1
|
Delgado T, Emerson J, Girardi P, Johnson GV. Pharmacological inhibition of astrocytic transglutaminase 2 facilitates the expression of a neurosupportive astrocyte reactive phenotype in association with increased histone acetylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.06.527263. [PMID: 36798305 PMCID: PMC9934526 DOI: 10.1101/2023.02.06.527263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Astrocytes play critical roles in supporting structural and metabolic homeostasis in the central nervous system (CNS). CNS injury leads to the development of a range of reactive phenotypes in astrocytes whose molecular determinants are poorly understood. Finding ways to modulate astrocytic injury responses and leverage a pro-recovery phenotype holds promise in treating CNS injury. Recently, it has been demonstrated that ablation of astrocytic transglutaminase 2 (TG2) modulates the phenotype of reactive astrocytes in a way that improves neuronal injury outcomes both in vitro and in vivo. In an in vivo mouse model, pharmacological inhibition of TG2 with the irreversible inhibitor VA4 phenocopies the neurosupportive effects of TG2 deletion in astrocytes. In this study, we provide insights into the mechanisms by which TG2 deletion or inhibition result in a more neurosupportive astrocytic phenotype. Using a neuron-astrocyte co-culture model, we show that VA4 treatment improves the ability of astrocytes to support neurite outgrowth on an injury-relevant matrix. To better understand how pharmacologically altering TG2 affects its ability to regulate reactive astrocyte phenotypes, we assessed how VA4 inhibition impacts TG2s interaction with Zbtb7a, a transcription factor we have previously identified as a functionally relevant TG2 nuclear interactor. The results of these studies demonstrate that VA4 significantly decreases the interaction of TG2 and Zbtb7a. TG2s interactions with Zbtb7a, as well as a wide range of other transcription factors and chromatin regulatory proteins, suggest that TG2 may act as an epigenetic regulator to modulate gene expression. To begin to understand if TG2-mediated epigenetic modification may impact astrocytic phenotypes in our models, we interrogated the effect of TG2 deletion and VA4 treatment on histone acetylation and found significantly greater acetylation in both experimental groups. Consistent with these findings, previous RNA-sequencing and our present proteomic analysis also supported a predominant transcriptionally suppressive role of TG2 in astrocytes. Our proteomic data additionally unveiled pronounced changes in lipid and antioxidant metabolism in astrocytes with TG2 deletion or inhibition, which likely contribute to the enhanced neurosupportive function of these astrocytes.
Collapse
|
2
|
Emerson J, Delgado T, Girardi P, Johnson GVW. Deletion of Transglutaminase 2 from Mouse Astrocytes Significantly Improves Their Ability to Promote Neurite Outgrowth on an Inhibitory Matrix. Int J Mol Sci 2023; 24:6058. [PMID: 37047031 PMCID: PMC10094709 DOI: 10.3390/ijms24076058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Astrocytes are the primary support cells of the central nervous system (CNS) that help maintain the energetic requirements and homeostatic environment of neurons. CNS injury causes astrocytes to take on reactive phenotypes with an altered overall function that can range from supportive to harmful for recovering neurons. The characterization of reactive astrocyte populations is a rapidly developing field, and the underlying factors and signaling pathways governing which type of reactive phenotype that astrocytes take on are poorly understood. Our previous studies suggest that transglutaminase 2 (TG2) has an important role in determining the astrocytic response to injury. Selectively deleting TG2 from astrocytes improves functional outcomes after CNS injury and causes widespread changes in gene regulation, which is associated with its nuclear localization. To begin to understand how TG2 impacts astrocytic function, we used a neuron-astrocyte co-culture paradigm to compare the effects of TG2-/- and wild-type (WT) mouse astrocytes on neurite outgrowth and synapse formation. Neurons were grown on a control substrate or an injury-simulating matrix comprised of inhibitory chondroitin sulfate proteoglycans (CSPGs). Compared to WT astrocytes, TG2-/- astrocytes supported neurite outgrowth to a significantly greater extent only on the CSPG matrix, while synapse formation assays showed mixed results depending on the pre- and post-synaptic markers analyzed. We hypothesize that TG2 regulates the supportive functions of astrocytes in injury conditions by modulating gene expression through interactions with transcription factors and transcription complexes. Based on the results of a previous yeast two-hybrid screen for TG2 interactors, we further investigated the interaction of TG2 with Zbtb7a, a ubiquitously expressed transcription factor. Co-immunoprecipitation and colocalization analyses confirmed the interaction of TG2 and Zbtb7a in the nucleus of astrocytes. Overexpression or knockdown of Zbtb7a levels in WT and TG2-/- astrocytes revealed that Zbtb7a robustly influenced astrocytic morphology and the ability of astrocytes to support neuronal outgrowth, which was significantly modulated by the presence of TG2. These findings support our hypothesis that astrocytic TG2 acts as a transcriptional regulator to influence astrocytic function, with greater influence under injury conditions that increase its expression, and Zbtb7a likely contributes to the overall effects observed with astrocytic TG2 deletion.
Collapse
Affiliation(s)
| | | | - Peter Girardi
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave., Box 604, Rochester, NY 14620, USA
| | - Gail V. W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave., Box 604, Rochester, NY 14620, USA
| |
Collapse
|
3
|
Wang W, Mao H, Li S, Zhang L, Yang L, Yin R, Zhao J. Branched Chondroitin Sulfate Oligosaccharides Derived from the Sea Cucumber Acaudina molpadioides Stimulate Neurite Outgrowth. Mar Drugs 2022; 20:md20100653. [PMID: 36286476 PMCID: PMC9605008 DOI: 10.3390/md20100653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Fucosylated chondroitin sulfate (FCS) from the sea cucumber Acaudina molpadioides (FCSAm) is the first one that was reported to be branched by disaccharide GalNAc-(α1,2)-Fuc3S4S (15%) and sulfated Fuc (85%). Here, four size-homogenous fractions, and seven oligosaccharides, were separated from its β-eliminative depolymerized products. Detailed NMR spectroscopic and MS analyses revealed the oligomers as hexa-, hepta-, octa-, and nonasaccharide, which further confirmed the precise structure of native FCSAm: it was composed of the CS-E-like backbone with a full content of sulfation at O-4 and O-6 of GalNAc in the disaccharide repeating unit, and the branches consisting of sulfated fucose (Fuc4S and Fuc2S4S) and heterodisaccharide [GalNAc-(α1,2)-Fuc3S4S]. Pharmacologically, FCSAm and its depolymerized derivatives, including fractions and oligosaccharides, showed potent neurite outgrowth-promoting activity in a chain length-dependent manner. A comparison of analyses among oligosaccharides revealed that the sulfate pattern of the Fuc branches, instead of the heterodisaccharide, could affect the promotion intensity. Fuc2S4S and the saccharide length endowed the neurite outgrowth stimulation activity most.
Collapse
Affiliation(s)
- Weili Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Mao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sujuan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longlong Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Lian Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ronghua Yin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
- Correspondence: (R.Y.); (J.Z.)
| | - Jinhua Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
- Correspondence: (R.Y.); (J.Z.)
| |
Collapse
|
4
|
De Lorenzis E, Natalello G, Simon D, Schett G, D'Agostino MA. Concepts of Entheseal Pain. Arthritis Rheumatol 2022; 75:493-498. [PMID: 35818681 DOI: 10.1002/art.42299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/12/2022] [Accepted: 07/07/2022] [Indexed: 01/17/2023]
Abstract
Pain is the main symptom in entheseal diseases (enthesopathies) despite a paucity of nerve endings in the enthesis itself. Eicosanoids, cytokines, and neuropeptides released during inflammation and repeated nonphysiologic mechanical challenge not only stimulate or sensitize primary afferent neurons present in structures adjacent to the enthesis, but also trigger a "neurovascular invasion" that allows the spreading of nerves and blood vessels into the enthesis. Nociceptive pseudounipolar neurons support this process by releasing neurotransmitters from peripheral endings that induce neovascularization and peripheral pain sensitization. This process may explain the frequently observed dissociation between subjective symptoms such as pain and the structural findings on imaging in entheseal disease.
