1
|
Gao J, Sato H. Study on the Brill transition of polyamide 6 with different crystal forms using low- and high-frequency Raman spectroscopy. RSC Adv 2025; 15:2224-2230. [PMID: 39850083 PMCID: PMC11755107 DOI: 10.1039/d4ra08523j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/14/2025] [Indexed: 01/25/2025] Open
Abstract
Polyamide 6 (PA6) in its α and γ-forms was studied from 30 to 220 °C using Raman spectroscopy in the low- and high-wavenumber regions. Quantum chemical calculations were employed to assist with band assignments. In the low-wavenumber region, a peak at approximately 100 cm-1, attributable to a mixed mode of methylene lateral motion and amide group stretching, was observed. Additionally, a new band at approximately 60 cm-1 was observed and assigned to molecular chain torsions in the α-form. Both bands indicated that molecular chain rotation occurs prior to the Brill transition at approximately 130 °C. In the high-wavenumber region, bands at approximately 1126 cm-1 and 1060 cm-1 indicated a simultaneous weakening of C-C stretching modes in the trans conformation at the same temperature, consistent with observations in the low-wavenumber region.
Collapse
Affiliation(s)
- Jiacheng Gao
- Graduate School of Human Development and Environment, Kobe University 3-11, Tsurukabuto, Nada-ku Kobe Hyogo 657-0011 Japan
| | - Harumi Sato
- Graduate School of Human Development and Environment, Kobe University 3-11, Tsurukabuto, Nada-ku Kobe Hyogo 657-0011 Japan
| |
Collapse
|
2
|
Zhang Y, Zhan L, Xu Z. Closed-Loop Upcycling of Waste Nylon Plastic under Hydrothermal Clean Water Atmosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:935-944. [PMID: 39718361 DOI: 10.1021/acs.est.4c09178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The extensive use and longevity of nylon plastics pose substantial challenges for plastic management, recycling, and pollution control. Depolymerization and monomer recycling are potential solutions for valorizing waste plastics, but they often rely on complex and costly catalysts. Additionally, various additives in nylon plastics can negatively impact the catalyst efficiency. To address these issues, we proposed a novel method of hydrothermal clean water depolymerization without any catalysts. In this study, high-purity monomers were successfully recovered from nylon plastics by utilizing the reversibility and hydrophilicity of amide bonds, with hydrothermal amphoteric hydrolysis applied as the method. On this basis, repolymerization of the monomer was completed, and new nylon was generated by one-pot solution polycondensation, thereby achieving a closed-loop recycling process. A depolymerization model was established for nylon in a hydrothermal system at both macro- and micro levels, revealing a unique mechanism of simultaneous surface and internal depolymerization. This process enables the closed-loop upcycling of nylon, transforming waste back into its starting materials, reducing carbon emissions, and promoting sustainability.
Collapse
Affiliation(s)
- Yongliang Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lu Zhan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- National Observation and Research Station of Erhai Lake Ecosystem in Yunan, Dali 671000, China
| | - Zhenming Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
3
|
Hoffman ER, Rangaswamy AMM, Cleveland ME, Keillor JW, Howe GW. Targeted Genome Mining Facilitates the Discovery of a Promiscuous, Hyperthermostable Amidase from Thermovenabulum Gondwanense with Notable Nylon-Degrading Capacity. Angew Chem Int Ed Engl 2025; 64:e202414842. [PMID: 39441552 PMCID: PMC11720373 DOI: 10.1002/anie.202414842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
Plastics are ubiquitous in our ecosystems, and microplastic accumulation in the environment is an emerging global health concern. Since available recycling technologies are not economically competitive with primary plastic production, global use is expected to reach 1231 megatons by 2060, with 493 megatons leeching into the environment each year. To identify new nylon-recycling biotechnologies, targeted genome mining was used to identify thermostable enzymes capable of degrading polyamides. Here, we describe the characterization of a novel protein sourced from Thermovenabulum gondwanense: TvgC. TvgC is extremely stable, exhibiting a melting temperature of 93 °C and no detectable losses in hydrolytic activity after one week at 60 °C. While nylonases primarily process nylon-6, TvgC catalysed the degradation of both nylon-6 and nylon-6,6 films, which are considerably more difficult to degrade. Finally, conversion experiments demonstrate that TvgC achieves a 1.2 wt % conversion of nylon-6 film, comparable to that of the most highly engineered nylonases. This novel hyperthermostable protein represents an excellent starting point for future engineering of increasingly efficient nylonases.
Collapse
Affiliation(s)
- Esther R. Hoffman
- Department of ChemistryQueen's University Chernoff Hall90 Bader LnKingstonON K7L 3N6Canada
| | - Alana M. M. Rangaswamy
- Department of Chemistry and Biomolecular SciencesUniversity of Ottawa10 Marie Curie PvtOttawaON K1N 6N5Canada
| | - Maria E. Cleveland
- Department of ChemistryQueen's University Chernoff Hall90 Bader LnKingstonON K7L 3N6Canada
| | - Jeffrey W. Keillor
- Department of Chemistry and Biomolecular SciencesUniversity of Ottawa10 Marie Curie PvtOttawaON K1N 6N5Canada
| | - Graeme W. Howe
- Department of ChemistryQueen's University Chernoff Hall90 Bader LnKingstonON K7L 3N6Canada
| |
Collapse
|
4
|
You Z, Wang H, Zhang F, Zhang H, Zou C, Zhou Z, Wang Y, Xiao Z, Liang D, Wang Q, Gan W, Xie Y. High-Strength, Thermally Stable, and Processable Wood Fiber/Polyamide Composites for Engineering Structural Components. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408708. [PMID: 39527671 PMCID: PMC11714178 DOI: 10.1002/advs.202408708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Hybrid wood fiber/plastic composites offer a high-value-added utilization for agroforestry waste, which also providing a promising solution for reducing white pollution. However, the interface incompatibility between natural wood fibers and polymers significantly impairs the mechanical properties of the composites. Herein, a straightforward procedure is proposed to solve this problem, involving the removal of low-thermal-stability hemicellulose from wood fibers by hydrothermal pretreatment, followed by compositing with polyamide to produce hydrothermally treated wood fiber/polyamide composites (HWPACs). No chemical additives are required to improve the interface compatibility of composites, which simplifies the manufacturing process and provides environmental benefits. The effective removal of hemicellulose (78.35%) significantly increases the onset thermal degradation temperature of hydrothermally treated wood fibers (HWFs) by 27.49 °C. This prevents the generation of micro gaps during thermal processing, thereby improving the interfacial bonding strength between HWFs and polyamide. HWPACs exhibit higher mechanical strength (flexural strength 139.45 MPa) and thermal stability while maintaining a low density (1.22 g cm-3). Various lightweight, high-strength, and multi-shape materials can be prepared by hot pressing, injecting, and printing HWPACs, suggesting their suitability for applications in engineering structural components.
Collapse
Affiliation(s)
- Zhengtong You
- Key Laboratory of Bio‐based Material Science & Technology (Ministry of Education)Northeast Forestry UniversityHarbin150040P. R. China
| | - Haigang Wang
- Key Laboratory of Bio‐based Material Science & Technology (Ministry of Education)Northeast Forestry UniversityHarbin150040P. R. China
| | - Feng Zhang
- Key Laboratory of Bio‐based Material Science & Technology (Ministry of Education)Northeast Forestry UniversityHarbin150040P. R. China
| | - Haoyuan Zhang
- Key Laboratory of Bio‐based Material Science & Technology (Ministry of Education)Northeast Forestry UniversityHarbin150040P. R. China
| | - Chuwen Zou
- Key Laboratory of Bio‐based Material Science & Technology (Ministry of Education)Northeast Forestry UniversityHarbin150040P. R. China
| | - Zhifang Zhou
- School of Architecture and Civil engineeringHeilongjiang University of Science and TechnologyHarbin150027P. R. China
| | - Yonggui Wang
- Key Laboratory of Bio‐based Material Science & Technology (Ministry of Education)Northeast Forestry UniversityHarbin150040P. R. China
| | - Zefang Xiao
- Key Laboratory of Bio‐based Material Science & Technology (Ministry of Education)Northeast Forestry UniversityHarbin150040P. R. China
| | - Daxin Liang
- Key Laboratory of Bio‐based Material Science & Technology (Ministry of Education)Northeast Forestry UniversityHarbin150040P. R. China
| | - Qingwen Wang
- Country College of Materials and EnergySouth China Agricultural UniversityGuangzhou510642P. R. China
| | - Wentao Gan
- Key Laboratory of Bio‐based Material Science & Technology (Ministry of Education)Northeast Forestry UniversityHarbin150040P. R. China
| | - Yanjun Xie
- Key Laboratory of Bio‐based Material Science & Technology (Ministry of Education)Northeast Forestry UniversityHarbin150040P. R. China
| |
Collapse
|
5
|
Fakher S, Khlaifat A, Mokhtar K, Abdelsamei M. Assessment of Two Crosslinked Polymer Systems Including Hydrolyzed Polyacrylamide and Acrylic Acid-Hydrolyzed Polyacrylamide Co-Polymer for Carbon Dioxide and Formation Water Diversion Through Relative Permeability Reduction in Unconsolidated Sandstone Formation. Polymers (Basel) 2024; 16:3503. [PMID: 39771355 PMCID: PMC11679076 DOI: 10.3390/polym16243503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
One of the most challenging aspects of manipulating the flow of fluids in subsurfaces is to control their flow direction and flow behavior. This can be especially challenging for compressible fluids, such as CO2, and for multiphase flow, including both water and carbon dioxide (CO2). This research studies the ability of two crosslinked polymers, including hydrolyzed polyacrylamide and acrylic acid/hydrolyzed polyacrylamide crosslinked polymers, to reduce the permeability of both CO2 and formation water using different salinities and permeability values and in the presence of crude oil under different injection rates. The result showed that both polymers managed to reduce the permeability of water effectively; however, their CO2 permeability-reduction potential was much lower, with the CO2 permeability reduction being less than 50% of the water reduction potential in the majority of the experiments. This was mainly due to the high flow rate of the CO2 compared to the water, which resulted in significant shearing of the crosslinked polymer. The crosslinked polymers' swelling ratios were impacted differently based on the salinity, with the maximum swelling ratio being 9.8. The HPAM polymer was negatively affected by the presence of crude oil, whereas increasing salinity improved its performance greatly. All in all, both polymers had a higher permeability reduction for the formation water compared to CO2 under all conditions. This research can help improve the applicability of CO2-enhanced oil recovery and CO2 storage in depleted oil reservoirs. The ability of the crosslinked polymers to improve CO2 storage will be a main focus of future research.
Collapse
Affiliation(s)
- Sherif Fakher
- Department of Petroleum and Energy Engineering, School of Science and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (A.K.); (K.M.); (M.A.)
| | | | | | | |
Collapse
|
6
|
Bigham A, Zarepour A, Khosravi A, Iravani S, Zarrabi A. 3D and 4D printing of MXene-based composites: from fundamentals to emerging applications. MATERIALS HORIZONS 2024; 11:6257-6288. [PMID: 39279736 DOI: 10.1039/d4mh01056f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
The advent of three-dimensional (3D) and four-dimensional (4D) printing technologies has significantly improved the fabrication of advanced materials, with MXene-based composites emerging as a particularly promising class due to their exceptional electrical, mechanical, and chemical properties. This review explores the fundamentals of MXenes and their composites, examining their unique characteristics and the underlying principles of their synthesis and processing. We highlight the transformative potential of 3D and 4D printing techniques in tailoring MXene-based materials for a wide array of applications. In the field of tissue regeneration, MXene composites offer enhanced biocompatibility and mechanical strength, making them ideal for scaffolds and implants. For drug delivery, the high surface area and tunable surface chemistry of MXenes enable precise control over drug release profiles. In energy storage, MXene-based electrodes exhibit superior conductivity and capacity, paving the way for next-generation batteries and supercapacitors. Additionally, the sensitivity and selectivity of MXene composites make them excellent candidates for various (bio)sensing applications, from environmental monitoring to biomedical diagnostics. By integrating the dynamic capabilities of 4D printing, which introduces time-dependent shape transformations, MXene-based composites can further adapt to complex and evolving functional requirements. This review provides a comprehensive overview of the current state of research, identifies key challenges, and discusses future directions for the development and application of 3D and 4D printed MXene-based composites. Through this exploration, we aim to underscore the significant impact of these advanced materials and technologies on diverse scientific and industrial fields.
