1
|
Colton GF, Cook AP, Nusbaum MP. Different microcircuit responses to comparable input from one versus both copies of an identified projection neuron. J Exp Biol 2020; 223:jeb228114. [PMID: 32820029 PMCID: PMC7648612 DOI: 10.1242/jeb.228114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022]
Abstract
Neuronal inputs to microcircuits are often present as multiple copies of apparently equivalent neurons. Thus far, however, little is known regarding the relative influence on microcircuit output of activating all or only some copies of such an input. We examine this issue in the crab (Cancer borealis) stomatogastric ganglion, where the gastric mill (chewing) microcircuit is activated by modulatory commissural neuron 1 (MCN1), a bilaterally paired modulatory projection neuron. Both MCN1s contain the same co-transmitters, influence the same gastric mill microcircuit neurons, can drive the biphasic gastric mill rhythm, and are co-activated by all identified MCN1-activating pathways. Here, we determine whether the gastric mill microcircuit response is equivalent when stimulating one or both MCN1s under conditions where the pair are matched to collectively fire at the same overall rate and pattern as single MCN1 stimulation. The dual MCN1 stimulations elicited more consistently coordinated rhythms, and these rhythms exhibited longer phases and cycle periods. These different outcomes from single and dual MCN1 stimulation may have resulted from the relatively modest, and equivalent, firing rate of the gastric mill neuron LG (lateral gastric) during each matched set of stimulations. The LG neuron-mediated, ionotropic inhibition of the MCN1 axon terminals is the trigger for the transition from the retraction to protraction phase. This LG neuron influence on MCN1 was more effective during the dual stimulations, where each MCN1 firing rate was half that occurring during the matched single stimulations. Thus, equivalent individual- and co-activation of a class of modulatory projection neurons does not necessarily drive equivalent microcircuit output.
Collapse
Affiliation(s)
- Gabriel F Colton
- Department of Neuroscience, 211 Clinical Research Building, 415 Curie Boulevard, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aaron P Cook
- Department of Neuroscience, 211 Clinical Research Building, 415 Curie Boulevard, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael P Nusbaum
- Department of Neuroscience, 211 Clinical Research Building, 415 Curie Boulevard, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Mantziaris C, Bockemühl T, Büschges A. Central pattern generating networks in insect locomotion. Dev Neurobiol 2020; 80:16-30. [PMID: 32128970 DOI: 10.1002/dneu.22738] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 11/08/2022]
Abstract
Central pattern generators (CPGs) are neural circuits that based on their connectivity can generate rhythmic and patterned output in the absence of rhythmic external inputs. This property makes CPGs crucial elements in the generation of many kinds of rhythmic motor behaviors in insects, such as flying, walking, swimming, or crawling. Arguably representing the most diverse group of animals, insects utilize at least one of these types of locomotion during one stage of their ontogenesis. Insects have been extensively used to study the neural basis of rhythmic motor behaviors, and particularly the structure and operation of CPGs involved in locomotion. Here, we review insect locomotion with regard to flying, walking, and crawling, and we discuss the contribution of central pattern generation to these three forms of locomotion. In each case, we compare and contrast the topology and structure of the CPGs, and we point out how these factors are involved in the generation of the respective motor pattern. We focus on the importance of sensory information for establishing a functional motor output and we indicate behavior-specific adaptations. Furthermore, we report on the mechanisms underlying coordination between different body parts. Last but not least, by reviewing the state-of-the-art knowledge concerning the role of CPGs in insect locomotion, we endeavor to create a common ground, upon which future research in the field of motor control in insects can build.
