1
|
Mohiuddin O, de Maissin H, Pravdivtsev AN, Brahms A, Herzog M, Schröder L, Chekmenev EY, Herges R, Hövener JB, Zaitsev M, von Elverfeldt D, Schmidt AB. Rapid in situ carbon-13 hyperpolarization and imaging of acetate and pyruvate esters without external polarizer. Commun Chem 2024; 7:240. [PMID: 39443619 PMCID: PMC11499913 DOI: 10.1038/s42004-024-01316-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Hyperpolarized 13C MRI visualizes real-time metabolic processes in vivo. In this study, we achieved high 13C polarization in situ in the bore of an MRI system for precursor molecules of most widely employed hyperpolarized agents: [1-13C]acetate and [1-13C]pyruvate ethyl esters in their perdeuterated forms, enhancing hyperpolarization lifetimes, hyperpolarized to P13C ≈ 28% at 80 mM concentration and P13C ≈ 19% at 10 mM concentration, respectively. Using vinyl esters as unsaturated Parahydrogen-Induced Polarization via Side-Arm Hydrogenation (PHIP-SAH) precursors and our novel polarization setup, we achieved these hyperpolarization levels by fast side-arm hydrogenation in acetone-d6 at elevated temperatures (up to 90°C) and hydrogenation pressures (up to 32 bar). We optimized the hyperpolarization process, reducing it to under 10 s, and employed advanced pulse sequences to enhance the polarization transfer efficiency. The hyperpolarization system has a small footprint, allowing it to be positioned in the same magnet, where 13C MRI is performed. We exemplified the utility of the design with sub-second in situ 13C MRI of ethyl [1-13C]pyruvate-d6. However, challenges remain in side-arm cleavage and purification in the MRI system to extract highly polarized aqueous agent solutions. Our results showcase efficient and rapid 13C hyperpolarization of these metabolite precursors in an MRI system with minimal additional hardware, promising to enhance future throughput and access to hyperpolarized 13C MRI.
Collapse
Affiliation(s)
- Obaid Mohiuddin
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
| | - Henri de Maissin
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOINCC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein and Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Arne Brahms
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn-Platz 5, 24118, Kiel, Germany
| | - Marvin Herzog
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Leif Schröder
- Division of Translational Molecular Imaging, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Eduard Y Chekmenev
- Integrative Biosciences (Ibio), Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | - Rainer Herges
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn-Platz 5, 24118, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOINCC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein and Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Maxim Zaitsev
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
| | - Dominik von Elverfeldt
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
| | - Andreas B Schmidt
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany.
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.
- Integrative Biosciences (Ibio), Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA.
| |
Collapse
|
2
|
Santi MD, Hune TLK, Rodriguez GG, Fries LM, Mei R, Sternkopf S, Elsaßer J, Glöggler S. Parahydrogen-enhanced pH measurements using [1- 13C]bicarbonate derived from non-enzymatic decarboxylation of [1- 13C]pyruvate-d 3. Analyst 2024; 149:5022-5033. [PMID: 39230365 PMCID: PMC11373534 DOI: 10.1039/d4an00832d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Alterations in pH are a hallmark in several pathologies including cancer, ischemia, and inflammation. Non-invasive magnetic resonance methods to measure pH offer a new approach for early diagnosis of diseases characterized by acid-base imbalances. The hyperpolarization with parahydrogen-induced polarization (PHIP) enhances inherently low signals in magnetic resonance experiments by several orders of magnitude and offers a suitable platform to obtain biocompatible markers in less than one minute. Here, we present an optimized preparation of an hyperpolarized H13CO3-/13CO2 pH sensor via non-enzymatic decarboxylation with H2O2 of [1-13C]pyruvate-d3 obtained by PHIP at 7 T. An improved 13C polarization of purified [1-13C]pyruvate-d3 in water with 36.65 ± 0.06% polarization was obtained starting from 50 mM precursor. Subsequent decarboxylation, H13CO3-/13CO2 exhibited 12.46 ± 0.01% of polarization at physiological pH, 45 seconds after the reaction start. Considering the dilution factor that [1-13C]pyruvate-d3 exhibits in vivo, we optimized our methodology to test the accuracy of the pH sensor at single digit millimolar concentration. In vitro pH estimations on phantoms and cell culture media demonstrated accurate pH calculations with uncertainties of less than 0.08 units. These promising results highlight the efficiency of a pH sensor generated via PHIP in less than one minute, with remarkable polarization, and biocompatibility suitable for future in vivo studies.
Collapse
Affiliation(s)
- Maria Daniela Santi
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075 Göttigen, German
| | - Theresa Luca Katrin Hune
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075 Göttigen, German
| | - Gonzalo Gabriel Rodriguez
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075 Göttigen, German
| | - Lisa M Fries
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075 Göttigen, German
| | - Ruhuai Mei
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075 Göttigen, German
| | - Sonja Sternkopf
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075 Göttigen, German
| | - Josef Elsaßer
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075 Göttigen, German
| | - Stefan Glöggler
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075 Göttigen, German
| |
Collapse
|
3
|
Fries LM, Hune TLK, Sternkopf S, Mamone S, Schneider KL, Schulz-Heddergott R, Becker D, Glöggler S. Real-Time Metabolic Magnetic Resonance Spectroscopy of Pancreatic and Colon Cancer Tumor-Xenografts with Parahydrogen Hyperpolarized 1- 13C Pyruvate-d 3. Chemistry 2024; 30:e202400187. [PMID: 38887134 DOI: 10.1002/chem.202400187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Parahydrogen-induced polarization (PHIP) is an emerging technique to enhance the signal of stable isotope metabolic contrast agents for Magnetic Resonance (MR). The objective of this study is to continue establishing 1-13C-pyruvate-d3, signal-enhanced via PHIP, as a hyperpolarized contrast agent, obtained in seconds, to monitor metabolism in human cancer. Our focus was on human pancreatic and colon tumor xenografts. 1-13C-vinylpyruvate-d6 was hydrogenated using parahydrogen. Thereafter, the polarization of the protons was transferred to 13C. Following a workup procedure, the free hyperpolarized 1-13C-pyruvate-d3 was obtained in clean aqueous solution. After injection into animals bearing either pancreatic or colon cancer xenografts, slice-selective MR spectra were acquired and analyzed to determine rate constants of metabolic conversion into lactate and alanine. 1-13C-pyruvate-d3 proved to follow the increased metabolic rate to lactate and alanine in the tumor xenografts.
Collapse
Affiliation(s)
- Lisa M Fries
- NMR Signal Enhancement Group Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Theresa L K Hune
- NMR Signal Enhancement Group Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Sonja Sternkopf
- NMR Signal Enhancement Group Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Salvatore Mamone
- NMR Signal Enhancement Group Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- Present address: Department of Life, Health and Environmental Science, University of L'Aquila, Via Vetoio, Localita' Coppito, 67100, L'Aquila, Italy
| | - Kim Lucia Schneider
- Department of Molecular Oncology, University Medical Center Göttingen, Justus von Liebig Weg 11, 37077, Göttingen, Germany
- Clinical Research Unit 5002, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Ramona Schulz-Heddergott
- Department of Molecular Oncology, University Medical Center Göttingen, Justus von Liebig Weg 11, 37077, Göttingen, Germany
- Clinical Research Unit 5002, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Dorothea Becker
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| |
Collapse
|
4
|
Salnikov OG, Trofimov IA, Bender ZT, Trepakova AI, Xu J, Wibbels GL, Shchepin RV, Koptyug IV, Barskiy DA. Parahydrogen-Induced Polarization of 14N Nuclei. Angew Chem Int Ed Engl 2024; 63:e202402877. [PMID: 38523072 DOI: 10.1002/anie.202402877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 03/26/2024]
Abstract
Hyperpolarization techniques provide a dramatic increase in sensitivity of nuclear magnetic resonance spectroscopy and imaging. In spite of the outstanding progress in solution-state hyperpolarization of spin-1/2 nuclei, hyperpolarization of quadrupolar nuclei remains challenging. Here, hyperpolarization of quadrupolar 14N nuclei with natural isotopic abundance of >99 % is demonstrated. This is achieved via pairwise addition of parahydrogen to tetraalkylammonium salts with vinyl or allyl unsaturated moieties followed by a subsequent polarization transfer from 1H to 14N nuclei at high magnetic field using PH-INEPT or PH-INEPT+ radiofrequency pulse sequence. Catalyst screening identified water-soluble rhodium complex [Rh(P(m-C6H4SO3Na)3)3Cl] as the most efficient catalyst for hyperpolarization of the substrates under study, providing up to 1.3 % and up to 6.6 % 1H polarization in the cases of vinyl and allyl precursors, respectively. The performance of PH-INEPT and PH-INEPT+ pulse sequences was optimized with respect to interpulse delays, and the resultant experimental dependences were in good agreement with simulations. As a result, 14N NMR signal enhancement of up to 760-fold at 7.05 T (corresponding to 0.15 % 14N polarization) was obtained.
Collapse
Affiliation(s)
- Oleg G Salnikov
- International Tomography Center SB RAS, 3 A Institutskaya St., Novosibirsk, 630090, Russia
| | - Ivan A Trofimov
- International Tomography Center SB RAS, 3 A Institutskaya St., Novosibirsk, 630090, Russia
- Current affiliation, Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University of Freiburg, University Medical Center Freiburg, Freiburg, 79106, Germany
| | - Zachary T Bender
- South Dakota School of Mines & Technology, Rapid City, South Dakota, 57701, United States
| | - Alexandra I Trepakova
- International Tomography Center SB RAS, 3 A Institutskaya St., Novosibirsk, 630090, Russia
| | - Jingyan Xu
- Helmholtz Institute Mainz, GSI Helmholtz Center for Heavy Ion Research GmbH, and, Institute of Physics, Johannes Gutenberg-Universität, Mainz, 55128, Germany
| | - Garrett L Wibbels
- South Dakota School of Mines & Technology, Rapid City, South Dakota, 57701, United States
| | - Roman V Shchepin
- South Dakota School of Mines & Technology, Rapid City, South Dakota, 57701, United States
| | - Igor V Koptyug
- International Tomography Center SB RAS, 3 A Institutskaya St., Novosibirsk, 630090, Russia
| | - Danila A Barskiy
- Helmholtz Institute Mainz, GSI Helmholtz Center for Heavy Ion Research GmbH, and, Institute of Physics, Johannes Gutenberg-Universität, Mainz, 55128, Germany
| |
Collapse
|
5
|
Theiss F, Lins J, Kergassner J, Wienands L, Döller S, Buntkowsky G. Two fields are better than one - A multifunctional (semi)automated setup for quantitative measurements of parahydrogen-induced signal enhancement at low and high fields. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 362:107673. [PMID: 38598990 DOI: 10.1016/j.jmr.2024.107673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
The rapid advancement of parahydrogen-induced hyperpolarization (PHIP) and its diverse array of applications highlights the critical need for enhanced signals in both 1H NMR and heteronuclear NMR spectroscopy. Simultaneously, there is an increasing interest in utilizing benchtop NMR analysis across various laboratory settings. However, due to their lower magnetic fields, benchtop NMR spectrometers inherently produce weaker signal intensities. Here, PHIP is a well-established solution to this challenge. Consequently, we are expanding our cost-effective PHIP setup from a high-field NMR spectrometer (11.7 T) to include an additional benchtop NMR spectrometer (1.4 T), thereby enabling concurrent execution of PHIP experiments and measurements. Through the implementation of automated experimental protocols, we aim to minimize experiment time while increasing reproducibility. In this work, a non-isotope labelled propargyl alcohol sample is used at low concentrations to demonstrate our setup's capabilities. It could be shown that single-scan PASADENA experiments can be run with comparable signal enhancements at the benchtop as well as the high-field spectrometer. At 1.4 T, fully automated PHIP pseudo-2D measurements will also be demonstrated. Additionally, two different field profiles for the spin-order transfer of p-H2 to 13C at zero- to ultralow fields are elaborated upon. The setup facilitates the measurement of carbon signal enhancement of more than 2000 on the benchtop NMR spectrometer, employing a straightforward one-pulse, one-scan experiment.
