1
|
Zupanc A, Install J, Weckman T, Melander MM, Heikkilä MJ, Kemell M, Honkala K, Repo T. Sequential Selective Dissolution of Coinage Metals in Recyclable Ionic Media. Angew Chem Int Ed Engl 2024; 63:e202407147. [PMID: 38742485 DOI: 10.1002/anie.202407147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Coinage metals Cu, Ag, and Au are essential for modern electronics and their recycling from waste materials is becoming increasingly important to guarantee the security of their supply. Designing new sustainable and selective procedures that would substitute currently used processes is crucial. Here, we describe an unprecedented approach for the sequential dissolution of single metals from Cu, Ag, and Au mixtures using biomass-derived ionic solvents and green oxidants. First, Cu can be selectively dissolved in the presence of Ag and Au with a choline chloride/urea/H2O2 mixture, followed by the dissolution of Ag in lactic acid/H2O2. Finally, the metallic Au, which is not soluble in either solution above, is dissolved in choline chloride/urea/Oxone. Subsequently, the metals were simply and quantitatively recovered from dissolutions, and the solvents were recycled and reused. The applicability of the developed approach was demonstrated by recovering metals from electronic waste substrates such as printed circuit boards, gold fingers, and solar panels. The dissolution reactions and selectivity were explored with different analytical techniques and DFT calculations. We anticipate our approach will pave a new way for the contemporary and sustainable recycling of multi-metal waste substrates.
Collapse
Affiliation(s)
- Anže Zupanc
- Department of Chemistry, Faculty of Science, University of Helsinki, A. I. Virtasen aukio 1, 00014, Helsinki, Finland
| | - Joseph Install
- Department of Chemistry, Faculty of Science, University of Helsinki, A. I. Virtasen aukio 1, 00014, Helsinki, Finland
| | - Timo Weckman
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland
| | - Marko M Melander
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland
| | - Mikko J Heikkilä
- Department of Chemistry, Faculty of Science, University of Helsinki, A. I. Virtasen aukio 1, 00014, Helsinki, Finland
| | - Marianna Kemell
- Department of Chemistry, Faculty of Science, University of Helsinki, A. I. Virtasen aukio 1, 00014, Helsinki, Finland
| | - Karoliina Honkala
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland
| | - Timo Repo
- Department of Chemistry, Faculty of Science, University of Helsinki, A. I. Virtasen aukio 1, 00014, Helsinki, Finland
| |
Collapse
|
2
|
Zupanc A, Install J, Jereb M, Repo T. Sustainable and Selective Modern Methods of Noble Metal Recycling. Angew Chem Int Ed Engl 2023; 62:e202214453. [PMID: 36409274 PMCID: PMC10107291 DOI: 10.1002/anie.202214453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
Noble metals exhibit broad arrange of applications in industry and several aspects of human life which are becoming more and more prevalent in modern times. Due to their limited sources and constantly and consistently expanding demand, recycling of secondary and waste materials must accompany the traditional mineral extractions. This Minireview covers the most recent solvometallurgical developments in regeneration of Pd, Pt, Rh, Ru, Ir, Os, Ag and Au with emphasis on sustainability and selectivity. Processing-by selective oxidative dissolution, reductive precipitation, solvent extraction, co-precipitation, membrane transfer and trapping to solid media-of eligible multi-metal substrates for recycling from waste printed circuit boards to end-of-life automotive catalysts are discussed. Outlook for possible future direction for noble metal recycling is proposed with emphasis on sustainable approaches.