Collapse
Affiliation(s)
- Ashkan Bigham
- Institute of Polymers, Composites, and Biomaterials, National Research Council (IPCB-CNR), Naples 80125, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkey
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey.
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| |
Collapse
|
7
|
Hu Y, Tian Y, Zou C, Moon TS. The current progress of tandem chemical and biological plastic upcycling. Biotechnol Adv 2024; 77:108462. [PMID: 39395608 DOI: 10.1016/j.biotechadv.2024.108462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/31/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Each year, millions of tons of plastics are produced for use in such applications as packaging, construction, and textiles. While plastic is undeniably useful and convenient, its environmental fate and transport have raised growing concerns about waste and pollution. However, the ease and low cost of producing virgin plastic have so far made conventional plastic recycling economically unattractive. Common contaminants in plastic waste and shortcomings of the recycling processes themselves typically mean that recycled plastic products are of relatively low quality in some cases. The high cost and high energy requirements of typical recycling operations also reduce their economic benefits. In recent years, the bio-upcycling of chemically treated plastic waste has emerged as a promising alternative to conventional plastic recycling. Unlike recycling, bio-upcycling uses relatively mild process conditions to economically transform pretreated plastic waste into value-added products. In this review, we first provide a précis of the general methodology and limits of conventional plastic recycling. Then, we review recent advances in hybrid chemical/biological upcycling methods for different plastics, including polyethylene terephthalate, polyurethane, polyamide, polycarbonate, polyethylene, polypropylene, polystyrene, and polyvinyl chloride. For each kind of plastic, we summarize both the pretreatment methods for making the plastic bio-available and the microbial chassis for degrading or converting the treated plastic waste to value-added products. We also discuss both the limitations of upcycling processes for major plastics and their potential for bio-upcycling.
Collapse
Affiliation(s)
- Yifeng Hu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Yuxin Tian
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Chenghao Zou
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States; Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, United States; Synthetic Biology Group, J. Craig Venter Institute, La Jolla, CA, United States.
| |
Collapse
|
8
|
van Leuken SHM, van Gorp JJ, van Benthem RATM, Vis M, Tuinier R. Miscibility of Non-Uniform Aliphatic Polyamide Mixtures. Chemphyschem 2024; 25:e202400206. [PMID: 39447082 DOI: 10.1002/cphc.202400206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/23/2024] [Indexed: 10/26/2024]
Abstract
Mixing different aliphatic polyamides provides opportunities to tune and optimize the properties of these semicrystalline polycondensates. Combining experiment and theory, we predict and explain the miscibility of aliphatic polyamide mixtures. Visual inspection and Raman spectroscopy of polyamide mixtures show that liquid/liquid phase demixing occurs in the melt due to limited miscibility. The large number of potential polyamide mixtures makes it challenging to test all miscibilities experimentally. Moreover, the dependence of miscibility on dispersity and the presence of water implies further challenges to a systematic experimental approach. Our theory predicts polyamide miscibility, while accounting for amide content, non-uniformity, and moisture content, using generalizations of Flory-Huggins theory. Predicted miscibilities align with experimental results obtained on tested mixed polyamides. The gained insights guide the optimization of functional polyamide blends.
Collapse
Affiliation(s)
- Stijn H M van Leuken
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. box 513, 5600 MB, Eindhoven, The Netherlands
| | - Judith J van Gorp
- Education and Student Affairs, Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. box 513, 5600 MB, Eindhoven, The Netherlands
| | - Rolf A T M van Benthem
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- Shell Energy Transition Campus Amsterdam, Grasweg 31, 1013, Amsterdam, The Netherlands
| | - Mark Vis
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. box 513, 5600 MB, Eindhoven, The Netherlands
| | - Remco Tuinier
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. box 513, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
9
|
Silver K, Li J, Porch A, Jamieson WD, Castell O, Dimitriou P, Kallnik C, Barrow D. 3D-printed microfluidic-microwave device for droplet network formation and characterisation. LAB ON A CHIP 2024; 24:5101-5112. [PMID: 39324512 DOI: 10.1039/d4lc00387j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Microfluidic-microwave devices (MMDs) have emerged as precision tools for the rapid, accurate, sensitive, and non-invasive characterisation of liquids in low-volumes. However, the fabrication of MMDs remains a significant challenge. This is due to the complexities associated with integrating fluidic ducts and electronic components. Herein, we present a versatile and economical 3D-printing approach using ducts filled with liquid metal as an electrical conductor. Cyclic olefin copolymer, polylactic acid, and polypropylene were identified as printable dielectric materials for MMD fabrication. Substrates of 3D-printed cyclic olefin copolymer exhibited the lowest loss tangent (0.002 at 2.7 GHz), making them suitable materials for high-frequency microwave devices. Liquid metal, specifically gallium-indium eutectic, was injected into the printed ducts to form electrically conductive microwave structures. Exemplary MMDs operating at 2 GHz integrated split-ring microwave resonators that serve as sensitive detection geometries able to measure changes in dielectric properties, with droplet-forming fluidic junctions and flow channels. The performance of 3D-printed MMDs for microwave droplet sensing was comprehensively evaluated. These devices were used in the formation and characterisation of water-in-oil emulsions, constructing definable lipid-segregated droplet interface bilayer (DIB) networks. This work indicates the feasibility of using 3D-printed manifolds for the rapid prototyping of customised MMDs, and also demonstrates the potential of MMDs as new analytical research tools in droplet-based materials and biochemistry studies.
Collapse
Affiliation(s)
- Kai Silver
- School of Engineering, Cardiff University, The Parade, Cardiff, CF24 3AA, UK.
| | - Jin Li
- School of Engineering, Cardiff University, The Parade, Cardiff, CF24 3AA, UK.
| | - Adrian Porch
- School of Engineering, Cardiff University, The Parade, Cardiff, CF24 3AA, UK.
| | - William David Jamieson
- School of Pharmacy and Pharmaceutical Science, Cardiff University, King Edward VII Ave, Cardiff, CF10 3NB, UK
| | - Oliver Castell
- School of Pharmacy and Pharmaceutical Science, Cardiff University, King Edward VII Ave, Cardiff, CF10 3NB, UK
| | | | - Colin Kallnik
- School of Engineering, Cardiff University, The Parade, Cardiff, CF24 3AA, UK.
| | - David Barrow
- School of Engineering, Cardiff University, The Parade, Cardiff, CF24 3AA, UK.
| |
Collapse
|
10
|
Krugly E, Bagdonas E, Raudoniute J, Ravikumar P, Bagdoniene L, Ciuzas D, Prasauskas T, Aldonyte R, Gutleb AC, Martuzevicius D. A novel "cells-on-particles" cytotoxicity testing platform in vitro: design, characterization, and validation against engineered nanoparticle aerosol. Toxicology 2024; 508:153936. [PMID: 39216545 DOI: 10.1016/j.tox.2024.153936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The presented research introduces the "Cells-on-Particles" integrated aerosol sampling and cytotoxicity testing in vitro platform, which allows for the direct assessment of the biological effects of captured aerosol particles on a selected cell type without the need for extraction or resuspension steps. By utilizing particles with unaltered chemical and physical properties, the method enables simple and fast screening of biological effects on specific cell types, making it a promising tool for assessing the cytotoxicity of particulate matter in ambient and occupational air. Platforms fabricated from cellulose acetate (CA) and poly[ε]caprolactone (PCL) were proven to be biocompatible and promoted the attachment and growth of the human bronchial epithelial cell line BEAS-2B. The PCL platforms were exposed to simulated occupational aerosols of silver, copper, and graphene oxide nanoparticles. Each nanoparticle type exhibited different and dose-dependent cytotoxic effects on cells, evidenced by reduced cell viability and distinct, particle type-dependent gene expression patterns. Notably, copper nanoparticles were identified as the most cytotoxic, and graphene oxide the least. Comparing the "Cells-on-Particles" and submerged exposure ("Particles-on-Cells") testing strategies, BEAS-2B cells responded to selected nanoparticles in a comparable manner, suggesting the developed testing system could be proposed for further evaluation with more complex environmental aerosols. Despite limitations, including particle agglomeration and the need for more replicates to address variability, the "Cells-on-Particles" platform enables effective detection of toxicity induced by relatively low levels of nanoparticles, demonstrating good sensitivity and a relatively simpler procedure compared to standard 2D cell exposure methods.
Collapse
Affiliation(s)
- Edvinas Krugly
- Department of Environmental Technology, Kaunas University of Technology, Lithuania.
| | - Edvardas Bagdonas
- Department of Regenerative Medicine, Centre for Innovative Medicine, Vilnius, Lithuania
| | - Jovile Raudoniute
- Department of Regenerative Medicine, Centre for Innovative Medicine, Vilnius, Lithuania
| | - Preethi Ravikumar
- Department of Environmental Technology, Kaunas University of Technology, Lithuania
| | - Lauryna Bagdoniene
- Department of Environmental Technology, Kaunas University of Technology, Lithuania
| | - Darius Ciuzas
- Department of Environmental Technology, Kaunas University of Technology, Lithuania
| | - Tadas Prasauskas
- Department of Environmental Technology, Kaunas University of Technology, Lithuania
| | - Ruta Aldonyte
- Department of Regenerative Medicine, Centre for Innovative Medicine, Vilnius, Lithuania
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Luxembourg
| | | |
Collapse
|
11
|
Koronatov A, Sakharov P, Ranolia D, Kaushansky A, Fridman N, Gandelman M. Triazenolysis of alkenes as an aza version of ozonolysis. Nat Chem 2024:10.1038/s41557-024-01653-3. [PMID: 39394263 DOI: 10.1038/s41557-024-01653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 09/11/2024] [Indexed: 10/13/2024]
Abstract
Alkenes are broadly used in synthetic applications, thanks to their abundance and versatility. Ozonolysis is one of the most canonical transformations that converts alkenes into molecules bearing carbon-oxygen motifs via C=C bond cleavage. Despite its extensive use in both industrial and laboratory settings, the aza version-cleavage of alkenes to form carbon-nitrogen bonds-remains elusive. Here we report the conversion of alkenes into valuable amines via complete C=C bond disconnection. This process, which we have termed 'triazenolysis', is initiated by a (3 + 2) cycloaddition of triazadienium cation to an alkene. The triazolinium salt formed accepts hydride from borohydride anion and spontaneously decomposes to create new C-N motifs upon further reduction. The developed reaction is applicable to a broad range of cyclic alkenes to produce diamines, while various acyclic C=C bonds may be broken to generate two separate amine units. Computational analysis provides insights into the mechanism, including identification of the key step and elucidating the significance of Lewis acid catalysis.