Collapse
Affiliation(s)
- Franziska Theiss
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technical University Darmstadt, Peter-Grünberg-Straße 8, D-64287 Darmstadt, Germany
| | - Jonas Lins
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technical University Darmstadt, Peter-Grünberg-Straße 8, D-64287 Darmstadt, Germany
| | - Jan Kergassner
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technical University Darmstadt, Peter-Grünberg-Straße 8, D-64287 Darmstadt, Germany
| | - Laura Wienands
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technical University Darmstadt, Peter-Grünberg-Straße 8, D-64287 Darmstadt, Germany
| | - Sonja Döller
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technical University Darmstadt, Peter-Grünberg-Straße 8, D-64287 Darmstadt, Germany
| | - Gerd Buntkowsky
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technical University Darmstadt, Peter-Grünberg-Straße 8, D-64287 Darmstadt, Germany.
| |
Collapse
|
6
|
Jagtap AP, Mamone S, Glöggler S. Molecular precursors to produce para-hydrogen enhanced metabolites at any field. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:674-680. [PMID: 37821237 DOI: 10.1002/mrc.5402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
Enhancing magnetic resonance signal via hyperpolarization techniques enables the real-time detection of metabolic transformations even in vivo. The use of para-hydrogen to enhance 13 C-enriched metabolites has opened a rapid pathway for the production of hyperpolarized metabolites, which usually requires specialized equipment. Metabolite precursors that can be hyperpolarized and converted into metabolites at any given field would open up opportunities for many labs to make use of this technology because already existing hardware could be used. We report here on the complete synthesis and hyperpolarization of suitable precursor molecules of the side-arm hydrogenation approach. The better accessibility to such side-arms promises that the para-hydrogen approach can be implemented in every lab with existing two channel NMR spectrometers for 1 H and 13 C independent of the magnetic field.
Collapse
Affiliation(s)
- Anil P Jagtap
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medicine Göttingen, Göttingen, Germany
| | - Salvatore Mamone
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medicine Göttingen, Göttingen, Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medicine Göttingen, Göttingen, Germany
| |
Collapse
|
7
|
Brahms A, Pravdivtsev AN, Thorns L, Sönnichsen FD, Hövener JB, Herges R. Exceptionally Mild and High-Yielding Synthesis of Vinyl Esters of Alpha-Ketocarboxylic Acids, Including Vinyl Pyruvate, for Parahydrogen-Enhanced Metabolic Spectroscopy and Imaging. J Org Chem 2023; 88:15018-15028. [PMID: 37824795 DOI: 10.1021/acs.joc.3c01461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Metabolic changes often occur long before pathologies manifest and treatment becomes challenging. As key elements of energy metabolism, α-ketocarboxylic acids (α-KCA) are particularly interesting, e.g., as the upregulation of pyruvate to lactate conversion is a hallmark of cancer (Warburg effect). Magnetic resonance imaging with hyperpolarized metabolites has enabled imaging of this effect non-invasively and in vivo, allowing the early detection of cancerous tissue and its treatment. Hyperpolarization by means of dynamic nuclear polarization, however, is complex, slow, and expensive, while available precursors often limit parahydrogen-based alternatives. Here, we report the synthesis for novel 13C, deuterated ketocarboxylic acids, and a much-improved synthesis of 1-13C-vinyl pruvate-d6, arguably the most promising tracer for hyperpolarizing pyruvate using parahydrogen-induced hyperpolarization by side arm hydrogenation. The new synthesis is scalable and provides a high yield of 52%. We elucidated the mechanism of our Pd-catalyzed trans-vinylation reaction. Hydrogenation with parahydrogen allowed us to monitor the addition, which was found to depend on the electron demand of the vinyl ester. Electron-poor α-keto vinyl esters react slower than "normal" alkyl vinyl esters. This synthesis of 13C, deuterated α-ketocarboxylic acids opens up an entirely new class of biomolecules for fast and cost-efficient hyperpolarization with parahydrogen and their use for metabolic imaging.
Collapse
Affiliation(s)
- Arne Brahms
- Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn Platz 4, 24098 Kiel, Germany
| | - Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24114 Kiel, Germany
| | - Lynn Thorns
- Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn Platz 4, 24098 Kiel, Germany
| | - Frank D Sönnichsen
- Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn Platz 4, 24098 Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24114 Kiel, Germany
| | - Rainer Herges
- Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn Platz 4, 24098 Kiel, Germany
| |
Collapse
|
8
|
Ding Y, Stevanato G, von Bonin F, Kube D, Glöggler S. Real-time cell metabolism assessed repeatedly on the same cells via para-hydrogen induced polarization. Chem Sci 2023; 14:7642-7647. [PMID: 37476713 PMCID: PMC10355108 DOI: 10.1039/d3sc01350b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Signal-enhanced or hyperpolarized nuclear magnetic resonance (NMR) spectroscopy stands out as a unique tool to monitor real-time enzymatic reactions in living cells. The singlet state of para-hydrogen is thereby one source of spin order that can be converted into largely enhanced signals of e.g. metabolites. Here, we have investigated a parahydrogen-induced polarization (PHIP) approach as a biological assay for in vitro cellular metabolic characterization. Here, we demonstrate the possibility to perform consecutive measurements yielding metabolic information on the same sample. We observed a strongly reduced pyruvate-to-lactate conversion rate (flux) of a Hodgkin's lymphoma cancer cell line L1236 treated with FK866, an inhibitor of nicotinamide phosphoribosyltransferase (NAMPT) affecting the amount of NAD+ and thus NADH in cells. In the consecutive measurement the flux was recovered by NADH to the same amount as in the single-measurement-per-sample and provides a promising new analytical tool for continuous real-time studies combinable with bioreactors and lab-on-a-chip devices in the future.
Collapse
Affiliation(s)
- Yonghong Ding
- Group of NMR Signal Enhancement Max Planck Institute for Multidisciplinary Sciences Am Fassberg 11 37077 Göttingen Germany
- Center for Biostructural Imaging of Neurodegeneration University Medical Center Göttingen Von-Siebold-Str. 3A 37075 Göttingen Germany
| | - Gabriele Stevanato
- Group of NMR Signal Enhancement Max Planck Institute for Multidisciplinary Sciences Am Fassberg 11 37077 Göttingen Germany
- Center for Biostructural Imaging of Neurodegeneration University Medical Center Göttingen Von-Siebold-Str. 3A 37075 Göttingen Germany
| | - Frederike von Bonin
- Clinic for Hematology and Medical Oncology University Medical Center Göttingen Robert-Koch-Str. 40 37075 Göttingen Germany
| | - Dieter Kube
- Clinic for Hematology and Medical Oncology University Medical Center Göttingen Robert-Koch-Str. 40 37075 Göttingen Germany
| | - Stefan Glöggler
- Group of NMR Signal Enhancement Max Planck Institute for Multidisciplinary Sciences Am Fassberg 11 37077 Göttingen Germany
- Center for Biostructural Imaging of Neurodegeneration University Medical Center Göttingen Von-Siebold-Str. 3A 37075 Göttingen Germany
| |
Collapse
|
9
|
Lins J, Miloslavina YA, Carrara SC, Rösler L, Hofmann S, Herr K, Theiß F, Wienands L, Avrutina O, Kolmar H, Buntkowsky G. Parahydrogen-induced polarization allows 2000-fold signal enhancement in biologically active derivatives of the peptide-based drug octreotide. Sci Rep 2023; 13:6388. [PMID: 37076553 PMCID: PMC10115808 DOI: 10.1038/s41598-023-33577-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/14/2023] [Indexed: 04/21/2023] Open
Abstract
Octreotide, a somatostatin analogue, has shown its efficacy for the diagnostics and treatment of various types of cancer, i.e., in octreotide scan, as radio-marker after labelling with a radiopharmaceutical. To avoid toxicity of radio-labeling, octreotide-based assays can be implemented into magnetic resonance techniques, such as MRI and NMR. Here we used a Parahydrogen-Induced Polarization (PHIP) approach as a cheap, fast and straightforward method. Introduction of L-propargyl tyrosine as a PHIP marker at different positions of octreotide by manual Solid-Phase Peptide Synthesis (SPPS) led to up to 2000-fold proton signal enhancement (SE). Cell binding studies confirmed that all octreotide variants retained strong binding affinity to the surface of human-derived cancer cells expressing somatostatin receptor 2. The hydrogenation reactions were successfully performed in methanol and under physiologically compatible mixtures of water with methanol or ethanol. The presented results open up new application areas of biochemical and pharmacological studies with octreotide.
Collapse
Affiliation(s)
- Jonas Lins
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Yuliya A Miloslavina
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Stefania C Carrara
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Lorenz Rösler
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Sarah Hofmann
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Kevin Herr
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Franziska Theiß
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Laura Wienands
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Olga Avrutina
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Harald Kolmar
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany.
| | - Gerd Buntkowsky
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany.
| |
Collapse
|
10
|
Stevanato G, Ding Y, Mamone S, Jagtap AP, Korchak S, Glöggler S. Real-Time Pyruvate Chemical Conversion Monitoring Enabled by PHIP. J Am Chem Soc 2023; 145:5864-5871. [PMID: 36857108 PMCID: PMC10021011 DOI: 10.1021/jacs.2c13198] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
In recent years, parahydrogen-induced polarization side arm hydrogenation (PHIP-SAH) has been applied to hyperpolarize [1-13C]pyruvate and map its metabolic conversion to [1-13C]lactate in cancer cells. Developing on our recent MINERVA pulse sequence protocol, in which we have achieved 27% [1-13C]pyruvate carbon polarization, we demonstrate the hyperpolarization of [1,2-13C]pyruvate (∼7% polarization on each 13C spin) via PHIP-SAH. By altering a single parameter in the pulse sequence, MINERVA enables the signal enhancement of C1 and/or C2 in [1,2-13C]pyruvate with the opposite phase, which allows for the simultaneous monitoring of different chemical reactions with enhanced spectral contrast or for the same reaction via different carbon sites. We first demonstrate the ability to monitor the same enzymatic pyruvate to lactate conversion at 7T in an aqueous solution, in vitro, and in-cell (HeLa cells) via different carbon sites. In a second set of experiments, we use the C1 and C2 carbon positions as spectral probes for simultaneous chemical reactions: the production of acetate, carbon dioxide, bicarbonate, and carbonate by reacting [1,2-13C]pyruvate with H2O2 at a high temperature (55 °C). Importantly, we detect and characterize the intermediate 2-hydroperoxy-2-hydroxypropanoate in real time and at high temperature.
Collapse
Affiliation(s)
- Gabriele Stevanato
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Street 3A, 37075 Göttingen, Germany
| | - Yonghong Ding
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Street 3A, 37075 Göttingen, Germany
| | - Salvatore Mamone
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Street 3A, 37075 Göttingen, Germany
| | - Anil P Jagtap
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Street 3A, 37075 Göttingen, Germany
| | - Sergey Korchak
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Street 3A, 37075 Göttingen, Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Street 3A, 37075 Göttingen, Germany
| |
Collapse
|
11
|
Marshall A, Salhov A, Gierse M, Müller C, Keim M, Lucas S, Parker A, Scheuer J, Vassiliou C, Neumann P, Jelezko F, Retzker A, Blanchard JW, Schwartz I, Knecht S. Radio-Frequency Sweeps at Microtesla Fields for Parahydrogen-Induced Polarization of Biomolecules. J Phys Chem Lett 2023; 14:2125-2132. [PMID: 36802642 DOI: 10.1021/acs.jpclett.2c03785] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Magnetic resonance imaging of 13C-labeled metabolites enhanced by parahydrogen-induced polarization (PHIP) enables real-time monitoring of processes within the body. We introduce a robust, easily implementable technique for transferring parahydrogen-derived singlet order into 13C magnetization using adiabatic radio frequency sweeps at microtesla fields. We experimentally demonstrate the applicability of this technique to several molecules, including some molecules relevant for metabolic imaging, where we show significant improvements in the achievable polarization, in some cases reaching above 60% nuclear spin polarization. Furthermore, we introduce a site-selective deuteration scheme, where deuterium is included in the coupling network of a pyruvate ester to enhance the efficiency of the polarization transfer. These improvements are enabled by the fact that the transfer protocol avoids relaxation induced by strongly coupled quadrupolar nuclei.
Collapse
Affiliation(s)
- Alastair Marshall
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
- Institute for Quantum Optics (IQO) and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Alon Salhov
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
- Racah Institute of Physics, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Martin Gierse
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
- Institute for Quantum Optics (IQO) and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | | | - Michael Keim
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | | | - Anna Parker
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | | | | | | | - Fedor Jelezko
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
- Institute for Quantum Optics (IQO) and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Alex Retzker
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
- Racah Institute of Physics, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | | | - Ilai Schwartz
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | | |
Collapse
|
12
|
Hune T, Mamone S, Schroeder H, Jagtap AP, Sternkopf S, Stevanato G, Korchak S, Fokken C, Müller CA, Schmidt AB, Becker D, Glöggler S. Metabolic Tumor Imaging with Rapidly Signal-Enhanced 1- 13 C-Pyruvate-d 3. Chemphyschem 2023; 24:e202200615. [PMID: 36106366 PMCID: PMC10092681 DOI: 10.1002/cphc.202200615] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/14/2022] [Indexed: 01/20/2023]
Abstract
The metabolism of malignant cells differs significantly from that of healthy cells and thus, it is possible to perform metabolic imaging to reveal not only the exact location of a tumor, but also intratumoral areas of high metabolic activity. Herein, we demonstrate the feasibility of metabolic tumor imaging using signal-enhanced 1-13 C-pyruvate-d3 , which is rapidly enhanced via para-hydrogen, and thus, the signal is amplified by several orders of magnitudes in less than a minute. Using as a model, human melanoma xenografts injected with signal-enhanced 1-13 C-pyruvate-d3, we show that the conversion of pyruvate into lactate can be monitored along with its kinetics, which could pave the way for rapidly detecting and monitoring changes in tumor metabolism.
