1
|
Soh WWM, Finol E, Chan SJW, Zhu JY, Liau SSJK, Bier A, Ooi EE, Bazan GC. Tailoring Lipid Nanoparticle with Ex Situ Incorporated Conjugated Oligoelectrolyte for Enhanced mRNA Delivery Efficiency. Adv Healthc Mater 2025:e2405048. [PMID: 40103511 DOI: 10.1002/adhm.202405048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/20/2025] [Indexed: 03/20/2025]
Abstract
Developing new lipid nanoparticle (LNP) formulations typically involves reconstruction from separate elements followed by rigorous purification steps, contributing to drawn-out drug discovery processes. Membrane-intercalating conjugated oligoelectrolytes (COEs) are water-soluble molecules featuring a conjugated backbone and peripheral ionic groups, specifically designed to spontaneously integrate into lipid bilayers. Herein, an ex situ strategy to "dope" the representative COE-S6 into pre-formed messenger RNA-LNPs (mRNA-LNPs) is presented, exploiting its spontaneous membrane intercalation property through a straightforward add-and-mix procedure. Incorporating 0.2% COE-S6 into mRNA-LNPs relative to lipid content reduced particle size from 84.5 ± 1 to 67.9 ± 0.8 nm, elevated cellular uptake, and improved endosomal escape. These traits culminate in an increase in in cellula transfection from 24.2 ± 1.6% to 98.7 ± 0.6%. When injected intravenously into healthy BALB/c mice, the optimized COE-S6-doped mRNA-LNPs boost in vivo luciferase expression by 1.75-fold. Additionally, COE-S6-doped mRNA-LNPs exhibit fluorogenic properties, enabling intracellular mechanistic studies via confocal microscopy. This simple method enhances the properties of mRNA-LNPs with minimal COE quantities, offering a novel strategy to improve existing LNP formulations and provide optical reporting capabilities, essential for expediting drug discovery and delivery.
Collapse
Affiliation(s)
- Wilson Wee Mia Soh
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544, Singapore
| | - Esteban Finol
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore
| | - Samuel J W Chan
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Ji-Yu Zhu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | | | - Ava Bier
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544, Singapore
| | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, National University of Singapore, Singapore, 169857, Singapore
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, 169857, Singapore
| | - Guillermo C Bazan
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544, Singapore
| |
Collapse
|
2
|
Kotsifaki A, Kalouda G, Maroulaki S, Foukas A, Armakolas A. The Genetic and Biological Basis of Pseudoarthrosis in Fractures: Current Understanding and Future Directions. Diseases 2025; 13:75. [PMID: 40136615 PMCID: PMC11941250 DOI: 10.3390/diseases13030075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Pseudoarthrosis-the failure of normal fracture healing-remains a significant orthopedic challenge affecting approximately 10-15% of long bone fractures, and is associated with significant pain, prolonged disability, and repeated surgical interventions. Despite extensive research into the pathophysiological mechanisms of bone healing, diagnostic approaches remain reliant on clinical findings and radiographic evaluations, with little innovation in tools to predict or diagnose non-union. The present review evaluates the current understanding of the genetic and biological basis of pseudoarthrosis and highlights future research directions. Recent studies have highlighted the potential of specific molecules and genetic markers to serve as predictors of unsuccessful fracture healing. Alterations in mesenchymal stromal cell (MSC) function, including diminished osteogenic potential and increased cellular senescence, are central to pseudoarthrosis pathogenesis. Molecular analyses reveal suppressed bone morphogenetic protein (BMP) signaling and elevated levels of its inhibitors, such as Noggin and Gremlin, which impair bone regeneration. Genetic studies have uncovered polymorphisms in BMP, matrix metalloproteinase (MMP), and Wnt signaling pathways, suggesting a genetic predisposition to non-union. Additionally, the biological differences between atrophic and hypertrophic pseudoarthrosis, including variations in vascularity and inflammatory responses, emphasize the need for targeted approaches to management. Emerging biomarkers, such as circulating microRNAs (miRNAs), cytokine profiles, blood-derived MSCs, and other markers (B7-1 and PlGF-1), have the potential to contribute to early detection of at-risk patients and personalized therapeutic approaches. Advancing our understanding of the genetic and biological underpinnings of pseudoarthrosis is essential for the development of innovative diagnostic tools and therapeutic strategies.
Collapse
Affiliation(s)
- Amalia Kotsifaki
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.K.); (G.K.); (S.M.)
| | - Georgia Kalouda
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.K.); (G.K.); (S.M.)
| | - Sousanna Maroulaki
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.K.); (G.K.); (S.M.)
| | - Athanasios Foukas
- Third Department of Orthopaedic Surgery, “KAT” General Hospital of Athens, 2, Nikis Street, 14561 Kifissia, Greece;
| | - Athanasios Armakolas
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.K.); (G.K.); (S.M.)
| |
Collapse
|
3
|
Nielsen IH, Rovsing AB, Janns JH, Thomsen EA, Ruzo A, Bøggild A, Nedergaard F, Møller CT, Boesen T, Degn SE, Shah JV, Mikkelsen JG. Cell-targeted gene modification by delivery of CRISPR-Cas9 ribonucleoprotein complexes in pseudotyped lentivirus-derived nanoparticles. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102318. [PMID: 39329149 PMCID: PMC11426049 DOI: 10.1016/j.omtn.2024.102318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
To fully utilize the potential of CRISPR-Cas9-mediated genome editing, time-restricted and targeted delivery is crucial. By modulating the pseudotype of engineered lentivirus-derived nanoparticles (LVNPs), we demonstrate efficient cell-targeted delivery of Cas9/single guide RNA (sgRNA) ribonucleoprotein (RNP) complexes, supporting gene modification in a defined subset of cells in mixed cell populations. LVNPs pseudotyped with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein resulted in angiotensin-converting enzyme 2 (ACE2)-dependent insertion or deletion (indel) formation in an ACE2+/ACE2- population of cells, whereas Nipah virus glycoprotein pseudotyping resulted in Ephrin-B2/B3-specific gene knockout. Additionally, LVNPs pseudotyped with Edmonston strain measles virus glycoproteins (MV-H/F) delivered Cas9/sgRNA RNPs to CD46+ cells with and without additional expression of SLAM (signaling lymphocytic activation molecule; CD150). However, an engineered SLAM-specific measles virus pseudotype (measles virus-hemagglutinin/fusion [MV-H/F]-SLAM) efficiently targeted LVNPs to SLAM+ cells. Lentiviral vectors (LVs) pseudotyped with MV-H/F-SLAM efficiently transduced >80% of interleukin (IL)-4/IL-21-stimulated primary B cells cultured on CD40 ligand (CD40L)-expressing feeder cells. Notably, LVNPs pseudotyped with MV-H/F and MV-H/F-SLAM reached indel rates of >80% and >60% in stimulated primary B cells, respectively. Collectively, our findings demonstrate the modularity of LVNP-directed delivery of ready-to-function Cas9/sgRNA complexes. Using a panel of different pseudotypes, we provide evidence that LVNPs can be engineered to induce effective indel formation in a subpopulation of cells defined by the expression of surface receptors.
Collapse
Affiliation(s)
- Ian Helstrup Nielsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Anne Bruun Rovsing
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Jacob Hørlück Janns
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Emil Aagaard Thomsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Albert Ruzo
- Sana Biotechnology, Inc, Cambridge, MA 02139, USA
| | - Andreas Bøggild
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Frederikke Nedergaard
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | | | - Thomas Boesen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Søren Egedal Degn
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | | | - Jacob Giehm Mikkelsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| |
Collapse
|
4
|
Zhang L, Lou W, Wang J. Advances in nucleic acid therapeutics: structures, delivery systems, and future perspectives in cancer treatment. Clin Exp Med 2024; 24:200. [PMID: 39196428 PMCID: PMC11358240 DOI: 10.1007/s10238-024-01463-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
Cancer has emerged as a significant threat to human health. Nucleic acid therapeutics regulate the gene expression process by introducing exogenous nucleic acid fragments, offering new possibilities for tumor remission and even cure. Their mechanism of action and high specificity demonstrate great potential in cancer treatment. However, nucleic acid drugs face challenges such as low stability and limited ability to cross physiological barriers in vivo. To address these issues, various nucleic acid delivery vectors have been developed to enhance the stability and facilitate precise targeted delivery of nucleic acid drugs within the body. In this review article, we primarily introduce the structures and principles of nucleic acid drugs commonly used in cancer therapy, as well as their cellular uptake and intracellular transportation processes. We focus on the various vectors commonly employed in nucleic acid drug delivery, highlighting their research progress and applications in recent years. Furthermore, we propose potential trends and prospects of nucleic acid drugs and their carriers in the future.
