1
|
Bergheim I, Moreno-Navarrete JM. The relevance of intestinal barrier dysfunction, antimicrobial proteins and bacterial endotoxin in metabolic dysfunction-associated steatotic liver disease. Eur J Clin Invest 2024; 54:e14224. [PMID: 38634717 DOI: 10.1111/eci.14224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is a leading cause of end-stage liver disease associated with increased mortality and cardiovascular disease. Obesity and diabetes are the most important risk factors of MASLD. It is well-established that obesity-associated insulin resistance leads to a situation of tissue lipotoxicity characterized by an accumulation of excess fat in non-fat tissues such as the liver, promoting the development of MASLD, and its progression into metabolic dysfunction-associated steatohepatitis. METHODS Here, we aimed to review the impact of disrupted intestinal permeability, antimicrobial proteins and bacterial endotoxin in the development and progression of MASLD. RESULTS AND CONCLUSION Recent studies demonstrated that obesity- and obesogenic diets-associated alterations of intestinal microbiota along with the disruption of intestinal barrier integrity, the alteration in antimicrobial proteins and, in consequence, an enhanced translocation of bacterial endotoxin into bloodstream might contribute to this pathological process through to impacting liver metabolism and inflammation.
Collapse
Affiliation(s)
- Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - José María Moreno-Navarrete
- Nutrition, Eumetabolism and Health Group, Institut d'Investigació Biomèdica de Girona (IDIBGI-CERCA), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, Universitat de Girona, Girona, Spain
| |
Collapse
|
2
|
Mashaqi S, Rangan P, Saleh AA, Abraham I, Gozal D, Quan SF, Parthasarathy S. Biomarkers of gut barrier dysfunction in obstructive sleep apnea: A systematic review and meta-analysis. Sleep Med Rev 2023; 69:101774. [PMID: 37028145 DOI: 10.1016/j.smrv.2023.101774] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 04/03/2023]
Abstract
We conducted this systematic review and meta-analysis to evaluate the impact of obstructive sleep apnea (OSA) on gut barrier dysfunction as represented by the following biomarkers: zonulin, lipopolysaccharide, lipopolysaccharide binding protein, intestinal fatty acid binding protein, and lactic acid. A comprehensive search of the literature was conducted in Ovid MEDLINE, Embase, Scopus, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov without language restrictions from inception to October 2022. The analysis of all outcomes was performed using a random-effects model. We included eight studies (seven cross sectional and one case control) in the final quantitative synthesis with a total of 897 patients. We concluded that OSA was associated with higher levels of gut barrier dysfunction biomarkers [Hedges' g = 0.73 (95%CI 0.37-1.09, p < 0.01). Biomarker levels were positively correlated with the apnea-hypopnea index [r = 0.48 (95%CI 0.35-0.6, p < 0.01)] and oxygen desaturation index [r = 0.30 (95%CI 0.17-0.42, p < 0.01)], and negatively correlated with the nadir oxygen desaturation values [r = -0.45 (95%CI - 0.55 - - 0.32, p < 0.01). Our systematic review and meta-analysis suggests that OSA is associated with gut barrier dysfunction. Furthermore, OSA severity appears to be correlated with higher biomarkers of gut barrier dysfunction. PROSPERO REGISTRATION NUMBER: CRD42022333078.
Collapse
Affiliation(s)
- Saif Mashaqi
- Department of Pulmonary, Allergy, Critical Care, and Sleep Medicine, The University of Arizona, College of Medicine Tucson, 1625 N Campbell Ave, Tucson, AZ, 85719, USA.
| | - Pooja Rangan
- Division of Clinical Data Analytics and Decision Support, Department of Internal Medicine, The University of Arizona College of Medicine Phoenix, AZ, USA.
| | - Ahlam A Saleh
- Health Sciences Library, The University of Arizona, 1501 N Campbell Ave, Tucson, AZ, 85724, USA.
| | - Ivo Abraham
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, AZ, USA; Department of Family and Community Medicine, College of Medicine, The University of Arizona, Tucson, AZ, USA.
| | - David Gozal
- Department of Child Health, University of Missouri, Columbia, MO, USA.
| | - Stuart F Quan
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Harvard Medical School, USA.
