1
|
Prunell-Castañé A, Beyer F, Witte V, Sánchez Garre C, Hernán I, Caldú X, Jurado MÁ, Garolera M. From the reward network to whole-brain metrics: structural connectivity in adolescents and young adults according to body mass index and genetic risk of obesity. Int J Obes (Lond) 2024; 48:567-574. [PMID: 38145996 DOI: 10.1038/s41366-023-01451-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND Obesity is a multifactorial condition. Genetic variants, such as the fat mass and obesity related gene (FTO) polymorphism, may increase the vulnerability of developing obesity by disrupting dopamine signaling within the reward network. Yet, the association of obesity, genetic risk of obesity, and structural connectivity of the reward network in adolescents and young adults remains unexplored. We investigate, in adolescents and young adults, the structural connectivity differences in the reward network and at the whole-brain level according to body mass index (BMI) and the FTO rs9939609 polymorphism. METHODS One hundred thirty-two adolescents and young adults (age range: [10, 21] years, BMI z-score range: [-1.76, 2.69]) were included. Genetic risk of obesity was determined by the presence of the FTO A allele. Whole-brain and reward network structural connectivity were analyzed using graph metrics. Hierarchical linear regression was applied to test the association between BMI-z, genetic risk of obesity, and structural connectivity. RESULTS Higher BMI-z was associated with higher (B = 0.76, 95% CI = [0.30, 1.21], P = 0.0015) and lower (B = -0.003, 95% CI = [-0.006, -0.00005], P = 0.048) connectivity strength for fractional anisotropy at the whole-brain level and of the reward network, respectively. The FTO polymorphism was not associated with structural connectivity nor with BMI-z. CONCLUSIONS We provide evidence that, in healthy adolescents and young adults, higher BMI-z is associated with higher connectivity at the whole-brain level and lower connectivity of the reward network. We did not find the FTO polymorphism to correlate with structural connectivity. Future longitudinal studies with larger sample sizes are needed to assess how genetic determinants of obesity change brain structural connectivity and behavior.
Collapse
Affiliation(s)
- Anna Prunell-Castañé
- Departament de Psicologia Clínica i Psicobiologia, Facultat de Psicologia, Universitat de Barcelona, Passeig de la Vall d'Hebron, 171, 08035, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Frauke Beyer
- Clinic for Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Veronica Witte
- Clinic for Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Consuelo Sánchez Garre
- Pediatric Endocrinology Unit, Hospital de Terrassa, Consorci Sanitari de Terrassa, Terrassa, Barcelona, Spain
| | - Imma Hernán
- Molecular Genetics Unit, Consorci Sanitari de Terrassa, Terrassa, Spain
| | - Xavier Caldú
- Departament de Psicologia Clínica i Psicobiologia, Facultat de Psicologia, Universitat de Barcelona, Passeig de la Vall d'Hebron, 171, 08035, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - María Ángeles Jurado
- Departament de Psicologia Clínica i Psicobiologia, Facultat de Psicologia, Universitat de Barcelona, Passeig de la Vall d'Hebron, 171, 08035, Barcelona, Spain.
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain.
| | - Maite Garolera
- Brain, Cognition and Behavior: Clinical Research, Consorci Sanitari de Terrassa, Terrassa, Barcelona, Spain
- Neuropsychology Unit, Hospital de Terrassa, Consorci Sanitari de Terrassa, Terrassa, Barcelona, Spain
| |
Collapse
|
2
|
Thapaliya G, Kundu P, Jansen E, Naymik MA, Lee R, Bruchhage MMK, D’Sa V, Huentelman MJ, Lewis CR, Müller HG, Deoni SCL, Carnell S. FTO variation and early frontostriatal brain development in children. Obesity (Silver Spring) 2024; 32:156-165. [PMID: 37817330 PMCID: PMC10840826 DOI: 10.1002/oby.23926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 10/12/2023]
Abstract
OBJECTIVE Common obesity-associated genetic variants at the fat mass and obesity-associated (FTO) locus have been associated with appetitive behaviors and altered structure and function of frontostriatal brain regions. The authors aimed to investigate the influence of FTO variation on frontostriatal appetite circuits in early life. METHODS Data were drawn from RESONANCE, a longitudinal study of early brain development. Growth trajectories of nucleus accumbens and frontal lobe volumes, as well as total gray matter and white matter volume, by risk allele (AA) carrier status on FTO single-nucleotide polymorphism rs9939609 were examined in 228 children (102 female, 126 male) using magnetic resonance imaging assessments obtained from infancy through middle childhood. The authors fit functional concurrent regression models with brain volume outcomes over age as functional responses, and FTO genotype, sex, BMI z score, and maternal education were included as predictors. RESULTS Bootstrap pointwise 95% CI for regression coefficient functions in the functional concurrent regression models showed that the AA group versus the group with no risk allele (TT) had greater nucleus accumbens volume (adjusted for total brain volume) in the interval of 750 to 2250 days (2-6 years). CONCLUSIONS These findings suggest that common genetic risk for obesity is associated with differences in early development of brain reward circuitry and argue for investigating dynamic relationships among genotype, brain, behavior, and weight throughout development.