Collapse
Affiliation(s)
- Leqi Zhang
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Wenting Lou
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Jianwei Wang
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 2nd Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310009, China.
| |
Collapse
|
5
|
Sánchez-Meza LV, Bello-Rios C, Eloy JO, Gómez-Gómez Y, Leyva-Vázquez MA, Petrilli R, Bernad-Bernad MJ, Lagunas-Martínez A, Medina LA, Serrano-Bello J, Organista-Nava J, Illades-Aguiar B. Cationic Liposomes Carrying HPV16 E6-siRNA Inhibit the Proliferation, Migration, and Invasion of Cervical Cancer Cells. Pharmaceutics 2024; 16:880. [PMID: 39065577 PMCID: PMC11279637 DOI: 10.3390/pharmaceutics16070880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
The E6 and E7 oncoproteins of high-risk types of human papillomavirus (HR-HPV) are crucial for the development of cervical cancer (CC). Small interfering RNAs (siRNAs) are explored as novel therapies that silence these oncogenes, but their clinical use is hampered by inefficient delivery systems. Modification (pegylation) with polyethylene glycol (PEG) of liposomal siRNA complexes (siRNA lipoplexes) may improve systemic stability. We studied the effect of siRNA targeting HPV16 E6, delivered via cationic liposomes (lipoplexes), on cellular processes in a cervical carcinoma cell line (CaSki) and its potential therapeutic use. Lipoplexes-PEG-HPV16 E6, composed of DOTAP, Chol, DOPE, and DSPE-PEG2000 were prepared. The results showed that pegylation (5% DSPE-PEG2000) provided stable siRNA protection, with a particle size of 86.42 ± 3.19 nm and a complexation efficiency of over 80%; the siRNA remained stable for 30 days. These lipoplexes significantly reduced HPV16 E6 protein levels and restored p53 protein expression, inhibiting carcinogenic processes such as proliferation by 25.74%, migration (95.7%), and cell invasion (97.8%) at concentrations of 20 nM, 200 nM, and 80 nM, respectively. In conclusion, cationic lipoplexes-PEG-HPV16 E6 show promise as siRNA carriers for silencing HPV16 E6 in CC.
Collapse
Affiliation(s)
- Luz Victoria Sánchez-Meza
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Chilpancingo 39090, Guerrero, Mexico; (L.V.S.-M.); (C.B.-R.); (Y.G.-G.); (M.A.L.-V.)
| | - Ciresthel Bello-Rios
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Chilpancingo 39090, Guerrero, Mexico; (L.V.S.-M.); (C.B.-R.); (Y.G.-G.); (M.A.L.-V.)
| | - Josimar O. Eloy
- Department of Pharmacy, Dentistry and Nursing, Faculty of Pharmacy, Federal University of Ceará, 1210 Pastor Samuel Munguba Street, Fortaleza 60430-160, CE, Brazil;
| | - Yazmín Gómez-Gómez
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Chilpancingo 39090, Guerrero, Mexico; (L.V.S.-M.); (C.B.-R.); (Y.G.-G.); (M.A.L.-V.)
| | - Marco Antonio Leyva-Vázquez
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Chilpancingo 39090, Guerrero, Mexico; (L.V.S.-M.); (C.B.-R.); (Y.G.-G.); (M.A.L.-V.)
| | - Raquel Petrilli
- Institute of Health Sciences, University of International Integration of the Afro-Brazilian Lusophony, Redenção 62790-000, CE, Brazil;
| | | | - Alfredo Lagunas-Martínez
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Morelos, Mexico;
| | - Luis Alberto Medina
- Instituto de Física, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico 04510, Mexico;
- Unidad de Investigación Biomédica en Cáncer INCan/UNAM, Instituto Nacional de Cancerología, Actualmente Hospital Ángeles Puebla, Ciudad de Mexico 14080, Mexico
| | - Janeth Serrano-Bello
- Facultad de Odontología, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico 04360, Mexico;
| | - Jorge Organista-Nava
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Chilpancingo 39090, Guerrero, Mexico; (L.V.S.-M.); (C.B.-R.); (Y.G.-G.); (M.A.L.-V.)
| | - Berenice Illades-Aguiar
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Chilpancingo 39090, Guerrero, Mexico; (L.V.S.-M.); (C.B.-R.); (Y.G.-G.); (M.A.L.-V.)
| |
Collapse
|
6
|
So RB, Li G, Brentville V, Daly JM, Dixon JE. Combined biolistic and cell penetrating peptide delivery for the development of scalable intradermal DNA vaccines. J Control Release 2024; 367:209-222. [PMID: 38244841 DOI: 10.1016/j.jconrel.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Physical-based gene delivery via biolistic methods (such as the Helios gene gun) involve precipitation of nucleic acids onto microparticles and direct transfection through cell membranes of exposed tissue (e.g. skin) by high velocity acceleration. The glycosaminoglycan (GAG)-binding enhanced transduction (GET) system exploits novel fusion peptides consisting of cell-binding, nucleic acid condensing, and cell-penetrating domains, which enable enhanced transfection across multiple cell types. In this study, we combined chemical (GET) and physical (gene gun) DNA delivery systems, and hypothesized the combination would generate enhanced distribution and effective uptake in cells not initially transfected by biolistic penetration. Physicochemical characterization, optimization of bullet contents and transfection experiments in vitro in cell monolayers and engineered tissue demonstrated these formulations transfected efficiently, including DC2.4 dendritic cells. We incorporated these formulations into a biolistic format for gene gun by forming fireable dry bullets obtained via lyophilization (freeze drying). This system is simple and with enhanced scalability compared to conventional methods to generate bullets. Flushed GET bullet contents retained their ability to mediate transfection (17-fold greater and 13-fold greater reporter gene expression than standard spermidine bullets in the absence and presence of serum, respectively). Fired GET bullets in vitro (in cells and collagen gels) and in vivo (mice) showed increased reporter gene transfection compared to untreated controls, whilst maintaining cell viability in vitro and having no obvious toxicity in vivo. Lastly, a SARS-CoV-2 plasmid DNA vaccine with spike (S) protein-receptor binding domain (S-RBD) was delivered by gene gun using GET bullets. Specific T cell and antibody responses comparable to the conventional system were generated. The non-physical and physical combination of GET‑gold-DNA carriers using gene gun shows potential as an alternative DNA delivery method that is scalable for mass deployable vaccination and intradermal gene delivery.
Collapse
Affiliation(s)
- Roizza Beth So
- Regenerative Medicine & Cellular Therapies (RMCT), Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Gang Li
- Regenerative Medicine & Cellular Therapies (RMCT), Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Victoria Brentville
- Scancell Ltd, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Janet M Daly
- One Virology, Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, UK
| | - James E Dixon
- Regenerative Medicine & Cellular Therapies (RMCT), Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK.
| |
Collapse
|
7
|
Influence of DNA Type on the Physicochemical and Biological Properties of Polyplexes Based on Star Polymers Bearing Different Amino Functionalities. Polymers (Basel) 2023; 15:polym15040894. [PMID: 36850178 PMCID: PMC9966362 DOI: 10.3390/polym15040894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
The interactions of two star polymers based on poly (2-(dimethylamino)ethyl methacrylate) with different types of nucleic acids are investigated. The star polymers differ only in their functionality to bear protonable amino or permanently charged quaternary ammonium groups, while DNAs of different molar masses, lengths and topologies are used. The main physicochemical parameters of the resulting polyplexes are determined. The influence of the polymer' functionality and length and topology of the DNA on the structure and properties of the polyelectrolyte complexes is established. The quaternized polymer is characterized by a high binding affinity to DNA and formed strongly positively charged, compact and tight polyplexes. The parent, non-quaternized polymer exhibits an enhanced buffering capacity and weakened polymer/DNA interactions, particularly upon the addition of NaCl, resulting in the formation of less compact and tight polyplexes. The cytotoxic evaluation of the systems indicates that they are sparing with respect to the cell lines studied including osteosarcoma, osteoblast and human adipose-derived mesenchymal stem cells and exhibit good biocompatibility. Transfection experiments reveal that the non-quaternized polymer is effective at transferring DNA into cells, which is attributed to its high buffering capacity, facilitating the endo-lysosomal escape of the polyplex, the loose structure of the latter one and weakened polymer/DNA interactions, benefitting the DNA release.
Collapse
|
8
|
Gao Y, Liu X, Chen N, Yang X, Tang F. Recent Advance of Liposome Nanoparticles for Nucleic Acid Therapy. Pharmaceutics 2023; 15:178. [PMID: 36678807 PMCID: PMC9864445 DOI: 10.3390/pharmaceutics15010178] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
Gene therapy, as an emerging therapeutic approach, has shown remarkable advantages in the treatment of some major diseases. With the deepening of genomics research, people have gradually realized that the emergence and development of many diseases are related to genetic abnormalities. Therefore, nucleic acid drugs are gradually becoming a new boon in the treatment of diseases (especially tumors and genetic diseases). It is conservatively estimated that the global market of nucleic acid drugs will exceed $20 billion by 2025. They are simple in design, mature in synthesis, and have good biocompatibility. However, the shortcomings of nucleic acid, such as poor stability, low bioavailability, and poor targeting, greatly limit the clinical application of nucleic acid. Liposome nanoparticles can wrap nucleic acid drugs in internal cavities, increase the stability of nucleic acid and prolong blood circulation time, thus improving the transfection efficiency. This review focuses on the recent advances and potential applications of liposome nanoparticles modified with nucleic acid drugs (DNA, RNA, and ASO) and different chemical molecules (peptides, polymers, dendrimers, fluorescent molecules, magnetic nanoparticles, and receptor targeting molecules). The ability of liposome nanoparticles to deliver nucleic acid drugs is also discussed in detail. We hope that this review will help researchers design safer and more efficient liposome nanoparticles, and accelerate the application of nucleic acid drugs in gene therapy.