| | - Sairam Parthasarathy
- Department of Pulmonary, Allergy, Critical Care, and Sleep Medicine, The University of Arizona, College of Medicine Tucson, USA.
| |
Collapse
|
3
|
Latorre J, Díaz-Trelles R, Comas F, Gavaldà-Navarro A, Milbank E, Dragano N, Morón-Ros S, Mukthavaram R, Ortega F, Castells-Nobau A, Oliveras-Cañellas N, Ricart W, Karmali PP, Tachikawa K, Chivukula P, Villarroya F, López M, Giralt M, Fernández-Real JM, Moreno-Navarrete JM. Downregulation of hepatic lipopolysaccharide binding protein improves lipogenesis-induced liver lipid accumulation. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:599-613. [PMID: 36090751 PMCID: PMC9418749 DOI: 10.1016/j.omtn.2022.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022]
Abstract
Circulating lipopolysaccharide-binding protein (LBP) is increased in individuals with liver steatosis. We aimed to evaluate the possible impact of liver LBP downregulation using lipid nanoparticle-containing chemically modified LBP small interfering RNA (siRNA) (LNP-Lbp UNA-siRNA) on the development of fatty liver. Weekly LNP-Lbp UNA-siRNA was administered to mice fed a standard chow diet, a high-fat and high-sucrose diet, and a methionine- and choline-deficient diet (MCD). In mice fed a high-fat and high-sucrose diet, which displayed induced liver lipogenesis, LBP downregulation led to reduced liver lipid accumulation, lipogenesis (mainly stearoyl-coenzyme A desaturase 1 [Scd1]) and lipid peroxidation-associated oxidative stress markers. LNP-Lbp UNA-siRNA also resulted in significantly decreased blood glucose levels during an insulin tolerance test. In mice fed a standard chow diet or an MCD, in which liver lipogenesis was not induced or was inhibited (especially Scd1 mRNA), liver LBP downregulation did not impact on liver steatosis. The link between hepatocyte LBP and lipogenesis was further confirmed in palmitate-treated Hepa1-6 cells, in primary human hepatocytes, and in subjects with morbid obesity. Altogether, these data indicate that siRNA against liver Lbp mRNA constitutes a potential target therapy for obesity-associated fatty liver through the modulation of hepatic Scd1.
Collapse
Affiliation(s)
- Jessica Latorre
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
| | | | - Ferran Comas
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
| | - Aleix Gavaldà-Navarro
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine (IBUB), University of Barcelona, CIBEROBN (CB06/03/025), 08028 Barcelona, Catalonia, Spain
| | - Edward Milbank
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain
| | - Nathalia Dragano
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain
| | - Samantha Morón-Ros
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine (IBUB), University of Barcelona, CIBEROBN (CB06/03/025), 08028 Barcelona, Catalonia, Spain
| | | | - Francisco Ortega
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
| | - Anna Castells-Nobau
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
| | - Núria Oliveras-Cañellas
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
| | | | | | | | - Francesc Villarroya
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine (IBUB), University of Barcelona, CIBEROBN (CB06/03/025), 08028 Barcelona, Catalonia, Spain
| | - Miguel López
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain
| | - Marta Giralt
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine (IBUB), University of Barcelona, CIBEROBN (CB06/03/025), 08028 Barcelona, Catalonia, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
- Department of Medicine, University of Girona, 17003 Girona, Spain
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
- Corresponding author José María Moreno-Navarrete, PhD, Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain.