Collapse
Affiliation(s)
- Theresa Hune
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| | - Salvatore Mamone
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| | - Henning Schroeder
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| | - Anil P Jagtap
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| | - Sonja Sternkopf
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| | - Gabriele Stevanato
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| | - Sergey Korchak
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| | - Claudia Fokken
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Christoph A Müller
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.,Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
| | - Andreas B Schmidt
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.,Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site Freiburg, Killianstr. 5a, Freiburg, 79106, Germany.,Integrative Biosciences (Ibio), Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, 5101 Cass Ave, 48202, Detroit, MI, USA
| | - Dorothea Becker
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| |
Collapse
|
13
|
Ferrer MJ, Kuker EL, Semenova E, Gangano AJ, Lapak MP, Grenning AJ, Dong VM, Bowers CR. Adiabatic Passage through Level Anticrossings in Systems of Chemically Inequivalent Protons Incorporating Parahydrogen: Theory, Experiment, and Prospective Applications. J Am Chem Soc 2022; 144:20847-20853. [PMID: 36331927 PMCID: PMC10102863 DOI: 10.1021/jacs.2c09000] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Level anticrossings (LACs) are ubiquitous in quantum systems and have been exploited for spin-order transfer in hyperpolarized nuclear magnetic resonance spectroscopy. This paper examines the manifestations of adiabatic passage through a specific type of LAC found in homonuclear systems of chemically inequivalent coupled protons incorporating parahydrogen (pH2). Adiabatic passage through such a LAC is shown to elicit translation of the pH2 spin order. As an example, with prospective applications in biomedicine, proton spin polarizations of at least 19.8 ± 2.6% on the methylene protons and 68.7 ± 0.5% on the vinylic protons of selectively deuterated allyl pyruvate ester are demonstrated experimentally. After ultrasonic spray injection of a precursor solution containing propargyl pyruvate and a dissolved Rh catalyst into a chamber pressurized with 99% para-enriched H2, the products are collected and transported to a high magnetic field for NMR detection. The LAC-mediated hyperpolarization of the methylene protons is significant because of the stronger spin coupling to the pyruvate carbonyl 13C, setting up an ideal initial condition for subsequent coherence transfer by selective INEPT. Furthermore, the selective deuteration of the propargyl side arm increases the efficiency and polarization level. LAC-mediated translation of parahydrogen spin order completes the first step toward a new and highly efficient route for the 13C NMR signal enhancement of pyruvate via side-arm hydrogenation with parahydrogen.
Collapse
Affiliation(s)
- Maria-Jose Ferrer
- Department of Chemistry, University of Florida, Gainesville, Florida32611-7200, United States
| | - Erin L. Kuker
- Department of Chemistry, University of California, Irvine, California92697-2025, United States
| | - Evgeniya Semenova
- Department of Chemistry, University of Florida, Gainesville, Florida32611-7200, United States
| | - Anghelo Josh Gangano
- Department of Chemistry, University of Florida, Gainesville, Florida32611-7200, United States
| | - Michelle P. Lapak
- Department of Chemistry, University of Florida, Gainesville, Florida32611-7200, United States
| | - Alexander J. Grenning
- Department of Chemistry, University of Florida, Gainesville, Florida32611-7200, United States
| | - Vy M. Dong
- Department of Chemistry, University of California, Irvine, California92697-2025, United States
| | - Clifford R. Bowers
- Department of Chemistry, University of Florida, Gainesville, Florida32611-7200, United States
- National High Magnetic Field Lab, Tallahassee, Florida32310, United States
| |
Collapse
|
14
|
Mamone S, Jagtap AP, Korchak S, Ding Y, Sternkopf S, Glöggler S. A Field-Independent Method for the Rapid Generation of Hyperpolarized [1- 13 C]Pyruvate in Clean Water Solutions for Biomedical Applications. Angew Chem Int Ed Engl 2022; 61:e202206298. [PMID: 35723041 PMCID: PMC9543135 DOI: 10.1002/anie.202206298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Indexed: 11/08/2022]
Abstract
Hyperpolarization methods in magnetic resonance enhance the signals by several orders of magnitude, opening new windows for real-time investigations of dynamic processes in vitro and in vivo. Here, we propose a field-independent para-hydrogen-based pulsed method to produce rapidly hyperpolarized 13 C-labeled substrates. We demonstrate the method by polarizing the carboxylic carbon of the pyruvate moiety in a purposely designed precursor to 24 % at ≈22 mT. Following a fast purification procedure, we measure 8 % polarization on free [1-13 C]pyruvate in clean water solutions at physiological conditions at 7 T. The enhanced signals allow real-time monitoring of the pyruvate-lactate conversion in cancer cells, demonstrating the potential of the method for biomedical applications in combination with existing or developing magnetic resonance technologies.
Collapse
Affiliation(s)
- Salvatore Mamone
- Max Planck Institute for Multidisciplinary SciencesNMR Signal Enhancement GroupAm Fassberg 1137077GöttingenGermany
- Center for Biostructural Imaging of Neurodegeneration of UMGNMR Signal Enhancement GroupVon-Siebold-Straße 3 A37075GöttingenGermany
| | - Anil P. Jagtap
- Max Planck Institute for Multidisciplinary SciencesNMR Signal Enhancement GroupAm Fassberg 1137077GöttingenGermany
- Center for Biostructural Imaging of Neurodegeneration of UMGNMR Signal Enhancement GroupVon-Siebold-Straße 3 A37075GöttingenGermany
| | - Sergey Korchak
- Max Planck Institute for Multidisciplinary SciencesNMR Signal Enhancement GroupAm Fassberg 1137077GöttingenGermany
- Center for Biostructural Imaging of Neurodegeneration of UMGNMR Signal Enhancement GroupVon-Siebold-Straße 3 A37075GöttingenGermany
| | - Yonghong Ding
- Max Planck Institute for Multidisciplinary SciencesNMR Signal Enhancement GroupAm Fassberg 1137077GöttingenGermany
- Center for Biostructural Imaging of Neurodegeneration of UMGNMR Signal Enhancement GroupVon-Siebold-Straße 3 A37075GöttingenGermany
| | - Sonja Sternkopf
- Max Planck Institute for Multidisciplinary SciencesNMR Signal Enhancement GroupAm Fassberg 1137077GöttingenGermany
- Center for Biostructural Imaging of Neurodegeneration of UMGNMR Signal Enhancement GroupVon-Siebold-Straße 3 A37075GöttingenGermany
| | - Stefan Glöggler
- Max Planck Institute for Multidisciplinary SciencesNMR Signal Enhancement GroupAm Fassberg 1137077GöttingenGermany
- Center for Biostructural Imaging of Neurodegeneration of UMGNMR Signal Enhancement GroupVon-Siebold-Straße 3 A37075GöttingenGermany
| |
Collapse
|
15
|
Mamone S, Jagtap AP, Korchak S, Ding Y, Sternkopf S, Glöggler S. A Field‐Independent Method for the Rapid Generation of Hyperpolarized [1‐13C]Pyruvate in Clean Water Solutions for Biomedical Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Salvatore Mamone
- Max Planck Institute for Multidisciplinary Sciences - Fassberg Campus: Max-Planck-Institut fur Multidisziplinare Naturwissenschaften NMR Signal Enhancement GERMANY
| | - Anil P Jagtap
- Max Planck Institute for Multidisciplinary Sciences: Max-Planck-Institut fur Multidisziplinare Naturwissenschaften NMR Signal Enhancement GERMANY
| | - Sergey Korchak
- Max Planck Institute for Multidisciplinary Sciences: Max-Planck-Institut fur Multidisziplinare Naturwissenschaften NMR Signal Enhancement GERMANY
| | - Yonghong Ding
- Max Planck Institute for Multidisciplinary Sciences: Max-Planck-Institut fur Multidisziplinare Naturwissenschaften NMR Signal Enhancement GERMANY
| | - Sonja Sternkopf
- Max Planck Institute for Multidisciplinary Sciences: Max-Planck-Institut fur Multidisziplinare Naturwissenschaften NMR Signal Enhancement GERMANY
| | - Stefan Glöggler
- Max-Planck-Institute for Biophysical Chemistry NMR Signal Enhancement Group Am Fassberg 11 37077 Göttingen GERMANY
| |
Collapse
|
16
|
Buntkowsky G, Theiss F, Lins J, Miloslavina YA, Wienands L, Kiryutin A, Yurkovskaya A. Recent advances in the application of parahydrogen in catalysis and biochemistry. RSC Adv 2022; 12:12477-12506. [PMID: 35480380 PMCID: PMC9039419 DOI: 10.1039/d2ra01346k] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/23/2022] [Indexed: 12/15/2022] Open
Abstract
Nuclear Magnetic Resonance (NMR) spectroscopy and Magnetic Resonance Imaging (MRI) are analytical and diagnostic tools that are essential for a very broad field of applications, ranging from chemical analytics, to non-destructive testing of materials and the investigation of molecular dynamics, to in vivo medical diagnostics and drug research. One of the major challenges in their application to many problems is the inherent low sensitivity of magnetic resonance, which results from the small energy-differences of the nuclear spin-states. At thermal equilibrium at room temperature the normalized population difference of the spin-states, called the Boltzmann polarization, is only on the order of 10-5. Parahydrogen induced polarization (PHIP) is an efficient and cost-effective hyperpolarization method, which has widespread applications in Chemistry, Physics, Biochemistry, Biophysics, and Medical Imaging. PHIP creates its signal-enhancements by means of a reversible (SABRE) or irreversible (classic PHIP) chemical reaction between the parahydrogen, a catalyst, and a substrate. Here, we first give a short overview about parahydrogen-based hyperpolarization techniques and then review the current literature on method developments and applications of various flavors of the PHIP experiment.
Collapse
Affiliation(s)
- Gerd Buntkowsky
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Franziska Theiss
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Jonas Lins
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Yuliya A Miloslavina
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Laura Wienands
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt Alarich-Weiss-Str. 8 D-64287 Darmstadt Germany
| | - Alexey Kiryutin
- International Tomography Center, Siberian Branch of the Russian Academy of Science Novosibirsk 630090 Russia
| | - Alexandra Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Science Novosibirsk 630090 Russia
| |
Collapse
|
17
|
Schmidt AB, Zimmermann M, Berner S, de Maissin H, Müller CA, Ivantaev V, Hennig J, Elverfeldt DV, Hövener JB. Quasi-continuous production of highly hyperpolarized carbon-13 contrast agents every 15 seconds within an MRI system. Commun Chem 2022; 5:21. [PMID: 36697573 PMCID: PMC9814607 DOI: 10.1038/s42004-022-00634-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/25/2022] [Indexed: 01/28/2023] Open
Abstract
Hyperpolarized contrast agents (HyCAs) have enabled unprecedented magnetic resonance imaging (MRI) of metabolism and pH in vivo. Producing HyCAs with currently available methods, however, is typically time and cost intensive. Here, we show virtually-continuous production of HyCAs using parahydrogen-induced polarization (PHIP), without stand-alone polarizer, but using a system integrated in an MRI instead. Polarization of ≈2% for [1-13C]succinate-d2 or ≈19% for hydroxyethyl-[1-13C]propionate-d3 was created every 15 s, for which fast, effective, and well-synchronized cycling of chemicals and reactions in conjunction with efficient spin-order transfer was key. We addressed these challenges using a dedicated, high-pressure, high-temperature reactor with integrated water-based heating and a setup operated via the MRI pulse program. As PHIP of several biologically relevant HyCAs has recently been described, this Rapid-PHIP technique promises fast preclinical studies, repeated administration or continuous infusion within a single lifetime of the agent, as well as a prolonged window for observation with signal averaging and dynamic monitoring of metabolic alterations.
Collapse
Affiliation(s)
- Andreas B Schmidt
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany.
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany.
| | - Mirko Zimmermann
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
| | - Stephan Berner
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Henri de Maissin
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Christoph A Müller
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Vladislav Ivantaev
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
| | - Jürgen Hennig
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
| | - Dominik V Elverfeldt
- Department of Radiology, Medical Physics, Medical Center, Faculty of Freiburg, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany.
| |
Collapse
|
18
|
Pravdivtsev AN, Hövener J, Schmidt AB. Frequency-Selective Manipulations of Spins allow Effective and Robust Transfer of Spin Order from Parahydrogen to Heteronuclei in Weakly-Coupled Spin Systems. Chemphyschem 2022; 23:e202100721. [PMID: 34874086 PMCID: PMC9306892 DOI: 10.1002/cphc.202100721] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/04/2021] [Indexed: 01/20/2023]
Abstract
We present a selectively pulsed (SP) generation of sequences to transfer the spin order of parahydrogen (pH2 ) to heteronuclei in weakly coupled spin systems. We analyze and discuss the mechanism and efficiency of SP spin order transfer (SOT) and derive sequence parameters. These new sequences are most promising for the hyperpolarization of molecules at high magnetic fields. SP-SOT is effective and robust despite the symmetry of the 1 H-13 C J-couplings even when precursor molecules are not completely labeled with deuterium. As only one broadband 1 H pulse is needed per sequence, which can be replaced for instance by a frequency-modulated pulse, lower radiofrequency (RF) power is required. This development will be useful to hyperpolarize (new) agents and to perform the hyperpolarization within the bore of an MRI system, where the limited RF power has been a persistent problem.