Collapse
Affiliation(s)
- Yongguang Gao
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China
| | - Xinhua Liu
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China
| | - Na Chen
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China
| | - Xiaochun Yang
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China
| | - Fang Tang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| |
Collapse
|
9
|
Manohar SK, Gowrav MP, Gangadharappa HV. Materials for Gene Delivery Systems. INTERACTION OF NANOMATERIALS WITH LIVING CELLS 2023:411-437. [DOI: 10.1007/978-981-99-2119-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Sun D, Lu ZR. Structure and Function of Cationic and Ionizable Lipids for Nucleic Acid Delivery. Pharm Res 2023; 40:27-46. [PMID: 36600047 PMCID: PMC9812548 DOI: 10.1007/s11095-022-03460-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023]
Abstract
Hereditary genetic diseases, cancer, and infectious diseases are affecting global health and become major health issues, but the treatment development remains challenging. Gene therapies using DNA plasmid, RNAi, miRNA, mRNA, and gene editing hold great promise. Lipid nanoparticle (LNP) delivery technology has been a revolutionary development, which has been granted for clinical applications, including mRNA vaccines against SARS-CoV-2 infections. Due to the success of LNP systems, understanding the structure, formulation, and function relationship of the lipid components in LNP systems is crucial for design more effective LNP. Here, we highlight the key considerations for developing an LNP system. The evolution of structure and function of lipids as well as their LNP formulation from the early-stage simple formulations to multi-components LNP and multifunctional ionizable lipids have been discussed. The flexibility and platform nature of LNP enable efficient intracellular delivery of a variety of therapeutic nucleic acids and provide many novel treatment options for the diseases that are previously untreatable.
Collapse
Affiliation(s)
- Da Sun
- Department of Biomedical Engineering, Case Western Reserve University, Wickenden 427, Mail Stop 7207, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, Wickenden 427, Mail Stop 7207, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
| |
Collapse
|
11
|
Hasanzadeh A, Hamblin MR, Kiani J, Noori H, Hardie JM, Karimi M, Shafiee H. Could artificial intelligence revolutionize the development of nanovectors for gene therapy and mRNA vaccines? NANO TODAY 2022; 47:101665. [PMID: 37034382 PMCID: PMC10081506 DOI: 10.1016/j.nantod.2022.101665] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Gene therapy enables the introduction of nucleic acids like DNA and RNA into host cells, and is expected to revolutionize the treatment of a wide range of diseases. This growth has been further accelerated by the discovery of CRISPR/Cas technology, which allows accurate genomic editing in a broad range of cells and organisms in vitro and in vivo. Despite many advances in gene delivery and the development of various viral and non-viral gene delivery vectors, the lack of highly efficient non-viral systems with low cellular toxicity remains a challenge. The application of cutting-edge technologies such as artificial intelligence (AI) has great potential to find new paradigms to solve this issue. Herein, we review AI and its major subfields including machine learning (ML), neural networks (NNs), expert systems, deep learning (DL), computer vision and robotics. We discuss the potential of AI-based models and algorithms in the design of targeted gene delivery vehicles capable of crossing extracellular and intracellular barriers by viral mimicry strategies. We finally discuss the role of AI in improving the function of CRISPR/Cas systems, developing novel nanobots, and mRNA vaccine carriers.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Noori
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Joseph M. Hardie
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02139 USA
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran 141556559, Iran
- Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran 1584743311, Iran
| | - Hadi Shafiee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02139 USA
| |
Collapse
|
12
|
Robertson JS, Loizides U, Adisa A, López de la Rica Manjavacas A, Rodilla V, Strnadova C, Weisser K, Balocco R. International Nonproprietary Names (INN) for novel vaccine substances: A matter of safety. Vaccine 2022; 40:21-27. [PMID: 34844820 PMCID: PMC8625196 DOI: 10.1016/j.vaccine.2021.11.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/28/2022]
Abstract
What is an International Nonproprietary Name (INN)? What type of vaccine can be assigned an INN? What is the value of having an INN for vaccines?
International Nonproprietary Names (INN) are assigned by the World Health Organization (WHO) to pharmaceutical substances to ensure global recognition by a unique name. INN facilitate safe prescribing through naming consistency, efficient communication and exchange of information, transnational access and pharmacovigilance of medicinal products. Traditional vaccines such as inactivated or live-attenuated vaccines have not been assigned INN and provision of a general name falls within the scope of the WHO Expert Committee on Biological Standardization (ECBS). However, novel vaccines that contain well-defined active ingredients such as nucleic acids or recombinant proteins fulfil the criteria to be assigned INN. In the current environment where multiple SARS-CoV-2 vaccines are being developed to combat the COVID-19 pandemic and with virus variants emerging, assigning INN to well-defined vaccine substances will strengthen pharmacovigilance and ultimately enhance the safety of vaccine recipients. This article examines the background to INN for vaccines and explains the applicability and value of assigning INN to novel well-defined vaccines.
Collapse
Affiliation(s)
| | - Ursula Loizides
- INN Programme and Classification of Medical Products, INN/HPS/MHP, World Health Organization, 1211 Geneva, Switzerland
| | - Akinola Adisa
- Therapeutic Goods Administration, Department of Health, Woden ACT 2606, Australia
| | | | - Vicente Rodilla
- Universidad CEU Cardenal Herrera, Alfara del Patriarca, 46113 Valencia, Spain
| | - Colette Strnadova
- Health Canada, Health Products and Food Branch, Ottawa, Ontario K1A 0K9, Canada
| | - Karin Weisser
- Division Safety of Medicinal Products and Medical Devices, Paul-Ehrlich-Institut (Federal Institute for Vaccines and Biomedicines), Paul-Ehrlich-Strasse 7, 63225 Langen, Germany
| | - Raffaella Balocco
- INN Programme and Classification of Medical Products, INN/HPS/MHP, World Health Organization, 1211 Geneva, Switzerland.
| |
Collapse
|
13
|
OUP accepted manuscript. Med Mycol 2022; 60:6576775. [DOI: 10.1093/mmy/myac030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/11/2022] [Accepted: 04/29/2022] [Indexed: 11/14/2022] Open
|
14
|
Ashraf S, Munawar N, Zahoor MK, Jamil A, Hammad M, Ghaffar A, Ahmad A. Delivery Methods for CRISPR/Cas Reagents. THE CRISPR/CAS TOOL KIT FOR GENOME EDITING 2022:113-148. [DOI: 10.1007/978-981-16-6305-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
15
|
Oncolytic viruses: A novel treatment strategy for breast cancer. Genes Dis 2021; 10:430-446. [DOI: 10.1016/j.gendis.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/27/2021] [Accepted: 11/19/2021] [Indexed: 11/21/2022] Open
|
16
|
Ivanova E, Corona C, Eleftheriou CG, Stout RF, Körbelin J, Sagdullaev BT. AAV-BR1 targets endothelial cells in the retina to reveal their morphological diversity and to deliver Cx43. J Comp Neurol 2021; 530:1302-1317. [PMID: 34811744 DOI: 10.1002/cne.25277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022]
Abstract
Endothelial cells (ECs) are key players in the development and maintenance of the vascular tree, the establishment of the blood-brain barrier and control of blood flow. Disruption in ECs is an early and active component of vascular pathogenesis. However, our ability to selectively target ECs in the CNS for identification and manipulation is limited. Here, in the mouse retina, a tractable model of the CNS, we utilized a recently developed AAV-BR1 system to identify distinct classes of ECs along the vascular tree using a GFP reporter. We then developed an inducible EC-specific ectopic Connexin 43 (Cx43) expression system using AAV-BR1-CAG-DIO-Cx43-P2A-DsRed2 in combination with a mouse line carrying inducible CreERT2 in ECs. We targeted Cx43 because its loss has been implicated in microvascular impairment in numerous diseases such as diabetic retinopathy and vascular edema. GFP-labeled ECs were numerous, evenly distributed along the vascular tree and their morphology was polarized with respect to the direction of blood flow. After tamoxifen induction, ectopic Cx43 was specifically expressed in ECs. Similarly to endogenous Cx43, ectopic Cx43 was localized at the membrane contacts of ECs and it did not affect tight junction proteins. The ability to enhance gap junctions in ECs provides a precise and potentially powerful tool to treat microcirculation deficits, an early pathology in numerous diseases.
Collapse
Affiliation(s)
- Elena Ivanova
- Burke Neurological Institute, White Plains, New York, USA.,Brain and Mind Research Institute, Weill Cornell Medicine, White Plains, New York, USA
| | - Carlo Corona
- Burke Neurological Institute, White Plains, New York, USA
| | | | - Randy F Stout
- Department of Biomedical Sciences, The New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Jakob Körbelin
- Department of Oncology, Hematology, and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, USA
| | - Botir T Sagdullaev
- Burke Neurological Institute, White Plains, New York, USA.,Brain and Mind Research Institute, Weill Cornell Medicine, White Plains, New York, USA.,Department of Ophthalmology, Weill Cornell Medicine, White Plains, New York, USA
| |
Collapse
|
17
|
Gupta A, Andresen JL, Manan RS, Langer R. Nucleic acid delivery for therapeutic applications. Adv Drug Deliv Rev 2021; 178:113834. [PMID: 34492233 DOI: 10.1016/j.addr.2021.113834] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
Recent medical advances have exploited the ability to address a given disease at the underlying level of transcription and translation. These treatment paradigms utilize nucleic acids - including short interfering RNA (siRNA), microRNA (miRNA), antisense oligonucleotides (ASO), and messenger RNA (mRNA) - to achieve a desired outcome ranging from gene knockdown to induced expression of a selected target protein. Towards this end, numerous strategies for encapsulation or stabilization of various nucleic acid structures have been developed in order to achieve intracellular delivery. In this review, we discuss several therapeutic applications of nucleic acids directed towards specific diseases and tissues of interest, in particular highlighting recent technologies which have reached late-stage clinical trials and received FDA approval.