Collapse
Affiliation(s)
- Anže Zupanc
- Department of ChemistryUniversity of HelsinkiP.O. Box 55 (A. I. Virtasen aukio 1)00014HelsinkiFinland
- Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaVečna pot 1131000LjubljanaSlovenia
| | - Joseph Install
- Department of ChemistryUniversity of HelsinkiP.O. Box 55 (A. I. Virtasen aukio 1)00014HelsinkiFinland
| | - Marjan Jereb
- Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaVečna pot 1131000LjubljanaSlovenia
| | - Timo Repo
- Department of ChemistryUniversity of HelsinkiP.O. Box 55 (A. I. Virtasen aukio 1)00014HelsinkiFinland
| |
Collapse
|
3
|
Zupanc A, Heliövaara E, Moslova K, Eronen A, Kemell M, Podlipnik Č, Jereb M, Repo T. Iodine-Catalysed Dissolution of Elemental Gold in Ethanol. Angew Chem Int Ed Engl 2022; 61:e202117587. [PMID: 35106899 PMCID: PMC9305299 DOI: 10.1002/anie.202117587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 11/24/2022]
Abstract
Gold is a scarce element in the Earth's crust but indispensable in modern electronic devices. New, sustainable methods of gold recycling are essential to meet the growing eco-social demand of gold. Here, we describe a simple, inexpensive, and environmentally benign dissolution of gold under mild conditions. Gold dissolves quantitatively in ethanol using 2-mercaptobenzimidazole as a ligand in the presence of a catalytic amount of iodine. Mechanistically, the dissolution of gold begins when I2 oxidizes Au0 and forms a [AuI I2 ]- species, which undergoes subsequent ligand-exchange reactions and forms a stable bis-ligand AuI complex. H2 O2 oxidizes free iodide and regenerated I2 returns back to the catalytic cycle. Addition of a reductant to the reaction mixture precipitates gold quantitatively and partially regenerates the ligand. We anticipate our work will open a new pathway to more sustainable metal recycling with the utilization of just catalytic amounts of reagents and green solvents.
Collapse
Affiliation(s)
- Anže Zupanc
- Department of ChemistryFaculty of ScienceUniversity of HelsinkiA. I. Virtasen aukio 100014HelsinkiFinland
- Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaVečna pot 1131000LjubljanaSlovenia
| | - Eeva Heliövaara
- Department of ChemistryFaculty of ScienceUniversity of HelsinkiA. I. Virtasen aukio 100014HelsinkiFinland
| | - Karina Moslova
- Department of ChemistryFaculty of ScienceUniversity of HelsinkiA. I. Virtasen aukio 100014HelsinkiFinland
| | - Aleksi Eronen
- Department of ChemistryFaculty of ScienceUniversity of HelsinkiA. I. Virtasen aukio 100014HelsinkiFinland
| | - Marianna Kemell
- Department of ChemistryFaculty of ScienceUniversity of HelsinkiA. I. Virtasen aukio 100014HelsinkiFinland
| | - Črtomir Podlipnik
- Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaVečna pot 1131000LjubljanaSlovenia
| | - Marjan Jereb
- Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaVečna pot 1131000LjubljanaSlovenia
| | - Timo Repo
- Department of ChemistryFaculty of ScienceUniversity of HelsinkiA. I. Virtasen aukio 100014HelsinkiFinland
| |
Collapse
|
4
|
Zupanc A, Heliövaara E, Moslova K, Eronen A, Kemell M, Podlipnik Č, Jereb M, Repo T. Iodine‐Catalysed Dissolution of Elemental Gold in Ethanol. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anže Zupanc
- Department of Chemistry Faculty of Science University of Helsinki A. I. Virtasen aukio 1 00014 Helsinki Finland
- Faculty of Chemistry and Chemical Technology University of Ljubljana Večna pot 113 1000 Ljubljana Slovenia
| | - Eeva Heliövaara
- Department of Chemistry Faculty of Science University of Helsinki A. I. Virtasen aukio 1 00014 Helsinki Finland
| | - Karina Moslova
- Department of Chemistry Faculty of Science University of Helsinki A. I. Virtasen aukio 1 00014 Helsinki Finland
| | - Aleksi Eronen
- Department of Chemistry Faculty of Science University of Helsinki A. I. Virtasen aukio 1 00014 Helsinki Finland
| | - Marianna Kemell
- Department of Chemistry Faculty of Science University of Helsinki A. I. Virtasen aukio 1 00014 Helsinki Finland
| | - Črtomir Podlipnik
- Faculty of Chemistry and Chemical Technology University of Ljubljana Večna pot 113 1000 Ljubljana Slovenia
| | - Marjan Jereb
- Faculty of Chemistry and Chemical Technology University of Ljubljana Večna pot 113 1000 Ljubljana Slovenia
| | - Timo Repo
- Department of Chemistry Faculty of Science University of Helsinki A. I. Virtasen aukio 1 00014 Helsinki Finland
| |
Collapse
|
5
|
Abstract
Dissolution of metals in organic solvents is relevant to various application fields, such as metal extraction from ores or secondary resources, surface etching or polishing of metals, direct synthesis of organometallic compounds, and separation of metals from other compounds. Organic solvents for dissolution of metals can offer a solution when aqueous systems fail, such as separation of metals from metal oxides, because both the metal and metal oxide could codissolve in aqueous acidic solutions. This review critically discusses organic media (conventional molecular organic solvents, ionic liquids, deep-eutectic solvents and supercritical carbon dioxide) for oxidative dissolution of metals in different application areas. The reaction mechanisms of dissolution processes are discussed for various lixiviant systems which generally consist of oxidizing agents, chelating agents, and solvents. Different oxidizing agents for dissolution of metals are reviewed such as halogens, halogenated organics, donor-acceptor electron-transfer systems, polyhalide ionic liquids, and others. Both chemical and electrochemical processes are included. The review can guide researchers to develop more efficient, economic, and environmentally friendly processes for dissolution of metals in their elemental state.