Collapse
Affiliation(s)
- Andrey N. Pravdivtsev
- Section Biomedical ImagingMolecular Imaging North Competence Center (MOIN CC)Department of Radiology and NeuroradiologyUniversity Medical Center KielKiel University DepartmentAm Botanischen Garten 1424118KielGermany
| | - Jan‐Bernd Hövener
- Section Biomedical ImagingMolecular Imaging North Competence Center (MOIN CC)Department of Radiology and NeuroradiologyUniversity Medical Center KielKiel University DepartmentAm Botanischen Garten 1424118KielGermany
| | - Andreas B. Schmidt
- Section Biomedical ImagingMolecular Imaging North Competence Center (MOIN CC)Department of Radiology and NeuroradiologyUniversity Medical Center KielKiel University DepartmentAm Botanischen Garten 1424118KielGermany
- Department of RadiologyMedical PhysicsUniversity Medical CenterFaculty of MedicineUniversity of FreiburgKillianstr. 5a79106FreiburgGermany
- German Cancer Consortium (DKTK)partner site Freiburg andGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
| |
Collapse
|
19
|
Saul P, Mamone S, Glöggler S. Hyperpolarization of 15N in an amino acid derivative. RSC Adv 2022; 12:2282-2286. [PMID: 35425247 PMCID: PMC8979135 DOI: 10.1039/d1ra08808d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/09/2022] [Indexed: 11/21/2022] Open
Abstract
Hyperpolarization is a nuclear magnetic resonance (NMR) technique which can be used to significantly enhance the signal in NMR experiments. In recent years, the possibility to enhance the NMR signal of heteronuclei by the use of para-hydrogen induced polarization (PHIP) has gained attention, especially in the area of possible applications in magnetic resonance imaging (MRI). Herein we introduce a way to synthesize a fully deuterated, 15N labelled amino acid derivative and the possibility to polarize the 15N by means of hydrogenation with para-hydrogen to a polarization level of 0.18%. The longevity of the polarization with a longitudinal relaxation time of more than a minute can allow for the observation of dynamic processes and metabolic imaging in vivo. In addition, we observe the phenomenon of proton–deuterium exchange with a homogeneous catalyst leading to signal enhanced allyl moeities in the precursor. A perdeuterated, 15N-labeled derivative of the amino acid glycine has been synthesized and polarized by means of para-hydrogen induced polarization (PHIP).![]()
Collapse
Affiliation(s)
- Philip Saul
- Research Group for NMR Signal Enhancement, Max Planck Institute for Biophysical Chemistry Am Fassberg 11 37 077 Göttingen Germany +49 551 3961 108.,Center for Biostructural Imaging of Neurodegeneration Von-Siebold-Straßze 3A 37 075 Göttingen Germany
| | - Salvatore Mamone
- Research Group for NMR Signal Enhancement, Max Planck Institute for Biophysical Chemistry Am Fassberg 11 37 077 Göttingen Germany +49 551 3961 108.,Center for Biostructural Imaging of Neurodegeneration Von-Siebold-Straßze 3A 37 075 Göttingen Germany
| | - Stefan Glöggler
- Research Group for NMR Signal Enhancement, Max Planck Institute for Biophysical Chemistry Am Fassberg 11 37 077 Göttingen Germany +49 551 3961 108.,Center for Biostructural Imaging of Neurodegeneration Von-Siebold-Straßze 3A 37 075 Göttingen Germany
| |
Collapse
|
20
|
Schmidt AB, Bowers CR, Buckenmaier K, Chekmenev EY, de Maissin H, Eills J, Ellermann F, Glöggler S, Gordon JW, Knecht S, Koptyug IV, Kuhn J, Pravdivtsev AN, Reineri F, Theis T, Them K, Hövener JB. Instrumentation for Hydrogenative Parahydrogen-Based Hyperpolarization Techniques. Anal Chem 2022; 94:479-502. [PMID: 34974698 PMCID: PMC8784962 DOI: 10.1021/acs.analchem.1c04863] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Andreas B. Schmidt
- Department of Radiology – Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - C. Russell Bowers
- Department of Chemistry, University of Florida, 2001 Museum Road, Gainesville, Florida 32611, USA
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Kai Buckenmaier
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 11, 72076, Tübingen, Germany
| | - Eduard Y. Chekmenev
- Intergrative Biosciences (Ibio), Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, 5101 Cass Ave, Detroit, MI 48202, United States
- Russian Academy of Sciences (RAS), Leninskiy Prospect, 14, 119991 Moscow, Russia
| | - Henri de Maissin
- Department of Radiology – Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - James Eills
- Institute for Physics, Johannes Gutenberg University, D-55090 Mainz, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Helmholtz-Institut Mainz, 55128 Mainz, Germany
| | - Frowin Ellermann
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group Max Planck Institutefor Biophysical Chemistry Am Fassberg 11, 37077 Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration of UMG Von-Siebold-Str. 3A, 37075 Göttingen, Germany
| | - Jeremy W. Gordon
- Department of Radiology & Biomedical Imaging, University of California San Francisco, 185 Berry St., San Francisco, CA, 94158, USA
| | | | - Igor V. Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Jule Kuhn
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Andrey N. Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Francesca Reineri
- Dept. Molecular Biotechnology and Health Sciences, Via Nizza 52, University of Torino, Italy
| | - Thomas Theis
- Departments of Chemistry, Physics and Biomedical Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kolja Them
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| |
Collapse
|
21
|
Schmidt AB, Brahms A, Ellermann F, Knecht S, Berner S, Hennig J, von Elverfeldt D, Herges R, Hövener JB, Pravdivtsev AN. Selective excitation of hydrogen doubles the yield and improves the robustness of parahydrogen-induced polarization of low-γ nuclei. Phys Chem Chem Phys 2021; 23:26645-26652. [PMID: 34846056 DOI: 10.1039/d1cp04153c] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We describe a new method for pulsed spin order transfer of parahydrogen-induced polarization (PHIP) that enables high polarization in incompletely 2H-labeled molecules by exciting only the desired protons in a frequency-selective manner. This way, the effect of selected J-couplings is suspended. Experimentally 1.25% 13C polarization were obtained for 1-13C-ethyl pyruvate and 50% pH2 at 9.4 Tesla.
Collapse
Affiliation(s)
- Andreas B Schmidt
- Department of Radiology, Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany. .,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Im Neuen-heimer Feld 280, Heidelberg 69120, Germany.,Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Arne Brahms
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn-Platz 5, 24118, Kiel, Germany
| | - Frowin Ellermann
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | | | - Stephan Berner
- Department of Radiology, Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany.
| | - Jürgen Hennig
- Department of Radiology, Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany.
| | - Dominik von Elverfeldt
- Department of Radiology, Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany.
| | - Rainer Herges
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn-Platz 5, 24118, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| |
Collapse
|
22
|
Salnikov OG, Chukanov NV, Kovtunova LM, Bukhtiyarov VI, Kovtunov KV, Shchepin RV, Koptyug IV, Chekmenev EY. Heterogeneous 1 H and 13 C Parahydrogen-Induced Polarization of Acetate and Pyruvate Esters. Chemphyschem 2021; 22:1389-1396. [PMID: 33929077 PMCID: PMC8249325 DOI: 10.1002/cphc.202100156] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/30/2021] [Indexed: 01/01/2023]
Abstract
Magnetic resonance imaging of [1-13 C]hyperpolarized carboxylates (most notably, [1-13 C]pyruvate) allows one to visualize abnormal metabolism in tumors and other pathologies. Herein, we investigate the efficiency of 1 H and 13 C hyperpolarization of acetate and pyruvate esters with ethyl, propyl and allyl alcoholic moieties using heterogeneous hydrogenation of corresponding vinyl, allyl and propargyl precursors in isotopically unlabeled and 1-13 C-enriched forms with parahydrogen over Rh/TiO2 catalysts in methanol-d4 and in D2 O. The maximum obtained 1 H polarization was 0.6±0.2 % (for propyl acetate in CD3 OD), while the highest 13 C polarization was 0.10±0.03 % (for ethyl acetate in CD3 OD). Hyperpolarization of acetate esters surpassed that of pyruvates, while esters with a triple carbon-carbon bond in unsaturated alcoholic moiety were less efficient as parahydrogen-induced polarization precursors than esters with a double bond. Among the compounds studied, the maximum 1 H and 13 C NMR signal intensities were observed for propyl acetate. Ethyl acetate yielded slightly less intense NMR signals which were dramatically greater than those of other esters under study.
Collapse
Affiliation(s)
- Oleg G Salnikov
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Nikita V Chukanov
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Larisa M Kovtunova
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Roman V Shchepin
- Department of Chemistry, Biology, and Health Sciences, South Dakota School of Mines & Technology, 57701, Rapid City, South Dakota, United States
| | - Igor V Koptyug
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, 48202, Detroit, Michigan, United States
- Russian Academy of Sciences, 14 Leninskiy Prospekt, 119991, Moscow, Russia
| |
Collapse
|
23
|
Stewart NJ, Nakano H, Sugai S, Tomohiro M, Kase Y, Uchio Y, Yamaguchi T, Matsuo Y, Naganuma T, Takeda N, Nishimura I, Hirata H, Hashimoto T, Matsumoto S. Hyperpolarized 13 C Magnetic Resonance Imaging of Fumarate Metabolism by Parahydrogen-induced Polarization: A Proof-of-Concept in vivo Study. Chemphyschem 2021; 22:915-923. [PMID: 33590933 PMCID: PMC8251594 DOI: 10.1002/cphc.202001038] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/11/2021] [Indexed: 01/18/2023]
Abstract
Hyperpolarized [1-13 C]fumarate is a promising magnetic resonance imaging (MRI) biomarker for cellular necrosis, which plays an important role in various disease and cancerous pathological processes. To demonstrate the feasibility of MRI of [1-13 C]fumarate metabolism using parahydrogen-induced polarization (PHIP), a low-cost alternative to dissolution dynamic nuclear polarization (dDNP), a cost-effective and high-yield synthetic pathway of hydrogenation precursor [1-13 C]acetylenedicarboxylate (ADC) was developed. The trans-selectivity of the hydrogenation reaction of ADC using a ruthenium-based catalyst was elucidated employing density functional theory (DFT) simulations. A simple PHIP set-up was used to generate hyperpolarized [1-13 C]fumarate at sufficient 13 C polarization for ex vivo detection of hyperpolarized 13 C malate metabolized from fumarate in murine liver tissue homogenates, and in vivo 13 C MR spectroscopy and imaging in a murine model of acetaminophen-induced hepatitis.