Collapse
Affiliation(s)
- Gita Thapaliya
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore MD, USA
| | - Poorbita Kundu
- Department of Statistics, University of California, Davis, Davis, CA, USA
| | - Elena Jansen
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore MD, USA
| | | | - Richard Lee
- Department of Psychiatry, and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore MD, USA
| | - Muriel Marisa Katharina Bruchhage
- Advanced Baby Imaging Lab, Hasbro Children’s Hospital, Rhode Island Hospital, Providence, RI, USA
- Department of Pediatrics, Warren Alpert Medical School at Brown University, Providence, RI, USA
- Department of Psychology, Social Sciences, University of Stavanger, Norway
| | - Viren D’Sa
- Department of Pediatrics, Warren Alpert Medical School at Brown University, Providence, RI, USA
| | | | - Candace R Lewis
- Neurogenomics Division, TGen, Phoenix, AZ, USA
- School of Life Sciences, Arizona State University, Phoenix, AZ, United States
| | - Hans-Georg Müller
- Department of Statistics, University of California, Davis, Davis, CA, USA
| | - Sean C. L. Deoni
- Maternal, Newborn and Child Health Discovery & Tools, Bill & Melinda Gates Foundation, Seattle, WA
| | | | - Susan Carnell
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore MD, USA
| |
Collapse
|
3
|
Pahl MC, Grant SFA, Leibel RL, Stratigopoulos G. Technologies, strategies, and cautions when deconvoluting genome-wide association signals: FTO in focus. Obes Rev 2023; 24:e13558. [PMID: 36882962 DOI: 10.1111/obr.13558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/08/2022] [Accepted: 01/31/2023] [Indexed: 03/09/2023]
Abstract
Genome-wide association studies have revealed a plethora of genetic variants that correlate with polygenic conditions. However, causal molecular mechanisms have proven challenging to fully define. Without such information, the associations are not physiologically useful or clinically actionable. By reviewing studies of the FTO locus in the genetic etiology of obesity, we wish to highlight advances in the field fueled by the evolution of technical and analytic strategies in assessing the molecular bases for genetic associations. Particular attention is drawn to extrapolating experimental findings from animal models and cell types to humans, as well as technical aspects used to identify long-range DNA interactions and their biological relevance with regard to the associated trait. A unifying model is proposed by which independent obesogenic pathways regulated by multiple FTO variants and genes are integrated at the primary cilium, a cellular antenna where signaling molecules that control energy balance convene.
Collapse
Affiliation(s)
- Matthew C Pahl
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Diabetes and Endocrinology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rudolph L Leibel
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, New York, USA
| | - George Stratigopoulos
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
4
|
Pan X, Zhang M, Tian A, Chen L, Sun Z, Wang L, Chen P. Exploring the genetic correlation between obesity-related traits and regional brain volumes: Evidence from UK Biobank cohort. Neuroimage Clin 2022; 33:102870. [PMID: 34872017 PMCID: PMC8648807 DOI: 10.1016/j.nicl.2021.102870] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To determine whether there is a correlation between obesity-related variants and regional brain volumes. METHODS Based on a mixed linear model (MLM), we analyzed the association between 1,498 obesity-related SNPs in the GWAS Catalog and 164 regional brain volumes from 29,420 participants (discovery cohort N = 19,997, validation cohort N = 9,423) in UK Biobank. The statistically significant brain regions in association analysis were classified into 6 major neural networks (dopamine (DA) motive system, central autonomic network (CAN), cognitive emotion regulation, visual object recognition network, auditory object recognition network, and sensorimotor system). We summarized the association between obesity-related variants (metabolically healthy obesity variants, metabolically unhealthy obesity variants, and unclassified obesity-related variants) and neural networks. RESULTS From association analysis, we determined that 17 obesity-related SNPs were associated with 51 regional brain volumes. Several single SNPs (e.g., rs13107325-T (SLC39A8), rs1876829-C (CRHR1), and rs1538170-T (CENPW)) were associated with multiple regional brain volumes. In addition, several single brain regions (e.g., the white matter, the grey matter in the putamen, subcallosal cortex, and insular cortex) were associated with multiple obesity-related variants. The metabolically healthy obesity variants were mainly associated with the regional brain volumes in the DA motive system, sensorimotor system and cognitive emotion regulation neural networks, while metabolically unhealthy obesity variants were mainly associated with regional brain volumes in the CAN and total tissue volumes. In addition, unclassified obesity-related variants were mainly associated with auditory object recognition network and total tissue volumes. The results of MeSH (medical subject headings) enrichment analysis showed that obesity genes associated with brain structure pointed to the functional relatedness with 5-Hydroxytryptamine receptor 4 (5-HT4), growth differentiation factor 5 (GDF5), and high mobility group protein AT-hook 2 (HMGA2 protein). CONCLUSION In summary, we found that obesity-related variants were associated with different brain volume measures. On the basis of the multiple SNPs, we found that metabolically healthy and unhealthy obesity-related SNPs were associated with different brain neural networks. Based on our enrichment analysis, modifications of the 5-HT4 pathway might be a promising therapeutic strategy for obesity.