| |
Collapse
|
4
|
Lou C, Liu J, Ren Z, Ji J, Ma H, Dong H, Wang L, Zhang X, Niu N. Analysis of the Value of Serum Biomarker LBP in the Diagnosis of Spinal Tuberculosis. Infect Drug Resist 2022; 15:4915-4926. [PMID: 36060237 PMCID: PMC9439074 DOI: 10.2147/idr.s377182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
Objective To investigate the correlation between the expression of lipopolysaccharide-binding protein (LBP) in peripheral blood of spinal tuberculosis and clinical diagnosis and to evaluate its value as a diagnostic marker of spinal tuberculosis. Methods In the experimental group, clinical history data and peripheral blood were collected from 100 patients with spinal tuberculosis who were admitted to the Department of Spine Surgery, General Hospital of Ningxia Medical University from May 2017 to May 2020, and peripheral blood was collected from 30 healthy volunteers in the control group. Screening of differential LBP expression by proteomics and ELISA to verify its expression in peripheral blood of spinal tuberculosis patients. t-test, Spearman analysis, linear regression and ROC curve were used to evaluate the diagnostic value of LBP in peripheral blood for spinal tuberculosis. Results The expression of LBP protein in peripheral blood is significantly higher in patients with spinal tuberculosis than in the normal population; LBP assay values were significantly and positively correlated with CRP and ESR values (P < 0.01); the AUC of LBP in the diagnosis of spinal tuberculosis for pathological examination, bacteriological culture, T-cell spot test for tuberculosis infection (T-SPOT), imaging diagnosis, and acid fast bacillus were, respectively, 0.677 (P < 0.01), 0.707 (P < 0.01), 0.751 (P < 0.01), 0.714 (P < 0.01), and 0.656 (P < 0.05), and there was a correlation between LBP and the diagnostic evaluation of spinal tuberculosis. Conclusion LBP could be a new candidate biomarker for the diagnosis of spinal tuberculosis.
Collapse
Affiliation(s)
- Caili Lou
- Department of Spinal Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
- Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| | - Jian Liu
- Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| | - Zhibo Ren
- Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| | - Jinke Ji
- Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| | - Hongbao Ma
- Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| | - Hui Dong
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| | - Linan Wang
- Clinical Medical School, Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| | - Xu Zhang
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
- Xu Zhang, Institute of Medical Sciences, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Yinchuan, Ningxia, 750004, People’s Republic of China, Email
| | - Ningkui Niu
- Department of Spinal Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
- Correspondence: Ningkui Niu, Department of Spinal Surgery, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Yinchuan, 750004, People’s Republic of China, Tel +86 13629593280, Email
| |
Collapse
|
5
|
Latorre J, Ortega F, Oliveras-Cañellas N, Comas F, Lluch A, Gavaldà-Navarro A, Morón-Ros S, Ricart W, Villarroya F, Giralt M, Fernández-Real JM, Moreno-Navarrete JM. Specific adipose tissue Lbp gene knockdown prevents diet-induced body weight gain, impacting fat accretion-related gene and protein expression. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 27:870-879. [PMID: 35141047 PMCID: PMC8807983 DOI: 10.1016/j.omtn.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 01/07/2022] [Indexed: 11/15/2022]
Abstract
Lipopolysaccharide binding protein (Lbp) has been recently identified as a relevant component of innate immunity response associated to adiposity. Here, we aimed to investigate the impact of adipose tissue Lbp on weight gain and white adipose tissue (WAT) in male and female mice fed an obesogenic diet. Specific adipose tissue Lbp gene knockdown was achieved through lentiviral particles containing shRNA-Lbp injected through surgery intervention. In males, WAT Lbp mRNA levels increased in parallel to fat accretion, and specific WAT Lbp gene knockdown led to reduced body weight gain, decreased fat accretion-related gene and protein expression, and increased inguinal WAT basal lipase activity, in parallel to lowered plasma free fatty acids, leptin, triglycerides but higher glycerol levels, resulting in slightly improved insulin action in the insulin tolerance test. In both males and females, inguinal WAT Lbp gene knockdown resulted in increased Ucp1 and Ppargc1a mRNA and Ucp1 protein levels, confirming adipose Lbp as a WAT browning repressor. In perigonadal WAT, Lbp gene knockdown also resulted in increased Ucp1 mRNA levels, but only in female mice, in which it was 500-fold increased. These data suggest specific adipose tissue Lbp gene knockdown as a possible therapeutic approach in the prevention of obesity-associated fat accretion.