Collapse
Affiliation(s)
- Neil J. Stewart
- Division of Bioengineering & BioinformaticsGraduate School of Information Science & TechnologyHokkaido UniversityNorth 14, West 9, Kita-ku, SapporoHokkaido060-0814Japan
| | - Hitomi Nakano
- Division of Bioengineering & BioinformaticsGraduate School of Information Science & TechnologyHokkaido UniversityNorth 14, West 9, Kita-ku, SapporoHokkaido060-0814Japan
| | - Shuto Sugai
- Division of Bioengineering & BioinformaticsGraduate School of Information Science & TechnologyHokkaido UniversityNorth 14, West 9, Kita-ku, SapporoHokkaido060-0814Japan
| | - Mitsushi Tomohiro
- Division of Bioengineering & BioinformaticsGraduate School of Information Science & TechnologyHokkaido UniversityNorth 14, West 9, Kita-ku, SapporoHokkaido060-0814Japan
| | - Yuki Kase
- Division of Bioengineering & BioinformaticsGraduate School of Information Science & TechnologyHokkaido UniversityNorth 14, West 9, Kita-ku, SapporoHokkaido060-0814Japan
| | - Yoshiki Uchio
- Division of Bioengineering & BioinformaticsGraduate School of Information Science & TechnologyHokkaido UniversityNorth 14, West 9, Kita-ku, SapporoHokkaido060-0814Japan
| | - Toru Yamaguchi
- Division of Computational ChemistryTransition State Technology Co. Ltd.2-16-1 Tokiwadai, UbeYamaguchi755-8611Japan
| | - Yujirou Matsuo
- Division of Computational ChemistryTransition State Technology Co. Ltd.2-16-1 Tokiwadai, UbeYamaguchi755-8611Japan
| | - Tatsuya Naganuma
- R&D DepartmentJapan REDOX Ltd.4-29-49-805 Chiyo, Hakata-kuFukuoka812-0044Japan
| | - Norihiko Takeda
- Division of Cardiology and MetabolismCenter for Molecular MedicineJichi Medical University3311-1 Yakushiji, Shimotsuke-shiTochigi329-0498Japan
| | - Ikuya Nishimura
- Division of Bioengineering & BioinformaticsGraduate School of Information Science & TechnologyHokkaido UniversityNorth 14, West 9, Kita-ku, SapporoHokkaido060-0814Japan
| | - Hiroshi Hirata
- Division of Bioengineering & BioinformaticsGraduate School of Information Science & TechnologyHokkaido UniversityNorth 14, West 9, Kita-ku, SapporoHokkaido060-0814Japan
| | - Takuya Hashimoto
- Chiba Iodine Resource Innovation Center and Department of ChemistryGraduate School of ScienceChiba University1-33 Yayoi-cho, Inage-kuChiba263-8522Japan
| | - Shingo Matsumoto
- Division of Bioengineering & BioinformaticsGraduate School of Information Science & TechnologyHokkaido UniversityNorth 14, West 9, Kita-ku, SapporoHokkaido060-0814Japan
| |
Collapse
|
24
|
Zhivonitko VV, Beer H, Zakharov DO, Bresien J, Schulz A. Hyperpolarization Effects in Parahydrogen Activation with Pnictogen Biradicaloids: Metal-free PHIP and SABRE. Chemphyschem 2021; 22:813-817. [PMID: 33725397 PMCID: PMC8251785 DOI: 10.1002/cphc.202100141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/11/2021] [Indexed: 01/30/2023]
Abstract
Biradicaloids attract attention as a novel class of reagents that can activate small molecules such as H2, ethylene and CO2. Herein, we study activation of parahydrogen (nuclear spin‐0 isomer of H2) by a number of 4‐ and 5‐membered pnictogen biradicaloids based on hetero‐cyclobutanediyl [X(μ‐NTer)2Z] and hetero‐cyclopentanediyl [X(μ‐NTer)2ZC(NDmp)] moieties (X,Z=P,As; Ter=2,6‐Mes2−C6H3, Dmp=2,6‐Me2−C6H3). The concerted mechanism of this reaction allowed observing strong nuclear spin hyperpolarization effects in 1H and 31P NMR experiments. Signal enhancements from two to four orders of magnitude were detected at 9.4 T depending on the structure. It is demonstrated that 4‐membered biradicaloids activate H2 reversibly, leading to SABRE (signal amplification by reversible exchange) hyperpolarization of biradicaloids themselves and their H2 adducts. In contrast, the 5‐membered counterparts demonstrate rather irreversible parahydrogen activation resulting in hyperpolarized H2 adducts only. Kinetic measurements provided parameters to support experimental observations.
Collapse
Affiliation(s)
| | - Henrik Beer
- Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 3a, 18059, Rostock, Germany
| | - Danila O Zakharov
- NMR Research Unit, University of Oulu, P.O. Box 3000, 90014, Oulu, Finland
| | - Jonas Bresien
- Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 3a, 18059, Rostock, Germany
| | - Axel Schulz
- Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 3a, 18059, Rostock, Germany.,Leibniz-Institut für Katalyse e.V., Universität Rostock, Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| |
Collapse
|
25
|
Rodin BA, Eills J, Picazo-Frutos R, Sheberstov KF, Budker D, Ivanov KL. Constant-adiabaticity ultralow magnetic field manipulations of parahydrogen-induced polarization: application to an AA'X spin system. Phys Chem Chem Phys 2021; 23:7125-7134. [PMID: 33876078 DOI: 10.1039/d0cp06581a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The field of magnetic resonance imaging with hyperpolarized contrast agents is rapidly expanding, and parahydrogen-induced polarization (PHIP) is emerging as an inexpensive and easy-to-implement method for generating the required hyperpolarized biomolecules. Hydrogenative PHIP delivers hyperpolarized proton spin order to a substrate via chemical addition of H2 in the spin-singlet state, but it is typically necessary to transfer the proton polarization to a heteronucleus (usually 13C) which has a longer spin lifetime. Adiabatic ultralow magnetic field manipulations can be used to induce the polarization transfer, but this is necessarily a slow process, which is undesirable since the spins continually relax back to thermal equilibrium. Here we demonstrate two constant-adiabaticity field sweep methods, one in which the field passes through zero, and one in which the field is swept from zero, for optimal polarization transfer on a model AA'X spin system, [1-13C]fumarate. We introduce a method for calculating the constant-adiabaticity magnetic field sweeps, and demonstrate that they enable approximately one order of magnitude faster spin-order conversion compared to linear sweeps. The present method can thus be utilized to manipulate nonthermal order in heteronuclear spin systems.
Collapse
Affiliation(s)
- Bogdan A Rodin
- International Tomography Center SB RAS, Novosibirsk, Russia
| | | | | | | | | | | |
Collapse
|
26
|
Svyatova A, Kozinenko VP, Chukanov NV, Burueva DB, Chekmenev EY, Chen YW, Hwang DW, Kovtunov KV, Koptyug IV. PHIP hyperpolarized [1- 13C]pyruvate and [1- 13C]acetate esters via PH-INEPT polarization transfer monitored by 13C NMR and MRI. Sci Rep 2021; 11:5646. [PMID: 33707497 PMCID: PMC7952547 DOI: 10.1038/s41598-021-85136-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/18/2021] [Indexed: 01/31/2023] Open
Abstract
Parahydrogen-induced polarization of 13C nuclei by side-arm hydrogenation (PHIP-SAH) for [1-13C]acetate and [1-13C]pyruvate esters with application of PH-INEPT-type pulse sequences for 1H to 13C polarization transfer is reported, and its efficiency is compared with that of polarization transfer based on magnetic field cycling (MFC). The pulse-sequence transfer approach may have its merits in some applications because the entire hyperpolarization procedure is implemented directly in an NMR or MRI instrument, whereas MFC requires a controlled field variation at low magnetic fields. Optimization of the PH-INEPT-type transfer sequences resulted in 13C polarization values of 0.66 ± 0.04% and 0.19 ± 0.02% for allyl [1-13C]pyruvate and ethyl [1-13C]acetate, respectively, which is lower than the corresponding polarization levels obtained with MFC for 1H to 13C polarization transfer (3.95 ± 0.05% and 0.65 ± 0.05% for allyl [1-13C]pyruvate and ethyl [1-13C]acetate, respectively). Nevertheless, a significant 13C NMR signal enhancement with respect to thermal polarization allowed us to perform 13C MR imaging of both biologically relevant hyperpolarized molecules which can be used to produce useful contrast agents for the in vivo imaging applications.
Collapse
Affiliation(s)
- Alexandra Svyatova
- grid.419389.e0000 0001 2163 7228International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk, Russia 630090 ,grid.4605.70000000121896553Novosibirsk State University, 2 Pirogova St., Novosibirsk, Russia 630090 ,grid.418953.2Institute of Cytology and Genetics SB RAS, 10 Ac. Lavrentieva Ave., Novosibirsk, Russia 630090
| | - Vitaly P. Kozinenko
- grid.419389.e0000 0001 2163 7228International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk, Russia 630090 ,grid.4605.70000000121896553Novosibirsk State University, 2 Pirogova St., Novosibirsk, Russia 630090
| | - Nikita V. Chukanov
- grid.419389.e0000 0001 2163 7228International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk, Russia 630090 ,grid.4605.70000000121896553Novosibirsk State University, 2 Pirogova St., Novosibirsk, Russia 630090
| | - Dudari B. Burueva
- grid.419389.e0000 0001 2163 7228International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk, Russia 630090 ,grid.4605.70000000121896553Novosibirsk State University, 2 Pirogova St., Novosibirsk, Russia 630090
| | - Eduard Y. Chekmenev
- grid.254444.70000 0001 1456 7807Department of Chemistry, Wayne State University, Detroit, MI 48201 USA ,grid.254444.70000 0001 1456 7807Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201 USA ,grid.254444.70000 0001 1456 7807Integrative Biosciences, Wayne State University, Detroit, MI 48201 USA ,grid.4886.20000 0001 2192 9124Russian Academy of Sciences, Moscow, Russia 119991
| | - Yu-Wen Chen
- grid.28665.3f0000 0001 2287 1366Institute of Biomedical Sciences, Academia Sinica, Taipei, 115 Taiwan (Republic of China)
| | - Dennis W. Hwang
- grid.28665.3f0000 0001 2287 1366Institute of Biomedical Sciences, Academia Sinica, Taipei, 115 Taiwan (Republic of China)
| | - Kirill V. Kovtunov
- grid.419389.e0000 0001 2163 7228International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk, Russia 630090 ,grid.4605.70000000121896553Novosibirsk State University, 2 Pirogova St., Novosibirsk, Russia 630090
| | - Igor V. Koptyug
- grid.419389.e0000 0001 2163 7228International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk, Russia 630090
| |
Collapse
|
27
|
Dagys L, Jagtap AP, Korchak S, Mamone S, Saul P, Levitt MH, Glöggler S. Nuclear hyperpolarization of (1- 13C)-pyruvate in aqueous solution by proton-relayed side-arm hydrogenation. Analyst 2021; 146:1772-1778. [PMID: 33475626 DOI: 10.1039/d0an02389b] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We employ Parahydrogen Induced Polarization with Side-Arm Hydrogenation (PHIP-SAH) to polarize (1-13C)-pyruvate. We introduce a new method called proton-relayed side-arm hydrogenation (PR-SAH) in which an intermediate proton is used to transfer polarization from the side-arm to the 13C-labelled site of the pyruvate before hydrolysis. This significantly reduces the cost and effort needed to prepare the precursor for radio-frequency transfer experiments while still maintaining acceptable polarization transfer efficiency. Experimentally we have attained on average 4.33% 13C polarization in an aqueous solution of (1-13C)-pyruvate after about 10 seconds of cleavage and extraction. PR-SAH is a promising pulsed NMR method for hyperpolarizing 13C-labelled metabolites in solution, conducted entirely in high magnetic field.
Collapse
Affiliation(s)
- Laurynas Dagys
- School of chemistry, Highfield Campus, Southampton, SO171BJ, UK.
| | - Anil P Jagtap
- Max Planck Inst. Biophys. Chem., NMR Signal Enhancement Grp., Am Fassberg 11, D-37077 Göttingen, Germany. and Center for Biostructural Imaging of Neurodegeneration of UMG, Von-Siebold-Str. 3A, D-37075 Göttingen, Germany
| | - Sergey Korchak
- Max Planck Inst. Biophys. Chem., NMR Signal Enhancement Grp., Am Fassberg 11, D-37077 Göttingen, Germany. and Center for Biostructural Imaging of Neurodegeneration of UMG, Von-Siebold-Str. 3A, D-37075 Göttingen, Germany
| | - Salvatore Mamone
- Max Planck Inst. Biophys. Chem., NMR Signal Enhancement Grp., Am Fassberg 11, D-37077 Göttingen, Germany. and Center for Biostructural Imaging of Neurodegeneration of UMG, Von-Siebold-Str. 3A, D-37075 Göttingen, Germany
| | - Philip Saul
- Max Planck Inst. Biophys. Chem., NMR Signal Enhancement Grp., Am Fassberg 11, D-37077 Göttingen, Germany. and Center for Biostructural Imaging of Neurodegeneration of UMG, Von-Siebold-Str. 3A, D-37075 Göttingen, Germany
| | - Malcolm H Levitt
- School of chemistry, Highfield Campus, Southampton, SO171BJ, UK.
| | - Stefan Glöggler
- Max Planck Inst. Biophys. Chem., NMR Signal Enhancement Grp., Am Fassberg 11, D-37077 Göttingen, Germany. and Center for Biostructural Imaging of Neurodegeneration of UMG, Von-Siebold-Str. 3A, D-37075 Göttingen, Germany
| |
Collapse
|
28
|
Reineri F, Cavallari E, Carrera C, Aime S. Hydrogenative-PHIP polarized metabolites for biological studies. MAGMA (NEW YORK, N.Y.) 2021; 34:25-47. [PMID: 33527252 PMCID: PMC7910253 DOI: 10.1007/s10334-020-00904-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022]
Abstract
ParaHydrogen induced polarization (PHIP) is an efficient and cost-effective hyperpolarization method, but its application to biological investigations has been hampered, so far, due to chemical challenges. PHIP is obtained by means of the addition of hydrogen, enriched in the para-spin isomer, to an unsaturated substrate. Both hydrogen atoms must be transferred to the same substrate, in a pairwise manner, by a suitable hydrogenation catalyst; therefore, a de-hydrogenated precursor of the target molecule is necessary. This has strongly limited the number of parahydrogen polarized substrates. The non-hydrogenative approach brilliantly circumvents this central issue, but has not been translated to in-vivo yet. Recent advancements in hydrogenative PHIP (h-PHIP) considerably widened the possibility to hyperpolarize metabolites and, in this review, we will focus on substrates that have been obtained by means of this method and used in vivo. Attention will also be paid to the requirements that must be met and on the issues that have still to be tackled to obtain further improvements and to push PHIP substrates in biological applications.