Collapse
Affiliation(s)
- Xingchen Pan
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China; Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Miaoran Zhang
- Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Aowen Tian
- Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Lanlan Chen
- School of Clinical Medicine, Jilin University, Changchun, 130000, China
| | - Zewen Sun
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Liying Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China.
| | - Peng Chen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China; Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
5
|
Zonneveld MH, Noordam R, van der Grond J, van Heemst D, Mooijaart SP, Sabayan B, Jukema JW, Trompet S. Interplay of circulating leptin and obesity in cognition and cerebral volumes in older adults. Peptides 2021; 135:170424. [PMID: 33058961 DOI: 10.1016/j.peptides.2020.170424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/16/2020] [Accepted: 10/08/2020] [Indexed: 10/23/2022]
Abstract
We aimed to investigate whether circulating leptin and body mass index (BMI) associate independently with cognitive function (decline) and brain volumes using magnetic resonance imaging (MRI) in older individuals at risk of cardiovascular disease. We studied the cross-sectional and longitudinal associations in participants enrolled in the PROSPER study (Prospective Study of Pravastatin in the Elderly at Risk). Cognitive function was tested at baseline and repeated during a mean follow-up time of 3.2 years. Analyses were performed with multivariable (repeated) linear regression models and adjusted for demographics, cardiovascular risk-factors, and stratified by sex. We included 5623 dementia-free participants (52 % female, mean age 75 years) with a mean BMI of 26.9 (SD = 4.1). In a sub-study, 527 participants underwent brain MRI. At baseline, individuals with a BMI > 30 had a worse performance on the Stroop test (β 5.0 s, 95 %CI 2.6;7.5) and larger volumes of the amygdala (β 234 mm3, 95 %CI 3;464) and hippocampus (β 590 mm3, 95 %CI 181;999), independent of intracranial volume and serum leptin levels, compared with individuals with the reference BMI (BMI 18-25 kg/m2). Per log ng/mL higher serum leptin, independent of BMI, a 135 mm3 (95 %CI 2;268) higher volume of the amygdala was found, but no association was observed with cognitive tests nor with other brain volumes. Stratification for sex did not materially change the results. Whereas higher BMI associated with worse cognitive function independent of leptin levels, our study provided evidence that leptin and BMI independently associate with amygdala volume suggesting potential distinct biological associations.
Collapse
Affiliation(s)
- M H Zonneveld
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| | - R Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| | - J van der Grond
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| | - D van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| | - S P Mooijaart
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| | - B Sabayan
- Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, United States.
| | - J W Jukema
- Department of Cardiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Netherlands Heart Institute, 3511 EP Utrecht, the Netherlands.
| | - S Trompet
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
6
|
Higher BMI, but not obesity-related genetic polymorphisms, correlates with lower structural connectivity of the reward network in a population-based study. Int J Obes (Lond) 2020; 45:491-501. [PMID: 33100325 PMCID: PMC7906899 DOI: 10.1038/s41366-020-00702-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/13/2020] [Accepted: 10/14/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND Obesity is of complex origin, involving genetic and neurobehavioral factors. Genetic polymorphisms may increase the risk for developing obesity by modulating dopamine-dependent behaviors, such as reward processing. Yet, few studies have investigated the association of obesity, related genetic variants, and structural connectivity of the dopaminergic reward network. METHODS We analyzed 347 participants (age range: 20-59 years, BMI range: 17-38 kg/m2) of the LIFE-Adult Study. Genotyping for the single nucleotid polymorphisms rs1558902 (FTO) and rs1800497 (near dopamine D2 receptor) was performed on a microarray. Structural connectivity of the reward network was derived from diffusion-weighted magnetic resonance imaging at 3 T using deterministic tractography of Freesurfer-derived regions of interest. Using graph metrics, we extracted summary measures of clustering coefficient and connectivity strength between frontal and striatal brain regions. We used linear models to test the association of BMI, risk alleles of both variants, and reward network connectivity. RESULTS Higher BMI was significantly associated with lower connectivity strength for number of streamlines (β = -0.0025, 95%-C.I.: [-0.004, -0.0008], p = 0.0042), and, to lesser degree, fractional anisotropy (β = -0.0009, 95%-C.I. [-0.0016, -0.00008], p = 0.031), but not clustering coefficient. Strongest associations were found for left putamen, right accumbens, and right lateral orbitofrontal cortex. As expected, the polymorphism rs1558902 in FTO was associated with higher BMI (F = 6.9, p < 0.001). None of the genetic variants was associated with reward network structural connectivity. CONCLUSIONS Here, we provide evidence that higher BMI correlates with lower reward network structural connectivity. This result is in line with previous findings of obesity-related decline in white matter microstructure. We did not observe an association of variants in FTO or near DRD2 receptor with reward network structural connectivity in this population-based cohort with a wide range of BMI and age. Future research should further investigate the link between genetics, obesity and fronto-striatal structural connectivity.