Collapse
Affiliation(s)
- Aleksandr Koronatov
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Israel
| | - Pavel Sakharov
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Israel
| | - Deepak Ranolia
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Israel
| | - Alexander Kaushansky
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Israel
| | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Israel
| | - Mark Gandelman
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Israel.
| |
Collapse
|
12
|
Kherdekar RD, Ade AB. Integrated approaches for plastic waste management. Front Microbiol 2024; 15:1426509. [PMID: 39391604 PMCID: PMC11465426 DOI: 10.3389/fmicb.2024.1426509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024] Open
Abstract
Plastic pollution is the challenging problem of the world due to usage of plastic in daily life. Plastic is essential for packaging food and other goods and utensils to avoid the risk of microbial attack. Due to its hydrophobic nature, it is used for wrapping as laminates or packaging liquid substances in pouches and sachets. The tensile strength of the plastic is more therefore it is used for manufacturing carrying bags that can bear heavy loads. Plastic is available in various forms as per the requirements in our daily life. Annually millions to trillions of polyethene carry bags are being manufactured and utilized throughout the world. The plastic requires millions of years for natural degradation. The physical and chemical processes are able to degrade plastic material at the meager level by 200 to 500 years in natural conditions. Many industries focus on recycling of plastic. Biodegradation is a comparatively slow and cheaper process that involves microbes. To dispose of plastic completely there is a need of an integrated process in which all the possible methods of disposal are involved and used sustainably so that minimum depletion occurs to the livestock and the environment. In the current review, we could try to emphasize the intricate nature of plastic polymers, pollution caused by it and possible mitigation strategies for plastic waste management.
Collapse
|
13
|
Shi Y, Wu X, Paydarfar JA, Halter RJ. An Imaging-Compatible Oral Retractor System for Transoral Robotic Surgery. Ann Biomed Eng 2024; 52:2473-2484. [PMID: 38796669 DOI: 10.1007/s10439-024-03536-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 05/02/2024] [Indexed: 05/28/2024]
Abstract
This study aimed to develop and validate a Computed Tomography (CT)/Magnetic Resonance Imaging (MRI)-compatible polymer oral retractor system to enable intraoperative image guidance for transoral robotic surgery (TORS). The retractor was designed based on standard-of-care metallic retractors and 3D (three-dimensional) printed with carbon fiber composite and nylon. The system was comprehensively evaluated in bench-top and cadaveric experiments in terms of its ability to enable intraoperative CT/MR images during TORS, functionality including surgical exposure and working volume, usability, compatibility with da Vinci surgical systems, feasibility for disinfection or sterilization, and robustness over an extended period of time. The polymer retractor system enabled the acquisition of high-resolution and artifact-free intraoperative CT/MR images during TORS. With an inter-incisive distance of 42.55 mm and a working volume of 200.09 cm3, it provided surgical exposure comparable to standard-of-care metallic retractors. The system proved intuitive and compatible with da Vinci S, Xi, and Single Port systems, enabling successful mock surgical tasks performed by surgeons and residents. The retractor components could be effectively disinfected or sterilized for clinical use without significant compromise in material strength, with STERRAD considered the optimal method. Throughout a 2 h mock procedure, the retractor system showed minimal displacements (<1.5 mm) due to surrounding tissue deformation, with insignificant device deformation. The 3D-printed polymer retractor system successfully enabled artifact-free intraoperative CT/MR imaging in TORS for the first time and demonstrated feasibility for clinical use. This breakthrough opens the door to surgical navigation with intraoperative image guidance in TORS, offering the potential to significantly improve surgical outcomes and patients' quality of life.
Collapse
Affiliation(s)
- Yuan Shi
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.
| | - Xiaotian Wu
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Joseph A Paydarfar
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- Section of Otolaryngology, Audiology, and Maxillofacial Surgery, Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Ryan J Halter
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
14
|
Bi L, Garg R, Noriega N, Wang RJ, Kim H, Vorotilo K, Burrell JC, Shuck CE, Vitale F, Patel BA, Gogotsi Y. Soft, Multifunctional MXene-Coated Fiber Microelectrodes for Biointerfacing. ACS NANO 2024; 18:23217-23231. [PMID: 39141004 PMCID: PMC11363215 DOI: 10.1021/acsnano.4c05797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
Flexible fiber-based microelectrodes allow safe and chronic investigation and modulation of electrically active cells and tissues. Compared to planar electrodes, they enhance targeting precision while minimizing side effects from the device-tissue mechanical mismatch. However, the current manufacturing methods face scalability, reproducibility, and handling challenges, hindering large-scale deployment. Furthermore, only a few designs can record electrical and biochemical signals necessary for understanding and interacting with complex biological systems. In this study, we present a method that utilizes the electrical conductivity and easy processability of MXenes, a diverse family of two-dimensional nanomaterials, to apply a thin layer of MXene coating continuously to commercial nylon filaments (30-300 μm in diameter) at a rapid speed (up to 15 mm/s), achieving a linear resistance below 10 Ω/cm. The MXene-coated filaments are then batch-processed into free-standing fiber microelectrodes with excellent flexibility, durability, and consistent performance even when knotted. We demonstrate the electrochemical properties of these fiber electrodes and their hydrogen peroxide (H2O2) sensing capability and showcase their applications in vivo (rodent) and ex vivo (bladder tissue). This scalable process fabricates high-performance microfiber electrodes that can be easily customized and deployed in diverse bioelectronic monitoring and stimulation studies, contributing to a deeper understanding of health and disease.
Collapse
Affiliation(s)
- Lingyi Bi
- Department
of Materials Science and Engineering and A. J. Drexel Nanomaterials
Institute, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Raghav Garg
- Department
of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Natalia Noriega
- School
of Applied Sciences, University of Brighton, Brighton BN2 4AT, U.K.
| | - Ruocun John Wang
- Department
of Materials Science and Engineering and A. J. Drexel Nanomaterials
Institute, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Hyunho Kim
- Department
of Materials Science and Engineering and A. J. Drexel Nanomaterials
Institute, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Kseniia Vorotilo
- Department
of Materials Science and Engineering and A. J. Drexel Nanomaterials
Institute, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Justin C. Burrell
- Department
of Oral and Maxillofacial Surgery & Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Christopher E. Shuck
- Department
of Materials Science and Engineering and A. J. Drexel Nanomaterials
Institute, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Flavia Vitale
- Department
of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Physical Medicine and Rehabilitation, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Bhavik Anil Patel
- School
of Applied Sciences, University of Brighton, Brighton BN2 4AT, U.K.
| | - Yury Gogotsi
- Department
of Materials Science and Engineering and A. J. Drexel Nanomaterials
Institute, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
15
|
Dang C, Wang Z, Hughes-Riley T, Dias T, Qian S, Wang Z, Wang X, Liu M, Yu S, Liu R, Xu D, Wei L, Yan W, Zhu M. Fibres-threads of intelligence-enable a new generation of wearable systems. Chem Soc Rev 2024; 53:8790-8846. [PMID: 39087714 DOI: 10.1039/d4cs00286e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Fabrics represent a unique platform for seamlessly integrating electronics into everyday experiences. The advancements in functionalizing fabrics at both the single fibre level and within constructed fabrics have fundamentally altered their utility. The revolution in materials, structures, and functionality at the fibre level enables intimate and imperceptible integration, rapidly transforming fibres and fabrics into next-generation wearable devices and systems. In this review, we explore recent scientific and technological breakthroughs in smart fibre-enabled fabrics. We examine common challenges and bottlenecks in fibre materials, physics, chemistry, fabrication strategies, and applications that shape the future of wearable electronics. We propose a closed-loop smart fibre-enabled fabric ecosystem encompassing proactive sensing, interactive communication, data storage and processing, real-time feedback, and energy storage and harvesting, intended to tackle significant challenges in wearable technology. Finally, we envision computing fabrics as sophisticated wearable platforms with system-level attributes for data management, machine learning, artificial intelligence, and closed-loop intelligent networks.
Collapse
Affiliation(s)
- Chao Dang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Theodore Hughes-Riley
- Nottingham School of Art and Design, Nottingham Trent University, Dryden Street, Nottingham, NG1 4GG, UK.
| | - Tilak Dias
- Nottingham School of Art and Design, Nottingham Trent University, Dryden Street, Nottingham, NG1 4GG, UK.
| | - Shengtai Qian
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Zhe Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Xingbei Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Mingyang Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Senlong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Rongkun Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Dewen Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Wei Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
16
|
Alshehri S, Abboud M. Synthesis and characterization of mesoporous silica supported metallosalphen-azobenzene complexes: efficient photochromic heterogeneous catalysts for the oxidation of cyclohexane to produce KA oil. RSC Adv 2024; 14:26971-26994. [PMID: 39193295 PMCID: PMC11348846 DOI: 10.1039/d4ra04698f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
The oxidation of cyclohexane to produce KA oil (cyclohexanone and cyclohexanol) is important industrially but faces challenges such as low cyclohexane conversion at high KA oil selectivity, and difficult catalyst recyclability. This work reports the synthesis and evaluation of new heterogeneous catalysts consisting of Co(ii), Mn(ii), Ni(ii) and Cu(ii) salphen-azobenzene complexes [ML1] immobilized on amino-functionalized mesoporous silica (SBA-15, MCM-41, MCM-48) through coordination bonding. In the first step, the salphen-azobenzene ligand was synthesized and complexed with Co, Mn, Ni and Cu metal ions. In the second step, aminopropyltriethoxysilane (APTES) was grafted onto the surface of different types of commercial mesoporous silica. The immobilization of [ML1] onto the mesoporous silica surface and the thermal stability of the obtained materials were confirmed using different characterization techniques such as FT-IR, powder XRD, SEM, TEM, BET, and TGA. The obtained results revealed high dispersion of [ML1] through the silica surface. The catalytic activity of the prepared materials Silica-N-ML1 was evaluated on the cyclohexane oxidation to produce KA oil using various oxidants. The cis-trans isomerization of the azobenzene upon UV irradiation was found to affect the catalytic performance of Silica-N-ML1. The cis isomer of SBA-15-N-CoL1 exhibited the highest cyclohexane conversion (93%) and KA selectivity (92%) under mild conditions (60 °C, 6 h) using m-CPBA as oxidant. Moreover, The SBA-15-N-CoL1 showed high stability during four successive cycles.
Collapse
Affiliation(s)
- Salimah Alshehri
- Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University Abha 61413 Saudi Arabia +966 53 48 46 782
| | - Mohamed Abboud
- Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University Abha 61413 Saudi Arabia +966 53 48 46 782
| |
Collapse
|
17
|
Shakiba M, Pourmadadi M, Hosseini SM, Bigham A, Rahmani E, Sheikhi M, Pahnavar Z, Foroozandeh A, Tajiki A, Jouybar S, Abdouss M. A bi-functional nanofibrous composite membrane for wound healing applications. Arch Pharm (Weinheim) 2024; 357:e2400001. [PMID: 38747690 DOI: 10.1002/ardp.202400001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 08/06/2024]
Abstract
Various wound dressings have been developed so far for wound healing, but most of them are ineffective in properly reestablishing the skin's structure, which increases infection risks and dehydration. Electrospun membranes are particularly interesting for wound dressing applications because they mimic the extracellular matrix of healthy skin. In this study, a potential wound healing platform capable of inducing synergistic antibacterial and antioxidation activities was developed by incorporating bio-active rosmarinic acid-hydroxyapatite hybrid (HAP-RA) with different contents (0.5, 1, and 1.5 wt.%) into the electrospun polyamide 6 (PA6) nanofibers. Then, polyethylene glycol (PEG) was introduced to the nanofibrous composite to improve the biocompatibility and biodegradability of the dressing. The results indicated that the hydrophilicity, water uptake, biodegradability, and mechanical properties of the obtained PA6/PEG/HAP-RA nanofibrous composite enhanced at 1 wt.% of HAP-RA. The nanofibrous composite had excellent antibacterial activity. The antioxidation potential of the samples was assessed in vitro. The MTT assay performed on the L929 cell line confirmed the positive effects of the nanofibrous scaffold on cell viability and proliferation. According to the results, the PA6/PEG/HAP-RA nanofibrous composite showed the desirable physiochemical and biological properties besides antibacterial and antioxidative capabilities, making it a promising candidate for further studies in wound healing applications.