Collapse
Affiliation(s)
- Charalampos Mantziaris
- Department of Animal Physiology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Till Bockemühl
- Department of Animal Physiology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Ando N, Wang H, Shirai K, Kiguchi K, Kanzaki R. Central projections of the wing afferents in the hawkmoth, Agrius convolvuli. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:1518-1536. [PMID: 21867710 DOI: 10.1016/j.jinsphys.2011.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 07/28/2011] [Accepted: 08/02/2011] [Indexed: 05/31/2023]
Abstract
Flight behaviors in various insect species are closely correlated with their mechanical and neuronal properties. Compared to locusts and flies which have been intensively studied, moths have "intermediate" properties in terms of the neurogenic muscle activations, power generation by indirect muscles, and two-winged-insect-like flapping behavior. Despite these unique characteristics, little is known about the neuronal mechanisms of flight control in moths. We investigated projections of the wing mechanosensory afferents in the central nervous system (CNS) of the hawkmoth, Agrius convolvuli, because the mechanosensory proprioceptive feedback has an essential role for flight control and would be presumably optimized for insect species. We conducted anterograde staining of nine afferent nerves from the fore- and hindwings. All of these afferents projected into the prothoracic, mesothoracic and metathoracic ganglia (TG1, 2 and 3) and had ascending fibers to the head ganglia. Prominent projection areas in the TG1-3 and suboesophageal ganglion (SOG) were common between the forewing, hindwing and contralateral forewing afferents, suggesting that information from different wings are converged at multiple levels presumably for coordinating wing flapping. On the other hand, differences of projections between the fore- and hindwing afferents were observed especially in projection areas of the tegulae in the TG1 and contralateral projections of the anterior forewing nerve in the TGs and SOG, which would reflect functional differences between corresponding mechanoreceptors on each wing. Afferents comprising groups of the campaniform sensilla at the wing bases had prominent ascending pathways to the SOG, resembling the head-neck motor system for gaze control in flies. Double staining of the wing afferents and flight or neck motoneurons also indicated potential connectivity between them. Our results suggest multiple roles of the wing proprioceptive feedback for flight and provide the anatomical basis for further understanding of neuronal mechanisms of the flight system in moths.
Collapse
Affiliation(s)
- Noriyasu Ando
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.
| | | | | | | | | |
Collapse
|
4
|
Ridgel AL, Alexander BE, Ritzmann RE. Descending control of turning behavior in the cockroach, Blaberus discoidalis. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2006; 193:385-402. [PMID: 17123086 DOI: 10.1007/s00359-006-0193-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 10/02/2006] [Accepted: 11/02/2006] [Indexed: 10/23/2022]
Abstract
Legged locomotion has evolved as the most effective form of movement through unpredictable and tortuous environments. Upon encountering an obstacle, an animal must evaluate the object with its sense organs then use the information it acquires to direct appropriate transitional behaviors, such as turning. Previous studies using genetic and surgical lesions implicate the central body complex (CBC) in control of such transitional behaviors of various insects. In this study, lesions of the CBC and surrounding brain regions were used to examine the effects of damage on turning in free-moving and tethered cockroaches. Lesions were performed either as sagittal incisions or by inserting small pieces of foil into regions of the brain. Locomotor behaviors of intact and lesioned animals were compared using high speed video and kinematic analysis. The lesions locations were determined through histological methods. Sagittal lesions to the CBC often result in continuous or incorrect turns. Foil lesions in the CBC also increase the probability that individuals will show turning deficits. The location and degree of the lesion had a strong effect on the animal's ability to turn. These data strongly suggest that the CBC mediates the effects of head sense organs that produce changes in the direction of walking.
Collapse
Affiliation(s)
- Angela L Ridgel
- Department of Biology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-7080, USA
| | | | | |
Collapse
|
5
|
Guan L, Kiemel T, Cohen AH. Impact of movement and movement-related feedback on the lamprey central pattern generator for locomotion. J Exp Biol 2001; 204:2361-70. [PMID: 11507118 DOI: 10.1242/jeb.204.13.2361] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
A semi-reduced, minimally restrained lamprey preparation was used to investigate the impact of movement and movement-related feedback during d-glutamate-induced locomotion. The preparation consisted of the trunk alone with the spinal cord exposed to the bathing solution. Two conditions were compared using electromyography or nerve recording: (i) muscle and spinal cord, (ii) spinal cord alone supported by the notochord. Compared with the isolated spinal cord, movement in the presence of muscle consistently and significantly increased the frequency of the motor output and reduced the phase delay among the segments. In moving preparations, coupling among the segments was reduced by two staggered hemisections to permit the strength and direction of intersegmental coupling to be estimated. The estimates revealed that movement increased the total intersegmental coupling strength and increased the proportion of the coupling that was descending over those of the isolated spinal cord.