Collapse
Affiliation(s)
- Enrico De Lorenzis
- Division of Rheumatology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gerlando Natalello
- Division of Rheumatology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - David Simon
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nurnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nurnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Maria Antonietta D'Agostino
- Division of Rheumatology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
5
|
He FL, Qiu S, Zou JL, Gu FB, Yao Z, Tu ZH, Wang YY, Liu XL, Zhou LH, Zhu QT. Covering the proximal nerve stump with chondroitin sulfate proteoglycans prevents traumatic painful neuroma formation by blocking axon regeneration after neurotomy in Sprague Dawley rats. J Neurosurg 2021; 134:1599-1609. [PMID: 32470939 DOI: 10.3171/2020.3.jns193202] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/06/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Neuropathic pain caused by traumatic neuromas is an extremely intractable clinical problem. Disorderly scar tissue accumulation and irregular and immature axon regeneration around the injury site mainly contribute to traumatic painful neuroma formation. Therefore, successfully preventing traumatic painful neuroma formation requires the effective inhibition of irregular axon regeneration and disorderly accumulation of scar tissue. Considering that chondroitin sulfate proteoglycans (CSPGs) can act on the growth cone and effectively inhibit axon regeneration, the authors designed and manufactured a CSPG-gelatin blocker to regulate the CSPGs' spatial distribution artificially and applied it in a rat model after sciatic nerve neurectomy to evaluate its effects in preventing traumatic painful neuroma formation. METHODS Sixty female Sprague Dawley rats were randomly divided into three groups (positive group: no covering; blank group: covering with gelatin blocker; and CSPG group: covering with the CSPG-gelatin blocker). Pain-related factors were evaluated 2 and 8 weeks postoperatively (n = 30). Neuroma growth, autotomy behavior, and histological features of the neuromas were assessed 8 weeks postoperatively (n = 30). RESULTS Eight weeks postoperatively, typical bulb-shaped neuromas did not form in the CSPG group, and autotomy behavior was obviously better in the CSPG group (p < 0.01) than in the other two groups. Also, in the CSPG group the regenerated axons showed a lower density and more regular and improved myelination (p < 0.01). Additionally, the distribution and density of collagenous fibers and the expression of α-smooth muscle actin were significantly lower in the CSPG group than in the positive group (p < 0.01). Regarding pain-related factors, c-fos, substance P, interleukin (IL)-17, and IL-1β levels were significantly lower in the CSPG group than those in the positive and blank groups 2 weeks postoperatively (p < 0.05), while substance P and IL-17 remained lower in the CSPG group 8 weeks postoperatively (p < 0.05). CONCLUSIONS The authors found that CSPGs loaded in a gelatin blocker can prevent traumatic neuroma formation and effectively relieve pain symptoms after sciatic nerve neurotomy by blocking irregular axon regeneration and disorderly collagenous fiber accumulation in the proximal nerve stump. These results indicate that covering the proximal nerve stump with CSPGs may be a new and promising strategy to prevent traumatic painful neuroma formation in the clinical setting.
Collapse
Affiliation(s)
- Fu-Lin He
- 1Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University, Guangzhou
- 2Center for Peripheral Nerve Tissue Engineering and Technology Research
| | - Shuai Qiu
- 1Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University, Guangzhou
- 2Center for Peripheral Nerve Tissue Engineering and Technology Research
| | - Jian-Long Zou
- 3School of Basic Medical Sciences, Guangzhou Medical University
| | - Fan-Bin Gu
- 1Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University, Guangzhou
- 2Center for Peripheral Nerve Tissue Engineering and Technology Research
| | - Zhi Yao
- 1Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University, Guangzhou
- 2Center for Peripheral Nerve Tissue Engineering and Technology Research
| | - Zhe-Hui Tu
- 1Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University, Guangzhou
| | - Yuan-Yuan Wang
- 1Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University, Guangzhou
| | - Xiao-Lin Liu
- 1Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University, Guangzhou
- 2Center for Peripheral Nerve Tissue Engineering and Technology Research
- 4Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication; and
| | - Li-Hua Zhou
- 5Department of Anatomy, School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Qing-Tang Zhu
- 1Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University, Guangzhou
- 2Center for Peripheral Nerve Tissue Engineering and Technology Research
- 4Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication; and
| |
Collapse
|
6
|
Mak HK, Yung JSY, Weinreb RN, Ng SH, Cao X, Ho TYC, Ng TK, Chu WK, Yung WH, Choy KW, Wang CC, Lee TL, Leung CKS. MicroRNA-19a-PTEN Axis Is Involved in the Developmental Decline of Axon Regenerative Capacity in Retinal Ganglion Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:251-263. [PMID: 32599451 PMCID: PMC7327411 DOI: 10.1016/j.omtn.2020.05.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/15/2020] [Accepted: 05/28/2020] [Indexed: 11/23/2022]
Abstract
Irreversible blindness from glaucoma and optic neuropathies is attributed to retinal ganglion cells (RGCs) losing the ability to regenerate axons. While several transcription factors and proteins have demonstrated enhancement of axon regeneration after optic nerve injury, mechanisms contributing to the age-related decline in axon regenerative capacity remain elusive. In this study, we show that microRNAs are differentially expressed during RGC development and identify microRNA-19a (miR-19a) as a heterochronic marker; developmental decline of miR-19a relieves suppression of phosphatase and tensin homolog (PTEN), a key regulator of axon regeneration, and serves as a temporal indicator of decreasing axon regenerative capacity. Intravitreal injection of miR-19a promotes axon regeneration after optic nerve crush in adult mice, and it increases axon extension in RGCs isolated from aged human donors. This study uncovers a previously unrecognized involvement of the miR-19a-PTEN axis in RGC axon regeneration, and it demonstrates therapeutic potential of microRNA-mediated restoration of axon regenerative capacity in optic neuropathies.
Collapse
Affiliation(s)
- Heather K Mak
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Jasmine S Y Yung
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Robert N Weinreb
- Hamilton Glaucoma Center, Shiley Eye Institute, University of California, San Diego, La Jolla, CA, USA; Department of Ophthalmology, University of California, San Diego, La Jolla, CA, USA
| | - Shuk Han Ng
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Xu Cao
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Tracy Y C Ho
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Tsz Kin Ng
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Wai Kit Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Wing Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PRC; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Kwong Wai Choy
- Department of Obstetrics and Gynecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Chi Chiu Wang
- Department of Obstetrics and Gynecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Tin Lap Lee
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PRC
| | | |
Collapse
|
7
|
Hering TM, Beller JA, Calulot CM, Snow DM. Contributions of Chondroitin Sulfate, Keratan Sulfate and N-linked Oligosaccharides to Inhibition of Neurite Outgrowth by Aggrecan. BIOLOGY 2020; 9:biology9020029. [PMID: 32059349 PMCID: PMC7168311 DOI: 10.3390/biology9020029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/04/2020] [Accepted: 02/08/2020] [Indexed: 01/24/2023]
Abstract
The role of proteoglycans in the central nervous system (CNS) is a rapidly evolving field and has major implications in the field of CNS injury. Chondroitin sulfate proteoglycans (CSPGs) increase in abundance following damage to the spinal cord and inhibit neurite outgrowth. Major advances in understanding the interaction between outgrowing neurites and CSPGs has created a need for more robust and quantitative analyses to further our understanding of this interaction. We report the use of a high-throughput assay to determine the effect of various post-translational modifications of aggrecan upon neurite outgrowth from NS-1 cells (a PC12 cell line derivative). Aggrecan contains chondroitin sulfate, keratan sulfate, and N-linked oligosaccharides (N-glycans), each susceptible to removal through different enzymatic digestions. Using a sequential digestion approach, we found that chondroitin sulfate and N-glycans, but not keratan sulfate, contribute to inhibition of neurite outgrowth by substrate-bound aggrecan. For the first time, we have shown that N-linked oligosaccharides on aggrecan contribute to its inhibition of neuritogenesis.
Collapse
Affiliation(s)
- Thomas M. Hering
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA; (J.A.B.); (C.M.C.); (D.M.S.)
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence: ; Tel.: +1-216-288-1393
| | - Justin A. Beller
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA; (J.A.B.); (C.M.C.); (D.M.S.)
| | - Christopher M. Calulot
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA; (J.A.B.); (C.M.C.); (D.M.S.)
| | - Diane M. Snow
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA; (J.A.B.); (C.M.C.); (D.M.S.)
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, USA
- Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
8
|
Griffin JM, Fackelmeier B, Clemett CA, Fong DM, Mouravlev A, Young D, O'Carroll SJ. Astrocyte-selective AAV-ADAMTS4 gene therapy combined with hindlimb rehabilitation promotes functional recovery after spinal cord injury. Exp Neurol 2020; 327:113232. [PMID: 32044329 DOI: 10.1016/j.expneurol.2020.113232] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 01/06/2023]
Abstract
Chondroitin sulphate proteoglycans (CSPGs) are inhibitors to axon regeneration and plasticity. A disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS4) is a human enzyme that catalyses the proteolysis of CSPG protein cores. Infusion of ADAMTS4 into the damaged spinal cord was previously shown to improve functional recovery SCI, however, this therapy is limited in its enzyme form. Adeno-associated viral (AAV) vector gene therapy has emerged as the vector of choice for safe, robust and long-term transgene expression in the central nervous system. Here, an AAV expression cassette containing ADAMTS4 under the control of the astrocytic GfaABC1D promoter was packaged into an AAV5 vector. Sustained expression of ADAMTS4 was achieved in vitro and in vivo leading to degradation of CSPGs. Compared to a contusion only group, AAV-ADAMTS4 resulted in significantly decreased lesion size, increased sprouting of hindlimb corticospinal tract axons, increased serotonergic fiber density caudal to a contusive spinal cord injury. Hindlimb-specific exercise rehabilitation was used to drive neuroplasticity towards improving functional connections. The combination of hindlimb rehabilitation with AAV-ADAMTS4 led to functional recovery after SCI compared to a contusion only group. Thus, long-term degradation of CSPGs through AAV-ADAMTS4 gene therapy in a combinational approach with rehabilitation represents a candidate for further preclinical development.