Collapse
Affiliation(s)
- Francesca Reineri
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Turin, Italy.
| | - Eleonora Cavallari
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Turin, Italy
| | - Carla Carrera
- Institute of Biostructures and Bioimaging, National Research Council, Via Nizza 52, Turin, Italy
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Turin, Italy
| |
Collapse
|
29
|
Berner S, Schmidt AB, Ellermann F, Korchak S, Chekmenev EY, Glöggler S, von Elverfeldt D, Hennig J, Hövener JB. High field parahydrogen induced polarization of succinate and phospholactate. Phys Chem Chem Phys 2021; 23:2320-2330. [PMID: 33449978 DOI: 10.1039/d0cp06281b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The signal enhancement provided by the hyperpolarization of nuclear spins of metabolites is a promising technique for diagnostic magnetic resonance imaging (MRI). To date, most 13C-contrast agents are hyperpolarized utilizing a complex or cost-intensive polarizer. Recently, the in situ parahydrogen-induced 13C hyperpolarization was demonstrated. Hydrogenation, spin order transfer (SOT) by a pulsed NMR sequence, in vivo administration, and detection was achieved within the magnet bore of a 7 Tesla MRI system. So far, the hyperpolarization of the xenobiotic molecule 1-13C-hydroxyethylpropionate (HEP) and the biomolecule 1-13C-succinate (SUC) through the PH-INEPT+ sequence and a SOT scheme proposed by Goldman et al., respectively, was shown. Here, we investigate further the hyperpolarization of SUC at 7 Tesla and study the performance of two additional SOT sequences. Moreover, we present first results of the hyperpolarization at high magnetic field of 1-13C-phospholactate (PLAC), a derivate to obtain the metabolite lactate, employing the PH-INEPT+ sequence. For SUC and PLAC, 13C polarizations of about 1-2% were achieved within seconds and with minimal equipment. Effects that potentially may explain loss of 13C polarization have been identified, i.e. low hydrogenation yield, fast T1/T2 relaxation and the rarely considered 13C isotope labeling effect.
Collapse
Affiliation(s)
- Stephan Berner
- Department of Radiology, Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bengs C, Dagys L, Levitt MH. Robust transformation of singlet order into heteronuclear magnetisation over an extended coupling range. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 321:106850. [PMID: 33190080 DOI: 10.1016/j.jmr.2020.106850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Several important NMR procedures involve the conversion of nuclear singlet order into heteronuclear magnetisation, including some experiments involving long-lived spin states and parahydrogen-induced hyperpolarisation. However most existing sequences suffer from a limited range of validity or a lack of robustness against experimental imperfections. We present a new radio-frequency scheme for the transformation of the singlet order of a chemically-equivalent homonuclear spin pair into the magnetisation of a heteronuclear coupling partner. The proposed radio-frequency (RF) scheme is called gS2hM (generalized singlet-to-heteronuclear magnetisation) and has good compensation for common experimental errors such as RF and static field inhomogeneities. The sequence retains its robustness for homonuclear spin pairs in the intermediate coupling regime, characterised by the in-pair coupling being of the same order of magnitude as the difference between the out-of-pair couplings. This is a substantial improvement to the validity range of existing sequences. Analytical solutions for the pulse sequence parameters are provided. Experimental results are shown for two test cases.
Collapse
Affiliation(s)
- Christian Bengs
- School of Chemistry, Southampton University, University Road, SO17 1BJ, UK.
| | - Laurynas Dagys
- School of Chemistry, Southampton University, University Road, SO17 1BJ, UK.
| | - Malcolm H Levitt
- School of Chemistry, Southampton University, University Road, SO17 1BJ, UK.
| |
Collapse
|
31
|
Korchak S, Jagtap AP, Glöggler S. Signal-enhanced real-time magnetic resonance of enzymatic reactions at millitesla fields. Chem Sci 2020; 12:314-319. [PMID: 34163599 PMCID: PMC8178804 DOI: 10.1039/d0sc04884d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The phenomenon of nuclear magnetic resonance (NMR) is widely applied in biomedical and biological science to study structures and dynamics of proteins and their reactions. Despite its impact, NMR is an inherently insensitive phenomenon and has driven the field to construct spectrometers with increasingly higher magnetic fields leading to more detection sensitivity. Here, we are demonstrating that enzymatic reactions can be followed in real-time at millitesla fields, three orders of magnitude lower than the field of state-of-the-art NMR spectrometers. This requires signal-enhancing samples via hyperpolarization. Within seconds, we have enhanced the signals of 2-13C-pyruvate, an important metabolite to probe cancer metabolism, in 22 mM concentrations (up to 10.1% ± 0.1% polarization) and show that such a large signal allows for the real-time detection of enzymatic conversion of pyruvate to lactate at 24 mT. This development paves the pathways for biological studies in portable and affordable NMR systems with a potential for medical diagnostics. We demonstrate that metabolism can be monitored in real-time with magnetic resonance at milli-tesla fields that are 1000 fold lower than state-of-the-art high field spectrometers.![]()
Collapse
Affiliation(s)
- Sergey Korchak
- NMR Signal Enhancement Group, Max-Planck-Insitute for Biophysical Chemistry Am Faßberg 11 37077 Göttingen Germany .,Center for Biostructural Imaging of Neurodegeneration of UMG Von-Siebold-Str. 3A 37075 Göttingen Germany
| | - Anil P Jagtap
- NMR Signal Enhancement Group, Max-Planck-Insitute for Biophysical Chemistry Am Faßberg 11 37077 Göttingen Germany .,Center for Biostructural Imaging of Neurodegeneration of UMG Von-Siebold-Str. 3A 37075 Göttingen Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group, Max-Planck-Insitute for Biophysical Chemistry Am Faßberg 11 37077 Göttingen Germany .,Center for Biostructural Imaging of Neurodegeneration of UMG Von-Siebold-Str. 3A 37075 Göttingen Germany
| |
Collapse
|
32
|
Joalland B, Ariyasingha NM, Lehmkuhl S, Theis T, Appelt S, Chekmenev EY. Parahydrogen-Induced Radio Amplification by Stimulated Emission of Radiation. Angew Chem Int Ed Engl 2020; 59:8654-8660. [PMID: 32207871 PMCID: PMC7437572 DOI: 10.1002/anie.201916597] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Indexed: 01/03/2023]
Abstract
Radio amplification by stimulated emission of radiation (RASER) was recently discovered in a low-field NMR spectrometer incorporating a highly specialized radio-frequency resonator, where a high degree of proton-spin polarization was achieved by reversible parahydrogen exchange. RASER activity, which results from the coherent coupling between the nuclear spins and the inductive detector, can overcome the limits of frequency resolution in NMR. Here we show that this phenomenon is not limited to low magnetic fields or the use of resonators with high-quality factors. We use a commercial bench-top 1.4 T NMR spectrometer in conjunction with pairwise parahydrogen addition producing proton-hyperpolarized molecules in the Earth's magnetic field (ALTADENA condition) or in a high magnetic field (PASADENA condition) to induce RASER without any radio-frequency excitation pulses. The results demonstrate that RASER activity can be observed on virtually any NMR spectrometer and measures most of the important NMR parameters with high precision.
Collapse
Affiliation(s)
- Baptiste Joalland
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI, 48202, USA
| | - Nuwandi M Ariyasingha
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI, 48202, USA
| | - Sören Lehmkuhl
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, USA
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, USA
| | - Stephan Appelt
- Institut für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen University, 52056, Aachen, Germany
- Central Institute for Engineering, Electronics and Analytics-, Electronic Systems (ZEA 2), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI, 48202, USA
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia
| |
Collapse
|
33
|
Joalland B, Ariyasingha NM, Lehmkuhl S, Theis T, Appelt S, Chekmenev EY. Parahydrogen‐Induced Radio Amplification by Stimulated Emission of Radiation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916597] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Baptiste Joalland
- Department of Chemistry Integrative Biosciences (Ibio) Karmanos Cancer Institute (KCI) Wayne State University Detroit MI 48202 USA
| | - Nuwandi M. Ariyasingha
- Department of Chemistry Integrative Biosciences (Ibio) Karmanos Cancer Institute (KCI) Wayne State University Detroit MI 48202 USA
| | - Sören Lehmkuhl
- Department of Chemistry North Carolina State University Raleigh NC 27695-8204 USA
| | - Thomas Theis
- Department of Chemistry North Carolina State University Raleigh NC 27695-8204 USA
| | - Stephan Appelt
- Institut für Technische und Makromolekulare Chemie (ITMC) RWTH Aachen University 52056 Aachen Germany
- Central Institute for Engineering, Electronics and Analytics—, Electronic Systems (ZEA 2) Forschungszentrum Jülich GmbH 52425 Jülich Germany
| | - Eduard Y. Chekmenev
- Department of Chemistry Integrative Biosciences (Ibio) Karmanos Cancer Institute (KCI) Wayne State University Detroit MI 48202 USA
- Russian Academy of Sciences Leninskiy Prospekt 14 Moscow 119991 Russia
| |
Collapse
|
34
|
Kozinenko VP, Kiryutin AS, Yurkovskaya AV, Ivanov KL. Polarization of low-γ nuclei by transferring spin order of parahydrogen at high magnetic fields. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 309:106594. [PMID: 31569052 DOI: 10.1016/j.jmr.2019.106594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 06/10/2023]
Abstract
In this work, we optimize the performance of a previously proposed method for transferring parahydrogen induced polarization to "insensitive" spin-1/2 NMR (Nuclear Magnetic Resonance) nuclei, which have low gyromagnetic ratio and low natural abundance. By optimizing the reaction conditions and pressure of the parahydrogen gas and using adiabatically switched radiofrequency fields we achieve high polarization transfer efficiency and report carbon spin polarization of dimethyl acetylene dicarboxylate reaching 35%, which corresponds to 13C NMR signal enhancements of about 43,000 at 9.4 Tesla. Such polarization levels allow one to work with mM concentrations at natural carbon abundance and to detect 13C NMR signal in single scan. In combination with a pseudo phase cycle, the polarization transfer method used here also enables efficient suppression of unwanted background signals.
Collapse
Affiliation(s)
- Vitaly P Kozinenko
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexey S Kiryutin
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexandra V Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Konstantin L Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia.
| |
Collapse
|
35
|
Jagtap AP, Kaltschnee L, Glöggler S. Hyperpolarization of 15N-pyridinium and 15N-aniline derivatives by using parahydrogen: new opportunities to store nuclear spin polarization in aqueous media. Chem Sci 2019; 10:8577-8582. [PMID: 31803432 PMCID: PMC6839503 DOI: 10.1039/c9sc02970b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/30/2019] [Indexed: 01/30/2023] Open
Abstract
Hyperpolarization techniques hold the promise to improve the sensitivity of magnetic resonance imaging (MRI) contrast agents by over 10 000-fold. Among these techniques, para-hydrogen induced polarization (PHIP) allows for generating contrast agents within seconds. Typical hyperpolarized contrast agents are traceable for 2-3 minutes only, thus prolonging tracking-times holds great importance for the development of new ways to diagnose and monitor diseases. Here, we report on the design of perdeuterated 15N-containing molecules with longitudinal relaxation times (T 1) of several minutes. T 1 is a measure for how long hyperpolarization can be stored. In particular, we introduce two new hyperpolarizable families of compounds that we signal enhanced with para-hydrogen: tert-amine aniline derivatives and a quaternary pyridinium compound with 15N-T 1 of about 8 minutes. Especially the latter compound has great potential for applicability since we achieved 15N-polarization up to 8% and the pyridinium motif is contained in a variety of drug molecules and is also used in drug delivery systems.
Collapse
Affiliation(s)
- Anil P Jagtap
- Max-Planck-Institute for Biophysical Chemistry , Am Fassberg 11 , 37077 Göttingen , Germany .
- Center for Biostructural Imaging of Neurodegeneration , Von-Siebold-Str. 3a , 37075 Göttingen , Germany
| | - Lukas Kaltschnee
- Max-Planck-Institute for Biophysical Chemistry , Am Fassberg 11 , 37077 Göttingen , Germany .
- Center for Biostructural Imaging of Neurodegeneration , Von-Siebold-Str. 3a , 37075 Göttingen , Germany
| | - Stefan Glöggler
- Max-Planck-Institute for Biophysical Chemistry , Am Fassberg 11 , 37077 Göttingen , Germany .