The effects on the phase and frequency of bursting can be explained in the light of the excitation evoked by bending that we have reported previously. Thus, we demonstrate that movement and movement-related feedback that arise from spinally induced motor patterns can alter the form of the movement and the functional coupling strength among the segments of the lamprey spinal cord.
Collapse
Affiliation(s)
- L Guan
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
6
|
Abstract
Studies of insect identified neurons over the past 25 years have provided some of the very best data on sensorimotor integration; tracing information flow from sensory to motor networks. General principles have emerged that have increased the sophistication with which we now understand both sensory processing and motor control. Two overarching themes have emerged from studies of identified sensory interneurons. First, within a species, there are profound differences in neuronal organization associated with both the sex and the social experience of the individual. Second, single neurons exhibit some surprisingly rich examples of computational sophistication in terms of (a) temporal dynamics (coding superimposed upon circadian and shorter-term rhythms), and also (b) what Kenneth Roeder called "neural parsimony": that optimal information can be encoded, and complex acts of sensorimotor coordination can be mediated, by small ensembles of cells. Insect motor systems have proven to be relatively complex, and so studies of their organization typically have not yielded completely defined circuits as are known from some other invertebrates. However, several important findings have emerged. Analysis of neuronal oscillators for rhythmic behavior have delineated a profound influence of sensory feedback on interneuronal circuits: they are not only modulated by feedback, but may be substantially reconfigured. Additionally, insect motor circuits provide potent examples of neuronal restructuring during an organism's lifetime, as well as insights on how circuits have been modified across evolutionary time. Several areas where future advances seem likely to occur include: molecular genetic analyses, neuroecological syntheses, and neuroinformatics--the use of digital resources to organize databases with information on identified nerve cells and behavior.
Collapse
Affiliation(s)
- C M Comer
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | | |
Collapse
|
7
|
Abstract
Motor systems can adapt rapidly to changes in external conditions and to switching of internal goals. They can also adapt slowly in response to training, alterations in the mechanics of the system, and any changes in the system resulting from injury. This article reviews the mechanisms underlying short- and long-term adaptation in rhythmic motor systems. The neuronal networks underlying the generation of rhythmic motor patterns (central pattern generators; CPGs) are extremely flexible. Neuromodulators, central commands, and afferent signals all influence the pattern produced by a CPG by altering the cellular and synaptic properties of individual neurons and the coupling between different populations of neurons. This flexibility allows the generation of a variety of motor patterns appropriate for the mechanical requirements of different forms of a behavior. The matching of motor output to mechanical requirements depends on the capacity of pattern-generating networks to adapt to slow changes in body mechanics and persistent errors in performance. Afferent feedback from body and limb proprioceptors likely plays an important role in driving these long-term adaptive processes.
Collapse
Affiliation(s)
- K G Pearson
- Department of Physiology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
8
|
Fischer H, Kutsch W. Timing of elevator muscle activity during climbing in free locust flight. J Exp Biol 1999; 202 Pt 24:3575-86. [PMID: 10574734 DOI: 10.1242/jeb.202.24.3575] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Despite detailed knowledge of the sensory-motor interactions during elevator muscle timing for the generation of a ‘functional’ flight motor pattern in flying locusts, there is little information about how a possible shift in the onset of elevator activity is correlated with changes in flight variables under closed-loop conditions (i.e. during free flight). Free-flight variables were investigated with respect to ascent angle during climbing flight in locusts Schistocerca gregaria. The motor pattern during free flight was examined by telemetric electromyography of particular antagonistic flight muscles in both ipsilateral hemisegments of the pterothorax while flight variables were recorded simultaneously on video. In the majority of the animals tested, the onset of elevator muscle activity within the wingbeat cycle is delayed when animals increase their ascent angle during climbing flight. In accordance with the motor pattern, the downstroke phase and the stroke amplitude of the wings increased with increasing the ascent angle. This suggests that the relative elevator timing during the wingbeat cycle may be related to the generation of the additional aerodynamic lift required for ascending flight and may, therefore, play a role in the regulation of ascent angle during free flight in the locust.