Collapse
Affiliation(s)
- Jarred M Griffin
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 85 Park Road, Grafton, New Zealand; Centre for Brain Research, University of Auckland, Auckland, 85 Park Road, Grafton, New Zealand.
| | - Barbara Fackelmeier
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 85 Park Road, Grafton, New Zealand; Centre for Brain Research, University of Auckland, Auckland, 85 Park Road, Grafton, New Zealand.
| | - Connor A Clemett
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 85 Park Road, Grafton, New Zealand; Centre for Brain Research, University of Auckland, Auckland, 85 Park Road, Grafton, New Zealand.
| | - Dahna M Fong
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 85 Park Road, Grafton, New Zealand; Centre for Brain Research, University of Auckland, Auckland, 85 Park Road, Grafton, New Zealand.
| | - Alexandre Mouravlev
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 85 Park Road, Grafton, New Zealand; Centre for Brain Research, University of Auckland, Auckland, 85 Park Road, Grafton, New Zealand.
| | - Deborah Young
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 85 Park Road, Grafton, New Zealand; Centre for Brain Research, University of Auckland, Auckland, 85 Park Road, Grafton, New Zealand.
| | - Simon J O'Carroll
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 85 Park Road, Grafton, New Zealand; Centre for Brain Research, University of Auckland, Auckland, 85 Park Road, Grafton, New Zealand.
| |
Collapse
|
9
|
Hong YJ, Do JT. Neural Lineage Differentiation From Pluripotent Stem Cells to Mimic Human Brain Tissues. Front Bioeng Biotechnol 2019; 7:400. [PMID: 31867324 PMCID: PMC6908493 DOI: 10.3389/fbioe.2019.00400] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/22/2019] [Indexed: 01/22/2023] Open
Abstract
Recent advances in induced pluripotent stem cell (iPSC) research have turned limitations of prior and current research into possibilities. iPSCs can differentiate into the desired cell types, are easier to obtain than embryonic stem cells (ESCs), and more importantly, in case they are to be used in research on diseases, they can be obtained directly from the patient. With these advantages, differentiation of iPSCs into various cell types has been conducted in the fields of basic development, cell physiology, and cell therapy research. Differentiation of stem cells into nervous cells has been prevalent among all cell types studied. Starting with the monolayer 2D differentiation method where cells were attached to a dish, substantial efforts have been made to better mimic the in vivo environment and produce cells grown in vitro that closely resemble in vivo state cells. Having surpassed the stage of 3D differentiation, we have now reached the stage of creating tissues called organoids that resemble organs, rather than growing simple cells. In this review, we focus on the central nervous system (CNS) and describe the challenges faced in 2D and 3D differentiation research studies and the processes of overcoming them. We also discuss current studies and future perspectives on brain organoid researches.
Collapse
Affiliation(s)
- Yean Ju Hong
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Science and Technology, Konkuk University, Seoul, South Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Science and Technology, Konkuk University, Seoul, South Korea
| |
Collapse
|
10
|
Ohtake Y, Saito A, Li S. Diverse functions of protein tyrosine phosphatase σ in the nervous and immune systems. Exp Neurol 2018; 302:196-204. [PMID: 29374568 PMCID: PMC6275553 DOI: 10.1016/j.expneurol.2018.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 02/07/2023]
Abstract
Tyrosine phosphorylation is a common means of regulating protein functions and signal transduction in multiple cells. Protein tyrosine phosphatases (PTPs) are a large family of signaling enzymes that remove phosphate groups from tyrosine residues of target proteins and change their functions. Among them, receptor-type PTPs (RPTPs) exhibit a distinct spatial pattern of expression and play essential roles in regulating neurite outgrowth, axon guidance, and synaptic organization in developmental nervous system. Some RPTPs function as essential receptors for chondroitin sulfate proteoglycans that inhibit axon regeneration following CNS injury. Interestingly, certain RPTPs are also important to regulate functions of immune cells and development of autoimmune diseases. PTPσ, a RPTP in the LAR subfamily, is expressed in various immune cells and regulates their differentiation, production of various cytokines and immune responses. In this review, we highlight the physiological and pathological significance of PTPσ and related molecules in both nervous and immune systems.
Collapse
Affiliation(s)
- Yosuke Ohtake
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Atsushi Saito
- Department of Stress Protein Processing, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
11
|
Foscarin S, Raha-Chowdhury R, Fawcett JW, Kwok JCF. Brain ageing changes proteoglycan sulfation, rendering perineuronal nets more inhibitory. Aging (Albany NY) 2018; 9:1607-1622. [PMID: 28657900 PMCID: PMC5509459 DOI: 10.18632/aging.101256] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 06/20/2017] [Indexed: 12/15/2022]
Abstract
Chondroitin sulfate (CS) proteoglycans in perineuronal nets (PNNs) from the central nervous system (CNS) are involved in the control of plasticity and memory. Removing PNNs reactivates plasticity and restores memory in models of Alzheimer’s disease and ageing. Their actions depend on the glycosaminoglycan (GAG) chains of CS proteoglycans, which are mainly sulfated in the 4 (C4S) or 6 (C6S) positions. While C4S is inhibitory, C6S is more permissive to axon growth, regeneration and plasticity. C6S decreases during critical period closure. We asked whether there is a late change in CS-GAG sulfation associated with memory loss in aged rats. Immunohistochemistry revealed a progressive increase in C4S and decrease in C6S from 3 to 18 months. GAGs extracted from brain PNNs showed a large reduction in C6S at 12 and 18 months, increasing the C4S/C6S ratio. There was no significant change in mRNA levels of the chondroitin sulfotransferases. PNN GAGs were more inhibitory to axon growth than those from the diffuse extracellular matrix. The 18-month PNN GAGs were more inhibitory than 3-month PNN GAGs. We suggest that the change in PNN GAG sulfation in aged brains renders the PNNs more inhibitory, which lead to a decrease in plasticity and adversely affect memory.
Collapse
Affiliation(s)
- Simona Foscarin
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, United Kingdom
| | - Ruma Raha-Chowdhury
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, United Kingdom
| | - James W Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, United Kingdom.,The Prague Centre of Reconstructive Neuroscience, Institute of Experimental Medicine AS CR, 14220 Prague 4, Czech Republic
| | - Jessica C F Kwok
- The Prague Centre of Reconstructive Neuroscience, Institute of Experimental Medicine AS CR, 14220 Prague 4, Czech Republic.,School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
12
|
|
13
|
Sugawara T, Himes B, Kowada M, Murray M, Tessler A, Battisti WP. Putative Inhibitory Extracellular Matrix Molecules Do Not Prevent Dorsal Root Regeneration into Fetal Spinal Cord Transplants. Neurorehabil Neural Repair 2016. [DOI: 10.1177/154596839901300206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We examined the distribution of several extracellular matrix molecules (ECM) and their relationship to regenerating axons in embryonic day 14 spinal cord transplants 1 to 12 weeks after transplantation into adult rats. We used immunocytochemical tech niques to label chondroitin sulfate proteoglycans (CSPGs) and tenascin-C in adjacent sections. Synthesis of these molecules by astrocytes is thought to be one mechanism by which astrocytes inhibit regeneration in the central nervous system (CNS); glial fibrillary acidic protein antibody was used to label astrocytes and examine their rela tionship to both the ECM molecules and regenerating calcitonin gene-related pep tide (CORP)-contammg dorsal roots. We also compared the expression and distribu tion of these five markers in transplants with normal spinal cord development.
Collapse
|
14
|
Al-Ali H, Beckerman SR, Bixby JL, Lemmon VP. In vitro models of axon regeneration. Exp Neurol 2016; 287:423-434. [PMID: 26826447 DOI: 10.1016/j.expneurol.2016.01.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/20/2016] [Accepted: 01/25/2016] [Indexed: 12/31/2022]
Abstract
A variety of in vitro models have been developed to understand the mechanisms underlying the regenerative failure of central nervous system (CNS) axons, and to guide pre-clinical development of regeneration-promoting therapeutics. These range from single-cell based assays that typically focus on molecular mechanisms to organotypic assays that aim to recapitulate in vivo behavior. By utilizing a combination of models, researchers can balance the speed, convenience, and mechanistic resolution of simpler models with the biological relevance of more complex models. This review will discuss a number of models that have been used to build our understanding of the molecular mechanisms of CNS axon regeneration.
Collapse
Affiliation(s)
- Hassan Al-Ali
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Samuel R Beckerman
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - John L Bixby
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Center for Computational Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Vance P Lemmon
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Center for Computational Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
15
|
Hara S, Kaneyama T, Inamata Y, Onodera R, Shirasaki R. Interstitial branch formation within the red nucleus by deep cerebellar nuclei-derived commissural axons during target recognition. J Comp Neurol 2015; 524:999-1014. [DOI: 10.1002/cne.23888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/29/2015] [Accepted: 08/21/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Satoshi Hara
- Cellular and Molecular Neurobiology Laboratory, Graduate School of Frontier Biosciences; Osaka University; Suita Osaka 565-0871 Japan
| | - Takeshi Kaneyama
- Cellular and Molecular Neurobiology Laboratory, Graduate School of Frontier Biosciences; Osaka University; Suita Osaka 565-0871 Japan
| | - Yasuyuki Inamata
- Cellular and Molecular Neurobiology Laboratory, Graduate School of Frontier Biosciences; Osaka University; Suita Osaka 565-0871 Japan
| | - Ryota Onodera
- Cellular and Molecular Neurobiology Laboratory, Graduate School of Frontier Biosciences; Osaka University; Suita Osaka 565-0871 Japan
| | - Ryuichi Shirasaki
- Cellular and Molecular Neurobiology Laboratory, Graduate School of Frontier Biosciences; Osaka University; Suita Osaka 565-0871 Japan
| |
Collapse
|
16
|
Miller GM, Hsieh-Wilson LC. Sugar-dependent modulation of neuronal development, regeneration, and plasticity by chondroitin sulfate proteoglycans. Exp Neurol 2015; 274:115-25. [PMID: 26315937 DOI: 10.1016/j.expneurol.2015.08.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 08/14/2015] [Accepted: 08/19/2015] [Indexed: 01/08/2023]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) play important roles in the developing and mature nervous system, where they guide axons, maintain stable connections, restrict synaptic plasticity, and prevent axon regeneration following CNS injury. The chondroitin sulfate glycosaminoglycan (CS GAG) chains that decorate CSPGs are essential for their functions. Through these sugar chains, CSPGs are able to bind and regulate the activity of a diverse range of proteins. CSPGs have been found both to promote and inhibit neuronal growth. They can promote neurite outgrowth by binding to various growth factors such as midkine (MK), pleiotrophin (PTN), brain-derived neurotrophic factor (BDNF) and other neurotrophin family members. CSPGs can also inhibit neuronal growth and limit plasticity by interacting with transmembrane receptors such as protein tyrosine phosphatase σ (PTPσ), leukocyte common antigen-related (LAR) receptor protein tyrosine phosphatase, and the Nogo receptors 1 and 3 (NgR1 and NgR3). These CS-protein interactions depend on specific sulfation patterns within the CS GAG chains, and accordingly, particular CS sulfation motifs are upregulated during development, in the mature nervous system, and in response to CNS injury. Thus, spatiotemporal regulation of CS GAG biosynthesis may provide an important mechanism to control the functions of CSPGs and to modulate intracellular signaling pathways. Here, we will discuss these sulfation-dependent processes and highlight how the CS sugars on CSPGs contribute to neuronal growth, axon guidance, and plasticity in the nervous system.