Collapse
|
7
|
Genis-Mendoza AD, Martínez-Magaña JJ, Ruiz-Ramos D, Gonzalez-Covarrubias V, Tovilla-Zarate CA, Narvaez MLL, Castro TBG, Juárez-Rojop IE, Nicolini H. Interaction of FTO rs9939609 and the native American-origin ABCA1 p.Arg230Cys with circulating leptin levels in Mexican adolescents diagnosed with eating disorders: Preliminary results. Psychiatry Res 2020; 291:113270. [PMID: 32763537 DOI: 10.1016/j.psychres.2020.113270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/27/2020] [Accepted: 07/01/2020] [Indexed: 01/04/2023]
Abstract
Eating disorders (ED) are characterized by disruption of eating behaviour and alteration of food intake. Leptin, is one of the main hormones that modulate food intake and are altered in individuals diagnosed with ED. Genetic risk variants for obesity, like those reported inFTO and ABCA1, have also been associated to ED disorders. The present study aimed to analysed leptin circulating levels and the interaction between obesity-risk variants in FTO and ABCA1, in adolescents diagnosed with ED. A total of 99 individuals diagnosed with ED were genotype using Taqman probes for FTO (rs9939609) and ABCA1 (p.Arg230Cys, rs9282541). Commercial enzyme-linked immunosorbent assays were utilized to determined circulating leptin. Differences in leptin concentration were analysed by t-Student or ANOVA test. Gene-gene interaction were analysed using general estimation equations. Circulating leptin levels differed between the three diagnostic groups, lead by individuals diagnosed with binge eating-disorder. In individuals with more than 3 of episodes of binge-eating per week having the highest leptin levels. Also, we found that carriers of both risk alleles had the highest leptin levels. Our observations found an interaction between FTO rs9969609 and the native American-origin ABCA1 p.Arg230Cys to modulate circulating leptin levels in Mexican adolescents diagnosed with eating-disorders.
Collapse
Affiliation(s)
- Alma Delia Genis-Mendoza
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, CDMX, México; Hospital Psiquiátrico Infantil "Juan N. Navarro" Servicios de Administración Psiquiátrica, CDMX, México; División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México.
| | - José Jaime Martínez-Magaña
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, CDMX, México; División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez, Tabasco, México; División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
| | - David Ruiz-Ramos
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, CDMX, México; División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez, Tabasco, México; División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
| | - Vanessa Gonzalez-Covarrubias
- Laboratorio de Farmacogenómica, Instituto Nacional de Medicina Genómica, CDMX, México; División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
| | - Carlos Alfonso Tovilla-Zarate
- División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Comalcalco, Tabasco, México; División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
| | - Mari Lilia López Narvaez
- Hospital General de Yajalón Dr. Manuel Velasco Siles. Secretaria de Salud de Chiapas. Yajalón, Chiapas, Mexico; División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
| | - Thelma Beatriz Gonzalez Castro
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez, Tabasco, México; División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
| | - Isela Esther Juárez-Rojop
- Hospital General de Yajalón Dr. Manuel Velasco Siles. Secretaria de Salud de Chiapas. Yajalón, Chiapas, Mexico; División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
| | - Humberto Nicolini
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, CDMX, México; División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México; Grupo de Estudios Médicos y Familiares Carracci, CDMX, México.
| |
Collapse
|
8
|
Lugo‐Candelas C, Pang Y, Lee S, Cha J, Hong S, Ranzenhofer L, Korn R, Davis H, McInerny H, Schebendach J, Chung WK, Leibel RL, Walsh BT, Posner J, Rosenbaum M, Mayer L. Differences in brain structure and function in children with the FTO obesity-risk allele. Obes Sci Pract 2020; 6:409-424. [PMID: 32874676 PMCID: PMC7448161 DOI: 10.1002/osp4.417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Noncoding alleles of the fat mass and obesity-associated (FTO) gene have been associated with obesity risk, yet the underlying mechanisms remain unknown. Risk allele carriers show alterations in brain structure and function, but previous studies have not disassociated the effects of genotype from those of body mass index (BMI). METHODS Differences in brain structure and function were examined in children without obesity grouped by their number of copies (0,1,2) of the FTO obesity-risk single-nucleotide polymorphism (SNP) rs1421085. One hundred five 5- to 10-year-olds (5th-95th percentile body fat) were eligible to participate. Usable scans were obtained from 93 participants (15 CC [homozygous risk], 31 CT [heterozygous] and 47 TT [homozygous low risk]). RESULTS Homozygous C allele carriers (CCs) showed greater grey matter volume in the cerebellum and temporal fusiform gyrus. CCs also demonstrated increased bilateral cerebellar white matter fibre density and increased resting-state functional connectivity between the bilateral cerebellum and regions in the frontotemporal cortices. CONCLUSIONS This is the first study to examine brain structure and function related to FTO alleles in young children not yet manifesting obesity. This study lends support to the notion that the cerebellum may be involved in FTO-related risk for obesity, yet replication and further longitudinal study are required.