Collapse
Affiliation(s)
- H Fischer
- Zoologisches Institut der Universitat zu Koln, Weyertal 119, Germany and Fakultat fur Biologie, Universitat Konstanz, Germany.
| | | |
Collapse
|
9
|
Fischer H, Ebert E. Tegula function during free locust flight in relation to motor pattern, flight speed and aerodynamic output. J Exp Biol 1999; 202 (Pt 6):711-21. [PMID: 10021324 DOI: 10.1242/jeb.202.6.711] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tegulae are complex proprioceptors at the wing base of locusts. Deafferentation of the tegulae causes a lack of specific phasic information related to the wing downstroke and the timing of the upstroke. Employing telemetry during free flight of the locust Schistocerca gregaria, we investigated the consequences of tegula ablation on free flight parameters including motor patterns (wingbeat frequency and the relationship between the activation of flight muscle antagonists), free flight speed and aerodynamic output. We investigated the role of the tegula pairs of both wings on the motor pattern generated in free-flying locusts. We show that the tegula organs are not essential for generating the motor patterns necessary for free flight. However, they are required for increasing the motor output to give additional effective lifting power during adaptive behaviour. We also investigated long-term changes in the free flight parameters after tegula ablation. The recovery of the adult flight system revealed in the present study suggests that there is adaptation to the loss of proprioceptive information; this argues for a full functional and behavioural recovery of the flight system of the locust under closed-loop conditions.
Collapse
|
10
|
Abstract
Recent experiments have extended our understanding of how sensory information in premotor networks controlling motor output is processed during locomotion, and at what level the efficacy of specific sensory-motor pathways is determined. Phasic presynaptic inhibition of sensory transmission combined with postsynaptic alterations of excitatory and inhibitory synaptic transmission from interneurons of the premotor networks contribute to the modulation of reflex pathways and to the generation of reflex reversal. These mechanisms play an important role in adapting the operation of central networks to external demands and thus help optimize sensory-motor integration.
Collapse
Affiliation(s)
- A Büschges
- Zoologisches Institut, Universität zu Köln, Weyertal 119, 50923 Köln, Germany.
| | | |
Collapse
|
11
|
Wolf H, Büschges A. Plasticity of synaptic connections in sensory-motor pathways of the adult locust flight system. J Neurophysiol 1997; 78:1276-84. [PMID: 9310419 DOI: 10.1152/jn.1997.78.3.1276] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We investigated possible roles of retrograde signals and competitive interactions in the lesion-induced reorganization of synaptic contacts in the locust CNS. Neuronal plasticity is elicited in the adult flight system by removal of afferents from the tegula, a mechanoreceptor organ at the base of the wing. We severed one hindwing organ and studied the resulting rearrangement of synaptic contacts between flight interneurons and afferent neurons from the remaining three tegulae (2 forewing, 1 hindwing). This was done by electric stimulation of afferents and intracellular recording from interneurons (and occasionally motoneurons). Two to three weeks after unilateral tegula lesion, connections between tegula afferents and flight interneurons were altered in the following way. 1) Axons from the forewing tegula on the operated side had established new synaptic contacts with metathoracic elevator interneurons. In addition, the amplitude of compound excitatory postsynaptic potentials elicited by electric stimulation was increased, indicating that a larger number of afferents connected to any given interneuron. 2) On the side contralateral to the lesion, connectivity between axons from the forewing tegula and elevator interneurons was decreased. 3) The efficacy of the (remaining) hindwing afferents appeared to be increased with regard to both synaptic transmission to interneurons and impact on flight motor pattern. 4) Flight motoneurons, which are normally restricted to the ipsilateral hemiganglion, sprouted across the ganglion midline after unilateral tegula removal and apparently established new synaptic contacts with tegula afferents on that side. The changes on the operated side are interpreted as occupation of synaptic space vacated on the interneurons by the severed hindwing afferents. On the contralateral side, the changes in synaptic contact must be elicited by retrograde signals from bilaterally arborizing flight interneurons, because tegula projections remain strictly ipsilateral. The pattern of changes suggests competitive interactions between forewing and hindwing afferents. The present investigation thus presents evidence that the CNS of the mature locust is capable of extensive synaptic rearrangement in response to injury and indicates for the first time the action of retrograde signals from interneurons.