Collapse
Affiliation(s)
- Gregory M Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA
| | - Linda C Hsieh-Wilson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA.
| |
Collapse
|
17
|
Kim H, W Caspar T, Shah SB, Hsieh AH. Effects of proinflammatory cytokines on axonal outgrowth from adult rat lumbar dorsal root ganglia using a novel three-dimensional culture system. Spine J 2015; 15:1823-31. [PMID: 25797812 DOI: 10.1016/j.spinee.2015.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/11/2015] [Accepted: 03/16/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Degeneration of the intervertebral disc is often associated with low back pain and increased infiltration of nerve fibers originating from dorsal root ganglia (DRG). The degenerated disc is also characterized by the presence of proinflammatory cytokines, which may influence axonal outgrowth. Toward an improved understanding of the growth of DRG neurons into compliant extracellular matrices, we developed a novel experimental system to measure axonal outgrowth of adult rat lumbar DRG neurons within three-dimensional (3D) collagen hydrogels and used this system to examine the effects of interleukin 1β (IL-1β) and tumor necrosis factor (TNF)-α treatment. PURPOSE The aim was to investigate the effects of proinflammatory cytokines on 3D neuronal growth into collagen matrices. STUDY DESIGN This was an in vitro study of neurite outgrowth from adult rat lumbar DRG into collagen gels in response to IL-1β and TNF-α. METHODS Lumbar DRG were obtained from adult Sprague Dawley rats, bisected to expose cell bodies and placed onto collagen gel constructs prepared in 24-well Transwell inserts. Dorsal root ganglia were then treated with nerve growth factor (NGF)-free Neurobasal media (negative control) or NGF-supplemented media containing 0, 1, and 10 ng/mL of IL-1β and TNF-α. After 7 days, collagen gel-DRG constructs were immunostained for phosphorylated neurofilament, an axonal marker. Simple Neurite Tracer (Fiji/ImageJ) was used to quantify 3D axonal outgrowth from confocal image stacks. Data were analyzed using one-way analysis of variance, with Tukey HSD post hoc correction at a level of p<.05. RESULTS Immunostaining showed robust axonal outgrowth into collagen gels from all NGF-treated DRG. The negative control demonstrated very few and short neurites. Tumor necrosis factor-α (1 and 10 ng/mL) significantly inhibited axonal outgrowth compared with NGF-only media (p<.026 and p<.02, respectively). After IL-1β treatment, average axon length was 10% lower at 1 ng/mL and 7.5% higher at 10 ng/mL, but these differences were not statistically significant. Among cytokine treatments, however, average axon length in the IL-1β (10 ng/mL) group was significantly higher than that in the other groups (p<.05). CONCLUSIONS A novel 3D collagen gel culture system was used to investigate factors modulating neuronal ingrowth. Our results showed that NGF was necessary to promote neurite growth into collagen gels. In the presence of proinflammatory cytokines, high concentrations of IL-1β induced significantly higher axonal outgrowth than TNF-α and low levels of IL-1β.
Collapse
Affiliation(s)
- Hyunchul Kim
- Fischell Department of Bioengineering, University of Maryland, College Park, Jeong H. Kim Engineering Building, College Park, MD 20742, USA
| | - Tyler W Caspar
- Fischell Department of Bioengineering, University of Maryland, College Park, Jeong H. Kim Engineering Building, College Park, MD 20742, USA
| | - Sameer B Shah
- Department of Orthopaedic Surgery, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Adam H Hsieh
- Fischell Department of Bioengineering, University of Maryland, College Park, Jeong H. Kim Engineering Building, College Park, MD 20742, USA; Department of Orthopaedics, University of Maryland, Baltimore, 22 S. Greene Street, Baltimore, MD 21201, USA.
| |
Collapse
|
18
|
Powell S, Vinod A, Lemons ML. Isolation and culture of dissociated sensory neurons from chick embryos. J Vis Exp 2014:51991. [PMID: 25286047 DOI: 10.3791/51991] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neurons are multifaceted cells that carry information essential for a variety of functions including sensation, motor movement, learning, and memory. Studying neurons in vivo can be challenging due to their complexity, their varied and dynamic environments, and technical limitations. For these reasons, studying neurons in vitro can prove beneficial to unravel the complex mysteries of neurons. The well-defined nature of cell culture models provides detailed control over environmental conditions and variables. Here we describe how to isolate, dissociate, and culture primary neurons from chick embryos. This technique is rapid, inexpensive, and generates robustly growing sensory neurons. The procedure consistently produces cultures that are highly enriched for neurons and has very few non-neuronal cells (less than 5%). Primary neurons do not adhere well to untreated glass or tissue culture plastic, therefore detailed procedures to create two distinct, well-defined laminin-containing substrata for neuronal plating are described. Cultured neurons are highly amenable to multiple cellular and molecular techniques, including co-immunoprecipitation, live cell imagining, RNAi, and immunocytochemistry. Procedures for double immunocytochemistry on these cultured neurons have been optimized and described here.
Collapse
Affiliation(s)
- Sarah Powell
- Department of Natural Sciences, Assumption College
| | - Amrit Vinod
- Department of Natural Sciences, Assumption College
| | | |
Collapse
|
19
|
Abstract
Proteoglycans in the central nervous system play integral roles as "traffic signals" for the direction of neurite outgrowth. This attribute of proteoglycans is a major factor in regeneration of the injured central nervous system. In this review, the structures of proteoglycans and the evidence suggesting their involvement in the response following spinal cord injury are presented. The review further describes the methods routinely used to determine the effect proteoglycans have on neurite outgrowth. The effects of proteoglycans on neurite outgrowth are not completely understood as there is disagreement on what component of the molecule is interacting with growing neurites and this ambiguity is chronicled in an historical context. Finally, the most recent findings suggesting possible receptors, interactions, and sulfation patterns that may be important in eliciting the effect of proteoglycans on neurite outgrowth are discussed. A greater understanding of the proteoglycan-neurite interaction is necessary for successfully promoting regeneration in the injured central nervous system.
Collapse
Affiliation(s)
- Justin A Beller
- Spinal Cord and Brain Injury Research Center, The University of Kentucky, Lexington, KY, USA
| | - Diane M Snow
- Spinal Cord and Brain Injury Research Center, The University of Kentucky, Lexington, KY, USA
| |
Collapse
|
20
|
Redirection of Neurite Outgrowth by Coupling Chondroitin Sulfate Proteoglycans to Polymer Membranes. Ann Biomed Eng 2014; 42:1271-81. [DOI: 10.1007/s10439-014-0991-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 02/19/2014] [Indexed: 12/14/2022]
|
21
|
Abstract
Glycans participate in many key cellular processes during development and in physiology and disease. In this review, the functional role of various glycans in the regeneration of neurons and body parts in adult metazoans is discussed. Understanding glycosylation may facilitate research in the field of stem cell biology and regenerative medicine.