Collapse
Affiliation(s)
| | - Mehrab Pourmadadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Seyede M Hosseini
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Ashkan Bigham
- Institute of Polymers, Composites, and Biomaterials, National Research Council (IPCB-CNR), Naples, Italy
| | - Erfan Rahmani
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Mehdi Sheikhi
- Polymer Chemistry Research Laboratory, Department of Chemistry, University of Isfahan, Isfahan, Iran
| | - Zohreh Pahnavar
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Amin Foroozandeh
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Alireza Tajiki
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Shirzad Jouybar
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
18
|
Chen L, Mei S, Fu K, Zhou J. Spinning the Future: The Convergence of Nanofiber Technologies and Yarn Fabrication. ACS NANO 2024; 18:15358-15386. [PMID: 38837241 DOI: 10.1021/acsnano.4c02399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The rapid advancement in nanofiber technologies has revolutionized the domain of yarn materials, marking a significant leap in textile technology. This review dissects the nexus between cutting-edge nanofiber technologies and yarn manufacturing, aiming to illuminate the pathway toward engineering advanced textiles with unparalleled functionality. It first discusses the fundamentals of nanofiber assemblies and spinning techniques, primarily focusing on electrospinning, centrifugal spinning, and blow spinning. Additionally, the study delves into integrating nanofiber spinning technologies with traditional and modern yarn fabrication principles, elucidating the design principles that underlie the creation of yarns incorporating nanofibers. Twisting technologies are explored to examine how they can be optimized and adapted for incorporating nanofibers, thus enabling the production of innovative nanofiber-based yarns. Special attention is given to scalable strategies like centrifugal and blow spinning, which are spotlighted for their efficiency and scalability in fabricating nanofiber yarns. This review further analyses recently developed nanofiber yarn applications, including wearable sensors, biomedical devices, moisture management textiles, and energy harvesting and storage devices. We finally present a forward-looking perspective to address unresolved issues in nanofiber-based yarn technologies.
Collapse
Affiliation(s)
- Long Chen
- Hubei Digital Textile Equipment Key Laboratory, Wuhan Textile University, Wuhan, Hubei 430200, China
- The Advanced Textile Technology Innovation Center (Jianhu Laboratory), Shaoxing 312000, China
- School of Material Science and Engineering, Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, State Key Laboratory for Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Laboratory of Advanced Electronic and Fiber Materials, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Shunqi Mei
- Hubei Digital Textile Equipment Key Laboratory, Wuhan Textile University, Wuhan, Hubei 430200, China
- The Advanced Textile Technology Innovation Center (Jianhu Laboratory), Shaoxing 312000, China
| | - Kelvin Fu
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jian Zhou
- School of Material Science and Engineering, Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, State Key Laboratory for Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Laboratory of Advanced Electronic and Fiber Materials, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| |
Collapse
|
19
|
Arioli M, Puiggalí J, Franco L. Nylons with Applications in Energy Generators, 3D Printing and Biomedicine. Molecules 2024; 29:2443. [PMID: 38893319 PMCID: PMC11173604 DOI: 10.3390/molecules29112443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Linear polyamides, known as nylons, are a class of synthetic polymers with a wide range of applications due to their outstanding properties, such as chemical and thermal resistance or mechanical strength. These polymers have been used in various fields: from common and domestic applications, such as socks and fishing nets, to industrial gears or water purification membranes. By their durability, flexibility and wear resistance, nylons are now being used in addictive manufacturing technology as a good material choice to produce sophisticated devices with precise and complex geometric shapes. Furthermore, the emergence of triboelectric nanogenerators and the development of biomaterials have highlighted the versatility and utility of these materials. Due to their ability to enhance triboelectric performance and the range of applications, nylons show a potential use as tribo-positive materials. Because of the easy control of their shape, they can be subsequently integrated into nanogenerators. The use of nylons has also extended into the field of biomaterials, where their biocompatibility, mechanical strength and versatility have paved the way for groundbreaking advances in medical devices as dental implants, catheters and non-absorbable surgical sutures. By means of 3D bioprinting, nylons have been used to develop scaffolds, joint implants and drug carriers with tailored properties for various biomedical applications. The present paper aims to collect evidence of these recently specific applications of nylons by reviewing the literature produced in recent decades, with a special focus on the newer technologies in the field of energy harvesting and biomedicine.
Collapse
Affiliation(s)
- Matteo Arioli
- Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est-EEBE, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10–14, 08019 Barcelona, Spain; (M.A.); (J.P.)
| | - Jordi Puiggalí
- Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est-EEBE, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10–14, 08019 Barcelona, Spain; (M.A.); (J.P.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10–14, 08019 Barcelona, Spain
| | - Lourdes Franco
- Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est-EEBE, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10–14, 08019 Barcelona, Spain; (M.A.); (J.P.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10–14, 08019 Barcelona, Spain
| |
Collapse
|
20
|
Rodríguez-Reyna SL, Díaz-Aguilera JH, Acevedo-Parra HR, García CJ, Gutierrez-Castañeda EJ, Tapia F. Design and optimization methodology for different 3D processed materials (PLA, ABS and carbon fiber reinforced nylon PA12) subjected to static and dynamic loads. J Mech Behav Biomed Mater 2024; 150:106257. [PMID: 38048715 DOI: 10.1016/j.jmbbm.2023.106257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023]
Abstract
This research presents a methodology for the design and optimization of 3D printed parts with material extrusion (MEX) technology with three different commercial materials: PLA, ABS and N + CF (PA12) subjected to tensile and fatigue stresses, which included three stages: pretreatment, design of experiments and sequential optimization by statistical modeling. In the pretreatment stage, mainly the printing control factors (inner layer and contour height, printing speed, extrusion temperature, nozzle, infill arrangement and printing orientation) were determined; then, factors to optimize tensile strength as a function of printing pattern (linear, 3D, hexagonal), infill percentage (33%, 66%, 100°) and printing orientation (+45°/-45°, 0°/90°) were evaluated. Fatigue analysis was performed as a function of impression orientation using 100% infill, linear impression pattern, 5 Hz and a load range between 90 and 50% UTS. Optimization of tensile strength resulted in parts that exceeded the UTS of their corresponding filament, leading to infinite life relative to fatigue tests. Results were presented for fatigue life prediction based on Weibull analysis, Basquińs model and a multivariate response surface correlation analysis. The best fatigue behavior was related to the optimized tensile strength, the infill pattern applied to the printing orientation and the intrinsic properties of ABS (1 × 107cycles, stress up to 20 MPa). With respect to the other materials, a good fatigue behavior was highlighted at the number of cycles achieved 1 × 106 (stress up to 18 MPa) and 1 × 105 (stress up to 24 MPa) for N + CF and PLA, respectively. This study contributes to a better understanding of how printing parameters correlate with tensile and fatigue properties.
Collapse
Affiliation(s)
- S L Rodríguez-Reyna
- Facultad de Ingeniería, Universidad Autónoma de Luis Potosí, San Luis Potosí, S.L.P, C.P. 78290, Mexico.
| | - J H Díaz-Aguilera
- Instituto de Ingeniería Civil, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico.
| | - H R Acevedo-Parra
- Universidad Panamericana, Facultad de Ingeniería, Álvaro del Portillo 49, Zapopan, Jalisco, 45010, Mexico.
| | - Ch J García
- Instituto Politécnico Nacional CIITEC-IPN, Ciudad de México, C.P. 02250, Mexico.
| | | | - Fidencio Tapia
- Universidad Panamericana, Facultad de Ingeniería, Álvaro del Portillo 49, Zapopan, Jalisco, 45010, Mexico.
| |
Collapse
|
21
|
Zhu C, Zheng J, Fu J. Electrospinning Nanofibers as Stretchable Sensors for Wearable Devices. Macromol Biosci 2024; 24:e2300274. [PMID: 37653597 DOI: 10.1002/mabi.202300274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/07/2023] [Indexed: 09/02/2023]
Abstract
Wearable devices attract great attention in intelligent medicine, electronic skin, artificial intelligence robots, and so on. However, boundedness of traditional sensors based on rigid materials unconstrained self-multilayer structure assembly and dense substrate in stretchability and permeability limits their applications. The network structure of the elastomeric nanofibers gives them excellent air permeability and stretchability. By introducing metal nanofillers, intrinsic conductive polymers, carbon materials, and other methods to construct conductive paths, stretchable conductors can be effectively prepared by elastomeric nanofibers, showing great potential in the field of flexible sensors. This perspective briefly introduces the representative preparations of conductive thermoplastic polyurethane, nylon, and hydrogel nanofibers by electrospinning and the application of integrated electronic devices in biological signal detection. The main challenge is to unify the stretchability and conductivity of the fiber structure.
Collapse
Affiliation(s)
- Canjie Zhu
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| | - Jingxia Zheng
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| | - Jun Fu
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| |
Collapse
|
22
|
Zakręcki A, Cieślik J, Bazan A, Turek P. Innovative Approaches to 3D Printing of PA12 Forearm Orthoses: A Comprehensive Analysis of Mechanical Properties and Production Efficiency. MATERIALS (BASEL, SWITZERLAND) 2024; 17:663. [PMID: 38591508 PMCID: PMC10856665 DOI: 10.3390/ma17030663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 04/10/2024]
Abstract
This research paper aims to explore the mechanical characteristics of polyamide PA12 (PA12) as a 3D material printed utilizing Selective Laser Sintering (SLS) and HP MultiJet Fusion (HP MJF) technologies in order to design and manufacture forearm orthoses. The study assessed the flowability of the materials used and compared the mechanical performance of PA12 with each other using tensile, flexure, and impact tests in five different fabrication orientations: X, Y, Z, tilted 45° XZ, and tilted 45° YZ. The results of the study provide, firstly-the data for testing the quality of the applied polyamide powder blend and, secondly-the data for the design of the orthosis geometry from the aspect of its strength parameters and the safety of construction. The mechanical parameters of SLS specimens had less variation than MJF specimens in a given orientation. The difference in tensile strength between the 3D printing technologies tested was 1.8%, and flexural strength was 4.7%. A process analysis of the forearm orthoses revealed that the HP MJF 5200 system had a higher weekly production capacity than the EOS P396 in a production variance based on obtaining maximum strength parameters and a variance based on maximizing economic efficiency. The results suggest that medical device manufacturers can use additive manufacturing technologies to produce prototypes and small-batch parts for medical applications. This paper pioneers using 3D printing technology with Powder Bed Fusion (PBF) methods in designing and manufacturing forearm orthoses as a low- to medium-volume product. The applied solution addresses the problem of medical device manufacturers with regard to the analysis of production costs and mechanical properties when using 3D printing for certified medical devices.
Collapse
Affiliation(s)
- Andrzej Zakręcki
- Department of Manufacturing Systems, Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology in Cracow, 30-059 Cracow, Poland;
- Mediprintic sp. z o.o., 39-300 Mielec, Poland
| | - Jacek Cieślik
- Department of Manufacturing Systems, Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology in Cracow, 30-059 Cracow, Poland;
| | - Anna Bazan
- Department of Manufacturing Techniques and Automation, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (A.B.); (P.T.)
| | - Paweł Turek
- Department of Manufacturing Techniques and Automation, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (A.B.); (P.T.)
| |
Collapse
|
23
|
Foroozandeh A, Shakiba M, Zamani A, Tajiki A, Sheikhi M, Pourmadadi M, Pahnavar Z, Rahmani E, Aghababaei N, Amoli HS, Abdouss M. Electrospun nylon 6/hyaluronic acid/chitosan bioactive nanofibrous composite as a potential antibacterial wound dressing. J Biomed Mater Res B Appl Biomater 2024; 112:e35370. [PMID: 38247254 DOI: 10.1002/jbm.b.35370] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 09/18/2023] [Accepted: 11/24/2023] [Indexed: 01/23/2024]
Abstract
Hyaluronic acid (HA) and chitosan (CS), as natural biomaterials, display excellent biocompatibility and stimulate the growth and proliferation of fibroblasts. Furthermore, nylon 6 (N6) is a low-cost polymer with good compatibility with human tissues and high mechanical stability. In this study, HA and CS were applied to modify N6 nanofibrous mat (N6/HA/CS) for potential wound dressing. N6/HA/CS nanofibrous composite mats were developed using a simple one-step electrospinning technique at different CS concentrations of 1, 2, and 3 wt%. The results demonstrated that incorporating HA and CS into N6 resulted in increased hydrophilicity, as well as favorable physical and mechanical properties. In addition, the minimum inhibitory concentration and (MIC) optical density techniques were used to determine the antibacterial properties of N6/HA/CS nanofibrous composite mats, and the results demonstrated that the composites could markedly inhibit the growth of Gram-positive bacteria Staphylococcus aureus and Gram-negative bacteria Escherichia coli. Because of its superior mechanical properties, substantial antimicrobial effects, and hydrophilic surface, N6/HA/CS at 2 wt% of CS (N6/HA/CS2) was chosen as the most suitable nanofibrous mat. The swelling, porosity, gel content, and in vitro degradation studies imply that N6/HA/CS2 nanofibrous composite mat has proper moisture retention and biodegradability. Furthermore, the N6/HA/CS2 nanofibrous composite mat was discovered to be nontoxic to L929 fibroblast cells and to even improve cell proliferation. Based on the findings, this research offers a simple and rapid method for creating material that could be utilized as prospective wound dressings in clinical environments.