Collapse
Affiliation(s)
- Claudia Lugo‐Candelas
- Department of PsychiatryColumbia University Irving Medical CenterNew YorkNew YorkUSA
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Yajing Pang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroinformationUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Seonjoo Lee
- New York State Psychiatric InstituteNew YorkNew YorkUSA
- Department of Biostatistics, Mailman School of Public HealthColumbia University Irving Medical CenterNew YorkNY
| | - Jiook Cha
- Department of PsychiatryColumbia University Irving Medical CenterNew YorkNew YorkUSA
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Susie Hong
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Lisa Ranzenhofer
- Department of PsychiatryColumbia University Irving Medical CenterNew YorkNew YorkUSA
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Rachel Korn
- Department of PsychiatryColumbia University Irving Medical CenterNew YorkNew YorkUSA
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Haley Davis
- Department of PsychiatryColumbia University Irving Medical CenterNew YorkNew YorkUSA
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Hailey McInerny
- Department of PsychiatryColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Janet Schebendach
- Department of PsychiatryColumbia University Irving Medical CenterNew YorkNew YorkUSA
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Wendy K. Chung
- Department of PediatricsColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Department of MedicineColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Rudolph L. Leibel
- Department of PediatricsColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Naomi Berrie Diabetes CenterColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - B. Timothy Walsh
- Department of PsychiatryColumbia University Irving Medical CenterNew YorkNew YorkUSA
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Jonathan Posner
- Department of PsychiatryColumbia University Irving Medical CenterNew YorkNew YorkUSA
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| | | | - Laurel Mayer
- Department of PsychiatryColumbia University Irving Medical CenterNew YorkNew YorkUSA
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| |
Collapse
|
9
|
Ganeff IMM, Bos MM, van Heemst D, Noordam R. BMI-associated gene variants in FTO and cardiometabolic and brain disease: obesity or pleiotropy? Physiol Genomics 2019; 51:311-322. [PMID: 31199196 DOI: 10.1152/physiolgenomics.00040.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Obesity is a causal risk factor for the development of age-related disease conditions, which includes Type 2 diabetes mellitus, cardiovascular disease, and dementia. In genome-wide association studies, genetic variation in FTO is strongly associated with obesity and has been described across different ethnic backgrounds and life stages. To date, much work has been devoted on determining the biological mechanisms via which FTO affects body weight regulation and ultimately contributes to age-related cardiometabolic and brain disease. The main hypotheses of the involved biological mechanisms include the involvement of FTO in habitual food intake and energy expenditure. In this narrative review, our overall aim is to provide an overview on how FTO gene variants could increase the risk of developing age-related disease conditions. Specifically, we will discuss the state of the literature based on the different hypotheses how FTO regulates body weight and ultimately contributes to cardiometabolic disease and brain disease.
Collapse
Affiliation(s)
- Ingeborg M M Ganeff
- Department of Internal Medicine, Section Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Maxime M Bos
- Department of Internal Medicine, Section Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Diana van Heemst
- Department of Internal Medicine, Section Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Raymond Noordam
- Department of Internal Medicine, Section Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
10
|
Beyer F, García-García I, Heinrich M, Schroeter ML, Sacher J, Luck T, Riedel-Heller SG, Stumvoll M, Villringer A, Witte AV. Neuroanatomical correlates of food addiction symptoms and body mass index in the general population. Hum Brain Mapp 2019; 40:2747-2758. [PMID: 30816616 DOI: 10.1002/hbm.24557] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/15/2019] [Accepted: 02/14/2019] [Indexed: 01/01/2023] Open
Abstract
The food addiction model suggests neurobiological similarities between substance-related and addictive disorders and obesity. While structural brain differences have been consistently reported in these conditions, little is known about the neuroanatomical correlates of food addiction. We therefore aimed to determine whether symptoms of food addiction related to body mass index (BMI), personality, and brain structure in a large population-based sample. Participants of the LIFE-Adult study (n = 625; 20-59 years old, 45% women) answered the Yale Food Addiction Scale (YFAS) and further personality measures, underwent anthropometric assessments and high-resolution 3T-neuroimaging. A higher YFAS symptom score correlated with higher BMI, eating behavior traits, neuroticism, and stress. Higher BMI predicted significantly lower thickness of (pre)frontal, temporal and occipital cortex and increased volume of left nucleus accumbens. In a whole-brain analysis, YFAS symptom score was not associated with significant differences in cortical thickness or subcortical gray matter volumes. A hypothesis-driven Bayes factor analysis suggested a small, additional contribution of YFAS symptom score to lower right lateral orbitofrontal cortex thickness over the effect of BMI. Our study indicates that symptoms of food addiction do not account for the major part of the structural brain differences associated with BMI in the general population. Yet, symptoms of food addiction might explain additional variance in orbitofrontal cortex, a hub area of the reward network. Longitudinal studies implementing both anatomical and functional MRI could further disentangle the neural mechanisms of addictive eating behaviors.