Collapse
Affiliation(s)
- Jessica Latorre
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN) and Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Francisco Ortega
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN) and Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Núria Oliveras-Cañellas
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN) and Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Ferran Comas
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN) and Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Aina Lluch
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN) and Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Aleix Gavaldà-Navarro
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN) and Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Biochemistry and Molecular Biomedicine, Institut de Biomedicina-Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Samantha Morón-Ros
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN) and Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Biochemistry and Molecular Biomedicine, Institut de Biomedicina-Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN) and Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Francesc Villarroya
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN) and Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Biochemistry and Molecular Biomedicine, Institut de Biomedicina-Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Marta Giralt
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN) and Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Biochemistry and Molecular Biomedicine, Institut de Biomedicina-Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Universitat de Barcelona, 08028 Barcelona, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN) and Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, 17071 Girona, Spain
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), 17190 Salt, Spain
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN) and Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, 17071 Girona, Spain
- Corresponding author J.M. Moreno-Navarrete, Ph.D, Section of Nutrition, Eumetabolism and Health, Biomedical Research Institute of Girona “Dr Josep Trueta”, C/ Dr. Castany s/n, 17190 Salt, Spain.
| |
Collapse
|
6
|
Islam T, Koboziev I, Albracht-Schulte K, Mistretta B, Scoggin S, Yosofvand M, Moussa H, Zabet-Moghaddam M, Ramalingam L, Gunaratne PH, Moustaid-Moussa N. Curcumin Reduces Adipose Tissue Inflammation and Alters Gut Microbiota in Diet-Induced Obese Male Mice. Mol Nutr Food Res 2021; 65:e2100274. [PMID: 34510720 DOI: 10.1002/mnfr.202100274] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/04/2021] [Indexed: 12/24/2022]
Abstract
SCOPE Obesity prevalence continues to increase and contribute to metabolic diseases, potentially by driving systemic inflammation. Curcumin is an anti-inflammatory spice with claimed health benefits. However, mechanisms by which curcumin may reduce obesity-associated inflammation are poorly understood; thus, it is hypothesized that benefits of curcumin consumption may occur through reduced white adipose tissue (WAT) inflammation and/or beneficial changes in gut bacteria. METHODS AND RESULTS Male B6 mice are fed high-fat diets (HFD, 45% kcal fat) or HFD supplemented with 0.4% (w/w) curcumin (HFC) for 14 weeks. Curcumin supplementation significantly reduces adiposity and total macrophage infiltration in WAT, compared to HFD group, consistent with reduced mRNA levels of M1 (Cd80, Cd38, Cd11c) and M2 (Arginase-1) macrophage markers. Moreover, curcumin supplementation reduces expression of other key pro-inflammatory genes, such as NF-κB p65 subunit (p65), Stat1, Tlr4, and Il6, in WAT (p < 0.05). Using microbial 16S RNA sequencing, it is demonstrated that the relative abundance of the Lactococcus, Parasutterella, and Turicibacter genera are increased in the HFC group versus HFD. CONCLUSIONS Curcumin exerts protective metabolic effects in dietary obesity, in part through downregulation of adipose tissue inflammation, which may be mediated by alterations in composition of gut microbiota, and metabolism of curcumin into curcumin-O-glucuronide.
Collapse
Affiliation(s)
- Tariful Islam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA.,Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Iurii Koboziev
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA.,Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Kembra Albracht-Schulte
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA.,Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Brandon Mistretta
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Shane Scoggin
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA.,Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Mohammad Yosofvand
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA.,Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Hanna Moussa
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA.,Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Masoud Zabet-Moghaddam
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA.,Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA.,Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Preethi H Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA.,Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
7
|