Collapse
Affiliation(s)
- Amin Foroozandeh
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | | | - Amirhosein Zamani
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Alireza Tajiki
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Mehdi Sheikhi
- Polymer Chemistry Research Laboratory, Department of Chemistry, University of Isfahan, Isfahan, Iran
| | - Mehrab Pourmadadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Zohreh Pahnavar
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Erfan Rahmani
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | | | | | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
24
|
Silva V, Pérez V, Gillanders BM. Short-term plastisphere colonization dynamics across six plastic types. Environ Microbiol 2023; 25:2732-2745. [PMID: 37341062 DOI: 10.1111/1462-2920.16445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/31/2023] [Indexed: 06/22/2023]
Abstract
Marine plastic pollution is a major concern worldwide, but the understanding of plastisphere dynamics remains limited in the southern hemisphere. To address this knowledge gap, we conducted a study in South Australia to investigate the prokaryotic community of the plastisphere and its temporal changes over 4 weeks. We submerged six plastic types (i.e., High-Density Polyethylene [HDPE], Polyvinyl chloride [PVC], Low-Density Polyethylene [LDPE], Polypropylene [PP], Polystyrene [PS] and the understudied textile, polyester [PET]) and wood in seawater and sampled them weekly to characterize the prokaryotic community using 16S rRNA gene metabarcoding. Our results showed that the plastisphere composition shifted significantly over short time scales (i.e., 4 weeks), and each plastic type had distinct groups of unique genera. In particular, the PVC plastisphere was dominated by Cellvibrionaceae taxa, distinguishing it from other plastics. Additionally, the textile polyester, which is rarely studied in plastisphere research, supported the growth of a unique group of 25 prokaryotic genera (which included the potential pathogenic Legionella genus). Overall, this study provides valuable insights into the colonization dynamics of the plastisphere over short time scales and contributes to narrowing the research gap on the southern hemisphere plastisphere.
Collapse
Affiliation(s)
- Vinuri Silva
- Southern Seas Ecology Laboratories, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Vilma Pérez
- Southern Seas Ecology Laboratories, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Australian Centre for Ancient DNA (ACAD), University of Adelaide, Adelaide, South Australia, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, South Australia, Australia
| | - Bronwyn M Gillanders
- Southern Seas Ecology Laboratories, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
25
|
Reizabal A, Devlin BL, Paxton NC, Saiz PG, Liashenko I, Luposchainsky S, Woodruff MA, Lanceros-Mendez S, Dalton PD. Melt Electrowriting of Nylon-12 Microfibers with an Open-Source 3D Printer. Macromol Rapid Commun 2023; 44:e2300424. [PMID: 37821091 DOI: 10.1002/marc.202300424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/04/2023] [Indexed: 10/13/2023]
Abstract
This study demonstrates how either a heated flat or cylindrical collector enables defect-free melt electrowriting (MEW) of complex geometries from high melting temperature polymers. The open-source "MEWron" printer uses nylon-12 filament and combined with a heated flat or cylindrical collector, produces well-defined fibers with diameters ranging from 33 ± 4 to 95 ± 3 µm. Processing parameters for stable jet formation and minimal defects based on COMSOL thermal modeling for hardware design are optimized. The balance of processing temperature and collector temperature is achieved to achieve auxetic patterns, while showing that annealing nylon-12 tubes significantly alters their mechanical properties. The samples exhibit varied pore sizes and wall thicknesses influenced by jet dynamics and fiber bridging. Tensile testing shows nylon-12 tubes are notably stronger than poly(ε-caprolactone) ones and while annealing has limited impact on tensile strength, yield, and elastic modulus, it dramatically reduces elongation. The equipment described and material used broadens MEW applications for high melting point polymers and highlights the importance of cooling dynamics for reproducible samples.
Collapse
Affiliation(s)
- Ander Reizabal
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, 97405, USA
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain
| | - Brenna L Devlin
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Kelvin Grove, 4059, Australia
| | - Naomi C Paxton
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, 97405, USA
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Kelvin Grove, 4059, Australia
| | - Paula G Saiz
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, 97405, USA
- Macromolecular Chemistry Research Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, UPV/EHU, Leioa, 48940, Spain
| | - Ievgenii Liashenko
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, 97405, USA
| | - Simon Luposchainsky
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, 97405, USA
| | - Maria A Woodruff
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Kelvin Grove, 4059, Australia
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Paul D Dalton
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, 97405, USA
| |
Collapse
|
26
|
S S, R G AP, Bajaj G, John AE, Chandran S, Kumar VV, Ramakrishna S. A review on the recent applications of synthetic biopolymers in 3D printing for biomedical applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:62. [PMID: 37982917 PMCID: PMC10661719 DOI: 10.1007/s10856-023-06765-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/01/2023] [Indexed: 11/21/2023]
Abstract
3D printing technology is an emerging method that gained extensive attention from researchers worldwide, especially in the health and medical fields. Biopolymers are an emerging class of materials offering excellent properties and flexibility for additive manufacturing. Biopolymers are widely used in biomedical applications in biosensing, immunotherapy, drug delivery, tissue engineering and regeneration, implants, and medical devices. Various biodegradable and non-biodegradable polymeric materials are considered as bio-ink for 3d printing. Here, we offer an extensive literature review on the current applications of synthetic biopolymers in the field of 3D printing. A trend in the publication of biopolymers in the last 10 years are focused on the review by analyzing more than 100 publications. Their application and classification based on biodegradability are discussed. The various studies, along with their practical applications, are elaborated in the subsequent sections for polyethylene, polypropylene, polycaprolactone, polylactide, etc. for biomedical applications. The disadvantages of various biopolymers are discussed, and future perspectives like combating biocompatibility problems using 3D printed biomaterials to build compatible prosthetics are also discussed and the potential application of using resin with the combination of biopolymers to build customized implants, personalized drug delivery systems and organ on a chip technologies are expected to open a new set of chances for the development of healthcare and regenerative medicine in the future.
Collapse
Affiliation(s)
- Shiva S
- School of BioSciences and Technology, Department of Biotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
- Centre for Nanotechnology and Sustainability, National University of Singapore, Singapore, 117575, Singapore
| | - Asuwin Prabu R G
- School of BioSciences and Technology, Department of Biotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Gauri Bajaj
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Amy Elsa John
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Sharan Chandran
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| | - Vishnu Vijay Kumar
- Centre for Nanotechnology and Sustainability, National University of Singapore, Singapore, 117575, Singapore
- Department of Ocean Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
- Department of Mechanical and Industrial Engineering, Gadjah Mada University, Yogyakarta, 55281, Indonesia
- Department of Aerospace Engineering, Jain deemed to be University, Bangalore, India
| | - Seeram Ramakrishna
- Centre for Nanotechnology and Sustainability, National University of Singapore, Singapore, 117575, Singapore
| |
Collapse
|
27
|
Wang K, Kou Y, Wang K, Liang S, Guo C, Wang W, Lu Y, Wang J. Comparing the adsorption of methyl orange and malachite green on similar yet distinct polyamide microplastics: Uncovering hydrogen bond interactions. CHEMOSPHERE 2023; 340:139806. [PMID: 37574090 DOI: 10.1016/j.chemosphere.2023.139806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
Microplastics (MPs) and dye pollutants are widespread in aquatic environments. Here, the adsorption characteristics of anionic dye methyl orange (MO) and cationic dye malachite green (MG) on polyamide 6 (PA6) and polyamide 66 (PA66) MPs were investigated, including kinetics, isotherm equilibrium and thermodynamics. The co-adsorption of MO and MG under different pH was also evaluated. The results reveal that the adsorption process of MO and MG is suitably expounded by a pseudo-second-order kinetic model. The process can be characterized by two stages: internal diffusion and external diffusion. The isothermal adsorption equilibrium of MO and MG can be effectively described using the Langmuir model, signifying monolayer adsorption. Furthermore, the thermodynamic results indicated that the adsorption was spontaneous with exothermic and endothermic properties, respectively. The results of binary systems reveal that MO dominates the adsorption at low pH (2-5), while MG dominates at high pH (8-10). Strong competitive adsorption was observed between MO and MG in neutral conditions (pH 6-8). The desorption experiments confirm that PA6 and PA66 could serve as potential carriers of MO and MG. The interaction between dyes and polyamide MPs is primarily mediated through hydrogen bonds and electrostatic attraction. The results reveal that PA6 formed more hydrogen bonds with the dyes, resulting in higher adsorption capacity than that of PA66. This difference can be attributed to the disparities in the synthesis process and polymerization method. Our study uncovered the adsorption mechanism of dye pollutants on PA6 and PA66, and provided a more comprehensive theoretical basis for the risk assessment concerning different types of polyamide MPs in aquatic environments.
Collapse
Affiliation(s)
- Kangkang Wang
- Xinjiang Key Laboratory of Oil and Gas Fine Chemicals, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830046, China; Department of Chemistry and Centre for Pharmacy, University of Bergen, Bergen, 5007, Norway
| | - Yuli Kou
- Xinjiang Key Laboratory of Oil and Gas Fine Chemicals, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830046, China
| | - Kefu Wang
- Xinjiang Key Laboratory of Oil and Gas Fine Chemicals, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830046, China
| | - Siqi Liang
- Xinjiang Key Laboratory of Oil and Gas Fine Chemicals, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830046, China
| | - Changyan Guo
- Xinjiang Key Laboratory of Oil and Gas Fine Chemicals, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830046, China
| | - Wei Wang
- Department of Chemistry and Centre for Pharmacy, University of Bergen, Bergen, 5007, Norway.
| | - Yi Lu
- Xinjiang Key Laboratory of Oil and Gas Fine Chemicals, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830046, China.
| | - Jide Wang
- Xinjiang Key Laboratory of Oil and Gas Fine Chemicals, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830046, China.
| |
Collapse
|
28
|
Li Y, Meng Q, Chen S, Ling P, Kuss MA, Duan B, Wu S. Advances, challenges, and prospects for surgical suture materials. Acta Biomater 2023; 168:78-112. [PMID: 37516417 DOI: 10.1016/j.actbio.2023.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
As one of the long-established and necessary medical devices, surgical sutures play an essentially important role in the closing and healing of damaged tissues and organs postoperatively. The recent advances in multiple disciplines, like materials science, engineering technology, and biomedicine, have facilitated the generation of various innovative surgical sutures with humanization and multi-functionalization. For instance, the application of numerous absorbable materials is assuredly a marvelous progression in terms of surgical sutures. Moreover, some fantastic results from recent laboratory research cannot be ignored either, ranging from the fiber generation to the suture structure, as well as the suture modification, functionalization, and even intellectualization. In this review, the suture materials, including natural or synthetic polymers, absorbable or non-absorbable polymers, and metal materials, were first introduced, and then their advantages and disadvantages were summarized. Then we introduced and discussed various fiber fabrication strategies for the production of surgical sutures. Noticeably, advanced nanofiber generation strategies were highlighted. This review further summarized a wide and diverse variety of suture structures and further discussed their different features. After that, we covered the advanced design and development of surgical sutures with multiple functionalizations, which mainly included surface coating technologies and direct drug-loading technologies. Meanwhile, the review highlighted some smart and intelligent sutures that can monitor the wound status in a real-time manner and provide on-demand therapies accordingly. Furthermore, some representative commercial sutures were also introduced and summarized. At the end of this review, we discussed the challenges and future prospects in the field of surgical sutures in depth. This review aims to provide a meaningful reference and guidance for the future design and fabrication of innovative surgical sutures. STATEMENT OF SIGNIFICANCE: This review article introduces the recent advances of surgical sutures, including material selection, fiber morphology, suture structure and construction, as well as suture modification, functionalization, and even intellectualization. Importantly, some innovative strategies for the construction of multifunctional sutures with predetermined biological properties are highlighted. Moreover, some important commercial suture products are systematically summarized and compared. This review also discusses the challenges and future prospects of advanced sutures in a deep manner. In all, this review is expected to arouse great interest from a broad group of readers in the fields of multifunctional biomaterials and regenerative medicine.