Collapse
Affiliation(s)
- H Wolf
- Fakultät für Biologie, Universität Konstanz, Germany
| | | |
Collapse
|
12
|
Gray JR, Robertson R. Co-ordination of the Flight Motor Pattern with Forewing Stretch Receptor Stimulation in Immature and Mature Adult Locusts. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0300-9629(96)00446-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Abstract
During the first 2 weeks following imaginal ecdysis, the wingbeat frequency of Locusta migratoria doubles, and the activity of the forewing stretch receptor (fSR), in response to wing elevation, increases. We examined the three-dimensional structure of the centrally projecting axon of the fSR during adult maturation to determine if there are changes in the branching geometry. We found that changes occur in the mesothoracic projection (IISR Meso). Here, there was a significant increase in the volume of the projection from 2.3 x 10(4) +/- 0.2 x 10(4) microns 3 in immature locusts to 6.0 x 10(4) +/- 1.2 x 10(4) microns 3 in mature locusts. There were also significant increases in the total length, the number of branch points, the number of axonal swellings, and the diameters of first- and second-order branches of the projection. No significant changes were observed in the prothoracic projection (IISR Pro), and the only significant change observed in IISR Meta was negative allometric growth relative to IISR Meso. These results demonstrate that during adult maturation, growth of the fSR axon is heteromorphic between different ganglionic projections and that there is a potential increase in the connectivity of IISR Meso to other flight neurons in the mesothoracic ganglion. We suggest that this may be a mechanism for maintaining the efficacy of afferent input to flight interneurons that are also growing during maturation.
Collapse
Affiliation(s)
- J R Gray
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
14
|
Willis MA, Butler MA, Tolbert LP. Normal glomerular organization of the antennal lobes is not necessary for odor-modulated flight in female moths. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1995; 176:205-16. [PMID: 7884684 DOI: 10.1007/bf00239923] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A prominent hypothesis for the function of the glomerular structures in the primary olfactory neuropil of many groups of vertebrate and invertebrate animals is that they enable the processing and coding of information about the chemical compounds that compose complex odors. Previous studies have indicated that various degrees of glomerulus formation in the antennal lobes of the brain of the moth Manduca sexta can be effected by reducing the number of olfactory sensory axons that grow from the antenna into the antennal lobe during metamorphosis. To test the hypothesis that the presence of glomerular structure is necessary to process and identify odors, we substantially reduced, by surgery, the number of antennal segments in developing moths and upon metamorphosis we observed and quantified behavioral responses known to be elicited by odors. Intact and lesioned adult female moths were challenged to fly upwind to the source of an attractive host-plant odor in a wind tunnel. Some of the moths that had developed with reduced olfactory input flew upwind to the odor source. The flight behavior of these individuals was similar to the odor-mediated flight typically observed in moths that had developed normally. Histological analysis of the moths' antennal lobes revealed that the lobes of more than half of the respondents that had been lesioned during development lacked normal glomerular organization. The neuropil of these abnormally developed antennal lobes was mostly aglomerular, but with a few isolated, clearly abnormal glomerulus-like structures. This suggests either that even a few abnormal glomeruli are sufficient to mediate this specific behavior or that "canonical" glomerular organization per se is not necessary for this odor-mediated behavior.
