1
|
Loukopoulou C, Nikolouzakis T, Koliarakis I, Vakonaki E, Tsiaoussis J. Telomere Length and Telomerase Activity as Potential Biomarkers for Gastrointestinal Cancer. Cancers (Basel) 2024; 16:3370. [PMID: 39409990 PMCID: PMC11482595 DOI: 10.3390/cancers16193370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Gastrointestinal (GI) cancers, such as colorectal and gastric cancers, pose significant global health challenges due to their high rates of incidence and mortality. Even with advancements in treatment and early detection, many patients still face poor outcomes, highlighting the critical need for new biomarkers and therapeutic targets. Telomere length (TL) and telomerase activity (TA) have gained attention in this context. Telomeres, protective nucleotide sequences at chromosome ends, shorten with each cell division, leading to cellular aging. Telomerase, a ribonucleoprotein enzyme, counteracts this shortening by adding telomeric repeats, a process tightly regulated in normal cells but often dysregulated in cancer. This review critically evaluates the role of TL and TA in the pathogenesis of GI cancers, examining their potential as diagnostic, prognostic, and predictive biomarkers. It explores how alterations in telomere biology contribute to the initiation and progression of GI tumors and assesses the therapeutic implications of targeting telomerase. By integrating findings from diverse studies, this review aims to elucidate the intricate relationship between telomere dynamics and gastrointestinal carcinogenesis, offering insights into how TL and TA could be leveraged to enhance the early detection, treatment, and prognosis of GI cancers.
Collapse
Affiliation(s)
- Christina Loukopoulou
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece; (C.L.); (T.N.); (I.K.)
| | - Taxiarchis Nikolouzakis
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece; (C.L.); (T.N.); (I.K.)
| | - Ioannis Koliarakis
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece; (C.L.); (T.N.); (I.K.)
| | - Elena Vakonaki
- Department of Forensic Sciences and Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - John Tsiaoussis
- Department of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece; (C.L.); (T.N.); (I.K.)
| |
Collapse
|
2
|
Sun S, Ma W, Mi C, Mao P. Telomerase reverse transcriptase, a telomere length maintenance protein in alfalfa (Medicago sativa), confers Arabidopsis thaliana seeds aging tolerance via modulation of telomere length. Int J Biol Macromol 2024; 277:134388. [PMID: 39116978 DOI: 10.1016/j.ijbiomac.2024.134388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Numerous studies have investigated seed aging, with a particular emphasis on the involvement of reactive oxygen species. Reactive oxygen species diffuse into the nucleus and damage telomeres, resulting in loss of genetic integrity. Telomerase reverse transcriptase (TERT) plays an essential role in maintaining plant genomic stability. Genome-wide analyses of TERT genes in alfalfa (Medicago sativa) have not yet been conducted, leaving a gap in our understanding of the mechanisms underlying seed aging associated with TERT genes. In this study, four MsTERT genes were identified in the alfalfa genome. The expression profiles of the four MsTERT genes during seed germination indicated that MS. gene79077 was significantly upregulated by seed aging. Transgenic seeds overexpressing MS. gene79077 in Arabidopsis exhibited enhanced tolerance to seed aging by reducing the levels of H2O2 and increasing telomere length and telomerase activity. Furthermore, transcript profiling of aging-treated Arabidopsis wild-type and overexpressing seeds showed an aging response in genes related to glutathione-dependent detoxification and antioxidant defense pathways. These results revealed that MS. gene79077 conferred Arabidopsis seed-aging tolerance via modulation of antioxidant defense and telomere homeostasis. This study provides a new way to understand stress-responsive MsTERT genes for the potential genetic improvement of seed vigor.
Collapse
Affiliation(s)
- Shoujiang Sun
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wen Ma
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chunjiao Mi
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Peisheng Mao
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Kalinderi K, Kalinderis M, Papaliagkas V, Fidani L. The Reproductive Lifespan of Ovarian Follicle. Reprod Sci 2024; 31:2604-2614. [PMID: 38816594 DOI: 10.1007/s43032-024-01606-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The functional unit within mammalian ovaries is the ovarian follicle. The development of the ovarian follicle is a lengthy process beginning from the time of embryogenesis, passing through multiple different stages of maturation. The purpose of this review is to describe the most basic events in the journey of ovarian follicle development, discussing the importance of ovarian reserve and highlighting the role of several factors that affect oocyte quality and quantity during aging including hormonal, genetic and epigenetic factors. Novel, promising anti-aging strategies are also discussed.
Collapse
Affiliation(s)
- Kallirhoe Kalinderi
- Laboratory of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece.
| | - Michail Kalinderis
- Department of Obstetrics and Gynaecology, St George's University Hospital NHS Trust, Blackshaw Road, Tooting, London, SW17 0QT, UK
| | - Vasileios Papaliagkas
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, Thessaloniki, 57400, Greece
| | - Liana Fidani
- Laboratory of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| |
Collapse
|
4
|
Paul S, McCourt PM, Le LTM, Ryu J, Czaja W, Bode AM, Contreras-Galindo R, Dong Z. Fyn-mediated phosphorylation of Menin disrupts telomere maintenance in stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.04.560876. [PMID: 37873235 PMCID: PMC10592958 DOI: 10.1101/2023.10.04.560876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Telomeres protect chromosome ends and determine the replication potential of dividing cells. The canonical telomere sequence TTAGGG is synthesized by telomerase holoenzyme, which maintains telomere length in proliferative stem cells. Although the core components of telomerase are well-defined, mechanisms of telomerase regulation are still under investigation. We report a novel role for the Src family kinase Fyn, which disrupts telomere maintenance in stem cells by phosphorylating the scaffold protein Menin. We found that Fyn knockdown prevented telomere erosion in human and mouse stem cells, validating the results with four telomere measurement techniques. We show that Fyn phosphorylates Menin at tyrosine 603 (Y603), which increases Menin's SUMO1 modification, C-terminal stability, and importantly, its association with the telomerase RNA component (TR). Using mass spectrometry, immunoprecipitation, and immunofluorescence experiments we found that SUMO1-Menin decreases TR's association with telomerase subunit Dyskerin, suggesting that Fyn's phosphorylation of Menin induces telomerase subunit mislocalization and may compromise telomerase function at telomeres. Importantly, we find that Fyn inhibition reduces accelerated telomere shortening in human iPSCs harboring mutations for dyskeratosis congenita.