Collapse
Affiliation(s)
- Yiran Li
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China
| | - Qi Meng
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China
| | - Shaojuan Chen
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China
| | - Peixue Ling
- Shandong Academy of Pharmaceutical Science, Jinan, 250101, China
| | - Mitchell A Kuss
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shaohua Wu
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China; Shandong Academy of Pharmaceutical Science, Jinan, 250101, China.
| |
Collapse
|
29
|
Hidalgo-Carvajal D, Muñoz ÁH, Garrido-González JJ, Carrasco-Gallego R, Alcázar Montero V. Recycled PLA for 3D Printing: A Comparison of Recycled PLA Filaments from Waste of Different Origins after Repeated Cycles of Extrusion. Polymers (Basel) 2023; 15:3651. [PMID: 37688276 PMCID: PMC10490016 DOI: 10.3390/polym15173651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023] Open
Abstract
The objective of this work is to evaluate the reprocessing of PLA 3D printing waste from different origins, into filaments and films, and without the addition of any additive. Two types of waste were considered: a blend of different printing wastes (masks, visors, other components) of personal protective equipment coming from an association of Spanish coronamakers, and PLA waste from a single known commercial source. Both types of materials were subjected to repeated extrusion cycles and processed into films by compression molding. Samples were characterized after each cycle and their mechanical and viscosity properties evaluated. Diffusion-ordered NMR spectroscopy (DOSY) experiments were also carried out to estimate molecular weights. The results show a better performance for the PLA waste from the known origin, capable of withstanding up to three re-extrusion cycles per two for the waste blending, without significant degradation. Additionally, a model to address collection and mechanical recycling cycles under two different scenarios (full traceability and not full traceability) was proposed.
Collapse
Affiliation(s)
- David Hidalgo-Carvajal
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, 28006 Madrid, Spain (R.C.-G.)
| | - Álvaro Hortal Muñoz
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, 28006 Madrid, Spain (R.C.-G.)
- Dirección de Compras Industrial y Cliente, Repsol, 28006 Madrid, Spain
| | | | - Ruth Carrasco-Gallego
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, 28006 Madrid, Spain (R.C.-G.)
| | - Victoria Alcázar Montero
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, 28006 Madrid, Spain (R.C.-G.)
- Grupo de Investigación Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| |
Collapse
|
30
|
Liu M, He K, Bi H, Wang M, Chen B, Tan T, Zhang Y. Metabolic Engineering for Effective Synthesis of 2-Hydroxyadipate. ACS Synth Biol 2023; 12:2475-2486. [PMID: 37527188 DOI: 10.1021/acssynbio.3c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Adipic acid is an important monomer in the synthesis of nylon-6,6. In recent years, the biosynthesis of adipic acid has received more and more attention. The pathway with l-lysine as a precursor has potential for adipic acid synthesis, and 2-hydroxyadipate is a key intermediate metabolite in this pathway. In this Letter, the biosynthesis pathway of 2-hydroxyadipate was constructed in Escherichia coli. Through enhancement of precursor synthesis and cofactors regulation, 7.11 g/L of 2-hydroxyadipate was produced in the 5 L bioreactor, which verified the scale-up potential of 2-hydroxyadipate production. Furthermore, 11.1 g/L of 2-hydroxyadipate was produced in the 5 L bioreactor on the basis of potential optimization strategies via transcriptome analysis. This is the first time for the biosynthesis of 2-hydroxyadipate. The results lay a solid foundation for the biosynthesis of adipic acid and the production of bionylon.
Collapse
Affiliation(s)
- Meng Liu
- National Energy R&D Center for Biorefinery, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, 15th Beisanhuan East Road, Beijing, 100029, PR China
| | - Keqin He
- National Energy R&D Center for Biorefinery, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, 15th Beisanhuan East Road, Beijing, 100029, PR China
| | - Haoran Bi
- National Energy R&D Center for Biorefinery, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, 15th Beisanhuan East Road, Beijing, 100029, PR China
| | - Meng Wang
- National Energy R&D Center for Biorefinery, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, 15th Beisanhuan East Road, Beijing, 100029, PR China
| | - Biqiang Chen
- National Energy R&D Center for Biorefinery, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, 15th Beisanhuan East Road, Beijing, 100029, PR China
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, 15th Beisanhuan East Road, Beijing, 100029, PR China
| | - Yang Zhang
- National Energy R&D Center for Biorefinery, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, 15th Beisanhuan East Road, Beijing, 100029, PR China
| |
Collapse
|
31
|
McDonald SM, Augustine EK, Lanners Q, Rudin C, Catherine Brinson L, Becker ML. Applied machine learning as a driver for polymeric biomaterials design. Nat Commun 2023; 14:4838. [PMID: 37563117 PMCID: PMC10415291 DOI: 10.1038/s41467-023-40459-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Polymers are ubiquitous to almost every aspect of modern society and their use in medical products is similarly pervasive. Despite this, the diversity in commercial polymers used in medicine is stunningly low. Considerable time and resources have been extended over the years towards the development of new polymeric biomaterials which address unmet needs left by the current generation of medical-grade polymers. Machine learning (ML) presents an unprecedented opportunity in this field to bypass the need for trial-and-error synthesis, thus reducing the time and resources invested into new discoveries critical for advancing medical treatments. Current efforts pioneering applied ML in polymer design have employed combinatorial and high throughput experimental design to address data availability concerns. However, the lack of available and standardized characterization of parameters relevant to medicine, including degradation time and biocompatibility, represents a nearly insurmountable obstacle to ML-aided design of biomaterials. Herein, we identify a gap at the intersection of applied ML and biomedical polymer design, highlight current works at this junction more broadly and provide an outlook on challenges and future directions.
Collapse
Affiliation(s)
| | - Emily K Augustine
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Quinn Lanners
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Cynthia Rudin
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - L Catherine Brinson
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Matthew L Becker
- Department of Chemistry, Duke University, Durham, NC, USA.
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
| |
Collapse
|
32
|
Nabavi SR, Seyednezhad SM, Shakiba M. Fabrication of Polyamide6/Polyaniline as an Effective Nano-web Membrane for Removal of Cr (VI) from Water and a Black Box Approach in Modeling of Adsorption Process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85968-85985. [PMID: 37395880 DOI: 10.1007/s11356-023-28566-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Chromium (Cr), as a highly toxic heavy metal ion, is still a severe environmental issue, although many research efforts have been put into its removal from water. Polyaniline (PANI), as a conductive polymer, demonstrated great capability in heavy metal adsorption due to its low cost, ease of synthesis, reversible redox behavior, and chemical stability. However, using PANI powder alone in heavy metal removal causes secondary pollution and aggregation in water. The PANI coating on a substrate could tackle this problem. In this study, polyaniline-coated polyamide6 (PA6/PANI) nano-web membrane was used for the removal of Cr(VI) in both adsorption and filtration-adsorption modes. The PA6/PANI nano-web membrane was fabricated via PA6 electrospinning followed by in-situ polymerization of the aniline monomer. The electrospinning condition of PA6 was optimized by the Taguchi method. The PA6/PANI nano-web membrane was characterized by FESEM, N2-adsorption/desorption, FT-IR, contact angle measurement, and tensile test. FT-IR and FESEM results demonstrated the successful synthesis of PA6/PANI nano-web and PANI homogeneous coating on PA6 nanofibers, respectively. The N2 adsorption/desorption results indicated that the pore volume of the PA6/PANI nano-web decreased by 39% compared to PA6 nanofibers. The tensile test and water contact angle studies showed that the coating of PANI on PA6 nanofibers improves the mechanical properties and hydrophilicity of PA6 by 10% and 25%, respectively. The application of PA6/PANI nano-web in the removal of Cr(VI) in batch and filtration modes exhibits excellent removal of 98.4 and 86.7%, respectively. A pseudo first order model well described the adsorption kinetics, and the adsorption isotherm was best fitted by the Langmuir model. A black box modeling approach based on artificial neural networks (ANN) was developed to predict the removal efficiency of the membrane. The superior performance of PA6/PANI in both adsorption and filtration-adsorption systems makes it a potential candidate for the removal of heavy metals from water on an industrial scale.
Collapse
Affiliation(s)
- Seyed Reza Nabavi
- Department of Applied Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| | | | - Mohamadreza Shakiba
- Department of Applied Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
33
|
Liao Y, Fatehi P, Liao B. Surface properties of membrane materials and their role in cell adhesion and biofilm formation of microalgae. BIOFOULING 2023; 39:879-895. [PMID: 37965865 DOI: 10.1080/08927014.2023.2280005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/28/2023] [Indexed: 11/16/2023]
Abstract
In this study, the effects of surface properties of membrane materials on microalgae cell adhesion and biofilm formation were investigated using Chlorella vulgaris and five different types of membrane materials under hydrodynamic conditions. The results suggest that the contact angle (hydrophobicity), surface free energy, and free energy of cohesion of membrane materials alone could not sufficiently elucidate the selectivity of microalgae cell adhesion and biofilm formation on membrane materials surfaces, and membrane surface roughness played a dominant role in controlling biofilm formation rate, under tested hydrodynamic conditions. A lower level of biofilm EPS production was generally associated with a larger amount of biofilm formation. The zeta potential of membrane materials could enhance initial microalgae cell adhesion and biofilm formation through salt bridging or charge neutralization mechanisms.