Collapse
Affiliation(s)
- Akash Gupta
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Jason L Andresen
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rajith S Manan
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
18
|
Shtykalova SV, Egorova AA, Maretina MA, Freund SA, Baranov VS, Kiselev AV. Molecular Genetic Basis and Prospects of Gene Therapy of Uterine Leiomyoma. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421090118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Gene Therapy: Targeting Cardiomyocyte Proliferation to Repopulate the Ischemic Heart. J Cardiovasc Pharmacol 2021; 78:346-360. [PMID: 34516452 DOI: 10.1097/fjc.0000000000001072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/16/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Adult mammalian cardiomyocytes show scarce division ability, which makes the heart ineffective in replacing lost contractile cells after ischemic cardiomyopathy. In the past decades, there have been increasing efforts in the search for novel strategies to regenerate the injured myocardium. Among them, gene therapy is one of the most promising ones, based on recent and emerging studies that support the fact that functional cardiomyocyte regeneration can be accomplished by the stimulation and enhancement of the endogenous ability of these cells to achieve cell division. This capacity can be targeted by stimulating several molecules, such as cell cycle regulators, noncoding RNAs, transcription, and metabolic factors. Therefore, the proposed target, together with the selection of the vector used, administration route, and the experimental animal model used in the development of the therapy would determine the success in the clinical field.
Collapse
|
20
|
Huang Y, Wang L, Chen Y, Han H, Li Q. Lipoic Acid-Modified Oligoethyleneimine-Mediated miR-34a Delivery to Achieve the Anti-Tumor Efficacy. Molecules 2021; 26:molecules26164827. [PMID: 34443415 PMCID: PMC8400101 DOI: 10.3390/molecules26164827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022] Open
Abstract
MiR-34a, an important tumor suppressor, has been demonstrated to possess great potential in tumor gene therapy. To achieve the upregulation of miR-34a expression level, an oligoethyleneimine (OEI) derivative was constructed and employed as the carrier through the modification with lipoic acid (LA), namely LA-OEI. In contrast to OEI, the derivative LA-OEI exhibited superior transfection efficiency measured by confocal laser scanning microscopy and flow cytometry, owing to rapid cargo release in the disulfide bond-based reduction sensitive pattern. The anti-proliferation and anti-migration effects were tested after the miR-34a transfection to evaluate the anti-tumor response, using human cervical carcinoma cell line HeLa as a model. The delivery of LA-OEI/miR-34a nanoparticles could achieve obvious anti-proliferative effect caused by the induction of cell apoptosis and cell cycle arrest at G1 phase. In addition, it could inhibit the migration of tumor cells via the downregulation of MMP-9 and Notch-1 level. Overall, the LA-OEI-mediated miR-34a delivery was potential to be used as an effective way in the tumor gene therapy.
Collapse
Affiliation(s)
| | | | | | - Haobo Han
- Correspondence: (H.H.); (Q.L.); Tel.: +86-431-85155201 (H.H.); +86-431-85155200 (Q.L.)
| | - Quanshun Li
- Correspondence: (H.H.); (Q.L.); Tel.: +86-431-85155201 (H.H.); +86-431-85155200 (Q.L.)
| |
Collapse
|
21
|
Oh N, Park S, Kim JW, Park JH. Photothermal Transfection for Effective Nonviral Genome Editing. ACS APPLIED BIO MATERIALS 2021; 4:5678-5685. [PMID: 35006736 DOI: 10.1021/acsabm.1c00465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The efficient nonviral delivery of nucleic acids into the cytoplasm is needed to fully realize the potential of gene therapy. Although cationic lipids and nanoparticles have been widely used to improve the intracellular delivery of nucleic acids, they suffer from cytotoxicity and poor endosomal escape, thus limiting the transfection efficacy. Here, we developed a photothermal transfection platform for efficient and biosafe intracellular delivery of nucleic acids. Photothermal transfection was carried out by irradiation of cells co-treated with Lipofectamine-plasmid DNA complexes and PEGylated gold nanorods (GNRs) using an NIR laser for 30 min and subsequent incubation of the cells for 30 min without laser irradiation. Compared to conventional Lipofectamine-based transfection, our photothermal transfection platform significantly improved the transfection efficiency in difficult-to-transfect human primary cells including human dermal fibroblasts while maintaining the cell viability. The photothermal heating did not leave the GNRs inside the cell, thereby minimizing the cellular damage. Furthermore, the photothermal transfection platform showed superior genome editing abilities (both gene cleavage and insertion) in human dermal fibroblasts than conventional Lipofectamine-based transfection.
Collapse
Affiliation(s)
- Nuri Oh
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sooyeon Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jin Woo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ji-Ho Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.,KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
22
|
Adhikari A, Copping NA, Beegle J, Cameron DL, Deng P, O'Geen H, Segal DJ, Fink KD, Silverman JL, Anderson JS. Functional rescue in an Angelman syndrome model following treatment with lentivector transduced hematopoietic stem cells. Hum Mol Genet 2021; 30:1067-1083. [PMID: 33856035 PMCID: PMC8188406 DOI: 10.1093/hmg/ddab104] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
Angelman syndrome (AS) is a rare neurodevelopmental disorder characterized by impaired communication skills, ataxia, motor and balance deficits, intellectual disabilities, and seizures. The genetic cause of AS is the neuronal loss of UBE3A expression in the brain. A novel approach, described here, is a stem cell gene therapy which uses lentivector-transduced hematopoietic stem and progenitor cells to deliver functional UBE3A to affected cells. We have demonstrated both the prevention and reversal of AS phenotypes upon transplantation and engraftment of human CD34+ cells transduced with a Ube3a lentivector in a novel immunodeficient Ube3amat−/pat+ IL2rg−/y mouse model of AS. A significant improvement in motor and cognitive behavioral assays as well as normalized delta power measured by electroencephalogram was observed in neonates and adults transplanted with the gene modified cells. Human hematopoietic profiles observed in the lymphoid organs by detection of human immune cells were normal. Expression of UBE3A was detected in the brains of the adult treatment group following immunohistochemical staining illustrating engraftment of the gene-modified cells expressing UBE3A in the brain. As demonstrated with our data, this stem cell gene therapy approach offers a promising treatment strategy for AS, not requiring a critical treatment window.
Collapse
Affiliation(s)
- Anna Adhikari
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Nycole A Copping
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Julie Beegle
- Stem Cell Program, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - David L Cameron
- Stem Cell Program, Department of Neurology, Institute for Regenerative Cures, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Peter Deng
- Stem Cell Program, Department of Neurology, Institute for Regenerative Cures, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Henriette O'Geen
- Department of Biochemistry and Medical Microbiology, UC Davis Genome Center, University of California Davis School of Medicine, Davis, CA 95616, USA
| | - David J Segal
- Department of Biochemistry and Medical Microbiology, UC Davis Genome Center, University of California Davis School of Medicine, Davis, CA 95616, USA
| | - Kyle D Fink
- Stem Cell Program, Department of Neurology, Institute for Regenerative Cures, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Jill L Silverman
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Joseph S Anderson
- Stem Cell Program, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| |
Collapse
|
23
|
Haladjova E, Dimitrov I, Davydova N, Todorova J, Ugrinova I, Forys A, Trzebicka B, Rangelov S. Cationic (Co)polymers Based on N-Substituted Polyacrylamides as Carriers of Bio-macromolecules: Polyplexes, Micelleplexes, and Spherical Nucleic Acidlike Structures. Biomacromolecules 2020; 22:971-983. [PMID: 33371665 DOI: 10.1021/acs.biomac.0c01666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Novel N-substituted polyacrylamides bearing a cycle with two tertiary amines, poly(4-methyl-piperazin-1-yl)-propenone (PMPP) and its block copolymers with polylactide (PMPP-b-PLA), are synthesized and characterized. The homopolymers are water-soluble, whereas the block copolymers self-assemble in aqueous solution into a small size (Rh around 30 nm), are narrowly distributed, and exhibit core-shell micelles with good colloidal stability. Both the homopolymers and copolymer micelles are positively charged (ζ-potentials in the 13.8-17.6 mV range), which are employed for formation of electrostatic complexes with oppositely charged DNA. Complexes (polyplexes, micelleplexes, and spherical nucleic acidlike structures) in a wide range of N/P (amino to phosphate groups) ratios are prepared with short (115 bp) and long (2000 bp) DNA. The behavior and physicochemical properties of the resulting nanocarriers of DNA are strongly dependent on the polymer/polymer micelles' characteristics and the DNA chain length. All systems exhibit low cytotoxicity and good cellular uptake ability and show promise for gene delivery and regulation.
Collapse
Affiliation(s)
- Emi Haladjova
- Institute of Polymers, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Ivaylo Dimitrov
- Institute of Polymers, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Nadejda Davydova
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow 119991, Russia
| | - Jordana Todorova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Iva Ugrinova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Aleksander Forys
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Marie Curie-Sklodowskiej 34, Zabrze 41-819, Poland
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Marie Curie-Sklodowskiej 34, Zabrze 41-819, Poland
| | - Stanislav Rangelov
- Institute of Polymers, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| |
Collapse
|
24
|
Yang L, Gao H, Wu K, Zhang H, Li C, Tang L. Identification of Cancerlectins By Using Cascade Linear Discriminant Analysis and Optimal g-gap Tripeptide Composition. Curr Bioinform 2020. [DOI: 10.2174/1574893614666190730103156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background:
Lectins are a diverse group of glycoproteins or glycoconjugate proteins
that can be extracted from plants, invertebrates and higher animals. Cancerlectins, a kind of lectins,
which play a key role in the process of tumor cells interacting with each other and are being employed
as therapeutic agents. A full understanding of cancerlectins is significant because it provides
a tool for the future direction of cancer therapy.
Objective:
To develop an accurate and practically useful timesaving tool to identify cancerlectins.
