either a central or peripheral octopamine containing neurone is discussed.
Collapse
Affiliation(s)
- L S Swales
- Dept of Zoology, University of Cambridge, UK
| | | | | |
Collapse
|
23
|
Lee HM, Wyse GA. Immunocytochemical localization of octopamine in the central nervous system of Limulus polyphemus: a light and electron microscopic study. J Comp Neurol 1991; 307:683-94. [PMID: 1869636 DOI: 10.1002/cne.903070413] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have determined the distribution and localization of the monoamine octopamine in the prosomal central nervous system of the horseshoe crab, Limulus polyphemus, by light and electron microscopic immunocytochemistry. Sixteen discrete clusters of octopamine-like immunoreactive neurons are situated bilaterally in the tritocerebrum and circumesophageal ring of fused thoracic ganglia. Two pairs of anterior clusters are located laterally in the cheliceral and first pedal ganglia; the remaining six pairs of clusters are located ventromedially in the second through fifth pedal ganglia, chilarial ganglia, and opercular ganglia. The immunoreactive somata range from about 40 to 100 microns in diameter and occur in clusters of 12-24 cells. There is extensive distribution of octopamine-immunoreactive nerve fibers in Limulus; dense fiber tracts course anteroposteriorly through the central nervous system, and most neuropil regions are innervated by immunoreactive processes and terminals. This wide distribution of octopamine-like immunoreactivity provides an anatomical basis for the several effects of octopamine in Limulus. We determined the subcellular localization of octopamine by postembedding immunoelectron microscopy. The immunogold-labelled terminals are morphologically unique; they contain large, distinctively shaped dense-core granules, typically cylindrical with a prominent indentation in one end. These large granules are 100-150 nm in diameter and range from 150-400 nm in length. The dense labelling of these unusual granules with immunogold particles indicates that octopamine is sequestered in or associated with the granules.
Collapse
Affiliation(s)
- H M Lee
- Department of Zoology, University of Massachusetts, Amherst 01003
| | | |
Collapse
|
24
|
Pocock JM, Osborne MP, Nicholson RA. The effect of in vivo stimulation on the cytology of neuromuscular junctions of locust flight muscles. JOURNAL OF NEUROCYTOLOGY 1990; 19:566-73. [PMID: 2173741 DOI: 10.1007/bf01257244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The ultrastructure of neuromuscular junctions in dorsoventral (tergosternal) flight muscle no. 113 and dorsolongitudinal flight muscle no. 112 of the locust Schistocerca gregaria is described. Following in vivo stimulation by enforced flight, morphological and statistical analyses reveal cytological changes at these junctions suggestive of vesicular release of neurotransmitter and membrane recycling. Flight periods from 30 min to 3 h produced a progressive decrease in the density of terminal synaptic vesicles, an increase in terminal surface area and circumference, increases in the occurrence of membranous cisternae, increases in mitochondrial numbers, and increases in the frequency of coated pits.
Collapse
Affiliation(s)
- J M Pocock
- Department of Physiology, Medical School, University of Birmingham, UK
| | | | | |
Collapse
|
25
|
Baines RA, Tyrer NM, Downer RG. Serotoninergic innervation of the locust mandibular closer muscle modulates contractions through the elevation of cyclic adenosine monophosphate. J Comp Neurol 1990; 294:623-32. [PMID: 2160481 DOI: 10.1002/cne.902940409] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The mandibular closer muscles of the locust receive innervation that is immunoreactive for the putative transmitter 5-hydroxytryptamine (5-HT). Cobalt-labelling suggests that the origin of this innervation is a group of cells located anteriorly in the suboesophageal ganglion. Bath application of 5-HT while the muscles are active produces marked changes in the contractions, increasing their amplitude, rate of contraction, and rate of relaxation. Incubation of isolated muscles with 5-HT shows that this amine elevates the levels of the cyclic nucleotide cyclic adenosine monophosphate (cAMP). In addition compounds that artificially elevate the levels of cAMP in the muscle--3-isobutyl-1-methylxanthine (IBMX), forskolin, and the cAMP analogue 8-(4-chlorophenylthio) cAMP--mimic the actions of 5-HT, whereas a potent inhibitor of insect adenylate cyclase, adenosine, considerably delays the onset of the effects produced by 5-HT. The effects observed with 5-HT in the mandibular muscle are similar to those of octopamine in the locust extensor tibiae muscle, and it is possible that this is an analogous modulatory system.