Collapse
Affiliation(s)
- Yichen Liao
- Department of Chemical Engineering, Lakehead University, Thunder Bay, Ontario, Canada
| | - Pedram Fatehi
- Department of Chemical Engineering, Lakehead University, Thunder Bay, Ontario, Canada
| | - Baoqiang Liao
- Department of Chemical Engineering, Lakehead University, Thunder Bay, Ontario, Canada
| |
Collapse
|
34
|
Shakiba M, Sheikhi M, Pahnavar Z, Tajiki A, Bigham A, Foroozandeh A, Darvishan S, Pourmadadi M, Emadi H, Rezatabar J, Abdouss H, Abdouss M. Development of an antibacterial and antioxidative nanofibrous membrane using curcumin-loaded halloysite nanotubes for smart wound healing: In vitro and in vivo studies. Int J Pharm 2023; 642:123207. [PMID: 37419431 DOI: 10.1016/j.ijpharm.2023.123207] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Endowing wound dressings with drug delivery capability is a suitable strategy to transfer medicinal compounds locally to damaged skin layers. These dressings are especially useful for accelerating the healing rate in the cases of long-term treatment, and adding more functionalities to the platform. In this study, a wound dressing composed of polyamide 6, hyaluronic acid, and curcumin-loaded halloysite nanotubes (PA6/HA/HNT@Cur) was designed and fabricated for wound healing applications. The physicochemical properties of this platform were investigated through Fourier-transform infrared spectroscopy and field-emission scanning electron microscopy. Moreover, wettability, tensile strength, swelling, and in vitro degradation were assessed. The HNT@Cur was incorporated in the fibers in three concentrations and 1 wt% was found as the optimum concentration yielding desirable structural and mechanical properties. The loading efficiency of Cur on HNT was calculated to be 43 ± 1.8%, and the release profiles and kinetics of nanocomposite were investigated at physiological and acidic pH. In vitro antibacterial and antioxidation studies showed that the PA6/HA/HNT@Cur mat had strong antibacterial and antioxidation activities against gram-positive and -negative pathogens and reactive oxygen species, respectively. Desirable cell compatibility of the mat was found through MTT assay against L292 cells up to 72 h. Finally, the efficacy of the designed wound dressing was evaluated in vivo; after 14 days, the results indicated that the wound size treated with the nanocomposite mat significantly decreased compared to the control sample. This study proposed a swift and straightforward method for developing materials that might be utilized as wound dressings in clinical settings.
Collapse
Affiliation(s)
| | - Mehdi Sheikhi
- Polymer Chemistry Research Laboratory, Department of Chemistry, University of Isfahan, Isfahan, Iran
| | - Zohreh Pahnavar
- Department of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Alireza Tajiki
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d'Oltremare Padiglione 20, 80125 Naples, Italy; Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy.
| | - Amin Foroozandeh
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Sepehr Darvishan
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Hamid Emadi
- Department of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Javad Rezatabar
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Abdouss
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran.
| |
Collapse
|
35
|
Domingues JM, Miranda CS, Homem NC, Felgueiras HP, Antunes JC. Nanoparticle Synthesis and Their Integration into Polymer-Based Fibers for Biomedical Applications. Biomedicines 2023; 11:1862. [PMID: 37509502 PMCID: PMC10377033 DOI: 10.3390/biomedicines11071862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
The potential of nanoparticles as effective drug delivery systems combined with the versatility of fibers has led to the development of new and improved strategies to help in the diagnosis and treatment of diseases. Nanoparticles have extraordinary characteristics that are helpful in several applications, including wound dressings, microbial balance approaches, tissue regeneration, and cancer treatment. Owing to their large surface area, tailor-ability, and persistent diameter, fibers are also used for wound dressings, tissue engineering, controlled drug delivery, and protective clothing. The combination of nanoparticles with fibers has the power to generate delivery systems that have enhanced performance over the individual architectures. This review aims at illustrating the main possibilities and trends of fibers functionalized with nanoparticles, focusing on inorganic and organic nanoparticles and polymer-based fibers. Emphasis on the recent progress in the fabrication procedures of several types of nanoparticles and in the description of the most used polymers to produce fibers has been undertaken, along with the bioactivity of such alliances in several biomedical applications. To finish, future perspectives of nanoparticles incorporated within polymer-based fibers for clinical use are presented and discussed, thus showcasing relevant paths to follow for enhanced success in the field.
Collapse
Affiliation(s)
- Joana M Domingues
- Centre for Textile Science and Technology (2C2T), Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal
| | - Catarina S Miranda
- Centre for Textile Science and Technology (2C2T), Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal
| | - Natália C Homem
- Simoldes Plastics S.A., Rua Comendador António da Silva Rodrigues 165, 3720-193 Oliveira de Azeméis, Portugal
| | - Helena P Felgueiras
- Centre for Textile Science and Technology (2C2T), Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal
| | - Joana C Antunes
- Centre for Textile Science and Technology (2C2T), Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal
| |
Collapse
|
36
|
Vidakis N, Petousis M, Mountakis N, Papadakis V, Moutsopoulou A. Mechanical strength predictability of full factorial, Taguchi, and Box Behnken designs: Optimization of thermal settings and Cellulose Nanofibers content in PA12 for MEX AM. J Mech Behav Biomed Mater 2023; 142:105846. [PMID: 37084490 DOI: 10.1016/j.jmbbm.2023.105846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/03/2023] [Accepted: 04/08/2023] [Indexed: 04/23/2023]
Abstract
Optimization of reinforced nanocomposites for MEX 3D-printing remain strong industrial claims. Herein, the efficacy of three modeling methods, i.e., full factorial (FFD), Taguchi (TD), and Box-Behnken (BBD), on the performance of MEX 3D printed nanocomposites was investigated, aiming to reduce the experimental effort. Filaments of medical-grade Polyamide 12 (PA12) reinforced with Cellulose NanoFibers (CNF) were evolved. Besides the CNF loading, 3D printing settings such as Nozzle (NT) and Bed (BΤ) Temperatures were optimization goals aiming to maximize the mechanical response. Three parameters and three levels of FFD were compliant with the ASTM-D638 standard (27 runs, five repetitions). An L9 orthogonal TD and a 15 runs BBD were compiled. In FFD, wt.3%CNF, 270 °C NT, and 80 °C BΤ led to 24% higher tensile strength compared to pure PA12. TGA, RAMAN, and SEM analyses interpreted the reinforcement mechanisms. TD and BBD exhibited fair approximations, requiring 7.4% and 11.8% of the FFD experimental effort.
Collapse
Affiliation(s)
- Nectarios Vidakis
- Department of Mechanical Engineering, Hellenic Mediterranean University, Heraklion, 71410, Greece.
| | - Markos Petousis
- Department of Mechanical Engineering, Hellenic Mediterranean University, Heraklion, 71410, Greece.
| | - Nikolaos Mountakis
- Department of Mechanical Engineering, Hellenic Mediterranean University, Heraklion, 71410, Greece.
| | - Vassilis Papadakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, GR-70013, Heraklion, Greece.
| | - Amalia Moutsopoulou
- Department of Mechanical Engineering, Hellenic Mediterranean University, Heraklion, 71410, Greece.
| |
Collapse
|
37
|
Bazan A, Turek P, Zakręcki A. Influence of Antibacterial Coating and Mechanical and Chemical Treatment on the Surface Properties of PA12 Parts Manufactured with SLS and MJF Techniques in the Context of Medical Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2405. [PMID: 36984288 PMCID: PMC10051754 DOI: 10.3390/ma16062405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Additive manufacturing (AM) is a rapidly growing branch of manufacturing techniques used, among others, in the medical industry. New machines and materials and additional processing methods are improved or developed. Due to the dynamic development of post-processing and its relative novelty, it has not yet been widely described in the literature. This study focuses on the surface topography (parameters Sa, Sz, Sdq, Sds, Str, Sdr) of biocompatible polyamide 12 (PA12) samples made by selective laser sintering (SLS) and multi jet fusion (MJF). The surfaces of the samples were modified by commercial methods: four types of smoothing treatments (two mechanical and two chemical), and two antibacterial coatings. The smoothing treatment decreased the values of all analyzed topography parameters. On average, the Sa of the SLS samples was 33% higher than that of the MJF samples. After mechanical treatment, Sa decreased by 42% and after chemical treatment by 80%. The reduction in Sdq and Sdr is reflected in a higher surface gloss. One antibacterial coating did not significantly modify the surface topography. The other coating had a smoothing effect on the surface. The results of the study can help in the development of manufacturing methodologies for parts made of PA12, e.g., in the medical industry.
Collapse
Affiliation(s)
- Anna Bazan
- Faculty of Mechanical Engineering and Areonautics, Rzeszów University of Technology, Powstańców Warszawy 12, 35-959 Rzeszów, Poland
| | - Paweł Turek
- Faculty of Mechanical Engineering and Areonautics, Rzeszów University of Technology, Powstańców Warszawy 12, 35-959 Rzeszów, Poland
| | - Andrzej Zakręcki
- MEDIPRINTIC Sp. Z.O.O., Wojska Polskiego 9, 39-300 Mielec, Poland
| |
Collapse
|
38
|
Thin-film composite polymer membranes based on nylon and halloysite: synthesis, characterization, and performance. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02730-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
39
|
Kolitha BS, Jayasekara SK, Tannenbaum R, Jasiuk IM, Jayakody LN. Repurposing of waste PET by microbial biotransformation to functionalized materials for additive manufacturing. J Ind Microbiol Biotechnol 2023; 50:kuad010. [PMID: 37248049 PMCID: PMC10549213 DOI: 10.1093/jimb/kuad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/20/2023] [Indexed: 05/31/2023]
Abstract
Plastic waste is an outstanding environmental thread. Poly(ethylene terephthalate) (PET) is one of the most abundantly produced single-use plastics worldwide, but its recycling rates are low. In parallel, additive manufacturing is a rapidly evolving technology with wide-ranging applications. Thus, there is a need for a broad spectrum of polymers to meet the demands of this growing industry and address post-use waste materials. This perspective article highlights the potential of designing microbial cell factories to upcycle PET into functionalized chemical building blocks for additive manufacturing. We present the leveraging of PET hydrolyzing enzymes and rewiring the bacterial C2 and aromatic catabolic pathways to obtain high-value chemicals and polymers. Since PET mechanical recycling back to original materials is cost-prohibitive, the biochemical technology is a viable alternative to upcycle PET into novel 3D printing materials, such as replacements for acrylonitrile butadiene styrene. The presented hybrid chemo-bio approaches potentially enable the manufacturing of environmentally friendly degradable or higher-value high-performance polymers and composites and their reuse for a circular economy. ONE-SENTENCE SUMMARY Biotransformation of waste PET to high-value platform chemicals for additive manufacturing.
Collapse
Affiliation(s)
- Bhagya S Kolitha
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| | - Sandhya K Jayasekara
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| | - Rina Tannenbaum
- Department of Materials Science and Chemical Engineering, the Stony Brook University Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Iwona M Jasiuk
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lahiru N Jayakody
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
- Fermentation Science Institute, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| |
Collapse
|
40
|
Multienzymatic synthesis of nylon monomers from vegetable oils. Trends Biotechnol 2023; 41:150-153. [PMID: 36180355 DOI: 10.1016/j.tibtech.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 01/24/2023]
Abstract
Nylons are important polyamide (PA) materials that can be polymerized from different monomers. Bio-based nylon monomers are traditionally obtained through chemical conversion from vegetable oils, but they can be more sustainably obtained through multienzymatic catalysis. For large-scale application of this process, enzyme engineering and process innovation must be combined.
Collapse
|
41
|
Surface Design Strategies of Polymeric Biomedical Implants for Antibacterial Properties. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023. [DOI: 10.1016/j.cobme.2023.100448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
42
|
Masterbatch of Chitosan Nanowhiskers for Preparation of Nylon 6,10 Nanocomposite by Melt Blending. Polymers (Basel) 2022; 14:polym14245488. [PMID: 36559855 PMCID: PMC9783613 DOI: 10.3390/polym14245488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Composite materials have been extensively studied to optimize properties such as lightness and strength, which are the advantages of plastics. We prepared a highly concentrated (30 wt %) nylon/chitosan nanowhisker (CSW) masterbatch by blending nylon 6,10 and CSW by solvent casting to achieve high dispersion efficiency while considering an industrial setting. Subsequently, 0.3 wt % nylon/CSW nanocomposites were prepared with a large quantity of nylon 6,10 via melt blending. During preparation, the materials were stirred in the presence of formic acid at different times to investigate the effect of stirring time on the structure of the CSW and the physical properties of the composite. The formation of nanocomposites by the interactions between nylon and CSW was confirmed by observing the change in hydrogen bonding using FT-IR spectroscopy and the rise in melting temperature and melting enthalpy through differential scanning calorimetry. The results demonstrated increases in complex viscosity and shear thinning. The rheological properties of the composites changed due to interactions between CSW and nylon, as indicated by the loss factor. The mechanical properties produced by the nanocomposite stirred for 1.5 h were superior, suggesting that formic acid caused minimal structural damage, thus verifying the suitability of the stirring condition.