A novel sequence-based method is proposed along with a correlative webserver to access the proposed
tool.
Methods:
Firstly, protein features were extracted in a newly feature building way termed, g-gap
tripeptide composition. After which a proposed cascade linear discriminant analysis (Cascade
LDA) is used to alleviate the high dimensional difficulties with the Analysis Of Variance (ANOVA)
as a feature importance criterion. Finally, Support Vector Machine (SVM) is used as the classifier
to identify cancerlectins.
Results:
The proposed method achieved an accuracy of 91.34% with sensitivity of 89.89%, specificity
of 92.48% and an 0.8318 Mathew’s correlation coefficient based on only 13 fusion features
in jackknife cross validation, the result of which is superior to other published methods in this domain.
Conclusion:
In this study, a new method based only on primary structure of protein is proposed
and experimental results show that it could be a promising tool to identify cancerlectins. An openaccess
webserver is made available in this work to facilitate other related works.
Collapse
Affiliation(s)
- Liangwei Yang
- Center for Informational Biology, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Hui Gao
- Center for Informational Biology, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Keyu Wu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Haotian Zhang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Changyu Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Lixia Tang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
25
|
Hu LZ, Wang W, Xu JL, Jia YY, Huan ML, Li C, Zhou SY, Zhang BL. Polyethylenimine-based nanovector grafted with mannitol moieties to achieve effective gene delivery and transfection. NANOTECHNOLOGY 2020; 31:325101. [PMID: 32325436 DOI: 10.1088/1361-6528/ab8c76] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polyethylenimine (PEI), a kind of cationic non-viral gene delivery vector, is capable of stable and efficient transgene expression for gene delivery. However, low transfection efficiency in vivo along with high toxicity limited the further application of gene therapy in the clinic. To enhance gene transfection performance and reduce cytotoxicity of polyethylenimine, branched polyethylenimine-derived cationic polymers BPEI25 k-man-S/L/M/H with different grafting degree with mannitol moieties were prepared and the transfection efficiency was evaluated. Among them, BPEI25 k-man-L showed the best transfection efficiency, lower toxicity, and significantly enhanced long-term systemic transgene expression for 96 h in vivo even at a single-dose administration. The results of cellular uptake mechanism and western-blot experiments revealed that the mannitol modification of BPEI25 k induced and up-regulated the phosphorylation of caveolin-1 and thus enhanced the caveolae-mediated cellular uptake. This class of gene delivery system highlights a paradigmatic approach for the development of novel and safe non-viral vectors for gene therapy.
Collapse
Affiliation(s)
- Li-Zhong Hu
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, People's Republic of China. Department of Pharmacy, Luoyang Polytechnic, Luoyang 471000, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ma LL, Liu MX, Liu XY, Sun W, Lu ZL, Gao YG, He L. Macrocyclic polyamine [12]aneN3 modified triphenylamine-pyrazine derivatives as efficient non-viral gene vectors with AIE and two-photon imaging properties. J Mater Chem B 2020; 8:3869-3879. [DOI: 10.1039/d0tb00321b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
[12]aneN3 modified triphenylamine-pyrazines as non-viral gene vectors with AIE and two-photon imaging properties.
Collapse
Affiliation(s)
- Le-Le Ma
- Key Laboratory of Radiopharmaceutics
- Ministry of Educatio
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Ming-Xuan Liu
- Key Laboratory of Radiopharmaceutics
- Ministry of Educatio
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Xu-Ying Liu
- Key Laboratory of Radiopharmaceutics
- Ministry of Educatio
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Wan Sun
- Key Laboratory of Radiopharmaceutics
- Ministry of Educatio
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Zhong-Lin Lu
- Key Laboratory of Radiopharmaceutics
- Ministry of Educatio
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Yong-Guang Gao
- Lab for Bone Metabolism
- Key Lab for Space Biosciences and Biotechnology
- School of Life Sciences
- Northwestern Polytechnical University
- Xi'an
| | - Lan He
- China National Institute for Food and Drug Control
- Institute of Chemical Drug Control
- Beijing
- China
| |
Collapse
|
27
|
Advances in Sphingolipidoses: CRISPR-Cas9 Editing as an Option for Modelling and Therapy. Int J Mol Sci 2019; 20:ijms20235897. [PMID: 31771289 PMCID: PMC6928934 DOI: 10.3390/ijms20235897] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 01/04/2023] Open
Abstract
Sphingolipidoses are inherited genetic diseases characterized by the accumulation of glycosphingolipids. Sphingolipidoses (SP), which usually involve the loss of sphingolipid hydrolase function, are of lysosomal origin, and represent an important group of rare diseases among lysosomal storage disorders. Initial treatments consisted of enzyme replacement therapy, but, in recent decades, various therapeutic approaches have been developed. However, these commonly used treatments for SP fail to be fully effective and do not penetrate the blood-brain barrier. New approaches, such as genome editing, have great potential for both the treatment and study of sphingolipidoses. Here, we review the most recent advances in the treatment and modelling of SP through the application of CRISPR-Cas9 genome editing. CRISPR-Cas9 is currently the most widely used method for genome editing. This technique is versatile; it can be used for altering the regulation of genes involved in sphingolipid degradation and synthesis pathways, interrogating gene function, generating knock out models, or knocking in mutations. CRISPR-Cas9 genome editing is being used as an approach to disease treatment, but more frequently it is utilized to create models of disease. New CRISPR-Cas9-based tools of gene editing with diminished off-targeting effects are evolving and seem to be more promising for the correction of individual mutations. Emerging Prime results and CRISPR-Cas9 difficulties are also discussed.
Collapse
|
28
|
Asahi W, Kurihara R, Takeyama K, Umehara Y, Kimura Y, Kondo T, Tanabe K. Aggregate Formation of BODIPY-Tethered Oligonucleotides That Led to Efficient Intracellular Penetration and Gene Regulation. ACS APPLIED BIO MATERIALS 2019; 2:4456-4463. [DOI: 10.1021/acsabm.9b00631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Wataru Asahi
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Ryohsuke Kurihara
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Kotaro Takeyama
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Yui Umehara
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yu Kimura
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Teruyuki Kondo
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuhito Tanabe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| |
Collapse
|
29
|
Kizer ME, Linhardt RJ, Chandrasekaran AR, Wang X. A Molecular Hero Suit for In Vitro and In Vivo DNA Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805386. [PMID: 30985074 DOI: 10.1002/smll.201805386] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/10/2019] [Indexed: 06/09/2023]
Abstract
Precise control of DNA base pairing has rapidly developed into a field full of diverse nanoscale structures and devices that are capable of automation, performing molecular analyses, mimicking enzymatic cascades, biosensing, and delivering drugs. This DNA-based platform has shown the potential of offering novel therapeutics and biomolecular analysis but will ultimately require clever modification to enrich or achieve the needed "properties" and make it whole. These modifications total what are categorized as the molecular hero suit of DNA nanotechnology. Like a hero, DNA nanostructures have the ability to put on a suit equipped with honing mechanisms, molecular flares, encapsulated cargoes, a protective body armor, and an evasive stealth mode.
Collapse
Affiliation(s)
- Megan E Kizer
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | | | - Xing Wang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| |
Collapse
|
30
|
Sung YK, Kim SW. Recent advances in the development of gene delivery systems. Biomater Res 2019; 23:8. [PMID: 30915230 PMCID: PMC6417261 DOI: 10.1186/s40824-019-0156-z] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 02/20/2019] [Indexed: 12/23/2022] Open
Abstract
Background Gene delivery systems are essentially necessary for the gene therapy of human genetic diseases. Gene therapy is the unique way that is able to use the adjustable gene to cure any disease. The gene therapy is one of promising therapies for a number of diseases such as inherited disorders, viral infection and cancers. The useful results of gene delivery systems depend open the adjustable targeting gene delivery systems. Some of successful gene delivery systems have recently reported for the practical application of gene therapy. Main body The recent developments of viral gene delivery systems and non-viral gene delivery systems for gene therapy have briefly reviewed. The viral gene delivery systems have discussed for the viral vectors based on DNA, RNA and oncolytic viral vectors. The non-viral gene delivery systems have also treated for the physicochemical approaches such as physical methods and chemical methods. Several kinds of successful gene delivery systems have briefly discussed on the bases of the gene delivery systems such as cationic polymers, poly(L-lysine), polysaccharides, and poly(ethylenimine)s. Conclusion The goal of the research for gene delivery system is to develop the clinically relevant vectors such as viral and non-viral vectors that use to combat elusive diseases such as AIDS, cancer, Alzheimer, etc. Next step research will focus on advancing DNA and RNA molecular technologies to become the standard treatment options in the clinical area of biomedical application.
Collapse
Affiliation(s)
- Y K Sung
- 1Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112 USA.,2Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112 USA.,3Department of Chemistry, Dongguk University, Chung-gu, Seoul 04620 Korea.,4Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, BPRB, Room 205, Salt Lake City, UT 84112 USA
| | - S W Kim
- 1Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112 USA.,2Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112 USA
| |
Collapse
|
31
|
Suppression of miRNA let-7i-5p promotes cardiomyocyte proliferation and repairs heart function post injury by targetting CCND2 and E2F2. Clin Sci (Lond) 2019; 133:425-441. [PMID: 30679264 DOI: 10.1042/cs20181002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/13/2019] [Accepted: 01/23/2019] [Indexed: 12/14/2022]
Abstract
MiRNAs regulate the cardiomyocyte (CM) cell cycle at the post-transcriptional level, affect cell proliferation, and intervene in harmed CM repair post-injury. The present study was undertaken to characterize the role of let-7i-5p in the processes of CM cell cycle and proliferation and to reveal the mechanisms thereof. In the present study, we used real-time qPCR (RT-qPCR) to determine the up-regulated let-7i-5p in CMs during the postnatal switch from proliferation to terminal differentiation and further validated the role of let-7i-5p by loss- and gain-of-function of let-7i-5p in CMs in vitro and in vivo We found that the overexpression of let-7i-5p inhibited CM proliferation, whereas the suppression of let-7i-5p significantly facilitated CM proliferation. E2F2 and CCND2 were identified as the targets of let-7i-5p, mediating its effect in regulating the cell cycle of CMs. Supperession of let-7i-5p promoted the recovery of heart function post-myocardial infarction by enhancing E2F2 and CCND2. Collectively, our results revealed that let-7i-5p is involved in the regulation of the CM cell cycle and further impacts proliferation, which may offer a new potential therapeutic strategy for cardiac repair after ischemic injury.