Collapse
Affiliation(s)
- Frauke Beyer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Subproject A1, CRC1052 "Obesity Mechanisms", University of Leipzig, Leipzig, Germany
| | - Isabel García-García
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Matthias Heinrich
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,EGG-Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Matthias L Schroeter
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Cognitive Neurology, University Hospital, Leipzig, Germany
| | - Julia Sacher
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,EGG-Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Tobias Luck
- Institute of Social Medicine, Occupational Health and Public Health (ISAP), University Hospital, Leipzig, Germany
| | - Steffi G Riedel-Heller
- Institute of Social Medicine, Occupational Health and Public Health (ISAP), University Hospital, Leipzig, Germany
| | - Michael Stumvoll
- Clinic for Endocrinology and Nephrology, University Hospital, Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Cognitive Neurology, University Hospital, Leipzig, Germany
| | - A Veronica Witte
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Subproject A1, CRC1052 "Obesity Mechanisms", University of Leipzig, Leipzig, Germany
| |
Collapse
|
11
|
Perlaki G, Molnar D, Smeets PAM, Ahrens W, Wolters M, Eiben G, Lissner L, Erhard P, van Meer F, Herrmann M, Janszky J, Orsi G. Volumetric gray matter measures of amygdala and accumbens in childhood overweight/obesity. PLoS One 2018; 13:e0205331. [PMID: 30335775 PMCID: PMC6193643 DOI: 10.1371/journal.pone.0205331] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/24/2018] [Indexed: 11/18/2022] Open
Abstract
Objectives Neuroimaging data suggest that pediatric overweight and obesity are associated with morphological alterations in gray matter (GM) brain structures, but previous studies using mainly voxel-based morphometry (VBM) showed inconsistent results. Here, we aimed to examine the relationship between youth obesity and the volume of predefined reward system structures using magnetic resonance (MR) volumetry. We also aimed to complement volumetry with VBM-style analysis. Methods Fifty-one Caucasian young subjects (32 females; mean age: 13.8±1.9, range: 10.2–16.5 years) were included. Subjects were selected from a subsample of the I.Family study examined in the Hungarian center. A T1-weighted 1 mm3 isotropic resolution image was acquired. Age- and sex-standardized body mass index (zBMI) was assessed at the day of MRI and ~1.89 years (mean±SD: 689±188 days) before the examination. Obesity related GM alterations were investigated using MR volumetry in five predefined brain structures presumed to play crucial roles in body weight regulation (hippocampus, amygdala, accumbens, caudate, putamen), as well as whole-brain and regional VBM. Results The volumes of accumbens and amygdala showed significant positive correlations with zBMI, while their GM densities were inversely related to zBMI. Voxel-based GM mass also showed significant negative correlation with zBMI when investigated in the predefined amygdala region, but this relationship was mediated by GM density. Conclusions Overweight/obesity related morphometric brain differences already seem to be present in children/adolescents. Our work highlights the disparity between volume and VBM-derived measures and that GM mass (combination of volume and density) is not informative in the context of obesity related volumetric changes. To better characterize the association between childhood obesity and GM morphometry, a combination of volumetric segmentation and VBM methods, as well as future longitudinal studies are necessary. Our results suggest that childhood obesity is associated with enlarged structural volumes, but decreased GM density in the reward system.