Collapse
|
43
|
Rezvani Ghomi E, Niazi M, Ramakrishna S. The evolution of wound dressings: From traditional to smart dressings. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Erfan Rezvani Ghomi
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering College of Design and Engineering Singapore Singapore
| | - Mina Niazi
- Department of Biomedical Engineering National University of Singapore Singapore Singapore
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering College of Design and Engineering Singapore Singapore
| |
Collapse
|
44
|
Shetty S, B. T. N, Amin V, Harish P, Selva Kumar S, Shahira. Evaluation of 3D printed PEEK and other 3D printed biocompatible materials as healthcare devices. Biomedicine (Taipei) 2022. [DOI: 10.51248/.v42i5.1959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction and Aim: Additive manufacturing has sought a widespread attention and higher rate of development which can also be modeled by processing of the data acquired by medical Computer Tomography scan. The object is built on a built plate of the printer in layers to form a final required model. Thus, a patient-specific model can be created from imaging data set. Materials available for such printing are elastomers, polymers, metals, or ceramics. The polymer, Polyether ether ketone (PEEK) has been used in health care applications, such as medical devices, and implants due to its high strength, biocompatibility, and light weight. Stainless steel (316L) is commonly used due to its strength, bio-tolerance, corrosion resistance and its formability. The aim of this study was to compare the mechanical strength and biocompatibility of medical grade PEEK and stainless steel.
Material and Methods: The test sample of PEEK was prepared using unreinforced PEEK (450G-Victrex Plc., Lancashire, UK) at the Prototyping Lab with a 3D-Printer - INTAMSYS - FUNMAT HT. Samples of stainless steel was printed using the iFusion SF1 Metal 3D Printer using Powder Bed Fusion (PBF) technology. The mechanical tests such as compressive, impact, and tensile tests were performed using an electromechanical universal testing machine (UTM) model- Zwick/Roell Z020 with a 20kN load cell. Biocompatibility tests were done using L929 cells to assess the cytotoxicity of the dental materials.
Results: The tensile strength of PEEK polymer was 70+1.6 and the impact strength of PEEK polymer was 289 J/m.
Conclusion: The tensile strength of stainless steel was higher compared to that of PEEK polymer, and the impact strength of PEEK polymer higher compared to stainless steel. Thus, it can be concluded that both biomaterial such as 316L stainless steel and PEEK are non-toxic to fibroblast.
Collapse
|
45
|
Varghese M, Grinstaff MW. Beyond nylon 6: polyamides via ring opening polymerization of designer lactam monomers for biomedical applications. Chem Soc Rev 2022; 51:8258-8275. [PMID: 36047318 PMCID: PMC9856205 DOI: 10.1039/d1cs00930c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Ring opening polymerization (ROP) of lactams is a highly efficient and versatile method to synthesize polyamides. Within the last ten years, significant advances in polymerization methodology and monomer diversity are ushering in a new era of polyamide chemistry. We begin with a discussion of polymerization techniques including the most widely used anionic ring opening polymerization (AROP), and less prevalent cationic ROP and enzyme-catalyzed ROP. Next, we describe new monomers being explored for ROP with increased functionality and stereochemistry. We emphasize the relationships between composition, structure, and properties, and how chemists can control composition and structure to dictate a desired property or performance. Finally, we discuss biomedical applications of the synthesized polyamides, specifically as biomaterials and pharmaceuticals, with examples to include as antimicrobial agents, cell adhesion substrates, and drug delivery scaffolds.
Collapse
Affiliation(s)
- Maria Varghese
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
| | - Mark W Grinstaff
- Departments of Chemistry and Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
46
|
Akbari Kenari M, Rezvani Ghomi E, Akbari Kenari A, Arabi SMS, Deylami J, Ramakrishna S. Biomedical applications of microfluidic devices: Achievements and challenges. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mahsa Akbari Kenari
- Department of Chemical Engineering Polytechnique Montreal Montreal Quebec Canada
| | - Erfan Rezvani Ghomi
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering National University of Singapore Singapore Singapore
| | | | | | - Javad Deylami
- School of Physical and Mathematical Sciences Nanyang Technological University Singapore Singapore
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering National University of Singapore Singapore Singapore
| |
Collapse
|
47
|
Magnetic Nylon 6 Nanocomposites for the Microextraction of Nucleic Acids from Biological Samples. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8080085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Magnetic Fe3O4 nanoparticles (MNPs) have great potential for nucleic acid separation, detection, and delivery. MNPs are considered a valuable tool in biomedicine due to their cost-effectiveness, stability, easy surface functionalization, and the possibility of the manipulations under a magnetic field. Herein, the synthesis of magnetic nylon 6 nanocomposites (MNPs@Ny6) was investigated. Transmission electron microscopy (TEM) was used for morphology and size analysis. A new method of UV-induced immobilization of oligonucleotides on MNPs@Ny6 for nucleic acid magnetic separation was proposed. MNPs@Ny6 shows a high oligonucleotide binding capacity of 2.2 nmol/mg with 73.3% loading efficiency. The proposed system has been applied to analyze model mixtures of target RNA on the total yeast RNA background. The RNA target isolation efficiency was 60% with high specificity. The bind RNA release was 88.8% in a quantity of 0.16 nmol/mg. The total RNA capture efficiency was 53%. Considering this, the MNPs@Ny6 is an attractive candidate for nucleic acids-specific magnetic isolation.
Collapse
|
48
|
Niboucha N, Goetz C, Sanschagrin L, Fontenille J, Fliss I, Labrie S, Jean J. Comparative Study of Different Sampling Methods of Biofilm Formed on Stainless-Steel Surfaces in a CDC Biofilm Reactor. Front Microbiol 2022; 13:892181. [PMID: 35770177 PMCID: PMC9234490 DOI: 10.3389/fmicb.2022.892181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
The formation of biofilms in dairy processing plants can reduce equipment efficiency, contribute to surface deterioration, and contaminate dairy products by releasing the microorganisms they contain, which may cause spoilage or disease. However, a more representative identification of microbial communities and physico-chemical characterization requires to detach and recover adequately the entire biofilm from the surface. The aim of this study is to develop an efficient technique for in-plant biofilm sampling by growing a strain of Pseudomonas azotoformans PFl1A on stainless-steel surface in a dynamic CDC biofilm reactor system using tryptic soy broth (TSB) and milk as growth media. Different techniques, namely, swabbing, scraping, sonic brushing, synthetic sponge, and sonicating synthetic sponge were used and the results were compared to a standard ASTM International method using ultrasonication. Their efficiencies were evaluated by cells enumeration and scanning electron microscopy. The maximum total viable counts of 8.65 ± 0.06, 8.75 ± 0.08, and 8.71 ± 0.09 log CFU/cm2 were obtained in TSB medium using scraping, synthetic sponge, and sonicating synthetic sponge, respectively, which showed no statistically significant differences with the standard method, ultrasonication (8.74 ± 0.02 log CFU/cm2). However, a significantly (p < 0.05) lower cell recovery of 8.57 ± 0.10 and 8.60 ± 0.00 log CFU/cm2 compared to ultrasonication were achieved for swabbing and sonic brushing, respectively. Furthermore, scanning electron microscopy showed an effective removal of biofilms by sonic brushing, synthetic sponge, and sonicating synthetic sponge; However, only the latter two methods guaranteed a superior release of bacterial biofilm into suspension. Nevertheless, a combination of sonication and synthetic sponge ensured dislodging of sessile cells from surface crevices. The results suggest that a sonicating synthetic sponge could be a promising method for biofilm recovery in processing plants, which can be practically used in the dairy industries as an alternative to ultrasonication.
Collapse
Affiliation(s)
- Nissa Niboucha
- Département des Sciences des Aliments, Université Laval, Québec, QC, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC, Canada
| | - Coralie Goetz
- Département des Sciences des Aliments, Université Laval, Québec, QC, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC, Canada
| | - Laurie Sanschagrin
- Département des Sciences des Aliments, Université Laval, Québec, QC, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC, Canada
| | - Juliette Fontenille
- Département des Sciences des Aliments, Université Laval, Québec, QC, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC, Canada
| | - Ismaïl Fliss
- Département des Sciences des Aliments, Université Laval, Québec, QC, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC, Canada
| | - Steve Labrie
- Département des Sciences des Aliments, Université Laval, Québec, QC, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC, Canada
| | - Julie Jean
- Département des Sciences des Aliments, Université Laval, Québec, QC, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC, Canada
- *Correspondence: Julie Jean,
| |
Collapse
|
49
|
Kulinowski P, Malczewski P, Łaszcz M, Baran E, Milanowski B, Kuprianowicz M, Dorożyński P. Development of Composite, Reinforced, Highly Drug-Loaded Pharmaceutical Printlets Manufactured by Selective Laser Sintering-In Search of Relevant Excipients for Pharmaceutical 3D Printing. MATERIALS 2022; 15:ma15062142. [PMID: 35329594 PMCID: PMC8950795 DOI: 10.3390/ma15062142] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023]
Abstract
3D printing by selective laser sintering (SLS) of high-dose drug delivery systems using pure brittle crystalline active pharmaceutical ingredients (API) is possible but impractical. Currently used pharmaceutical grade excipients, including polymers, are primarily designed for powder compression, ensuring good mechanical properties. Using these excipients for SLS usually leads to poor mechanical properties of printed tablets (printlets). Composite printlets consisting of sintered carbon-stained polyamide (PA12) and metronidazole (Met) were manufactured by SLS to overcome the issue. The printlets were characterized using DSC and IR spectroscopy together with an assessment of mechanical properties. Functional properties of the printlets, i.e., drug release in USP3 and USP4 apparatus together with flotation assessment, were evaluated. The printlets contained 80 to 90% of Met (therapeutic dose ca. 600 mg), had hardness above 40 N (comparable with compressed tablets) and were of good quality with internal porous structure, which assured flotation. The thermal stability of the composite material and the identity of its constituents were confirmed. Elastic PA12 mesh maintained the shape and structure of the printlets during drug dissolution and flotation. Laser speed and the addition of an osmotic agent in low content influenced drug release virtually not changing composition of the printlet; time to release 80% of Met varied from 0.5 to 5 h. Composite printlets consisting of elastic insoluble PA12 mesh filled with high content of crystalline Met were manufactured by 3D SLS printing. Dissolution modification by the addition of an osmotic agent was demonstrated. The study shows the need to define the requirements for excipients dedicated to 3D printing and to search for appropriate materials for this purpose.
Collapse
Affiliation(s)
- Piotr Kulinowski
- Institute of Technology, Pedagogical University of Cracow, Podchorążych 2, 30-084 Cracow, Poland; (P.K.); (P.M.); (E.B.)
| | - Piotr Malczewski
- Institute of Technology, Pedagogical University of Cracow, Podchorążych 2, 30-084 Cracow, Poland; (P.K.); (P.M.); (E.B.)
| | - Marta Łaszcz
- Department of Falsified Medicines and Medical Devices, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland;
| | - Ewelina Baran
- Institute of Technology, Pedagogical University of Cracow, Podchorążych 2, 30-084 Cracow, Poland; (P.K.); (P.M.); (E.B.)
| | - Bartłomiej Milanowski
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, ul. Grunwaldzka 6, 60-780 Poznan, Poland;
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., Na Kępie 3, 64-360 Zbąszyń, Poland;
| | - Mateusz Kuprianowicz
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., Na Kępie 3, 64-360 Zbąszyń, Poland;
| | - Przemysław Dorożyński
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
- Department of Spectroscopic Methods, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland
- Correspondence:
| |
Collapse
|