Collapse
Affiliation(s)
- R A Baines
- Department of Biology, University of Waterloo, Ontario, Canada
| | | | | |
Collapse
|
26
|
Elia A, Gardner D. Some morphological and physiological characteristics of an identifiable dorsal unpaired median neurone in the metathoracic ganglion of the cockroach, Periplaneta americana (L.). ACTA ACUST UNITED AC 1990. [DOI: 10.1016/0742-8413(90)90082-k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Affiliation(s)
- G A Cottrell
- Department of Biology and Preclinical Medicine, Fife, Scotland
| | | |
Collapse
|
28
|
Walker RJ, Holden-Dye L. Commentary on the evolution of transmitters, receptors and ion channels in invertebrates. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. A, COMPARATIVE PHYSIOLOGY 1989; 93:25-39. [PMID: 2472917 DOI: 10.1016/0300-9629(89)90188-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- R J Walker
- Department of Neurophysiology, University of Southampton, UK
| | | |
Collapse
|
29
|
Age-dependence of octopaminergic modulation of flight muscle in the locust. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1989. [DOI: 10.1007/bf00613806] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Commissural ring nerve: A female-specific neurosecretory tract supplied by bifurcating median neurons in the cockroach Periplaneta americana (L.) and the cricket Teleogryllus commodus (Walker). Cell Tissue Res 1988. [DOI: 10.1007/bf00215841] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Malamud JG, Mizisin AP, Josephson RK. The effects of octopamine on contraction kinetics and power output of a locust flight muscle. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1988. [DOI: 10.1007/bf00610971] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Peters BH, Butler SV, Tyrer NM. Morphology, ultrastructure and synapse distribution of putative serotonergic salivary neurons in the locust. Neuroscience 1987; 23:705-19. [PMID: 3437985 DOI: 10.1016/0306-4522(87)90088-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neurons innervating the locust salivary glands have been investigated using the electron microscope. We have examined the projections in the suboesophageal ganglion of two identified salivary neurons by differential double labelling with cobalt ions, followed by silver intensification. Numerous synaptic inputs occur on the arborizations of the salivary neurons, particularly on fine branches and on small spines arising from larger branches. Although a few instances occur of common input to both salivary neurons from a single presynaptic element, many of the appositions between branches seen in the light microscope do not represent functional connections. A few structures resembling presynaptic dense bodies have been observed in salivary neuron profiles, but with few synaptic vesicles. Large dense granules are present in some labelled profiles, but not in the vicinity of synapse-like membrane specializations. We have also examined unidentified neuron profiles within the acini of the salivary glands, which contain large dense granules and small vesicles. There is good evidence that these unidentified terminals correspond to the suboesophageal salivary neurons. The central arborizations of the salivary neurons appear to serve largely as sites of synaptic input, whereas the peripheral terminals are likely sites of transmitter release. The results are considered in the context of the known immunoreactivity of the salivary neurons with antibodies to 5-hydroxytryptamine, and compared with analogous systems in other insect groups.
Collapse
Affiliation(s)
- B H Peters
- Department of Biochemistry and Applied Molecular Biology, University of Manchester Institute of Science and Technology, U.K
| | | | | |
Collapse
|
33
|
Fitch GK, Kammer AE. Effects of octopamine and forskolin on excitatory junction potentials of developing and adult moth muscle. JOURNAL OF NEUROBIOLOGY 1986; 17:303-16. [PMID: 3018149 DOI: 10.1002/neu.480170405] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Intracellular recordings were made from the dorsal longitudinal muscle of Manduca sexta to determine the effects of development and octopamine on the excitatory junction potential (EJP) produced in response to electrical stimulation of the motor nerve. Observations were made on pharate moths during the last 3 days before eclosion and on adults. In saline, the highest values for EJP amplitude and maximum rate of rise and for resting membrane potential are reached on the nineteenth day of the pupal period, the day the animal ecloses; adult values are slightly lower. In animals of all ages tested, DL-octopamine (5 X 10(-6) M) increases EJP amplitude and maximum rate of rise. Increases in amplitude are greater in animals at stage day 17 and 18 than in animals at stage day 19 and adult. Octopamine has no effect on EJP rise time (onset to peak) or recovery time (peak of EJP to 70% recovery). Octopamine causes a hyperpolarization of about 6 mV. The results show that developmental changes in synapse properties are paralleled only in part by changes induced by octopamine. Both development and octopamine increase EJP amplitude and maximum rate of rise, and neither alter rise time. EJP recovery time changes with development but not in response to octopamine. Forskolin (10(-4) M) mimics the effects of octopamine on day 17 animals. EJP amplitude and maximum rate of rise are increased by forskolin, and rise time and recovery time are unaffected. Forskolin, like octopamine, causes a 6 mV hyperpolarization of the muscle fiber. These results suggest that octopaminergic modulation at the Manduca sexta dorsal longitudinal neuromuscular junction may be mediated by changes in intracellular levels of cyclic AMP.