Farhadi S, Shodja Ghias J, Hasanpur K, Mohammadi SA, Ebrahimie E. Molecular mechanisms of fat deposition: IL-6 is a hub gene in fat lipolysis, comparing thin-tailed with fat-tailed sheep breeds. Arch Anim Breed 2021; 64:53-68. [PMID: 34084904 PMCID: PMC8130542 DOI: 10.5194/aab-64-53-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
Tail fat content affects meat quality and varies significantly among different breeds of sheep. Ghezel (fat-tailed) and Zel (thin-tailed) are two important Iranian local sheep breeds with different patterns of fat storage. The current study presents the transcriptome characterization of tail fat using RNA sequencing in order to get a better comprehension of the molecular mechanism of lipid storage in the two mentioned sheep breeds. Seven (Zel = 4 and Ghezel = 3) 7-month-old male lambs were used for this experiment. The results of sequencing were analyzed with bioinformatics methods, including differentially expressed genes (DEGs) identification, functional enrichment analysis, structural classification of proteins, protein-protein interaction (PPI) and network and module analyses. Some of the DEGs, such as LIPG, SAA1, SOCS3, HIF-1 α , and especially IL-6, had a close association with lipid metabolism. Furthermore, functional enrichment analysis revealed pathways associated with fat deposition, including "fatty acid metabolism", "fatty acid biosynthesis" and "HIF-1 signaling pathway". The structural classification of proteins showed that major down-regulated DEGs in the Zel (thin-tailed) breed were classified under transporter class and that most of them belonged to the solute carrier transporter (SLC) families. In addition, DEGs under the transcription factor class with an important role in lipolysis were up-regulated in the Zel (thin-tailed) breed. Also, network analysis revealed that IL-6 and JUNB were hub genes for up-regulated PPI networks, and HMGCS1, VPS35 and VPS26A were hub genes for down-regulated PPI networks. Among the up-regulated DEGs, the IL-6 gene seems to play an important role in lipolysis of tail fat in thin-tailed sheep breeds via various pathways such as tumor necrosis factor (TNF) signaling and mitogen-activated protein kinase (MAPK) signaling pathways. Due to the probable role of the IL-6 gene in fat lipolysis and also due to the strong interaction of IL-6 with the other up-regulated DEGs, it seems that IL-6 accelerates the degradation of lipids in tail fat cells.
Collapse
Affiliation(s)
- Sana Farhadi
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Jalil Shodja Ghias
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Karim Hasanpur
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | | | - Esmaeil Ebrahimie
- School of Animal and Veterinary Sciences, The University of Adelaide, South Australia 5371, Australia
- School of BioSciences, The University of Melbourne, Melbourne, Australia
- Genomics Research Platform, School of Life Sciences, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
8
|
Comas F, Latorre J, Ortega F, Oliveras-Cañellas N, Lluch A, Ricart W, Fernández-Real JM, Moreno-Navarrete JM. Permanent cystathionine-β-Synthase gene knockdown promotes inflammation and oxidative stress in immortalized human adipose-derived mesenchymal stem cells, enhancing their adipogenic capacity. Redox Biol 2020; 42:101668. [PMID: 32800520 PMCID: PMC8113015 DOI: 10.1016/j.redox.2020.101668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
In the present study, we aimed to investigate the impact of permanent cystathionine-β-Synthase (CBS) gene knockdown in human telomerase reverse transcriptase (hTERT) immortalized human adipose-derived mesenchymal stem cells (ASC52telo) and in their capacity to differentiate into adipocytes. CBS gene KD in ASC52telo cells led to increased cellular inflammation (IL6, CXCL8, TNF) and oxidative stress markers (increased intracellular reactive oxygen species and decreased reduced glutathione levels) in parallel to decreased H2S production and rejuvenation (LC3 and SIRT1)-related gene expression. In addition, CBS gene KD in ASC52telo cells resulted in altered mitochondrial respiratory function, characterised by decreased basal respiration (specifically proton leak) and spare respiratory capacity, without significant effects on cell viability and proliferation. In this context, shCBS-ASC52telo cells displayed enhanced adipogenic (FABP4, ADIPOQ, SLC2A4, CEBPA, PPARG)-, lipogenic (FASN, DGAT1)- and adipocyte (LEP, LBP)-related gene expression markers, decreased expression of proinflammatory cytokines, and increased intracellular lipid accumulation during adipocyte differentiation compared to control ASC52telo cells. Otherwise, the increased adipogenic potential of shCBS-ASC52telo cells was detrimental to the ability to differentiate into osteogenic linage. In conclusion, this study demonstrated that permanent CBS gene KD in ASC52telo cells promotes a cellular senescence phenotype with a very increased adipogenic potential, promoting a non-physiological enhanced adipocyte differentiation with excessive lipid storage.
Collapse
Affiliation(s)
- Ferran Comas
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Jèssica Latorre
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Francisco Ortega
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Núria Oliveras-Cañellas
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Aina Lluch
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain; Department of Medicine, Universitat de Girona, Girona, Spain.