Collapse
Affiliation(s)
- Xiaohua Li
- KU Leuven, Department of Chemistry, Celestijnenlaan 200F, P.O. Box
2404, B-3001 Leuven, Belgium
| | - Koen Binnemans
- KU Leuven, Department of Chemistry, Celestijnenlaan 200F, P.O. Box
2404, B-3001 Leuven, Belgium
| |
Collapse
|
6
|
Van den Bossche A, Rodriguez Rodriguez N, Riaño S, Dehaen W, Binnemans K. Dissolution behavior of precious metals and selective palladium leaching from spent automotive catalysts by trihalide ionic liquids. RSC Adv 2021; 11:10110-10120. [PMID: 35423479 PMCID: PMC8695518 DOI: 10.1039/d1ra00695a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/03/2021] [Indexed: 01/05/2023] Open
Abstract
The dissolution behavior of the precious metals gold, platinum, rhodium and palladium in the trihexyl(tetradecyl)phosphonium trihalide ionic liquids [P66614][Cl3], [P66614][Br3], [P66614][IBr2] and [P66614][I3] was investigated. The highest dissolution rates were observed for the trichloride ionic liquid [P66614][Cl3] and this system was investigated in more detail. The effects of the trichloride concentration in the ionic liquid and temperature were studied, reaching higher leaching rates at higher trichloride conversions and increased temperatures. The stability of the trichloride anion at these elevated temperatures was studied by Raman spectroscopy. It was found that the trichloride anion decomposed during leaching at higher temperatures, showing the requirement to store these reactive compounds in sealed and cool environments, shielded from light. The optimal leaching conditions were applied for the recovery of palladium from ceramic monolith powder, obtained from end-of-life automotive catalysts. The catalyst powder was contacted with the ionic liquid [P66614][Cl3] and the metal concentrations in the ionic liquid were monitored. The trihalide ionic liquid allowed a more selective leaching of palladium compared to other metals present at very high concentrations in the monolith structure, like magnesium. The relative ratio of palladium over magnesium increased by two orders of magnitude compared to the original catalyst composition. The effect of the contact time between the catalyst powder and the ionic liquid on the metal concentrations in the leachate was investigated, but no significant improvement in the selectivity was observed.
Collapse
Affiliation(s)
- Arne Van den Bossche
- Department of Chemistry, KU Leuven Celestijnenlaan 200F, P.O. Box 2404 Leuven, B-3001 Belgium +3216327446
| | - Nerea Rodriguez Rodriguez
- Department of Chemistry, KU Leuven Celestijnenlaan 200F, P.O. Box 2404 Leuven, B-3001 Belgium +3216327446
| | - Sofía Riaño
- Department of Chemistry, KU Leuven Celestijnenlaan 200F, P.O. Box 2404 Leuven, B-3001 Belgium +3216327446
| | - Wim Dehaen
- Department of Chemistry, KU Leuven Celestijnenlaan 200F, P.O. Box 2404 Leuven, B-3001 Belgium +3216327446
| | - Koen Binnemans
- Department of Chemistry, KU Leuven Celestijnenlaan 200F, P.O. Box 2404 Leuven, B-3001 Belgium +3216327446
| |
Collapse
|
7
|
Iodine adlayer mediated gold electrooxidation in bis(trifluoromethylsulfonyl)amide-based ionic liquids. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
8
|
Sonnenberg K, Mann L, Redeker FA, Schmidt B, Riedel S. Polyhalogen and Polyinterhalogen Anions from Fluorine to Iodine. Angew Chem Int Ed Engl 2020; 59:5464-5493. [DOI: 10.1002/anie.201903197] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/14/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Karsten Sonnenberg
- Fachbereich Biologie, Chemie, Pharmazie Institut für Chemie und Biochemie—Anorganische Chemie Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| | - Lisa Mann
- Fachbereich Biologie, Chemie, Pharmazie Institut für Chemie und Biochemie—Anorganische Chemie Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| | - Frenio A. Redeker