Collapse
Affiliation(s)
- Ponnusamy Babu
- Glycomics and Glycoproteomics,
Centre for Cellular and Molecular Platforms, NCBS-TIFR, GKVK Post, Bangalore 560065, India
| |
Collapse
|
22
|
Warren PM, Alilain WJ. The challenges of respiratory motor system recovery following cervical spinal cord injury. PROGRESS IN BRAIN RESEARCH 2014; 212:173-220. [DOI: 10.1016/b978-0-444-63488-7.00010-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
23
|
Li X, Monckton EA, Godbout R. Ectopic expression of transcription factor AP-2δ in developing retina: effect on PSA-NCAM and axon routing. J Neurochem 2013; 129:72-84. [PMID: 24188130 DOI: 10.1111/jnc.12521] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 10/17/2013] [Accepted: 10/29/2013] [Indexed: 01/08/2023]
Abstract
Retinal ganglion cells transmit the visual signal from the retina to the brain. We have previously shown that the activator protein 2 (AP-2)δ (TFAP2D) transcription factor is expressed in one third of ganglion cells in developing retina suggesting a specialized role for these AP-2δ-expressing cells. Here, we address the role of AP-2δ in retina by in ovo electroporation of RCAS/AP-2δ retroviral constructs into the eyes of chick embryos at day 2 of gestation. Ectopic expression of AP-2δ does not affect lineage differentiation in the developing retina. However, immunostaining of retinal tissue with markers associated with axonal growth such as growth-associated protein 43 and polysialic acid-neural cell adhesion molecule (PSA-NCAM) demonstrates axonal misrouting and abnormal axonal bundling. Treatment of AP-2δ-misexpressing retinal cell cultures with endoneuraminidase, an enzyme that removes PSA from NCAM, decreases AP-2δ-induced axonal bundling. Our data suggest a role for AP-2δ in polysialylation of NCAM, with ectopic expression of AP-2δ resulting in premature bundling of emerging axons and misrouting of axons. We propose that expression of AP-2δ in a subset of ganglion cells contributes to the fine-tuning of axonal growth in the developing retina.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
24
|
Brooks JM, Su J, Levy C, Wang JS, Seabrook TA, Guido W, Fox MA. A molecular mechanism regulating the timing of corticogeniculate innervation. Cell Rep 2013; 5:573-81. [PMID: 24183669 DOI: 10.1016/j.celrep.2013.09.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/29/2013] [Accepted: 09/25/2013] [Indexed: 10/26/2022] Open
Abstract
Neural circuit formation demands precise timing of innervation by different classes of axons. However, the mechanisms underlying such activity remain largely unknown. In the dorsal lateral geniculate nucleus (dLGN), axons from the retina and visual cortex innervate thalamic relay neurons in a highly coordinated manner, with those from the cortex arriving well after those from retina. The differential timing of retino- and corticogeniculate innervation is not a coincidence but is orchestrated by retinal inputs. Here, we identified a chondroitin sulfate proteoglycan (CSPG) that regulates the timing of corticogeniculate innervation. Aggrecan, a repulsive CSPG, is enriched in neonatal dLGN and inhibits cortical axons from prematurely entering the dLGN. Postnatal loss of aggrecan from dLGN coincides with upregulation of aggrecanase expression in the dLGN and corticogeniculate innervation and, it is important to note, is regulated by retinal inputs. Taken together, these studies reveal a molecular mechanism through which one class of axons coordinates the temporal targeting of another class of axons.
Collapse
Affiliation(s)
- Justin M Brooks
- Virginia Tech Carilion Research Institute, Roanoke, VA 24016, USA; Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Axonal regeneration after spinal cord injury in zebrafish and mammals: differences, similarities, translation. Neurosci Bull 2013; 29:402-10. [PMID: 23893428 DOI: 10.1007/s12264-013-1361-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/09/2013] [Indexed: 10/26/2022] Open
Abstract
Spinal cord injury (SCI) in mammals results in functional deficits that are mostly permanent due in part to the inability of severed axons to regenerate. Several types of growth-inhibitory molecules expressed at the injury site contribute to this regeneration failure. The responses of axons to these inhibitors vary greatly within and between organisms, reflecting axons' characteristic intrinsic propensity for regeneration. In the zebrafish (Danio rerio) many but not all axons exhibit successful regeneration after SCI. This review presents and compares the intrinsic and extrinsic determinants of axonal regeneration in the injured spinal cord in mammals and zebrafish. A better understanding of the molecules and molecular pathways underlying the remarkable individualism among neurons in mature zebrafish may support the development of therapies for SCI and their translation to the clinic.
Collapse
|
26
|
Toy D, Namgung U. Role of glial cells in axonal regeneration. Exp Neurobiol 2013; 22:68-76. [PMID: 23833555 PMCID: PMC3699676 DOI: 10.5607/en.2013.22.2.68] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/03/2013] [Accepted: 05/03/2013] [Indexed: 01/06/2023] Open
Abstract
Axonal regeneration is critical for functional recovery following neural injury. In addition to intrinsic differences between regenerative responses of axons in peripheral versus central nervous systems, environmental factors such as glial cells and related molecules in the extracellular matrix (ECM) play an important role in axonal regeneration. Schwann cells in the peripheral nervous system (PNS) are recognized as favorable factors that promote axonal regeneration, while astrocytes and oligodendrocytes in the central nervous system (CNS) are not. In this review, we evaluate the roles of Schwann cells and astrocytes in axonal regeneration and examine recent evidence that suggests a dual function of astrocytes in regenerative responses. We also discuss the role of Cdc2 pathways in axonal regeneration, which is commonly activated in Schwann cells and astrocytes. Greater insight on the roles of glial cells in axonal regeneration is key to establishing baseline interventions for improving functional recovery following neural injury.
Collapse
Affiliation(s)
- Dana Toy
- Department of Oriental Medicine, Daejeon University, Daejeon 300-716, Korea
| | | |
Collapse
|
27
|
Yu P, Pisitkun T, Wang G, Wang R, Katagiri Y, Gucek M, Knepper MA, Geller HM. Global analysis of neuronal phosphoproteome regulation by chondroitin sulfate proteoglycans. PLoS One 2013; 8:e59285. [PMID: 23527152 PMCID: PMC3601063 DOI: 10.1371/journal.pone.0059285] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/13/2013] [Indexed: 01/01/2023] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are major components of the extracellular matrix which mediate inhibition of axonal regeneration after injury to the central nervous system (CNS). Several neuronal receptors for CSPGs have recently been identified; however, the signaling pathways by which CSPGs restrict axonal growth are still largely unknown. In this study, we applied quantitative phosphoproteomics to investigate the global changes in protein phosphorylation induced by CSPGs in primary neurons. In combination with isobaric Tags for Relative and Absolute Quantitation (iTRAQ) labeling, strong cation exchange chromatography (SCX) fractionation, immobilized metal affinity chromatography (IMAC) and LC-MS/MS, we identified and quantified 2214 unique phosphopeptides corresponding to 1118 phosphoproteins, with 118 changing significantly in abundance with CSPG treatment. The proteins that were regulated by CSPGs included key components of synaptic vesicle trafficking, axon guidance mediated by semaphorins, integrin signaling, cadherin signaling and EGF receptor signaling pathways. A significant number of the regulated proteins are cytoskeletal and related proteins that have been implicated in regulating neurite growth. Another highly represented protein category regulated by CSPGs is nucleic acid binding proteins involved in RNA post-transcriptional regulation. Together, by screening the overall phosphoproteome changes induced by CSPGs, this data expand our understanding of CSPG signaling, which provides new insights into development of strategies for overcoming CSPG inhibition and promoting axonal regeneration after CNS injury.
Collapse
Affiliation(s)
- Panpan Yu
- Developmental Neurobiology Section, Cell Biology and Physiology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Trairak Pisitkun
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, Division of Intramural Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Guanghui Wang
- Proteomics Core Facility, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rong Wang
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Yasuhiro Katagiri
- Developmental Neurobiology Section, Cell Biology and Physiology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marjan Gucek
- Proteomics Core Facility, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mark A. Knepper
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, Division of Intramural Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Herbert M. Geller
- Developmental Neurobiology Section, Cell Biology and Physiology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
28
|
Abstract
While ultimately, focus must be placed on experimentation using adult systems, vastly important clues to regeneration can be found in the study of the embryonic nervous system. In embryonic systems, axonal regeneration is successful before a critical period, and numerous advances have resulted from the study of isolated cells and tissues in vitro. Studies over many decades from the laboratory of Paul C. Letourneau have probed the cellular and molecular phenomena involved in axon outgrowth and guidance in the embryonic central and peripheral nervous system and have laid the framework for many current advances in regeneration research. Letourneau’s pioneering work related to growth cone behavior, guidance, and regeneration has resulted in considerable contributions toward our understanding not only of cellular mechanisms that underlie axon growth, but also of the specific areas of study that require attention to accomplish future breakthroughs. The present article summarizes some of the major contributions from Paul Letourneau and his team in the area of axonal regeneration.
Collapse
Affiliation(s)
- Diane M Snow
- Department of Anatomy and Neurobiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, USA.
| |
Collapse
|
29
|
The roles of neuronal and glial precursors in overcoming chondroitin sulfate proteoglycan inhibition. Exp Neurol 2012; 235:627-37. [PMID: 22498104 DOI: 10.1016/j.expneurol.2012.03.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 03/26/2012] [Indexed: 11/23/2022]
Abstract
The extension of axons through the major inhibitory component of the glial scar, chondroitin sulfate proteoglycans (CSPGs), remains a key obstacle for regeneration following spinal cord injury (SCI). We have previously shown that transplants composed of neuronal and glial restricted precursors (NRP and GRP respectively) promote regeneration and connectivity in the injured spinal cord (Bonner et al., 2010, 2011), however, little is known about the properties of these precursors at a cellular level. We now report that NRP-derived neurons, in contrast to dorsal root ganglion (DRG) neurons, have the ability to extend axons and cross over from a permissive substratum (laminin) onto inhibitory CSPG in vitro. Growth cones of neurons derived from NRP, compared to DRG, exhibit significantly lower levels of the CSPG receptors protein tyrosine phosphatase sigma (PTPσ) and leukocyte common antigen-related phosphatase (LAR). GRP-conditioned medium prepared from the same cell densities did not affect the response of primary sensory neurons to CSPG confirming that the ability of NRP-derived neurons to cross onto CSPG is determined intrinsically. However, GRP-conditioned medium collected from high density cultures increased the probability of DRG axons to cross from LN onto CSPG and increased the length of DRG axons extending on CSPG. Collectively, these results suggest that (1) neurons derived from NRPs are intrinsically insensitive to CSPGs due to low levels of receptor expression, and (2) high levels of factors secreted by GRP can reduce the inhibitory effects of CSPG and promote axonal growth. These observations provide mechanistic insights into the specific roles of NRPs and GRPs in promoting regeneration and repair following SCI.