- Center for Biostructural Imaging of Neurodegeneration , Von-Siebold-Str. 3a , 37075 Göttingen , Germany
| |
Collapse
|
36
|
Singh J, Suh EH, Sharma G, Khemtong C, Sherry AD, Kovacs Z. Probing carbohydrate metabolism using hyperpolarized 13 C-labeled molecules. NMR IN BIOMEDICINE 2019; 32:e4018. [PMID: 30474153 PMCID: PMC6579721 DOI: 10.1002/nbm.4018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/03/2018] [Accepted: 08/11/2018] [Indexed: 05/05/2023]
Abstract
Glycolysis is a fundamental metabolic process in all organisms. Anomalies in glucose metabolism are linked to various pathological conditions. In particular, elevated aerobic glycolysis is a characteristic feature of rapidly growing cells. Glycolysis and the closely related pentose phosphate pathway can be monitored in real time by hyperpolarized 13 C-labeled metabolic substrates such as 13 C-enriched, deuterated D-glucose derivatives, [2-13 C]-D-fructose, [2-13 C] dihydroxyacetone, [1-13 C]-D-glycerate, [1-13 C]-D-glucono-δ-lactone and [1-13 C] pyruvate in healthy and diseased tissues. Elevated glycolysis in tumors (the Warburg effect) was also successfully imaged using hyperpolarized [U-13 C6 , U-2 H7 ]-D-glucose, while the size of the preexisting lactate pool can be measured by 13 C MRS and/or MRI with hyperpolarized [1-13 C]pyruvate. This review summarizes the application of various hyperpolarized 13 C-labeled metabolites to the real-time monitoring of glycolysis and related metabolic processes in normal and diseased tissues.
Collapse
Affiliation(s)
- Jaspal Singh
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eul Hyun Suh
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gaurav Sharma
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chalermchai Khemtong
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - A. Dean Sherry
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Zoltan Kovacs
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
37
|
Barskiy DA, Knecht S, Yurkovskaya AV, Ivanov KL. SABRE: Chemical kinetics and spin dynamics of the formation of hyperpolarization. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 114-115:33-70. [PMID: 31779885 DOI: 10.1016/j.pnmrs.2019.05.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/16/2019] [Indexed: 05/22/2023]
Abstract
In this review, we present the physical principles of the SABRE (Signal Amplification By Reversible Exchange) method. SABRE is a promising hyperpolarization technique that enhances NMR signals by transferring spin order from parahydrogen (an isomer of the H2 molecule that is in a singlet nuclear spin state) to a substrate that is to be polarized. Spin order transfer takes place in a transient organometallic complex which binds both parahydrogen and substrate molecules; after dissociation of the SABRE complex, free hyperpolarized substrate molecules are accumulated in solution. An advantage of this method is that the substrate is not modified chemically, and its polarization can be regenerated multiple times by bubbling fresh parahydrogen through the solution. Thus, SABRE requires two key ingredients: (i) polarization transfer and (ii) chemical exchange of both parahydrogen and substrate. While there are several excellent reviews on applications of SABRE, the background of the method is discussed less frequently. In this review we aim to explain in detail how SABRE hyperpolarization is formed, focusing on key aspects of both spin dynamics and chemical kinetics, as well as on the interplay between them. Hence, we first cover the known spin order transfer methods applicable to SABRE - cross-relaxation, coherent spin mixing at avoided level crossings, and coherence transfer - and discuss their practical implementation for obtaining SABRE polarization in the most efficient way. Second, we introduce and explain the principle of SABRE hyperpolarization techniques that operate at ultralow (<1 μT), at low (1μT to 0.1 T) and at high (>0.1 T) magnetic fields. Finally, chemical aspects of SABRE are discussed in detail, including chemical systems that are amenable to SABRE and the exchange processes that are required for polarization formation. A theoretical treatment of the spin dynamics and their interplay with chemical kinetics is also presented. This review outlines known aspects of SABRE and provides guidelines for the design of new SABRE experiments, with the goal of solving practical problems of enhancing weak NMR signals.
Collapse
Affiliation(s)
- Danila A Barskiy
- Department of Chemistry, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Stephan Knecht
- Eduard-Zintl Institute for Inorganic and Physical Chemistry, TU Darmstadt, Darmstadt 64287, Germany; Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexandra V Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Konstantin L Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia.
| |
Collapse
|
38
|
Kaltschnee L, Jagtap AP, McCormick J, Wagner S, Bouchard L, Utz M, Griesinger C, Glöggler S. Hyperpolarization of Amino Acids in Water Utilizing Parahydrogen on a Rhodium Nanocatalyst. Chemistry 2019; 25:11031-11035. [DOI: 10.1002/chem.201902878] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Indexed: 01/28/2023]
Affiliation(s)
- Lukas Kaltschnee
- Max-Planck-Institute for Biophysical Chemistry Am Faßberg 11 37077 Göttingen Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN) Von-Siebold-Str.3A 37075 Göttingen Germany
| | - Anil P. Jagtap
- Max-Planck-Institute for Biophysical Chemistry Am Faßberg 11 37077 Göttingen Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN) Von-Siebold-Str.3A 37075 Göttingen Germany
| | - Jeffrey McCormick
- Department of Chemistry and BiochemistryUniversity of California Los Angeles 607 Charles E Young Dr. East Los Angeles CA 90095-1569 USA
| | - Shawn Wagner
- Cedars-Sinai Medical CenterBiomedical Imaging Research Institute 8700 Beverly Boulevard, Davis Building G149E Los Angeles California 90048 USA
| | - Louis‐S. Bouchard
- Department of Chemistry and BiochemistryUniversity of California Los Angeles 607 Charles E Young Dr. East Los Angeles CA 90095-1569 USA
| | - Marcel Utz
- School of ChemistryUniversity of Southampton Southampton SO171BJ UK
| | - Christian Griesinger
- Max-Planck-Institute for Biophysical Chemistry Am Faßberg 11 37077 Göttingen Germany
| | - Stefan Glöggler
- Max-Planck-Institute for Biophysical Chemistry Am Faßberg 11 37077 Göttingen Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN) Von-Siebold-Str.3A 37075 Göttingen Germany
| |
Collapse
|
39
|
Berner S, Schmidt AB, Zimmermann M, Pravdivtsev AN, Glöggler S, Hennig J, von Elverfeldt D, Hövener J. SAMBADENA Hyperpolarization of 13C-Succinate in an MRI: Singlet-Triplet Mixing Causes Polarization Loss. ChemistryOpen 2019; 8:728-736. [PMID: 31275794 PMCID: PMC6587320 DOI: 10.1002/open.201900139] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Indexed: 12/30/2022] Open
Abstract
The signal enhancement provided by the hyperpolarization of nuclear spins of biological molecules is a highly promising technique for diagnostic imaging. To date, most 13C-contrast agents had to be polarized in an extra, complex or cost intensive polarizer. Recently, the in situ hyperpolarization of a 13C contrast agent to >20 % was demonstrated without a polarizer but within the bore of an MRI system. This approach addresses some of the challenges of MRI with hyperpolarized tracers, i. e. elevated cost, long production times, and loss of polarization during transfer to the detection site. Here, we demonstrate the first hyperpolarization of a biomolecule in aqueous solution in the bore of an MRI at field strength of 7 T within seconds. The 13C nucleus of 1-13C, 2,3-2H2-succinate was polarized to 11 % corresponding to a signal enhancement of approximately 18.000. Interesting effects during the process of the hydrogenation reaction which lead to a significant loss of polarization have been observed.
Collapse
Affiliation(s)
- Stephan Berner
- Department of Radiology, Medical Physics, Medical Center – University of Freiburg, Faculty of MedicineUniversity of FreiburgKillianstraße 5a79106FreiburgGermany
- German Consortium for Cancer Research (DKTK) partner site Freiburg
- German Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
| | - Andreas B. Schmidt
- Department of Radiology, Medical Physics, Medical Center – University of Freiburg, Faculty of MedicineUniversity of FreiburgKillianstraße 5a79106FreiburgGermany
- Department of Radiology and Neuroradiology, Section Biomedical Imaging, MOIN CC, University Medical Center Schleswig-HolsteinUniversity of KielAm Botanischen Garten 1424118KielGermany
| | - Mirko Zimmermann
- Department of Radiology, Medical Physics, Medical Center – University of Freiburg, Faculty of MedicineUniversity of FreiburgKillianstraße 5a79106FreiburgGermany
| | - Andrey N. Pravdivtsev
- Department of Radiology and Neuroradiology, Section Biomedical Imaging, MOIN CC, University Medical Center Schleswig-HolsteinUniversity of KielAm Botanischen Garten 1424118KielGermany
| | - Stefan Glöggler
- Max Planck Institute for Biophysical Chemistry Am Fassberg 1137077GöttingenGermany
- Center for Biostructural Imaging of NeurodegenerationVon-Siebold-Straße 3a37075GöttingenGermany
| | - Jürgen Hennig
- Department of Radiology, Medical Physics, Medical Center – University of Freiburg, Faculty of MedicineUniversity of FreiburgKillianstraße 5a79106FreiburgGermany
| | - Dominik von Elverfeldt
- Department of Radiology, Medical Physics, Medical Center – University of Freiburg, Faculty of MedicineUniversity of FreiburgKillianstraße 5a79106FreiburgGermany
| | - Jan‐Bernd Hövener
- Department of Radiology and Neuroradiology, Section Biomedical Imaging, MOIN CC, University Medical Center Schleswig-HolsteinUniversity of KielAm Botanischen Garten 1424118KielGermany
| |
Collapse
|
40
|
Eills J, Hale W, Sharma M, Rossetto M, Levitt MH, Utz M. High-Resolution Nuclear Magnetic Resonance Spectroscopy with Picomole Sensitivity by Hyperpolarization on a Chip. J Am Chem Soc 2019; 141:9955-9963. [DOI: 10.1021/jacs.9b03507] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- James Eills
- School of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, United Kingdom
| | - William Hale
- School of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, United Kingdom
| | - Manvendra Sharma
- School of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, United Kingdom
| | - Matheus Rossetto
- School of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, United Kingdom
| | - Malcolm H. Levitt
- School of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, United Kingdom
| | - Marcel Utz
- School of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, United Kingdom
| |
Collapse
|
41
|
Salnikov OG, Chukanov NV, Shchepin RV, Manzanera Esteve IV, Kovtunov KV, Koptyug IV, Chekmenev EY. Parahydrogen-Induced Polarization of 1- 13C-Acetates and 1- 13C-Pyruvates Using Sidearm Hydrogenation of Vinyl, Allyl, and Propargyl Esters. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2019; 123:12827-12840. [PMID: 31363383 PMCID: PMC6664436 DOI: 10.1021/acs.jpcc.9b02041] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
13C-hyperpolarized carboxylates, such as pyruvate and acetate, are emerging molecular contrast agents for MRI visualization of various diseases, including cancer. Here we present a systematic study of 1H and 13C parahydrogen-induced polarization of acetate and pyruvate esters with ethyl, propyl and allyl alcoholic moieties. It was found that allyl pyruvate is the most efficiently hyperpolarized compound from those under study, yielding 21% and 5.4% polarization of 1H and 13C nuclei, respectively, in CD3OD solutions. Allyl pyruvate and ethyl acetate were also hyperpolarized in aqueous phase using homogeneous hydrogenation with parahydrogen over water-soluble rhodium catalyst. 13C polarization of 0.82% and 2.1% was obtained for allyl pyruvate and ethyl acetate, respectively. 13C-hyperpolarized methanolic and aqueous solutions of allyl pyruvate and ethyl acetate were employed for in vitro MRI visualization, demonstrating the prospects for translation of the presented approach to biomedical in vivo studies.
Collapse
Affiliation(s)
- Oleg G. Salnikov
- International Tomography Center SB RAS, Institutskaya
Street 3A, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street 2,
Novosibirsk 630090, Russia
| | - Nikita V. Chukanov
- International Tomography Center SB RAS, Institutskaya
Street 3A, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street 2,
Novosibirsk 630090, Russia
| | - Roman V. Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS),
Vanderbilt University, Nashville, Tennessee 37232-2310, United States
- Department of Radiology, Vanderbilt University, Nashville,
Tennessee 37232-2310, United States
| | - Isaac V. Manzanera Esteve
- Vanderbilt University Institute of Imaging Science (VUIIS),
Vanderbilt University, Nashville, Tennessee 37232-2310, United States
- Department of Radiology, Vanderbilt University, Nashville,
Tennessee 37232-2310, United States
| | - Kirill V. Kovtunov
- International Tomography Center SB RAS, Institutskaya
Street 3A, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street 2,
Novosibirsk 630090, Russia
| | - Igor V. Koptyug
- International Tomography Center SB RAS, Institutskaya
Street 3A, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street 2,
Novosibirsk 630090, Russia
| | - Eduard Y. Chekmenev
- Vanderbilt University Institute of Imaging Science (VUIIS),
Vanderbilt University, Nashville, Tennessee 37232-2310, United States
- Department of Radiology, Vanderbilt University, Nashville,
Tennessee 37232-2310, United States
- Department of Biomedical Engineering, and Vanderbilt
University, Nashville, Tennessee 37232-2310, United States
- Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt
University, Nashville, Tennessee 37232-2310, United States
- Department of Chemistry, Integrative Biosciences (Ibio),
Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202,
United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow
119991, Russia
| |
Collapse
|
42
|
Korchak S, Emondts M, Mamone S, Blümich B, Glöggler S. Production of highly concentrated and hyperpolarized metabolites within seconds in high and low magnetic fields. Phys Chem Chem Phys 2019; 21:22849-22856. [DOI: 10.1039/c9cp05227e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We introduce two experiments that allow for the rapid production of hyperpolarized metabolites. More than 50% 13C polarization in 50 mM concentrations is achieved. This can be translated to portable low field NMR devices.