- Fachbereich Biologie, Chemie, Pharmazie Institut für Chemie und Biochemie—Anorganische Chemie Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| | - Benjamin Schmidt
- Fachbereich Biologie, Chemie, Pharmazie Institut für Chemie und Biochemie—Anorganische Chemie Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| | - Sebastian Riedel
- Fachbereich Biologie, Chemie, Pharmazie Institut für Chemie und Biochemie—Anorganische Chemie Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| |
Collapse
|
9
|
Sonnenberg K, Mann L, Redeker FA, Schmidt B, Riedel S. Polyhalogen‐ und Polyinterhalogen‐Anionen von Fluor bis Iod. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201903197] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Karsten Sonnenberg
- Fachbereich Biologie, Chemie, Pharmazie Institut für Chemie und Biochemie – Anorganische Chemie Freie Universität Berlin Fabeckstraße 34/36 14195 Berlin Deutschland
| | - Lisa Mann
- Fachbereich Biologie, Chemie, Pharmazie Institut für Chemie und Biochemie – Anorganische Chemie Freie Universität Berlin Fabeckstraße 34/36 14195 Berlin Deutschland
| | - Frenio A. Redeker
- Fachbereich Biologie, Chemie, Pharmazie Institut für Chemie und Biochemie – Anorganische Chemie Freie Universität Berlin Fabeckstraße 34/36 14195 Berlin Deutschland
| | - Benjamin Schmidt
- Fachbereich Biologie, Chemie, Pharmazie Institut für Chemie und Biochemie – Anorganische Chemie Freie Universität Berlin Fabeckstraße 34/36 14195 Berlin Deutschland
| | - Sebastian Riedel
- Fachbereich Biologie, Chemie, Pharmazie Institut für Chemie und Biochemie – Anorganische Chemie Freie Universität Berlin Fabeckstraße 34/36 14195 Berlin Deutschland
| |
Collapse
|
10
|
May B, Lexow M, Taccardi N, Steinrück HP, Maier F. Reactions of a Polyhalide Ionic Liquid with Copper, Silver, and Gold. ChemistryOpen 2019; 8:15-22. [PMID: 30622879 PMCID: PMC6317927 DOI: 10.1002/open.201800149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/04/2018] [Indexed: 11/17/2022] Open
Abstract
The reactions of copper, silver, and gold with the imidazolium‐based polyhalide ionic liquid (IL) [C6C1Im][Br2I] were investigated by using X‐ray photoelectron spectroscopy (XPS), weight‐loss measurements, and gas‐phase mass spectrometry. All three Group 11 metals are strongly corroded by the IL at moderate temperatures to give a very high content of dissolved CuI, AgI, and AuI species. The IL–metal solutions are stable against contact with water and air. The replacement of imidazolium with inorganic sodium cations decreased metal corrosion rates by orders of magnitude. Our results clearly indicate metal oxidation by iodide from dibromoiodide anions to form molecular iodine and anionic [Br‐MI‐Br]− (M=Cu, Ag, Au) complexes stabilized by imidazolium counterions. From experiments with a trihalide IL with imidazolium methylated at the 2‐position, we ruled out the formation of imidazole–carbene as a cause of the observed corrosion. In contrast to Group 11 metals, molybdenum is inert against the trihalide IL, which is attributed to surface passivation.
Collapse
Affiliation(s)
- Benjamin May
- Lehrstuhl für Physikalische Chemie II Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstr. 3 91058 Erlangen Germany
| | - Matthias Lexow
- Lehrstuhl für Physikalische Chemie II Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstr. 3 91058 Erlangen Germany
| | - Nicola Taccardi
- Lehrstuhl für Chemische Reaktionstechnik Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstr. 3 91058 Erlangen Germany
| | - Hans-Peter Steinrück
- Lehrstuhl für Physikalische Chemie II Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstr. 3 91058 Erlangen Germany
| | - Florian Maier
- Lehrstuhl für Physikalische Chemie II Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstr. 3 91058 Erlangen Germany
| |
Collapse
|