Collapse
|
30
|
Hodgkinson GN, Tresco PA, Hlady V. The role of well-defined patterned substrata on the regeneration of DRG neuron pathfinding and integrin expression dynamics using chondroitin sulfate proteoglycans. Biomaterials 2012; 33:4288-97. [PMID: 22436802 DOI: 10.1016/j.biomaterials.2012.02.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 02/25/2012] [Indexed: 12/13/2022]
Abstract
Injured neurons intrinsically adapt to and partially overcome inhibitory proteoglycan expression in the central nervous system by upregulating integrin expression. It remains unclear however, to what extent varying proteoglycan concentrations influence the strength of this response, how rapidly neurons adapt to proteoglycans, and how pathfinding dynamics are altered over time as integrin expression is modulated in response to proteoglycan signals. To investigate these quandaries, we created well-defined substrata in which postnatal DRG neuron pathfinding dynamics and growth cone integrin expression were interrogated as a function of proteoglycan substrata density. DRGs responded by upregulating integrin expression in a proteoglycan dose dependent fashion and exhibited robust outgrowth over all proteoglycan densities at initial time frames. However, after prolonged proteoglycan exposure, neurons exhibited decreasing velocities associated with increasing proteoglycan densities, while neurons growing on low proteoglycan levels exhibited robust outgrowth at all time points. Additionally, DRG outgrowth over proteoglycan density step boundaries, and a brief β1 integrin functional block proved that regeneration was integrin dependent and that DRGs exhibit delayed slowing and loss in persistence after even transient encounters with dense proteoglycan boundaries. These findings demonstrate the complexity of proteoglycan regulation on integrin expression and regenerative pathfinding.
Collapse
Affiliation(s)
- Gerald N Hodgkinson
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
31
|
Yu P, Santiago LY, Katagiri Y, Geller HM. Myosin II activity regulates neurite outgrowth and guidance in response to chondroitin sulfate proteoglycans. J Neurochem 2012; 120:1117-28. [PMID: 22191382 PMCID: PMC3296867 DOI: 10.1111/j.1471-4159.2011.07638.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are major components of the extracellular matrix in the CNS that inhibit axonal regeneration after CNS injury. Signaling pathways in neurons triggered by CSPGs are still largely unknown. In this study, using well-characterized in vitro assays for neurite outgrowth and neurite guidance, we demonstrate a major role for myosin II in the response of neurons to CSPGs. We found that the phosphorylation of myosin II regulatory light chains is increased by CSPGs. Specific inhibition of myosin II activity with blebbistatin allows growing neurites to cross onto CSPG-rich areas and increases the length of neurites of neurons growing on CSPGs. Using specific gene knockdown, we demonstrate selective roles for myosin IIA and IIB in these processes. Time lapse microscopy and immunocytochemistry demonstrated that CSPGs also inhibit cell adhesion and cell spreading. Inhibition of myosin II selectively accelerated neurite initiation without altering cell adhesion and spreading on CSPGs.
Collapse
Affiliation(s)
- Panpan Yu
- Developmental Neurobiology Section, Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
32
|
Hutson TH, Buchser WJ, Bixby JL, Lemmon VP, Moon LDF. Optimization of a 96-Well Electroporation Assay for Postnatal Rat CNS Neurons Suitable for Cost-Effective Medium-Throughput Screening of Genes that Promote Neurite Outgrowth. Front Mol Neurosci 2011; 4:55. [PMID: 22207835 PMCID: PMC3245668 DOI: 10.3389/fnmol.2011.00055] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 12/04/2011] [Indexed: 01/16/2023] Open
Abstract
Following an injury, central nervous system (CNS) neurons show a very limited regenerative response which results in their failure to successfully form functional connections with their original target. This is due in part to the reduced intrinsic growth state of CNS neurons, which is characterized by their failure to express key regeneration-associated genes (RAGs) and by the presence of growth inhibitory molecules in CNS environment that form a molecular and physical barrier to regeneration. Here we have optimized a 96-well electroporation and neurite outgrowth assay for postnatal rat cerebellar granule neurons (CGNs) cultured upon an inhibitory cellular substrate expressing myelin-associated glycoprotein or a mixture of growth inhibitory chondroitin sulfate proteoglycans. Optimal electroporation parameters resulted in 28% transfection efficiency and 51% viability for postnatal rat CGNs. The neurite outgrowth of transduced neurons was quantitatively measured using a semi-automated image capture and analysis system. The neurite outgrowth was significantly reduced by the inhibitory substrates which we demonstrated could be partially reversed using a Rho Kinase inhibitor. We are now using this assay to screen large sets of RAGs for their ability to increase neurite outgrowth on a variety of growth inhibitory and permissive substrates.
Collapse
Affiliation(s)
- Thomas H Hutson
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London London, UK
| | | | | | | | | |
Collapse
|
33
|
Gardiner NJ. Integrins and the extracellular matrix: Key mediators of development and regeneration of the sensory nervous system. Dev Neurobiol 2011; 71:1054-72. [DOI: 10.1002/dneu.20950] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Andrews EM, Richards RJ, Yin FQ, Viapiano MS, Jakeman LB. Alterations in chondroitin sulfate proteoglycan expression occur both at and far from the site of spinal contusion injury. Exp Neurol 2011; 235:174-87. [PMID: 21952042 DOI: 10.1016/j.expneurol.2011.09.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 08/29/2011] [Accepted: 09/09/2011] [Indexed: 12/24/2022]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) present an inhibitory barrier to axonal growth and plasticity after trauma to the central nervous system. These extracellular and membrane bound molecules are altered after spinal cord injuries, but the magnitude, time course, and patterns of expression following contusion injury have not been fully described. Western blots and immunohistochemistry were combined to assess the expression of four classically inhibitory CSPGs, aggrecan, neurocan, brevican and NG2, at the lesion site and in distal segments of cervical and thoracic spinal cord at 3, 7, 14 and 28 days following a severe mid-thoracic spinal contusion. Total neurocan and the full-length (250 kDa) isoform were strongly upregulated both at the lesion epicenter and in cervical and lumbar segments. In contrast, aggrecan and brevican were sharply reduced at the injury site and were unchanged in distal segments. Total NG2 protein was unchanged across the injury site, while NG2+ profiles were distributed throughout the lesion site by 14 days post-injury (dpi). Far from the lesion, NG2 expression was increased at lumbar, but not cervical spinal cord levels. To determine if the robust increase in neurocan at the distal spinal cord levels corresponded to regions of increased astrogliosis, neurocan and GFAP immunoreactivity were measured in gray and white matter regions of the spinal enlargements. GFAP antibodies revealed a transient increase in reactive astrocyte staining in cervical and lumbar cord, peaking at 14 dpi. In contrast, neurocan immunoreactivity was specifically elevated in the cervical dorsal columns and in the lumbar ventral horn and remained high through 28 dpi. The long lasting increase of neurocan in gray matter regions at distal levels of the spinal cord may contribute to the restriction of plasticity in the chronic phase after SCI. Thus, therapies targeted at altering this CSPG both at and far from the lesion site may represent a reasonable addition to combined strategies to improve recovery after SCI.
Collapse
Affiliation(s)
- Ellen M Andrews
- Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
35
|
Kim KM, Kim SY, Minxha J, Palmore GTR. A novel method for analyzing images of live nerve cells. J Neurosci Methods 2011; 201:98-105. [DOI: 10.1016/j.jneumeth.2011.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/15/2011] [Accepted: 07/18/2011] [Indexed: 11/16/2022]
|
36
|
Tuffaha S, Quigley M, Ng T, Gorantla VS, Shores JT, Pulikkottil B, Shestak C, Brandacher G, Lee WPA. The effect of chondroitinase on nerve regeneration following composite tissue allotransplantation. J Hand Surg Am 2011; 36:1447-52. [PMID: 21788107 DOI: 10.1016/j.jhsa.2011.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 06/02/2011] [Accepted: 06/03/2011] [Indexed: 02/02/2023]
Abstract
PURPOSE To improve the degree of functional return and sensibility provided by composite tissue allotransplantation, enhanced nerve regeneration is essential. Chondroitin sulfate proteoglycans are found in the extracellular matrix of nerves and inhibit regenerating axons after injury. Treatment with chondroitinase to remove chondroitin sulfate proteoglycans has been shown to improve nerve regeneration in isolated nerve graft and transection-and-repair models. This study assesses the efficacy of chondroitinase as a neurotherapeutic agent in the setting of composite tissue allotransplantation. METHODS Adult Lewis rats received either orthotopic hind limb transplants from Brown Norway rat donors (n = 12) or sciatic nerve transection and repair (n = 6). Following approximation of the sciatic nerve, half the animals received intraneural injections of chondroitinase in saline and the other half received intraneural injections of saline alone. Five weeks after transplantation, we killed the animals and analyzed nerves with nonbiased quantitative nerve histomorphometry. One day after transection and repair, we killed animals and harvested sciatic nerves for immunohistochemical staining of cleaved chondroitin sulfate proteoglycans epitope and laminin. We used unpaired t-tests for statistical analysis. RESULTS Distal to the suture line, chondroitinase-treated animals demonstrated statistically greater total number of fibers and nerve density compared with controls. There were no statistically significant differences in fiber number or nerve density proximal to the suture line or in fiber widths. We observed staining of cleaved chondroitin sulfate proteoglycan epitopes only in treated animals, with no differences observed in the degree of laminin staining. CONCLUSIONS Intraneural injection of chondroitinase cleaved inhibitory chondroitin sulfate proteoglycans without disrupting proregenerative laminin and resulted in enhanced nerve regeneration after composite tissue allotransplantation. Studies at later time points are needed to assess whether this enhanced nerve regeneration will produce improved functional return.