Collapse
|
32
|
Alhaji SY, Ngai SC, Abdullah S. Silencing of transgene expression in mammalian cells by DNA methylation and histone modifications in gene therapy perspective. Biotechnol Genet Eng Rev 2018; 35:1-25. [PMID: 30514178 DOI: 10.1080/02648725.2018.1551594] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA methylation and histone modifications are vital in maintaining genomic stability and modulating cellular functions in mammalian cells. These two epigenetic modifications are the most common gene regulatory systems known to spatially control gene expression. Transgene silencing by these two mechanisms is a major challenge to achieving effective gene therapy for many genetic conditions. The implications of transgene silencing caused by epigenetic modifications have been extensively studied and reported in numerous gene delivery studies. This review highlights instances of transgene silencing by DNA methylation and histone modification with specific focus on the role of these two epigenetic effects on the repression of transgene expression in mammalian cells from integrative and non-integrative based gene delivery systems in the context of gene therapy. It also discusses the prospects of achieving an effective and sustained transgene expression for future gene therapy applications.
Collapse
Affiliation(s)
- Suleiman Yusuf Alhaji
- a Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Universiti Putra Malaysia, UPM , Serdang , Malaysia.,b Department of Human Anatomy , College of Medical Sciences, Abubakar Tafawa Balewa University Bauchi, ATBU , Bauchi , Nigeria
| | - Siew Ching Ngai
- c School of Biosciences, Faculty of Science , University of Nottingham Malaysia , Semenyih , Malaysia
| | - Syahril Abdullah
- a Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Universiti Putra Malaysia, UPM , Serdang , Malaysia.,d UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience , Universiti Putra Malaysia, UPM , Serdang , Malaysia
| |
Collapse
|
33
|
Raun A, Saklayen N, Zgrabik C, Shen W, Madrid M, Huber M, Hu E, Mazur E. A comparison of inverted and upright laser-activated titanium nitride micropyramids for intracellular delivery. Sci Rep 2018; 8:15595. [PMID: 30349063 PMCID: PMC6197185 DOI: 10.1038/s41598-018-33885-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 09/26/2018] [Indexed: 12/15/2022] Open
Abstract
The delivery of biomolecules into cells relies on porating the plasma membrane to allow exterior molecules to enter the cell via diffusion. Various established delivery methods, including electroporation and viral techniques, come with drawbacks such as low viability or immunotoxicity, respectively. An optics-based delivery method that uses laser pulses to excite plasmonic titanium nitride (TiN) micropyramids presents an opportunity to overcome these shortcomings. This laser excitation generates localized nano-scale heating effects and bubbles, which produce transient pores in the cell membrane for payload entry. TiN is a promising plasmonic material due to its high hardness and thermal stability. In this study, two designs of TiN micropyramid arrays are constructed and tested. These designs include inverted and upright pyramid structures, each coated with a 50-nm layer of TiN. Simulation software shows that the inverted and upright designs reach temperatures of 875 °C and 307 °C, respectively, upon laser irradiation. Collectively, experimental results show that these reusable designs achieve maximum cell poration efficiency greater than 80% and viability greater than 90% when delivering calcein dye to target cells. Overall, we demonstrate that TiN microstructures are strong candidates for future use in biomedical devices for intracellular delivery and regenerative medicine.
Collapse
Affiliation(s)
- Alexander Raun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| | - Nabiha Saklayen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Christine Zgrabik
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA
| | - Weilu Shen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Marinna Madrid
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Marinus Huber
- Department of Physics, Ludwig Maximilian University of Munich, 80539, Munich, Germany
| | - Evelyn Hu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Eric Mazur
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
34
|
Shapira S, Shapira A, Kazanov D, Hevroni G, Kraus S, Arber N. Selective eradication of cancer cells by delivery of adenovirus-based toxins. Oncotarget 2018; 8:38581-38591. [PMID: 28445136 PMCID: PMC5503555 DOI: 10.18632/oncotarget.16934] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 03/13/2017] [Indexed: 01/17/2023] Open
Abstract
Background and objective KRAS mutation is an early event in colorectal cancer carcinogenesis. We previously reported that a recombinant adenovirus, carrying a pro-apoptotic gene (PUMA) under the regulation of Ets/AP1 (RAS-responsive elements) suppressed the growth of cancer cells harboring hyperactive KRAS. We propose to exploit the hyperactive RAS pathway, rather than to inhibit it as was previously tried and failed repeatedly. We aim to improve efficacy by substituting PUMA with a more potent toxin, the bacterial MazF-MazE toxin-antitoxin system, under a very tight regulation. Results A massive cell death, in a dose-dependent manner, reaching 73% at MOI 10 was seen in KRAS cells as compared to 22% in WT cells. Increase expression of MazE (the anti-toxin) protected normal cells from any possible internal or external leakage of the system and confirmed the selectivity, specificity and safety of the targeting system. Considerable tumor shrinkage (61%) was demonstrated in vivo following MazEF-encoding adenovirus treatment without any side effects. Design Efficient vectors for cancer-directed gene delivery were constructed; “pAdEasy-Py4-SV40mP-mCherry-MazF”“pAdEasy-Py4-SV40mP-mCherry-MazF-IRES-TetR-CMVmp-MazE-IRES-EGFP“,“pAdEasy-ΔPy4-SV40mP-mCherry-MazF-IRES-TetR-CMVmp-MazE-IRES-EGFP “and “pAdEasy-mCherry”. Virus particles were produced and their potency was tested. Cell death was measured qualitatively by using the fluorescent microscopy and colony formation assay, and was quantified by MTT. FACS analysis using annexin V and RedDot2 dyes was performed for measuring apoptotic and dead cells, respectively. In vivo tumor formation was measured in a xenograft model. Conclusions A proof of concept for a novel cancer safe and effective gene therapy exploiting an aberrant hyperactive pathway is achievable.
Collapse
Affiliation(s)
- Shiran Shapira
- Laboratory of Molecular Biology, The Integrated Cancer Prevention Center, Tel Aviv Sourasky Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Assaf Shapira
- Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
| | - Diana Kazanov
- Laboratory of Molecular Biology, The Integrated Cancer Prevention Center, Tel Aviv Sourasky Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Gil Hevroni
- Laboratory of Molecular Biology, The Integrated Cancer Prevention Center, Tel Aviv Sourasky Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Sarah Kraus
- Laboratory of Molecular Biology, The Integrated Cancer Prevention Center, Tel Aviv Sourasky Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Nadir Arber
- Laboratory of Molecular Biology, The Integrated Cancer Prevention Center, Tel Aviv Sourasky Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
35
|
Zhang C, Peng Y, Hublitz P, Zhang H, Dong T. Genetic abrogation of immune checkpoints in antigen-specific cytotoxic T-lymphocyte as a potential alternative to blockade immunotherapy. Sci Rep 2018; 8:5549. [PMID: 29615718 PMCID: PMC5882910 DOI: 10.1038/s41598-018-23803-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/20/2018] [Indexed: 12/31/2022] Open
Abstract
T cell function can be compromised during chronic infections or through continuous exposure to tumor antigens by the action of immune checkpoint receptors, such as programmed cell death protein 1 (PD-1). Systemic administration of blocking antibodies against the PD-1 pathway can restore T cell function, and has been approved for the treatment of several malignancies, although there is a risk of adverse immune-related side-effects. We have developed a method for generating gene knockouts in human antigen (Ag)-specific cytotoxic T-Lymphocyte (CTLs) using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) genome editing. Using this method, we generated several transduced CD4+ or CD8+ antigen-specific polyclonal CTL lines and clones, and validated gene modifications of the PD-1 gene. We compared these T-cell lines and clones with control groups in the presence of programmed death-ligand 1 (PD-L1) and observed improved effector functions in the PD1-disrupted cell group. Overall, we have developed a versatile tool for functional genomics in human antigen-specific CTL studies. Furthermore, we provide an alternative strategy for current cell-based immunotherapy that will minimize the side effects caused by antibody blockade therapy.
Collapse
Affiliation(s)
- Chi Zhang
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - Yanchun Peng
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, OX3 9DS, UK.,Center for Translational Immunology, Chinese Academy of Medical Science Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7BN, UK
| | - Philip Hublitz
- Genome Engineering Department, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - Haokang Zhang
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - Tao Dong
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, OX3 9DS, UK. .,Center for Translational Immunology, Chinese Academy of Medical Science Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7BN, UK.
| |
Collapse
|
36
|
Kennedy A, Cribbs AP. Production and Concentration of Lentivirus for Transduction of Primary Human T Cells. Methods Mol Biol 2018; 1448:85-93. [PMID: 27317175 DOI: 10.1007/978-1-4939-3753-0_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Lentiviral vectors have emerged as efficient tools for investigating T cell biology through their ability to efficiently deliver transgene expression into both dividing and nondividing cells. Such lentiviral vectors have the potential to infect a wide variety of cell types. However, despite this advantage, the ability to transduce primary human T cells remains challenging and methods to achieve efficient gene transfer are often time consuming and expensive. We describe a method for generating lentivirus that is simple to perform and does not require the purchase of non-standard equipment to transduce primary human T cells. Therefore, we provide an optimized protocol that is easy to implement and allow transduction with high efficiency and reproducibility.