Collapse
|
34
|
Abstract
The rapid development of the study of insect neurobiology, which is currently occurring principally because individual neurons can be re-identified and because their activities can be recorded in situ and related to behavior, is generating a demand for more knowledge concerning insect glial cells and their functional relationships with neurons. This study examines the ultrastructure of glial cells in locust metathoracic ganglia in relation to general locale within the ganglion and also to specific identified neurons and neuron types. Seven major types of glial cell form are recognized, with subdivisions, requiring a new scheme for classification. Glial invaginations into neurons are of four different kinds: regular, chunky, filigree, and ridge (found only at axon hillocks). They also range from only intrusive to fully reciprocal. In addition, some neurons make projections of various lengths into surrounding glia and between neighboring neuron somata, and some glia make long, branched projections into other glial cells. The differences show that insect glial cells develop highly specific functional specializations; they may not be interchangeable. The complexity and intimacy of relationships of glia with neurons suggest that some glial cells may have roles other than that of nursemaids, possibly in modulation of behavior-determining neural activity, and in learning and other adaptive acts.
Collapse
|
35
|
Novak FJ, Pipa RL. Anatomy and fine structure of nerves associated with the corpus allatum and foregut musculature of Periplaneta americana (L.) (Dictyoptera : Blattidae). ACTA ACUST UNITED AC 1986. [DOI: 10.1016/0020-7322(86)90056-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Wasserman AJ. Central and peripheral neurosecretory pathways to an insect flight motor nerve. JOURNAL OF NEUROBIOLOGY 1985; 16:329-46. [PMID: 4031852 DOI: 10.1002/neu.480160407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ultrastructural examination of the IIN1b nerve to the dorsal longitudinal flight muscle of Manduca sexta L. verified the presence of neurosecretory processes. Subspherical and irregular vesicles were found where the nerve enters the muscle, while spherical vesicles were found in the proximal region only. A dorsal unpaired median (DUM) cell, the median nervous system, and two or more peripheral cells are the sources of these neurosecretory inclusions. Light the electron microscopy CoCl2 backfills of the transverse nerve produced intensification of a peripheral neuron (#1) and processes in nerves IIN1a and IIN1b. Similar backfills of nerve IIN1b produced intensification of a DUM cell, a second peripheral neuron (#2), and processes in the transverse nerve and nerve IIN1a. Neuron #1 contained large spherical electron-dense vesicles while neuron #2 contained smaller subspherical vesicles. These cells were situated upon the link and/or transverse nerves. Based on these results, we suspect central and peripheral neurosecretory processes reach nerve IIN1b as follows: the link nerve projects prothoracic median nervous system and neuron #2 processes, nerve IIN1a projects neuron #1 processes, and nerve IIN1 projects mesothoracic DUM cell processes, although this latter pathway was less clear.