Collapse
Affiliation(s)
- M A Willis
- Arizona Research Laboratories, University of Arizona, Tucson 85721
| | | | | |
Collapse
|
15
|
Wolf H. THE LOCUST TEGULA: SIGNIFICANCE FOR FLIGHT RHYTHM GENERATION, WING MOVEMENT CONTROL AND AERODYNAMIC FORCE PRODUCTION. J Exp Biol 1993. [DOI: 10.1242/jeb.182.1.229] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The tegula, a complex sense organ associated with the wing base of the locust, plays an important role in the generation of the flight motor pattern. Here its function in the control of wing movement and aerodynamic force production is described.The vertical component of forewing movement was monitored while recording intracellularly from flight motoneurones during stationary flight. First, in accordance with previous electrophysiological results, stimulation of hindwing tegula afferents was found to reset the wingstroke to the elevation phase in a well-coordinated manner. Second, recordings made before and after removal of fore- and hindwing tegulae were compared. This comparison demonstrated that the delayed onset of elevator motoneurone activity caused by tegula removal is accompanied by a corresponding delay in the upstroke movement of the wings.The consequences of this delayed upstroke for aerodynamic force production were investigated by monitoring wing movements and lift generation simultaneously. A marked decrease in net lift generation was observed following tegula removal. Recordings of wing pronation indicate that this decrease in lift is primarily due to the delayed upstroke movement - that is, to a delay of the wings near the aerodynamically unfavourable downstroke position.It is concluded that the tegula of the locust hindwing signals to the nervous system the impending completion of the wing downstroke and allows initiation of the upstroke movement immediately after the wings have reached the lower reversal point of the wingstroke. The functional significance of tegula feedback and central rhythm generation for locust flight control are discussed.
Collapse
Affiliation(s)
- H Wolf
- Fakultät für Biologie, Universität Konstanz, D-7750 Konstanz, Germany
| |
Collapse
|
16
|
Loeb EP, Giszter SF, Borghesani P, Bizzi E. Effects of dorsal root cut on the forces evoked by spinal microstimulation in the spinalized frog. Somatosens Mot Res 1993; 10:81-95. [PMID: 8484299 DOI: 10.3109/08990229309028826] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Spinalized frogs were microstimulated in the intermediate grey layers of the lumbar spinal cord; the forces evoked in the hindlimb were measured at several limb positions. The data were expressed as force fields. After the collection of many force fields, the dorsal roots were cut with the stimulating electrode in place, and the position-dependent stimulation-evoked forces were again measured repeatedly. We found that the position-dependent pattern of evoked forces--the force fields--did not change after the dorsal roots were cut. In other words, the postcut evoked forces pointed in the same direction as the precut evoked forces. This result was predicted and confirmed by the muscle activations (EMGs): Before and after the dorsal roots were cut, the same muscles were activated in the same proportions. In all limb positions, the rank ordering of the muscle activations remained fixed. The stimulation needed to evoke forces was increased by deafferentation, and there were subtle changes in the force magnitudes that were consistent with a linearization of the muscle stiffness by the afferents. We conclude that the microstimulation activated specific muscle synergies that resulted in limb forces pointing toward a particular posture. The patterns of evoked forces were predominantly attributable to feedforward activation of these muscle synergies.
Collapse
Affiliation(s)
- E P Loeb
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | |
Collapse
|
17
|
Abstract
In addition to describing behavior in terms of neuronal properties and interconnections, some studies are using these well defined neuronal circuits to see how the circuits interact, how they develop, and how they are modified by experience, hormones and neuromodulators. The ready availability of computers and computational techniques has helped in some efforts, as have improvements in physiological and morphological techniques. The major insights, however, still come from experiments that ask clear and direct questions. This review highlights some of the promising approaches and suggests some general features of how neuronal circuits produce behavior.
Collapse
Affiliation(s)
- W B Kristan
- Department of Biology, University of California, San Diego, La Jolla 92093
| |
Collapse
|