Collapse
Affiliation(s)
- Sami Tuffaha
- Division of Plastic and Reconstructive Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Macagno E. An editorial appreciation of Paul Letourneau. Dev Neurobiol 2011; 71:801-2. [DOI: 10.1002/dneu.20932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Sundararaghavan HG, Masand SN, Shreiber DI. Microfluidic generation of haptotactic gradients through 3D collagen gels for enhanced neurite growth. J Neurotrauma 2011; 28:2377-87. [PMID: 21473683 DOI: 10.1089/neu.2010.1606] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We adapted a microfluidic system used previously to generate durotactic gradients of stiffness in a 3D collagen gel, to produce haptotactic gradients of adhesive ligands through the collagen gel. Oligopeptide sequences that included bioactive peptide sequences from laminin, YIGSR, or IKVAV, were grafted separately onto type I collagen using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). Solutions of peptide-grafted collagen and untreated collagen were then used as source and sink input solutions, respectively, in an H-shaped microfluidic network fabricated using traditional soft lithography. One-dimensional gradients of the peptide-grafted collagen solution were generated in the channel that connected the source and sink channels, and these gradients became immobilized upon self-assembly of the collagen into a 3D fibrillar gel. The slope and average concentration of the gradients were adjusted by changing the concentration of the source solutions and by changing the length of the cross-channel. A separate, underlying channel in the microfluidic construct allowed the introduction of a chick embryo dorsal root ganglion into the network. Neurites from these explants grew significantly longer up steep gradients of YIGSR, but shallow gradients of IKVAV in comparison to untreated collagen controls. When these two gradients were presented in combination, the bias in growth acceleration was the largest and most consistent. No differences were observed in the number of neurites choosing to grow up or down the gradients in any condition. These results suggest that the incorporation of distinct gradients of multiple bioactive ligands can improve directional acceleration of regenerating axons.
Collapse
Affiliation(s)
- Harini G Sundararaghavan
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
39
|
Khaing ZZ, Milman BD, Vanscoy JE, Seidlits SK, Grill RJ, Schmidt CE. High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury. J Neural Eng 2011; 8:046033. [DOI: 10.1088/1741-2560/8/4/046033] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Kwok JC, Tan CL, Wang D, Heller J, Fawcett JW. Chondroitin Sulfates in Axon Regeneration and Plasticity. TRENDS GLYCOSCI GLYC 2011. [DOI: 10.4052/tigg.23.201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Jessica C.F. Kwok
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, United Kingdom
| | - Chin Lik Tan
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, United Kingdom
| | - Difei Wang
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, United Kingdom
| | - Janosch Heller
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, United Kingdom
| | - James W. Fawcett
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, United Kingdom
| |
Collapse
|
41
|
Ali SAM, Hosaka YZ, Uehara M. Spatiotemporal distribution of chondroitin sulfate proteoglycans in the developing mouse retina and optic nerve. J Vet Med Sci 2010; 73:13-8. [PMID: 20716860 DOI: 10.1292/jvms.10-0201] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of the present study was to determine the distribution of chondroitin sulfate proteoglycans in the mouse retina and optic nerve of the prenatal and postnatal mouse by immunohistochemistry. At embryonic day (E) 18, chondroitin-4-sulfate (C4S), chondroitin-6-sulfate (C6S) and biglycan were detected in the retina and optic nerve. However, aggrecan was seen in the retina but not in the optic nerve. At postnatal day (P) 7, aggrecan and biglycan were clearly observed in the optic nerve, inner nuclear layer and ganglion cell layer and diffuse in the outer retina. C4S diffusely distributed in the retina and optic nerve, but C6S was mainly confined to the photoreceptor layer and optic nerve sheath. At P42, biglycan showed diffuse distribution in the retina and optic nerve with intense staining in nerve-fiber rich layers. Aggrecan showed weak staining at the inner plexiform layer with higher density in the outer and inner nuclear layers, outer plexiform layer and ganglion cell layer. Both C4S and C6S were detected in the optic nerve and retina, but C6S showed strong immunostaining in the photoreceptor layer. The distributions of these proteoglycans with respect of time course during development of the retina and optic nerve suggest that they may have unique or overlapping roles in development and maintenance of the retina and optic nerve.
Collapse
Affiliation(s)
- Safwat Ali Mohamed Ali
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Japan
| | | | | |
Collapse
|
42
|
Cregg JM, Wiseman SL, Pietrzak-Goetze NM, Smith MR, Jaroch DB, Clupper DC, Gilbert RJ. A rapid, quantitative method for assessing axonal extension on biomaterial platforms. Tissue Eng Part C Methods 2010; 16:167-72. [PMID: 19409034 DOI: 10.1089/ten.tec.2009.0108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Measuring outgrowth of neuronal explants is critical in evaluating the ability of a biomaterial to act as a permissive substrate for neuronal adhesion and growth. Previous methods lack the ability to quantify robust outgrowth, or lack the capacity to quantify growth on opaque substrates because they exploit the transparent nature of culture dishes to segregate neuronal processes from an image background based on color intensity. In this study, we sought to investigate the ability of opaque silica sol-gel materials to facilitate axonal outgrowth; therefore, a method was developed for quantifying outgrowth of neurites from dorsal root ganglion explants on these unique surfaces. Dorsal root ganglia were isolated from stage-nine chick embryos and cultured for 48 h on sol-gel materials presenting agarose and chitosan polysaccharides individually or in combination. Explants were then imaged, and basic image analysis software was used by three independent observers to obtain axonal length and axonal area measurements. Robust axon length and axonal spread measurements for ganglia cultured on agarose-chitosan sol-gel matrices yield an estimate of strong neural compatibility for these substrates over silica matrices presenting no polysaccharides, or silica matrices presenting chitosan or agarose individually. We suggest that this simple protocol for quantifying material biocompatibility offers an analysis strategy that can be used universally to the same end.
Collapse
Affiliation(s)
- Jared M Cregg
- Regeneration and Repair Laboratory, Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931-1295, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Spinal interneuron axons spontaneously regenerate after spinal cord injury in the adult feline. J Neurosci 2009; 29:12145-58. [PMID: 19793972 DOI: 10.1523/jneurosci.0897-09.2009] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It is well established that long, descending axons of the adult mammalian spinal cord do not regenerate after a spinal cord injury (SCI). These axons do not regenerate because they do not mount an adequate regenerative response and growth is inhibited at the injury site by growth cone collapsing molecules, such as chondroitin sulfate proteoglycans (CSPGs). However, whether axons of axotomized spinal interneurons regenerate through the inhibitory environment of an SCI site remains unknown. Here, we show that cut axons from adult mammalian spinal interneurons can regenerate through an SCI site and form new synaptic connections in vivo. Using morphological and immunohistochemical analyses, we found that after a midsagittal transection of the adult feline spinal cord, axons of propriospinal commissural interneurons can grow across the lesion despite a close proximity of their growth cones to CSPGs. Furthermore, using immunohistochemical and electrophysiological analyses, we found that the regenerated axons conduct action potentials and form functional synaptic connections with motoneurons, thus providing new circuits that cross the transected commissures. Our results show that interneurons of the adult mammalian spinal cord are capable of spontaneous regeneration after injury and suggest that elucidating the mechanisms that allow these axons to regenerate may lead to useful new therapeutic strategies for restoring function after injury to the adult CNS.
Collapse
|
44
|
Washio A, Kitamura C, Jimi E, Terashita M, Nishihara T. Mechanisms involved in suppression of NGF-induced neuronal differentiation of PC12 cells by hyaluronic acid. Exp Cell Res 2009; 315:3036-43. [PMID: 19615362 DOI: 10.1016/j.yexcr.2009.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Revised: 07/05/2009] [Accepted: 07/08/2009] [Indexed: 01/10/2023]
Abstract
In the present study, we found that hyaluronic acid (HA) suppressed the neuronal differentiation mediated by nerve growth factor (NGF). In addition, we examined the mechanism by which HA inhibits the NGF-induced neurite outgrowth of PC12 cells. We elucidated the direct interaction between NGF and HA, and found that HA did not bind to NGF directly using a quartz-crystal microbalance. Western blot analysis revealed that HA suppressed NGF-induced phosphorylation of p38 MAPK, ERKs, and transcriptional factor CREB in PC12 cells. Furthermore, HA inhibited the luciferase activity of pCRE-Luc transfected PC12 cells in the presence of NGF. We confirmed that the p38 MAPK inhibitor SB203580 and ERK inhibitor U0126 suppressed NGF-induced neurite outgrowth of PC12 cells, and found that the inhibitory effects of HA on phosphorylation of ERKs, but not of p38 MAPK, were restored by the anti-RHAMM antibody. The number of PC12 cells with neurites increased remarkably when pre-cultured with the anti-RHAMM antibody, then treated with NGF and HA. Our findings indicate that HA inhibits NGF-induced neuronal differentiation of PC12 cells partially by inhibiting ERK phosphorylation through RHAMM, and suggest that the binding of HA to RHAMM modifies the signaling pathways in PC12 cells treated with NGF.