Collapse
|
37
|
Klaassen LW, Kammer AE. Octopamine enhances neuromuscular transmission in developing and adult moths, Manduca sexta. JOURNAL OF NEUROBIOLOGY 1985; 16:227-43. [PMID: 2989425 DOI: 10.1002/neu.480160307] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The effect of octopamine on neuromuscular transmission was examined in developing and adult Manduca sexta. Intracellular recordings were made from the dorsal longitudinal muscle (DLM), superfused with solutions containing DL-octopamine or other amines. In untreated adult moths and pharate adults nearly ready to enclose (stage Day 19), stimulation of the motor nerve evokes a large excitatory junction potential (EJP), an active membrane response, and a twitch. In adults and Day 19 animals DL-octopamine (10(-7) to 10(-4)M) has no effect on the amplitude and rise-time of the electrical response in normal saline, but 10(-6) to 10(-4) M DL-octopamine increases the amplitude of the excitatory junction potential recorded in saline containing one-third the normal calcium concentration. Immature (Day 16) muscle, which normally produces only small EJPs following stimulation of its motor nerve, responds to 10(-6) to 10(-4) M DL-octopamine by an increase in the EJP above threshold for an active membrane response and a contraction. When the muscle has developed sufficiently to spike and contract in response to nerve stimulation in the absence of exogenous octopamine (Days 17 and 18), application of DL-octopamine increases the maximum rate at which the muscle contracts in response to each stimulus in a train (designated the maximum following frequency, MFF). The threshold dose for an effect on the MFF of Day 18 immature moths is less than 10(-10) M. At this stage 10(-8) M DL-octopamine increases the MFF four-fold. The effect on the MFF is dose-dependent over the range 10(-10) M to 10(-6) M. The biogenic amines DL-epinephrine, DL-norepinephrine, tyramine, DL-phenylethanolamine, 2-phenylethylamine, and dopamine, applied at concentrations of 10(-8) or 10(-4) M, do not change the MFF. Both DL-synephrine (10(-8) M) and serotonin (10(-7) M) mimic the action of 10(-10) M DL-octopamine on the MFF. The action of DL-octopamine (10(-7) M) is blocked by phentolamine (10(-4)M) but not by propranolol (10(-4)M). The octopamine content of hemolymph was determined with a radioenzymtic assay. The concentration of octopamine in the hemolymph increases 3.6-fold, from 5 X 10(-8) M on Day 18 (duration of adult development is 19 days) to 1.85 X 10(-7) M one day following eclosion.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
38
|
Orchard I, Lange AB. Evidence for octopaminergic modulation of an insect visceral muscle. JOURNAL OF NEUROBIOLOGY 1985; 16:171-81. [PMID: 3925079 DOI: 10.1002/neu.480160303] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Two dorsal unpaired median neurons (DUMOV1 and DUMOV2) lying in the posterior region of the VIIth abdominal ganglion of Locusta migratoria have axons which project to the muscles of the oviducts. This study reports the presence of octopamine within isolated DUMOV cell bodies, as well as in the oviducal nerve and innervated oviducal muscle. Individual cell bodies were pooled and found to contain about 0.34 pmol of octopamine per cell body giving an approximate value of 1.27 mM octopamine. Octopamine is concentrated within the area of oviducal muscle which receives DUMOV axons. Pharmacological studies reveal that the amplitude of neurally-evoked contractions of the oviducal muscle is reduced in a dose-dependent manner by octopamine, with threshold lying between 5 X 10(-10) M and 7 X 10(-9) M. The receptors for this response show a specificity for octopamine and synephrine, with an order of potency being octopamine = synephrine greater than metanephrine greater than tyramine greater than dopamine. The presence of octopamine throughout this neural pathway, coupled with the demonstration of octopaminergic modulation of muscular contraction, supports the hypothesis that octopamine serves a physiological role in this visceral system.
Collapse
|
39
|
|
40
|
|
41
|
Neurotransmission and Neuromodulation of Skeletal Muscles. Pharmacology 1985. [DOI: 10.1016/b978-0-08-030812-8.50008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
42
|
Sombati S, Hoyle G. Central nervous sensitization and dishabituation of reflex action in an insect by the neuromodulator octopamine. JOURNAL OF NEUROBIOLOGY 1984; 15:455-80. [PMID: 6097644 DOI: 10.1002/neu.480150606] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Habituation of excitatory synaptic inputs onto identified motor neurons of the locust metathoracic ganglion, driven electrically and by natural stimuli, was examined using intracellular recording. Rapid progressive reduction in amplitude of EPSPs from a variety of inputs onto fast-type motor neurons occurred. The habituated EPSPs were quickly dishabituated by iontophoretic release of octopamine from a microelectrode into the neuropilar region of presumed synaptic action. The zone within which release was effective for a given neuron was narrowly-defined. With larger amounts of octopamine applied at a sensitive site the EPSP became larger than normal, and in many instances action potentials were initiated by the sensitized response. Very small EPSPs onto a motor neuron, which were associated with proprioceptive feedback, and which were originally too small to be detected above the noise, were potentiated to a level of several mV by the iontophoresed octopamine. A DUM neuron (presumed to be octopaminergic) was found, whose direct stimulation was followed by a strong dishabituating and sensitizing action leading to spikes, of inputs to an identified flexor tibiae motor neuron. The action and its time course were closely similar to those evoked by octopamine iontophoresed into the neuropil in the region of synaptic inputs to the motor neuron. It is concluded that DUM (octopaminergic) neurons exert large potentiating actions on central neuronal excitatory synaptic transmission in locusts.