Collapse
Affiliation(s)
- Alan Kennedy
- Institute of Immunity and Transplantation, University College London Division of Infection and Immunity, London, NW3 2PF, UK
| | - Adam P Cribbs
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK. .,Botnar Research Centre, Nuffield Orthopaedic Centre, Windmill Road, Oxford, OX3 7LD, UK. .,Department of Physiology, Anatomy and Genetics, MRC Functional Genomics Unit, Computational Genomics and Training Centre (CGAT), Parks Road, Oxford, OX1 3PR, UK.
| |
Collapse
|
37
|
Bamberger D, Hobernik D, Konhäuser M, Bros M, Wich PR. Surface Modification of Polysaccharide-Based Nanoparticles with PEG and Dextran and the Effects on Immune Cell Binding and Stimulatory Characteristics. Mol Pharm 2017; 14:4403-4416. [DOI: 10.1021/acs.molpharmaceut.7b00507] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Denise Bamberger
- Department
of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Staudingerweg
5, 55128 Mainz, Germany
| | - Dominika Hobernik
- Department
of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Obere Zahlbacher Straße 63, 55131 Mainz, Germany
| | - Matthias Konhäuser
- Department
of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Staudingerweg
5, 55128 Mainz, Germany
| | - Matthias Bros
- Department
of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Obere Zahlbacher Straße 63, 55131 Mainz, Germany
| | - Peter R. Wich
- Department
of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Staudingerweg
5, 55128 Mainz, Germany
| |
Collapse
|
38
|
Elston M, Urschitz J. Transposase-mediated gene modulation in the placenta. Placenta 2017; 59 Suppl 1:S32-S36. [PMID: 28778732 PMCID: PMC5682209 DOI: 10.1016/j.placenta.2017.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/12/2017] [Accepted: 07/27/2017] [Indexed: 11/27/2022]
Abstract
The placenta is an organ vital to fetal development as well as the maintenance of a healthy pregnancy and plays a crucial role in developmental programming of the fetus. The mechanisms that link intrauterine milieu, fetal health and disease development later in life are poorly understood. Placenta-specific gene modulation, both by generating transgenic animals as well as by developing methods for in vivo genetic modifications is a growing area of interest as this approach provides the opportunity to investigate the role of particular genes or gene networks in regulating placental function and fetal growth. Furthermore, in vivo placental gene transfer may be adapted to treat humans in the future and could be used as an early intervention strategy for a wide range of pregnancy complications. This review is an overview of transposase-based methods available for both transgenic animal generation and in vivo placental gene modifications with an emphasis on piggyBac-based systems.
Collapse
Affiliation(s)
- Marlee Elston
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, Honolulu, HI 96822, United States
| | - Johann Urschitz
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, Honolulu, HI 96822, United States.
| |
Collapse
|
39
|
Imam ZI, Kenyon LE, Ashby G, Nagib F, Mendicino M, Zhao C, Gadok AK, Stachowiak JC. Phase-Separated Liposomes Enhance the Efficiency of Macromolecular Delivery to the Cellular Cytoplasm. Cell Mol Bioeng 2017; 10:387-403. [PMID: 29104698 PMCID: PMC5665383 DOI: 10.1007/s12195-017-0489-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/11/2017] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION From viruses to organelles, fusion of biological membranes is used by diverse biological systems to deliver macromolecules across membrane barriers. Membrane fusion is also a potentially efficient mechanism for the delivery of macromolecular therapeutics to the cellular cytoplasm. However, a key shortcoming of existing fusogenic liposomal systems is that they are inefficient, requiring a high concentration of fusion-promoting lipids in order to cross cellular membrane barriers. OBJECTIVES Toward addressing this limitation, our experiments explore the extent to which membrane fusion can be amplified by using the process of lipid membrane phase separation to concentrate fusion-promoting lipids within distinct regions of the membrane surface. METHODS We used confocal fluorescence microscopy to investigate the integration of fusion-promoting lipids into a ternary lipid membrane system that separated into liquid-ordered and liquid-disordered membrane phases. Additionally, we quantified the impact of membrane phase separation on the efficiency with which liposomes transferred lipids and encapsulated macromolecules to cells, using a combination of confocal fluorescence imaging and flow cytometry. RESULTS Here we report that concentrating fusion-promoting lipids within phase-separated lipid domains on the surfaces of liposomes significantly increases the efficiency of liposome fusion with model membranes and cells. In particular, membrane phase separation enhanced the delivery of lipids and model macromolecules to the cytoplasm of tumor cells by at least 4-fold in comparison to homogenous liposomes. CONCLUSIONS Our findings demonstrate that phase separation can enhance membrane fusion by locally concentrating fusion-promoting lipids on the surface of liposomes. This work represents the first application of lipid membrane phase separation in the design of biomaterials-based delivery systems. Additionally, these results lay the ground work for developing fusogenic liposomes that are triggered by physical and molecular cues associated with target cells.
Collapse
Affiliation(s)
- Zachary I. Imam
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX USA
| | - Laura E. Kenyon
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX USA
| | - Grant Ashby
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX USA
| | - Fatema Nagib
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX USA
| | - Morgan Mendicino
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX USA
| | - Chi Zhao
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX USA
| | - Avinash K. Gadok
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX USA
| | - Jeanne C. Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX USA
| |
Collapse
|
40
|
Roh KH, Nerem RM, Roy K. Biomanufacturing of Therapeutic Cells: State of the Art, Current Challenges, and Future Perspectives. Annu Rev Chem Biomol Eng 2017; 7:455-78. [PMID: 27276552 DOI: 10.1146/annurev-chembioeng-080615-033559] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stem cells and other functionally defined therapeutic cells (e.g., T cells) are promising to bring hope of a permanent cure for diseases and disorders that currently cannot be cured by conventional drugs or biological molecules. This paradigm shift in modern medicine of using cells as novel therapeutics can be realized only if suitable manufacturing technologies for large-scale, cost-effective, reproducible production of high-quality cells can be developed. Here we review the state of the art in therapeutic cell manufacturing, including cell purification and isolation, activation and differentiation, genetic modification, expansion, packaging, and preservation. We identify current challenges and discuss opportunities to overcome them such that cell therapies become highly effective, safe, and predictively reproducible while at the same time becoming affordable and widely available.
Collapse
Affiliation(s)
- Kyung-Ho Roh
- The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory, Atlanta, Georgia 30332-0313; .,The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Robert M Nerem
- The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332.,The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Krishnendu Roy
- The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory, Atlanta, Georgia 30332-0313; .,The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| |
Collapse
|
41
|
Wang B, Chen P, Zhang J, Chen XC, Liu YH, Huang Z, Yu QY, Zhang JH, Zhang W, Wei X, Yu XQ. Self-assembled core–shell-corona multifunctional non-viral vector with AIE property for efficient hepatocyte-targeting gene delivery. Polym Chem 2017. [DOI: 10.1039/c7py01520h] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Core–shell-corona multifunctional nanoparticles were prepared and used for cell imaging and cell-targeting delivery of genes toward hepatocytes.
Collapse
|
42
|
Ni R, Zhou J, Hossain N, Chau Y. Virus-inspired nucleic acid delivery system: Linking virus and viral mimicry. Adv Drug Deliv Rev 2016; 106:3-26. [PMID: 27473931 DOI: 10.1016/j.addr.2016.07.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 07/02/2016] [Accepted: 07/20/2016] [Indexed: 12/21/2022]
Abstract
Targeted delivery of nucleic acids into disease sites of human body has been attempted for decades, but both viral and non-viral vectors are yet to meet our expectations. Safety concerns and low delivery efficiency are the main limitations of viral and non-viral vectors, respectively. The structure of viruses is both ordered and dynamic, and is believed to be the key for effective transfection. Detailed understanding of the physical properties of viruses, their interaction with cellular components, and responses towards cellular environments leading to transfection would inspire the development of safe and effective non-viral vectors. To this goal, this review systematically summarizes distinctive features of viruses that are implied for efficient nucleic acid delivery but not yet fully explored in current non-viral vectors. The assembly and disassembly of viral structures, presentation of viral ligands, and the subcellular targeting of viruses are emphasized. Moreover, we describe the current development of cationic material-based viral mimicry (CVM) and structural viral mimicry (SVM) in these aspects. In light of the discrepancy, we identify future opportunities for rational design of viral mimics for the efficient delivery of DNA and RNA.