Collapse
Affiliation(s)
- Ayako Washio
- Department of Health Promotion, Kyushu Dental College, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | | | | | | | | |
Collapse
|
45
|
Ishii M, Maeda N. Oversulfated chondroitin sulfate plays critical roles in the neuronal migration in the cerebral cortex. J Biol Chem 2008; 283:32610-20. [PMID: 18819920 DOI: 10.1074/jbc.m806331200] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chondroitin sulfate (CS) proteoglycans bind with various proteins through CS chains in a CS structure-dependent manner, in which oversulfated structures, such as iB (IdoA(2-O-sulfate)alpha1-3GalNAc(4-O-sulfate)), D (GlcA(2-O-sulfate)beta1-3GalNAc(6-O-sulfate)), and E (GlcAbeta1-3GalNAc(4,6-O-disulfate)) units constitute the critical functional module. In this study, we examined the expression and function of three CS sulfotransferases in the developing neocortex: uronyl 2-O-sulfotransferase (UST), N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase (4,6-ST) and dermatan 4-O-sulfotransferase-1 (D4-ST), which are responsible for the synthesis of oversulfated structures. The CS chains of the neocortex of mouse embryos contained significant amounts of D and E units that are generated by UST and 4,6-ST, respectively. UST and 4,6-ST mRNAs were expressed in the ventricular and subventricular zones, and their expression increased during late embryonic development. In utero electroporation experiments indicated that knockdown of UST and 4,6-ST resulted in the disturbed migration of cortical neurons. The neurons electroporated with the short hairpin RNA constructs of UST and 4,6-ST accumulated in the lower intermediate zone and in the subventricular zone, showing a multipolar morphology. The cDNA constructs of UST and 4,6-ST rescued the defects caused by the RNA interference, and the neurons were able to migrate radially. On the other hand, knockdown of D4-ST, which is involved in the biosynthesis of the iB unit, caused no migratory defects. These results revealed that specific oversulfated structures in CS chains play critical roles in the migration of neuronal precursors during cortical development.
Collapse
Affiliation(s)
- Maki Ishii
- Department of Developmental Neuroscience, Tokyo Metropolitan Institute for Neuroscience, Musashidai, Fuchu, Tokyo 183-8526, Japan
| | | |
Collapse
|
46
|
Hodgkinson GN, Tresco PA, Hlady V. The influence of sub-micron inhibitory clusters on growth cone substratum attachments and CD44 expression. Biomaterials 2008; 29:4227-35. [PMID: 18694596 DOI: 10.1016/j.biomaterials.2008.07.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 07/18/2008] [Indexed: 10/21/2022]
Abstract
Proteoglycan expression patterns in the central nervous system guide neuronal pathfinding during development, but also disrupt regeneration after injuries. To deepen our understanding of the molecular level effects of proteoglycan spatial arrangements on neuronal pathfinding, we designed micropatterning stamps for the precise placement of near single molecule chondroitin sulfate proteoglycan (CSPG) clusters into regularly spaced arrays. Actin ultrastructural analysis in dorsal root ganglion neurons grown on laminin-coated substrata patterned with aggrecan cluster arrays revealed filopodial and lamellapodial edge contact avoidance of individual clusters, while growth cone lamellapodia and central domains were able to span multiple clusters over a range of cluster densities. Total internal reflection fluorescence microscopy interrogation of growth cone substratum morphology further revealed persistence of integrin mediated substratum adhesion and local out-of-plane membrane bending over clusters on the height scale of aggrecan glycosaminoglycan side chains. Direct imaging of cell adhesion molecule CD44 expression in growth cones revealed an aggrecan dose dependent upregulation in CD44 molecules. Evidence of CD44 clustering coinciding with underlying aggrecan molecules implies CSPG-CD44 interactions. The results reveal the limited local repulsive effect of CSPGs on neuronal structures and provide evidence that CD44 upregulation in neurons is affected by local CSPG expression.
Collapse
Affiliation(s)
- Gerald N Hodgkinson
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
47
|
Schäfer R, Dehn D, Burbach GJ, Deller T. Differential regulation of chondroitin sulfate proteoglycan mRNAs in the denervated rat fascia dentata after unilateral entorhinal cortex lesion. Neurosci Lett 2008; 439:61-5. [PMID: 18511192 DOI: 10.1016/j.neulet.2008.04.098] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 04/29/2008] [Accepted: 04/30/2008] [Indexed: 11/25/2022]
Abstract
Following brain trauma, chondroitin sulphate proteoglycans (CSPGs) are enriched at injury sites and in denervated areas. At injury sites, CSPGs are regarded as inhibitors of axonal regeneration because of their growth inhibitory properties. In areas of denervation their role is less clear, since they are enriched in zones of sprouting, i.e. zones of axonal growth. To identify CSPGs expressed in a denervated brain area and to quantify changes in their mRNA expression, neurocan, brevican, NG2, phosphacan and aggrecan mRNA were analyzed in the rat fascia dentata following entorhinal denervation. Laser microdissection was combined with quantitative RT-PCR to measure mRNA changes specifically within the denervated portion of the molecular layer (1h, 6h, 10h, 12h, 1d, 2d, 3d, 4d, 7d and 14d post-lesion). Changes in glial fibrillary protein mRNA were measured at the same time points and used as lesion control. This approach revealed a differential regulation of CSPG mRNAs in the denervated zone: neurocan, brevican and NG2 mRNA were upregulated with a maximum around 2 days post-lesion. In contrast, aggrecan mRNA levels reached a maximum 7 days post-lesion and phosphacan mRNA levels were not significantly altered. Taken together, our data reveal a temporal pattern in CSPG mRNA expression in the denervated fascia dentata. This suggests specific biological functions for CSPGs during the denervation-induced reorganization process: whereas the early increase in CSPGs in the denervated zone could influence the pattern of sprouting, the late increase of aggrecan mRNA suggests a different role during the late phase of reorganization.
Collapse
Affiliation(s)
- Ruth Schäfer
- Institute of Clinical Neuroanatomy, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
48
|
Chan CCM, Roberts CR, Steeves JD, Tetzlaff W. Aggrecan components differentially modulate nerve growth factor-responsive and neurotrophin-3-responsive dorsal root ganglion neurite growth. J Neurosci Res 2008; 86:581-92. [PMID: 17918743 DOI: 10.1002/jnr.21522] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aggrecan is one of the major chondroitin sulfate proteoglycans (CSPGs) expressed in the central nervous system. The signaling pathways activated downstream of cell interaction with aggrecan and with CSPGs in general and the importance of chondroitin sulfate-glycosaminoglycan side chains in their inhibition are unclear. Therefore, to analyze the effect of different components of aggrecan in inhibiting neurite growth, neurite outgrowth was quantified in an in vitro model in which chick dorsal root ganglion (DRG) explants were grown on substrates containing aggrecan bound to hyaluronan and link protein as a macromolecular aggregate, aggrecan monomers, hyaluronan, or ChABC-treated aggrecan. Aggrecan aggregate, aggrecan monomer, and hyaluronan inhibited neurite outgrowth from nerve growth factor (NGF)- and neurotrophin-3 (NT3)-responsive DRG neurons. Aggrecan inhibition was dependent on its chondroitin sulfate-glycosaminoglycans, as ChABC digestion alleviated neurite inhibition because of aggrecan. Growth cones displayed full or partial collapse on aggrecan aggregate, hyaluronan, and ChABC-treated aggrecan. Inhibition of Rho kinase (ROCK) with Y27632 increased neurite growth on some but not all of the aggrecan components tested. With NGF in the culture medium, Y27632 increased neurite outgrowth on aggrecan aggregate, monomers, and ChABC-treated aggrecan, but not on hyaluronan. The ROCK inhibitor also increased NT3-responsive outgrowth on aggrecan aggregate and hyaluronan, but not on ChABC-treated aggrecan. This study showed that the matrix proteoglycan aggrecan and its components have multiple effects on neurite outgrowth and that some of these effects involve the Rho/ROCK pathway.
Collapse
Affiliation(s)
- Carmen C M Chan
- ICORD (International Collaboration on Repair Discoveries), Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
49
|
Multi-Molecular Gradients of Permissive and Inhibitory Cues Direct Neurite Outgrowth. Ann Biomed Eng 2008; 36:889-904. [PMID: 18392680 DOI: 10.1007/s10439-008-9486-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 10/09/2007] [Indexed: 10/22/2022]
|
50
|
Lemons ML, Condic ML. Integrin signaling is integral to regeneration. Exp Neurol 2008; 209:343-52. [PMID: 17727844 DOI: 10.1016/j.expneurol.2007.05.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Accepted: 05/22/2007] [Indexed: 12/16/2022]
Abstract
The inability of the adult injured mammalian spinal cord to successfully regenerate is not well understood. Studies suggest that both extrinsic and intrinsic factors contribute to regeneration failure. In this review, we focus on intrinsic factors that impact regeneration, in particular integrin receptors and their downstream signaling pathways. We discuss studies that address the impact of integrins and integrin signaling pathways on growth cone guidance and motility and how lessons learned from these studies apply to spinal cord regeneration in vivo.
Collapse
Affiliation(s)
- Michele L Lemons
- Department of Natural Sciences, Assumption College, Worcester, MA 01609, USA.
| | | |
Collapse
|