Collapse
|
43
|
Arikawa K, Washio H, Tanaka Y. Dorsal unpaired median neurons of the cockroach metathoracic ganglion. JOURNAL OF NEUROBIOLOGY 1984; 15:531-6. [PMID: 6520611 DOI: 10.1002/neu.480150610] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
On the dorsal surface in the metathoracic ganglion of the cockroach Periplaneta americana, eight large and a number of small somata described by Crossman et al., (1971) were reexamined. These eight large cells (40-60 micron in diameter) could be divided into three different types by Lucifer yellow or nickel injection, depending on the branching of their axons. No neuron was found which sent axons into either the anterior or posterior connectives. In the mesothoracic ganglion an interganglionic H-shaped DUM neuron was found which had four axons, one into each anterior and posterior connective.
Collapse
|
44
|
Sombati S, Hoyle G. Generation of specific behaviors in a locust by local release into neuropil of the natural neuromodulator octopamine. JOURNAL OF NEUROBIOLOGY 1984; 15:481-506. [PMID: 6097645 DOI: 10.1002/neu.480150607] [Citation(s) in RCA: 175] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The natural insect neuromodulator octopamine (OCT) was released iontophoretically into regions of neuropil in locust metathoracic ganglia. A narrowly-defined site was found on one side of the ganglion at which release caused a prolonged bout of repetitive flex-extend-flex movements of the tibia on the injected side, at a frequency of from 2-3.5 Hz. When a bout had terminated, repetition of the OCT release caused an extremely similar bout to occur, and again with further treatments, indefinitely. OCT iontophoresis at the equivalent site on the contralateral side caused the contralateral flexor to make stepping movements. Two sites were found, in each half of the ganglion, at which similar OCT release evoked a bout of flight motor activity at 10 Hz. The flight bout involved both sides synchronously and nearly equally, except for a slightly greater motor output on the injected side. Evoked bouts lasted from 20 sec to 25 min depending on the preparation and amount of OCT released. At a site in the 6th abdominal ganglion of mature female locusts OCT release suppressed ongoing rhythmic oviposition digging evoked by severing the ventral nerve cord. A number of previously undescribed DUM neurons was encountered and their dendritic patterns, which are distinctive, determined following dye injection. A hypothesis, termed the Orchestration Hypothesis is presented, which considers how modulator neurons such as locust octopaminergic neurons, might be involved in the generation of specific behaviors.
Collapse
|
45
|
Kiss T, Varanka I, Benedeczky I. Neuromuscular transmission in the visceral muscle of locust oviduct. Neuroscience 1984; 12:309-22. [PMID: 6087198 DOI: 10.1016/0306-4522(84)90156-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Innervation of the locust oviduct has been investigated with morphological and electrophysiological methods. Using Co2+ and Ni2+ labelling technique, it was found that G7 N2B1 and B2a nerves innervate the oviduct musculature. Ultrastructurally two different terminals could be distinguished: (a) nerve endings containing mainly clear vesicles forming neuromuscular junctions with the muscle fibers; and (b) nerve terminals containing electron-dense granules which showed only "synaptoid" structures, but failed to form junctions with the muscle cells. The neuromuscular junctions proved to be functioning, since it was possible to record intracellularly miniature excitatory postsynaptic potentials and excitatory postsynaptic potentials from the muscle cells. The distribution of the amplitudes of the miniature excitatory postsynaptic potentials suggests a multiterminal innervation. Following electrical stimulation of N2B nerve, excitatory postsynaptic potentials similar to those appearing spontaneously could be evoked. After repetitive stimulation, facilitation or summation of excitatory postsynaptic potentials was observed. The results obtained show that locust oviduct muscle has a double, motor and modulatory innervation.