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain; Department of Medicine, Universitat de Girona, Girona, Spain.
| |
Collapse
|
9
|
Moreno-Navarrete JM, Fernandez-Real JM. The gut microbiota modulates both browning of white adipose tissue and the activity of brown adipose tissue. Rev Endocr Metab Disord 2019; 20:387-397. [PMID: 31776853 DOI: 10.1007/s11154-019-09523-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Given the increasing worldwide prevalence of obesity and associated metabolic disturbances, novel therapeutic strategies are imperatively required. A plausible manner to increase energy expenditure is the enhancement of thermogenic pathways in white (WAT) and brown adipose tissue (BAT). In the last 15 years, the identification of novel endogenous mechanisms to promote BAT activity or browning of WAT has pointed at gut microbiota as an important modulator of host metabolic homeostasis and energy balance. In this review, we focused on the relationship between gut microbiota composition and adipose tissue thermogenic program (including BAT activity and browning of WAT) in both physiological and stress conditions. Specifically, we reviewed the effects of fasting, caloric restriction, cold stress and metabolic endotoxemia on both browning and gut microbiota shifts. Mechanistically speaking, processes related to bile acid metabolism and the endocannabinoid system seem to play an important role. In summary, the gut microbiota seems to impact WAT and BAT physiology at multiple levels.
Collapse
Affiliation(s)
- José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain.
- Department of Medicine, Universitat de Girona, Girona, Spain.
| | - José Manuel Fernandez-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
- Department of Medicine, Universitat de Girona, Girona, Spain
| |
Collapse
|
10
|
Wang N, Song X, Liu L, Niu L, Wang X, Song X, Xie L. Circulating exosomes contain protein biomarkers of metastatic non-small-cell lung cancer. Cancer Sci 2018; 109:1701-1709. [PMID: 29573061 PMCID: PMC5980308 DOI: 10.1111/cas.13581] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/07/2018] [Accepted: 03/13/2018] [Indexed: 01/01/2023] Open
Abstract
The present study aimed to investigate the overall changes in exosomal proteomes in metastatic and non‐metastatic non‐small‐cell lung cancers (NSCLC) and healthy human serum samples, and evaluate the potential of serum exosomal biomarkers to predict NSCLC metastasis. Tandem mass tags combined with multidimensional liquid chromatography and mass spectrometry analysis were used for screening the proteomic profiles of serum samples. Quantitative proteome, significant pathway, and functional categories of patients with metastatic and non‐metastatic NSCLC and healthy donors were investigated. In total, 552 proteins of the 628 protein groups identified were quantified. Bioinformatics analysis indicated that quantifiable proteins were mainly involved in multiple biological functions, metastasis‐related pathways. Moreover, lipopolysaccharide‐binding proteins (LBP) in the exosomes were found to be well distinguished between patients with metastatic and patients with non‐metastatic NSCLC. Area under the curve (AUC) was 0.803 with a sensitivity of 83.1% and a specificity of 67% (P < .0001). Circulating LBP were also well distinguishable between metastatic and non‐metastatic NSCLC, the AUC was 0.683 with a sensitivity of 79.5% and a specificity of 47.2% (P = .005). This novel study provided a reference proteome map for metastatic NSCLC. Patients with metastatic and non‐metastatic NSCLC differed in exosome‐related proteins in the serum. LBP might be promising and effective candidates of metastatic NSCLC.
Collapse
Affiliation(s)
- Ning Wang
- School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences, Jinan, China.,Department of Clinical Laboratory, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Xingguo Song
- Shandong Cancer Hospital & Institute, Shandong Academy of Medical Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Lisheng Liu
- Department of Clinical Laboratory, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China.,Shandong Cancer Hospital & Institute, Shandong Academy of Medical Sciences, Jinan, China
| | - Limin Niu
- School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences, Jinan, China.,Department of Clinical Laboratory, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Xingwu Wang
- Shandong Cancer Hospital & Institute, Shandong Academy of Medical Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Xianrang Song
- Department of Clinical Laboratory, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China.,Shandong Cancer Hospital & Institute, Shandong Academy of Medical Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Li Xie
- Department of Clinical Laboratory, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China.,Shandong Cancer Hospital & Institute, Shandong Academy of Medical Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|