Collapse
Affiliation(s)
- Gabor Perlaki
- MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
- Department of Neurology, University of Pecs, Medical School, Pecs, Hungary
- * E-mail:
| | - Denes Molnar
- Department of Pediatrics, University of Pecs, Medical School, Pecs, Hungary
| | - Paul A. M. Smeets
- Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Division of Human Nutrition, Wageningen University & Research, Wageningen, Netherlands
| | - Wolfgang Ahrens
- Leibniz Institute for Prevention Research and Epidemiology—BIPS, Bremen, Germany
| | - Maike Wolters
- Leibniz Institute for Prevention Research and Epidemiology—BIPS, Bremen, Germany
| | - Gabriele Eiben
- Department of Public Health and Community Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Biomedicine and Public Health, School of Health and Education, University of Skövde, Skövde, Sweden
| | - Lauren Lissner
- Department of Public Health and Community Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Peter Erhard
- Center for Cognitive Sciences, University of Bremen, Bremen, Germany
- Department of Neuropsychology and Behavioral Neurobiology, University of Bremen, Bremen, Germany
| | - Floor van Meer
- Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Manfred Herrmann
- Center for Cognitive Sciences, University of Bremen, Bremen, Germany
- Department of Neuropsychology and Behavioral Neurobiology, University of Bremen, Bremen, Germany
| | - Jozsef Janszky
- MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
- Department of Neurology, University of Pecs, Medical School, Pecs, Hungary
| | - Gergely Orsi
- MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
- Department of Neurology, University of Pecs, Medical School, Pecs, Hungary
| | | |
Collapse
|
12
|
Olivo G, Latini F, Wiemerslage L, Larsson EM, Schiöth HB. Disruption of Accumbens and Thalamic White Matter Connectivity Revealed by Diffusion Tensor Tractography in Young Men with Genetic Risk for Obesity. Front Hum Neurosci 2018. [PMID: 29520227 PMCID: PMC5826967 DOI: 10.3389/fnhum.2018.00075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Neurovascular coupling is associated with white matter (WM) structural integrity, and it is regulated by specific subtypes of dopaminergic receptors. An altered activity of such receptors, highly expressed in reward-related regions, has been reported in carriers of obesity-risk alleles of the fat mass and obesity associated (FTO) gene. Among the reward-related regions, the thalamus and the nucleus accumbens are particularly vulnerable to blood pressure dysregulation due to their peculiar anatomo-vascular characteristics, and have been consistently reported to be altered in early-stage obesity. We have thus hypothesized that a disruption in thalamus and nucleus accumbens WM microstructure, possibly on neurovascular basis, could potentially be a predisposing factor underlying the enhanced risk for obesity in the risk-allele carriers. Methods: We have tested WM integrity in 21 male participants genotyped on the FTO risk single nucleotide polymorphisms (SNP) rs9939609, through a deterministic tractography analysis. Only homozygous participants (9 AA, 12 TT) were included. 11 tracts were selected and categorized as following according to our hypothesis: “risk tracts”, “obesity-associated tracts”, and a control tract (forcpes major). We investigated whether an association existed between genotype, body mass index (BMI) and WM microstructural integrity in the “risk-tracts” (anterior thalamic radiation and accumbofrontal fasciculus) compared to other tracts. Moreover, we explored whether WM diffusivity could be related to specific personality traits in terms of punishment and reward sensitivity, as measure by the BIS/BAS questionnaire. Results: An effect of the genotype and an interaction effect of genotype and BMI were detected on the fractional anisotropy (FA) of the “risk tracts”. Correlations between WM diffusivity parameters and measures of punishment and reward sensitivity were also detected in many WM tracts of both networks. Conclusions: A disruption of the structural connectivity from the nucleus accumbens and the thalamus might occur early in carriers of the FTO AA risk-allele, and possibly act as a predisposing factor to the development of obesity.
Collapse
Affiliation(s)
- Gaia Olivo
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Francesco Latini
- Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Lyle Wiemerslage
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Elna-Marie Larsson
- Neuroradiology, Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Qasim A, Turcotte M, de Souza RJ, Samaan MC, Champredon D, Dushoff J, Speakman JR, Meyre D. On the origin of obesity: identifying the biological, environmental and cultural drivers of genetic risk among human populations. Obes Rev 2018; 19:121-149. [PMID: 29144594 DOI: 10.1111/obr.12625] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/28/2017] [Accepted: 09/08/2017] [Indexed: 12/12/2022]
Abstract
Genetic predisposition to obesity presents a paradox: how do genetic variants with a detrimental impact on human health persist through evolutionary time? Numerous hypotheses, such as the thrifty genotype hypothesis, attempt to explain this phenomenon yet fail to provide a justification for the modern obesity epidemic. In this critical review, we appraise existing theories explaining the evolutionary origins of obesity and explore novel biological and sociocultural agents of evolutionary change to help explain the modern-day distribution of obesity-predisposing variants. Genetic drift, acting as a form of 'blind justice,' may randomly affect allele frequencies across generations while gene pleiotropy and adaptations to diverse environments may explain the rise and subsequent selection of obesity risk alleles. As an adaptive response, epigenetic regulation of gene expression may impact the manifestation of genetic predisposition to obesity. Finally, exposure to malnutrition and disease epidemics in the wake of oppressive social systems, culturally mediated notions of attractiveness and desirability, and diverse mating systems may play a role in shaping the human genome. As an important first step towards the identification of important drivers of obesity gene evolution, this review may inform empirical research focused on testing evolutionary theories by way of population genetics and mathematical modelling.