Collapse
|
46
|
Watson AH. The dorsal unpaired median neurons of the locust metathoracic ganglion: neuronal structure and diversity, and synapse distribution. JOURNAL OF NEUROCYTOLOGY 1984; 13:303-27. [PMID: 6726291 DOI: 10.1007/bf01148121] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Dorsal unpaired median ( DUM ) neurons are bilaterally symmetrical. A single primary neurite arises from the soma and runs anteriorly through the neuropil before dividing into two lateral neurites which pass to the nerve roots on each side of the ganglion. The primary neurite runs in one of two tracts, one of which lies further from the surface of the ganglion than the other. The primary neurites in the deeper tract belong to DUM1 , DUM5 and DUM3 ,4,5 neurons, and those in the more superficial tract, to DUM3 , DUM3 ,4 and DUM3 ,4,5 neurons. Previous studies have shown that in the developing embryonic nervous system the primary neurites of DUM neurons can also be observed to lie in one of two tracts, but these do not appear to correspond to those seen in the adult. The results described here differ further from those of other investigations of adult and embryonic locusts in that no DUM4 ,5 neurons were seen, but DUM3 ,4 neurons, not found in previous studies, were frequently stained. The secondary neurites of DUM neurons characteristically give rise to fine 0.2-0.5 micron diameter processes which may run for hundreds of microns through the neuropil with very little branching. The problems this may pose for signal transmission along such processes is discussed. Presynaptic processes of several types make inputs on to spines on the lateral neurites of DUM neurons and on to branches from secondary neurites. Output synapses were rarely observed and were found only on lateral neurite spines. It therefore appears unlikely that the DUM neurons examined play a major central role within the metathoracic ganglion. A novel structure, with the appearance of a presynaptic density but which was not associated with synaptic vesicles, was found in certain regions of the neurons.
Collapse
|
47
|
Evans PD. The role of cyclic nucleotides and calcium in the mediation of the modulatory effects of octopamine on locust skeletal muscle. J Physiol 1984; 348:325-40. [PMID: 6201610 PMCID: PMC1199405 DOI: 10.1113/jphysiol.1984.sp015113] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The role of cyclic AMP and calcium in the mediation of the effects of octopamine has been investigated in the extensor tibiae muscle of the hind leg of the locust. Elevation of cyclic AMP levels in the preparation by means of the phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX), by means of the diterpene adenylate cyclase activator, forskolin, and by means of cyclic nucleotide analogues mimics the post-synaptic effects of octopamine application at different frequencies of neuronal stimulation. These conditions also mimic the presynaptic effects of octopamine on spontaneous release of transmitter from the slow motoneurone. The effects of octopamine on the preparation are calcium sensitive, with the maximal sensitivity occurring between 0.5 and 4.0 mM-external calcium. The results are discussed in terms of the role of cyclic AMP and calcium in the mediation of the effects of octopamine.
Collapse
|
48
|
Davenport AP, Evans PD. Stress-induced changes in the octopamine levels of insect haemolymph. ACTA ACUST UNITED AC 1984. [DOI: 10.1016/0020-1790(84)90021-0] [Citation(s) in RCA: 160] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
Abstract
Octopamine, a biogenic amine, is synthesized and stored within centrifugal (efferent) fibers that project from the brain to the lateral and ventral eyes of the horseshoe crab, Limulus polyphemus. The experiments described here show that depolarization of Limulus lateral and ventral eyes, produced by elevating the concentration of extracellular K+, causes the selective release of newly synthesized octopamine from centrifugal fibers in a manner that requires the influx of extracellular Ca2+. Conjugates of octopamine and tyramine that are also stored within centrifugal fibers are not released in response to K+-induced depolarization. These findings add further support to the hypothesis that octopamine is a neurotransmitter synthesized by and released from centrifugal fibers in Limulus eyes. This amine may be responsible for many of the alterations in lateral eye structure and function that are mediated by centrifugal innervation.
Collapse
|
50
|
Hoyle G. Neuromuscular transmission in a primitive insect: modulation by octopamine, and catch-like tension. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. C, COMPARATIVE PHARMACOLOGY AND TOXICOLOGY 1984; 77:219-32. [PMID: 6144420 DOI: 10.1016/0742-8413(84)90005-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The third pair of legs of the primitive New Zealand orthopteran insect, the " weta ", has and innervation and muscle cell distribution exactly similar to that of locusts, but wetas do not jump. Neuromuscular transmission to the slow excitatory axon ( SETi ) is potentiated more than 10-fold by the natural modulator octopamine (OCT). A brief burst of SETi impulses following infusion of as little as 10(-8) M OCT is followed by a very long-lasting plateau of catch-like tension (CT). The plateau is abruptly relaxed by a single inhibitory impulse, or even by a single SETi impulse if this arrives no sooner than about 30 sec following excitation. CT is used by wetas in a defense posture. Locusts and grasshoppers have a different type of modulation by OCT.
Collapse
|