Collapse
Affiliation(s)
- Rong Ni
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Junli Zhou
- Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Naushad Hossain
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ying Chau
- Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
43
|
Patel BJ, Vignesh NK, Hortelano G. Chitosan DNA nanoparticles for oral gene delivery. World J Med Genet 2016; 6:22-33. [DOI: 10.5496/wjmg.v6.i3.22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 08/08/2016] [Indexed: 02/06/2023] Open
Abstract
Gene therapy is a promising technology with potential applications in the treatment of medical conditions, both congenital and acquired. Despite its label as breakthrough technology for the 21st century, the simple concept of gene therapy - the introduction of a functional copy of desired genes in affected individuals - is proving to be more challenging than expected. Oral gene delivery has shown intriguing results and warrants further exploration. In particular, oral administration of chitosan DNA nanoparticles, one the most commonly used formulations of therapeutic DNA, has repeatedly demonstrated successful in vitro and in vivo gene transfection. While oral gene therapy has shown immense promise as treatment options in a variety of diseases, there are still significant barriers to overcome before it can be considered for clinical applications. In this review we provide an overview of the physiologic challenges facing the use of chitosan DNA nanoparticles for oral gene delivery at both the extracellular and intracellular level. From administration at the oral cavity, chitosan nanoparticles must traverse the gastrointestinal tract and protect its DNA contents from significant jumps in pH levels, various intestinal digestive enzymes, thick mucus layers with high turnover, and a proteinaceous glycocalyx meshwork. Once these extracellular barriers are overcome, chitosan DNA nanoparticles must enter intestinal cells, escape endolysosomes, and disassociate from genetic material at the appropriate time allowing transport of genetic material into the nucleus to deliver a therapeutic effect. The properties of chitosan nanoparticles and modified nanoparticles are discussed in this review. An understanding of the barriers to oral gene delivery and how to overcome them would be invaluable for future gene therapy development.
Collapse
|
44
|
Rezaee M, Oskuee RK, Nassirli H, Malaekeh-Nikouei B. Progress in the development of lipopolyplexes as efficient non-viral gene delivery systems. J Control Release 2016; 236:1-14. [DOI: 10.1016/j.jconrel.2016.06.023] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/12/2016] [Accepted: 06/13/2016] [Indexed: 01/05/2023]
|
45
|
Katzengold R, Zaharov E, Gefen A. Analytical and computational modeling of early penetration of non-enveloped icosahedral viruses into cells. Technol Health Care 2016; 24:483-93. [PMID: 26890228 DOI: 10.3233/thc-161142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND As obligate intracellular parasites, all viruses penetrate target cells to initiate replication and infection. OBJECTIVE This study introduces two approaches for evaluating the contact loads applied to a cell during early penetration of non-enveloped icosahedral viruses. METHODS The first approach is analytical modeling which is based on Hertz's theory for the contact of two elastic bodies; here we model the virus capsid as a triangle and the cell as an order-of-magnitude larger sphere. The second approach is finite element modeling, where we simulate three types of viruses: adeno-, papilloma- and polio- viruses, each interacting with a cell section. RESULTS We find that the peak contact pressures and forces generated at the initial virus-cell contact depend on the virus geometry - that is both size and shape. With respect to shape, we show that the icosahedral virus shape induces greater peak pressures compared to a spherical virus shape. With respect to size, it is shown that the larger the virus is the greater are the contact loads in the attacked cell. CONCLUSION Utilization of our modeling can be substantially useful not only for basic science studies, but also in other, more applied fields, such as in the field of gene therapy, or in `phage' virus studies.
Collapse
|
46
|
Li S, Wei Q, Li Q, Zhang B, Xiao Q. Down-regulating HIF-1α by lentivirus-mediated shRNA for therapy of triple negative breast cancer. Cancer Biol Ther 2016; 16:866-75. [PMID: 25920936 DOI: 10.1080/15384047.2015.1040958] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hypoxia is associated with poor response to treatment in various cancers. Hypoxia inducible factor 1 (HIF-1) is a major transcription factor that mediates adaptation of cancer cells to a hypoxic environment and regulates many genes that are involved in key cellular functions, including cell immortalization, stem cell maintenance, autocrine growth/survival, angiogenesis, invasion/metastasis, and resistance to chemotherapy. HIF-1α has been considered as an attractive therapeutic target for cancer treatment, but there is limited success in this research field. In the present study, we designed a recombinant lentivirus containing HIF-1α siRNA, developed stably transfected cell lines, and tested the anticancer effects of the siRNA on cancer cells in vitro and in vivo. Our results indicated that the stable downregulation of HIF-1α reversed chemoresistance, inhibited proliferation, migration and invasion of cancer cells, and slowed down the tumor growth in breast cancer xenograft models. In conclusion, the recombinant lentivirus containing HIF-1α siRNA provides a new avenue for developing novel therapy for triple negative breast cancer.
Collapse
Affiliation(s)
- Shuang Li
- a Graduate School of Southern Medical University ; Guangzhou , China
| | | | | | | | | |
Collapse
|
47
|
Hernandez-Alcoceba R, Poutou J, Ballesteros-Briones MC, Smerdou C. Gene therapy approaches against cancer using in vivo and ex vivo gene transfer of interleukin-12. Immunotherapy 2016; 8:179-98. [PMID: 26786809 DOI: 10.2217/imt.15.109] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
IL-12 is an immunostimulatory cytokine with strong antitumor properties. Systemic administration of IL-12 in cancer patients led to severe toxic effects, prompting the development of gene therapy vectors able to express this cytokine locally in tumors. Both nonviral and viral vectors have demonstrated a high antitumor efficacy in preclinical tumor models. Some of these vectors, including DNA electroporation, adenovirus and ex vivo transduced dendritic cells, were tested in patients, showing low toxicity and moderate antitumor efficacy. IL-12 activity can be potentiated by molecules with immunostimulatory, antiangiogenic or cytotoxic activity. These combination therapies are of clinical interest because they could lower the threshold for IL-12 efficacy, increasing the therapeutic potential of gene therapy and preventing the toxicity mediated by this cytokine.
Collapse
Affiliation(s)
- Ruben Hernandez-Alcoceba
- Division of Gene Therapy, CIMA, University of Navarra, Pamplona 31008 Spain.,Instituto de Investigación Sanitaria de Navarra, c/Irunlarrea 3, Pamplona 31008, Spain
| | - Joanna Poutou
- Division of Gene Therapy, CIMA, University of Navarra, Pamplona 31008 Spain.,Instituto de Investigación Sanitaria de Navarra, c/Irunlarrea 3, Pamplona 31008, Spain
| | - María Cristina Ballesteros-Briones
- Division of Gene Therapy, CIMA, University of Navarra, Pamplona 31008 Spain.,Instituto de Investigación Sanitaria de Navarra, c/Irunlarrea 3, Pamplona 31008, Spain
| | - Cristian Smerdou
- Division of Gene Therapy, CIMA, University of Navarra, Pamplona 31008 Spain.,Instituto de Investigación Sanitaria de Navarra, c/Irunlarrea 3, Pamplona 31008, Spain
| |
Collapse
|
48
|
Wu S, Wen F, Li Y, Gao X, He S, Liu M, Zhang X, Tian D. PIK3CA and PIK3CB silencing by RNAi reverse MDR and inhibit tumorigenic properties in human colorectal carcinoma. Tumour Biol 2016; 37:8799-809. [PMID: 26747178 DOI: 10.1007/s13277-015-4691-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 12/16/2015] [Indexed: 12/17/2022] Open
Abstract
Colorectal carcinoma (CRC) is the second most common and frequent cause of cancer-related deaths for men and women in the world. PIK3CA and PIK3CB that reverse multidrug resistance (MDR) can serve as predictive and prognostic markers as well as therapeutic targets for CRC treatment. In the present study, we showed that PIK3CA and PIK3CB are upregulated in CRCs and positively correlated with MDR-1, LRP, and GST-π. Long-term monitoring of 316 CRC patients showed that PIK3CA and PIK3CB were associated with poor survival time as shown by Kaplan-Meier analysis. Furthermore, we found that the downregulation of PIK3CA and PIK3CB reversed MDR; inhibited the capability of proliferation, migration, and invasion of CRC cells; and slowed down the CRC tumor growth in nude mice. Consistent with clinical observations, PIK3CA and PIK3CB significantly increase multidrug resistance of CRC cells in vivo. Together, these results suggest that PIK3CA and PIK3CB may be used as potential therapeutic drug targets for colorectal cancer.
Collapse
Affiliation(s)
- Shuhua Wu
- The Department of Pathology, Binzhou Medical University Hospital, 256603, Binzhou, Shandong Province, China
| | - Feifei Wen
- The Department of Pathology, Binzhou Medical University Hospital, 256603, Binzhou, Shandong Province, China
| | - Yangyang Li
- The Department of Pathology, Binzhou Medical University Hospital, 256603, Binzhou, Shandong Province, China
| | - Xiangqian Gao
- The Department of Pathology, Binzhou Medical University Hospital, 256603, Binzhou, Shandong Province, China
| | - Shuang He
- The Department of Pathology, Binzhou Medical University Hospital, 256603, Binzhou, Shandong Province, China
| | - Mengyao Liu
- The Department of Pathology, Binzhou Medical University Hospital, 256603, Binzhou, Shandong Province, China
| | - Xiangzhi Zhang
- The Department of Pathology, Binzhou Medical University Hospital, 256603, Binzhou, Shandong Province, China
| | - Dong Tian
- The Department of Pathology, Binzhou Medical University Hospital, 256603, Binzhou, Shandong Province, China.
| |
Collapse
|
49
|
Yin PT, Han E, Lee KB. Engineering Stem Cells for Biomedical Applications. Adv Healthc Mater 2016; 5:10-55. [PMID: 25772134 PMCID: PMC5810416 DOI: 10.1002/adhm.201400842] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/14/2015] [Indexed: 12/19/2022]
Abstract
Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer.
Collapse
Affiliation(s)
- Perry T Yin
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08854, USA
| | - Edward Han
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
| | - Ki-Bum Lee
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
50
|
Yu Y, Wise SG, Celermajer DS, Bilek MMM, Ng MKC. Bioengineering stents with proactive biocompatibility. Interv Cardiol 2015. [DOI: 10.2217/ica.15.46] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|