Collapse
Affiliation(s)
- A Qasim
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - M Turcotte
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - R J de Souza
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - M C Samaan
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.,Department of Pediatrics, McMaster University, Hamilton, ON, Canada.,Division of Pediatric Endocrinology, McMaster Children's Hospital, Hamilton, ON, Canada
| | - D Champredon
- Department of Biology, McMaster University, Hamilton, ON, Canada.,Agent-Based Modelling Laboratory, York University, Toronto, ON, Canada
| | - J Dushoff
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - J R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - D Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
14
|
Melnik BC, Schmitz G. Milk's Role as an Epigenetic Regulator in Health and Disease. Diseases 2017; 5:diseases5010012. [PMID: 28933365 PMCID: PMC5456335 DOI: 10.3390/diseases5010012] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 12/16/2022] Open
Abstract
It is the intention of this review to characterize milk's role as an epigenetic regulator in health and disease. Based on translational research, we identify milk as a major epigenetic modulator of gene expression of the milk recipient. Milk is presented as an epigenetic "doping system" of mammalian development. Milk exosome-derived micro-ribonucleic acids (miRNAs) that target DNA methyltransferases are implicated to play the key role in the upregulation of developmental genes such as FTO, INS, and IGF1. In contrast to miRNA-deficient infant formula, breastfeeding via physiological miRNA transfer provides the appropriate signals for adequate epigenetic programming of the newborn infant. Whereas breastfeeding is restricted to the lactation period, continued consumption of cow's milk results in persistent epigenetic upregulation of genes critically involved in the development of diseases of civilization such as diabesity, neurodegeneration, and cancer. We hypothesize that the same miRNAs that epigenetically increase lactation, upregulate gene expression of the milk recipient via milk-derived miRNAs. It is of critical concern that persistent consumption of pasteurized cow's milk contaminates the human food chain with bovine miRNAs, that are identical to their human analogs. Commercial interest to enhance dairy lactation performance may further increase the epigenetic miRNA burden for the milk consumer.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, Faculty of Human Sciences, University of Osnabrück, Am Finkenhügel 7a, D-49076 Osnabrück, Germany.
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany.
| |
Collapse
|
15
|
Genetic risk for obesity predicts nucleus accumbens size and responsivity to real-world food cues. Proc Natl Acad Sci U S A 2016; 114:160-165. [PMID: 27994159 DOI: 10.1073/pnas.1605548113] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Obesity is a major public health concern that involves an interaction between genetic susceptibility and exposure to environmental cues (e.g., food marketing); however, the mechanisms that link these factors and contribute to unhealthy eating are unclear. Using a well-known obesity risk polymorphism (FTO rs9939609) in a sample of 78 children (ages 9-12 y), we observed that children at risk for obesity exhibited stronger responses to food commercials in the nucleus accumbens (NAcc) than children not at risk. Similarly, children at a higher genetic risk for obesity demonstrated larger NAcc volumes. Although a recessive model of this polymorphism best predicted body mass and adiposity, a dominant model was most predictive of NAcc size and responsivity to food cues. These findings suggest that children genetically at risk for obesity are predisposed to represent reward signals more strongly, which, in turn, may contribute to unhealthy eating behaviors later in life.
Collapse
|
16
|
Wiemerslage L, Nilsson EK, Solstrand Dahlberg L, Ence-Eriksson F, Castillo S, Larsen AL, Bylund SBA, Hogenkamp PS, Olivo G, Bandstein M, Titova OE, Larsson EM, Benedict C, Brooks SJ, Schiöth HB. An obesity-associated risk allele within the FTO gene affects human brain activity for areas important for emotion, impulse control and reward in response to food images. Eur J Neurosci 2016; 43:1173-80. [PMID: 26797854 DOI: 10.1111/ejn.13177] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/30/2015] [Accepted: 01/13/2016] [Indexed: 12/24/2022]
Abstract
Understanding how genetics influences obesity, brain activity and eating behaviour will add important insight for developing strategies for weight-loss treatment, as obesity may stem from different causes and as individual feeding behaviour may depend on genetic differences. To this end, we examined how an obesity risk allele for the FTO gene affects brain activity in response to food images of different caloric content via functional magnetic resonance imaging (fMRI). Thirty participants homozygous for the rs9939609 single nucleotide polymorphism were shown images of low- or high-calorie food while brain activity was measured via fMRI. In a whole-brain analysis, we found that people with the FTO risk allele genotype (AA) had increased activity compared with the non-risk (TT) genotype in the posterior cingulate, cuneus, precuneus and putamen. Moreover, higher body mass index in the AA genotype was associated with reduced activity to food images in areas important for emotion (cingulate cortex), but also in areas important for impulse control (frontal gyri and lentiform nucleus). Lastly, we corroborate our findings with behavioural scales for the behavioural inhibition and activation systems. Our results suggest that the two genotypes are associated with differential neural processing of food images, which may influence weight status through diminished impulse control and reward processing.
Collapse
Affiliation(s)
- Lyle Wiemerslage
- Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden
| | - Emil K Nilsson
- Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden
| | - Linda Solstrand Dahlberg
- Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden
| | - Fia Ence-Eriksson
- Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden
| | - Sandra Castillo
- Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden
| | - Anna L Larsen
- Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden
| | - Simon B A Bylund
- Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden
| | - Pleunie S Hogenkamp
- Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden
| | - Gaia Olivo
- Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden
| | - Marcus Bandstein
- Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden
| | - Olga E Titova
- Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden
| | - Elna-Marie Larsson
- Section of Neuroradiology, Department of Radiology, Uppsala University, Uppsala, Sweden
| | - Christian Benedict
- Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden
| | - Samantha J Brooks
- Department of Psychiatry, University of Cape Town, Old Groote Schuur Hospital, Cape Town, South Africa
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Biomedicinska Centrum (BMC), Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden
| |
Collapse
|