Collapse
Affiliation(s)
- Sergey Korchak
- NMR Signal Enhancement Group Max-Planck-Institute for Biophysical Chemistry
- 37077 Göttingen
- Germany
- Center for Biostructural Imaging of Neurodegeneration, Von-Siebold-Straße 3A
- 37075 Göttingen
| | - Meike Emondts
- DWI-Leibniz Institute for Interactive Materials
- D-52056 Aachen
- Germany
- Institut für Technische Chemie und Makromolekulare Chemie
- RWTH-Aachen University
| | - Salvatore Mamone
- NMR Signal Enhancement Group Max-Planck-Institute for Biophysical Chemistry
- 37077 Göttingen
- Germany
- Center for Biostructural Imaging of Neurodegeneration, Von-Siebold-Straße 3A
- 37075 Göttingen
| | - Bernhard Blümich
- Institut für Technische Chemie und Makromolekulare Chemie
- RWTH-Aachen University
- Worringerweg 2
- Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group Max-Planck-Institute for Biophysical Chemistry
- 37077 Göttingen
- Germany
- Center for Biostructural Imaging of Neurodegeneration, Von-Siebold-Straße 3A
- 37075 Göttingen
| |
Collapse
|
43
|
Pravdivtsev AN, Sönnichsen F, Hövener JB. OnlyParahydrogen SpectrosopY (OPSY) pulse sequences - One does not fit all. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 297:86-95. [PMID: 30366223 DOI: 10.1016/j.jmr.2018.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
The hyperpolarization of nuclear spins using parahydrogen is an interesting effect that allows to increase the magnetic resonance signal by several orders of magnitude. Known as ParaHydrogen And Synthesis Allow Dramatically Enhanced Nuclear Alignment (PASADENA) and ParaHydrogen Induced Polarization (PHIP), the method was successfully used for in vitro analysis and in vivo imaging. In this contribution, we investigated four known and four new variants of Only Parahydrogen SpectroscopY (OPSY) sequences (Aguilar et al., 2007) with respect to the selective preparation of hyperpolarized NMR signal and background suppression. Depending on the method chosen, either anti-phase, in-phase or a mixture of both signals are obtained: anti-phase signals are beneficial to identify hyperpolarized signals and the structure or J-coupling constants; in-phase signals are useful for imaging applications or when the lines are broad. This comprehensive overview of sequences new and old facilitates selecting the right sequence for the task at hand.
Collapse
Affiliation(s)
- Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Kiel, Germany.
| | - Frank Sönnichsen
- Faculty of Mathematics and Natural Sciences, Chemistry Section, Kiel University, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Kiel, Germany
| |
Collapse
|
44
|
Stewart NJ, Kumeta H, Tomohiro M, Hashimoto T, Hatae N, Matsumoto S. Long-range heteronuclear J-coupling constants in esters: Implications for 13C metabolic MRI by side-arm parahydrogen-induced polarization. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 296:85-92. [PMID: 30223155 DOI: 10.1016/j.jmr.2018.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
Side-arm parahydrogen induced polarization (PHIP-SAH) presents a cost-effective method for hyperpolarization of 13C metabolites (e.g. acetate, pyruvate) for metabolic MRI. The timing and efficiency of typical spin order transfer methods including magnetic field cycling and tailored RF pulse sequences crucially depends on the heteronuclear J coupling network between nascent parahydrogen protons and 13C, post-parahydrogenation of the target compound. In this work, heteronuclear nJHC (1 < n ≤ 5) couplings of acetate and pyruvate esters pertinent for PHIP-SAH were investigated experimentally using selective HSQMBC-based pulse sequences and numerically using DFT simulations. The CLIP-HSQMBC technique was used to quantify 2/3-bond JHC couplings, and 4/5-bond JHC ≲ 0.5 Hz were estimated by the sel-HSQMBC-TOCSY approach. Experimental and numerical (DFT-simulated) nJHC couplings were strongly correlated (P < 0.001). Implications for 13C hyperpolarization by magnetic field cycling, and PH-INEPT and ESOTHERIC type spin order transfer methods for PHIP-SAH were assessed, and the influence of direct nascent parahydrogen proton to 13C coupling when compared with indirect homonuclear TOCSY-type transfer through intermediate (non-nascent parahydrogen) protons was studied by the density matrix approach.
Collapse
Affiliation(s)
- Neil J Stewart
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Hiroyuki Kumeta
- Department of Structural Biology, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Mitsushi Tomohiro
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Takuya Hashimoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan; Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Noriyuki Hatae
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Shingo Matsumoto
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan; JST, PREST, Saitama, Japan.
| |
Collapse
|
45
|
Korchak S, Mamone S, Glöggler S. Over 50 % 1H and 13C Polarization for Generating Hyperpolarized Metabolites-A para-Hydrogen Approach. ChemistryOpen 2018; 7:672-676. [PMID: 30191091 PMCID: PMC6121117 DOI: 10.1002/open.201800086] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Indexed: 11/23/2022] Open
Abstract
para‐Hydrogen‐induced polarization (PHIP) is a method to rapidly generate hyperpolarized compounds, enhancing the signal of nuclear magnetic resonance (NMR) experiments by several thousand‐fold. The hyperpolarization of metabolites and their use as contrast agents in vivo is an emerging diagnostic technique. High degrees of polarization and extended polarization lifetime are necessary requirements for the detection of metabolites in vivo. Here, we present pulsed NMR methods for obtaining hyperpolarized magnetization in two metabolites. We demonstrate that the hydrogenation with para‐hydrogen of perdeuterated vinyl acetate allows us to create hyperpolarized ethyl acetate with close to 60 % 1H two‐spin order. With nearly 100 % efficiency, this order can either be transferred to 1H in‐phase magnetization or 13C magnetization of the carbonyl function. Close to 60 % polarization is experimentally verified for both nuclei. Cleavage of the ethyl acetate precursor in a 20 s reaction yields ethanol with approximately 27 % 1H polarization and acetate with around 20 % 13C polarization. This development will open new opportunities to generate metabolic contrast agents in less than one minute.
Collapse
Affiliation(s)
- Sergey Korchak
- NMR Signal Enhancement Group Max-Planck-Institute for Biophysical Chemistry Am Faßberg 11 37077 Göttingen Germany.,Center for Biostructural Imaging of Neurodegeneration Von-Siebold-Straße 3A 37075 Göttingen Germany
| | - Salvatore Mamone
- NMR Signal Enhancement Group Max-Planck-Institute for Biophysical Chemistry Am Faßberg 11 37077 Göttingen Germany.,Center for Biostructural Imaging of Neurodegeneration Von-Siebold-Straße 3A 37075 Göttingen Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group Max-Planck-Institute for Biophysical Chemistry Am Faßberg 11 37077 Göttingen Germany.,Center for Biostructural Imaging of Neurodegeneration Von-Siebold-Straße 3A 37075 Göttingen Germany
| |
Collapse
|
46
|
McCormick J, Korchak S, Mamone S, Ertas YN, Liu Z, Verlinsky L, Wagner S, Glöggler S, Bouchard LS. More Than 12 % Polarization and 20 Minute Lifetime of 15 N in a Choline Derivative Utilizing Parahydrogen and a Rhodium Nanocatalyst in Water. Angew Chem Int Ed Engl 2018; 57:10692-10696. [PMID: 29923285 DOI: 10.1002/anie.201804185] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/14/2018] [Indexed: 11/05/2022]
Abstract
Hyperpolarization techniques are key to extending the capabilities of MRI for the investigation of structural, functional and metabolic processes in vivo. Recent heterogeneous catalyst development has produced high polarization in water using parahydrogen with biologically relevant contrast agents. A heterogeneous ligand-stabilized Rh catalyst is introduced that is capable of achieving 15 N polarization of 12.2±2.7 % by hydrogenation of neurine into a choline derivative. This is the highest 15 N polarization of any parahydrogen method in water to date. Notably, this was performed using a deuterated quaternary amine with an exceptionally long spin-lattice relaxation time (T1 ) of 21.0±0.4 min. These results open the door to the possibility of 15 N in vivo imaging using nontoxic similar model systems because of the biocompatibility of the production media and the stability of the heterogeneous catalyst using parahydrogen-induced polarization (PHIP) as the hyperpolarization method.
Collapse
Affiliation(s)
- Jeffrey McCormick
- Department of Chemistry and Biochemistry, University of California at Los Angeles, 607 Charles E Young Drive East, Los Angeles, CA, 90095-1569, USA
| | - Sergey Korchak
- Research Group for NMR Signal Enhancement, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, Von-Siebold-Str. 3A, 37075, Göttingen, Germany
| | - Salvatore Mamone
- Research Group for NMR Signal Enhancement, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, Von-Siebold-Str. 3A, 37075, Göttingen, Germany
| | - Yavuz N Ertas
- Department of Chemistry and Biochemistry, University of California at Los Angeles, 607 Charles E Young Drive East, Los Angeles, CA, 90095-1569, USA.,Department of Bioengineering, University of California at Los Angeles, 607 Charles E Young Drive East, Los Angeles, CA, 90095-1569, USA
| | - Zhiyu Liu
- Department of Chemistry and Biochemistry, University of California at Los Angeles, 607 Charles E Young Drive East, Los Angeles, CA, 90095-1569, USA
| | - Luke Verlinsky
- Department of Chemistry and Biochemistry, University of California at Los Angeles, 607 Charles E Young Drive East, Los Angeles, CA, 90095-1569, USA
| | - Shawn Wagner
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Davis Building G149E, Los Angeles, CA, 90048, USA
| | - Stefan Glöggler
- Research Group for NMR Signal Enhancement, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, Von-Siebold-Str. 3A, 37075, Göttingen, Germany
| | - Louis-S Bouchard
- Department of Chemistry and Biochemistry, University of California at Los Angeles, 607 Charles E Young Drive East, Los Angeles, CA, 90095-1569, USA.,Department of Bioengineering, University of California at Los Angeles, 607 Charles E Young Drive East, Los Angeles, CA, 90095-1569, USA.,The Molecular Biology Institute, Jonsson Comprehensive Cancer Center, California NanoSystems Institute, University of California at Los Angeles, USA
| |
Collapse
|
47
|
McCormick J, Korchak S, Mamone S, Ertas YN, Liu Z, Verlinsky L, Wagner S, Glöggler S, Bouchard L. More Than 12 % Polarization and 20 Minute Lifetime of
15
N in a Choline Derivative Utilizing Parahydrogen and a Rhodium Nanocatalyst in Water. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804185] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jeffrey McCormick
- Department of Chemistry and Biochemistry University of California at Los Angeles 607 Charles E Young Drive East Los Angeles CA 90095-1569 USA
| | - Sergey Korchak
- Research Group for NMR Signal Enhancement Max Planck Institute for Biophysical Chemistry Am Fassberg 11 37077 Göttingen Germany
- Center for Biostructural Imaging of Neurodegeneration Von-Siebold-Str. 3A 37075 Göttingen Germany
| | - Salvatore Mamone
- Research Group for NMR Signal Enhancement Max Planck Institute for Biophysical Chemistry Am Fassberg 11 37077 Göttingen Germany
- Center for Biostructural Imaging of Neurodegeneration Von-Siebold-Str. 3A 37075 Göttingen Germany
| | - Yavuz N. Ertas
- Department of Chemistry and Biochemistry University of California at Los Angeles 607 Charles E Young Drive East Los Angeles CA 90095-1569 USA
- Department of Bioengineering University of California at Los Angeles 607 Charles E Young Drive East Los Angeles CA 90095-1569 USA
| | - Zhiyu Liu
- Department of Chemistry and Biochemistry University of California at Los Angeles 607 Charles E Young Drive East Los Angeles CA 90095-1569 USA
| | - Luke Verlinsky
- Department of Chemistry and Biochemistry University of California at Los Angeles 607 Charles E Young Drive East Los Angeles CA 90095-1569 USA
| | - Shawn Wagner
- Biomedical Imaging Research Institute Cedars-Sinai Medical Center 8700 Beverly Blvd, Davis Building G149E Los Angeles CA 90048 USA
| | - Stefan Glöggler
- Research Group for NMR Signal Enhancement Max Planck Institute for Biophysical Chemistry Am Fassberg 11 37077 Göttingen Germany
- Center for Biostructural Imaging of Neurodegeneration Von-Siebold-Str. 3A 37075 Göttingen Germany
| | - Louis‐S. Bouchard
- Department of Chemistry and Biochemistry University of California at Los Angeles 607 Charles E Young Drive East Los Angeles CA 90095-1569 USA
- Department of Bioengineering University of California at Los Angeles 607 Charles E Young Drive East Los Angeles CA 90095-1569 USA
- The Molecular Biology Institute Jonsson Comprehensive Cancer Center California NanoSystems Institute University of California at Los Angeles USA
| |
Collapse
|