Collapse
Affiliation(s)
- Souren Paul
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | - Preston M. McCourt
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | - Le Thi My Le
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | - Joohyun Ryu
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Wioletta Czaja
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
- Department of Genetics, University of Alabama, Birmingham, AL 35294, USA
| | - Ann M. Bode
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | - Rafael Contreras-Galindo
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
- Department of Genetics, University of Alabama, Birmingham, AL 35294, USA
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Henan, China 450001
| |
Collapse
|
5
|
Garg A, Seli E. Leukocyte telomere length and DNA methylome as biomarkers of ovarian reserve and embryo aneuploidy: the intricate relationship between somatic and reproductive aging. Fertil Steril 2024; 121:26-33. [PMID: 37979607 DOI: 10.1016/j.fertnstert.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
The average childbearing age among women continues to rise, leading to an increased prevalence of infertility and a subsequent increased use of assisted reproductive technologies (ARTs). Ovarian aging, especially diminished ovarian reserve and poor ovarian response, have been implicated as common causes of infertility. Telomere length and DNA methylation-based epigenetic clocks are established hallmarks of cellular aging; however, the interplay between somatic and ovarian aging remains unclear. There appears to be a lack of correlation between leukocyte telomere length and the DNA methylation age of somatic and ovarian cells. Both the telomere length and methylome of follicular somatic cells (granulosa and cumulus) appear to be unaffected by chronologic age, infertility, or processes that result in diminished ovarian reserve and poor ovarian response. As such, they are unlikely candidates as surrogate biomarkers of reproductive potential, response to stimulation, or ART outcome. Meanwhile, telomere or methylome changes in leukocytes associated with aging seem to correlate with reproductive function and may have the potential to aid the characterization of women with reproductive decline; however, current data are limited and larger studies evaluating this within an ART setting are warranted.
Collapse
Affiliation(s)
- Akanksha Garg
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut; IVIRMA Global Research Alliance, IVIRMA New Jersey, Basking Ridge, New Jersey.
| |
Collapse
|
6
|
D'Angelo S. Diet and Aging: The Role of Polyphenol-Rich Diets in Slow Down the Shortening of Telomeres: A Review. Antioxidants (Basel) 2023; 12:2086. [PMID: 38136206 PMCID: PMC10740764 DOI: 10.3390/antiox12122086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The ends of human chromosomes are defended by DNA-protein complexes named telomeres, which inhibit the chromosomes from fusing with each other and from being known as a double-strand break by DNA reparation proteins. Telomere length is a marker of biological aging, and disfunction of telomeres is related to age-related syndromes. Telomere attrition has been shown to be accelerated by oxidative stress and inflammation. Telomere length has been proven to be positively linked with nutritional status in human and animal scientific research as several nutrients influence it through mechanisms that imitate their function in cellular roles including oxidative stress and inflammation. Data reported in this article support the idea that following a low-in-fat and rich-plant polyphenols food diet seems to be able to slow down the shortening of telomeres.
Collapse
Affiliation(s)
- Stefania D'Angelo
- Department of Medical, Movement and Wellbeing Sciences, Parthenope University, 80133 Naples, Italy
| |
Collapse
|
7
|
Gómez‐Blanco D, Tobler M, Hasselquist D. Why and when should organisms elongate their telomeres? Elaborations on the 'excess resources elongation' and 'last resort elongation' hypotheses. Ecol Evol 2023; 13:e10825. [PMID: 38099139 PMCID: PMC10719541 DOI: 10.1002/ece3.10825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 10/31/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
Telomere length and telomere shortening are thought to be critical cellular attributes and processes that are related to an individual's life span and fitness. The general pattern across most taxa is that after birth telomere length gradually decreases with age. Telomere protection and restoration mechanisms are usually assumed to reduce the rate of shortening or at most keep telomere length constant. However, here we have compiled a list of 26 articles showing that there is an increasing number of studies reporting apparent elongation of telomeres (i.e., a net increase in TL from timet to timet+1) often in a considerable proportion of the individuals studied. Moreover, the few studies which have studied telomere elongation in detail show that increases in telomere length are unlikely to be due to measurement error alone. In this article, we argue that episodes of telomere elongation deserve more attention as they could reflect individual strategies to optimise life histories and maximise fitness, which may not be reflected in the overall telomere dynamics patterns. We propose that patterns of telomere (net) elongation may be partly determined by other factors than those causing telomere shortening, and therefore deserve analyses specifically targeted to investigate the occurrence of telomere elongation. We elaborate on two ecological hypotheses that have been proposed to explain patterns of telomere elongation (the 'excess resources elongation' and the 'last resort elongation' hypothesis) and we discuss the current evidence for (or against) these hypotheses and propose ways to test them.
Collapse
|
8
|
Panasiak L, Kuciński M, Hliwa P, Pomianowski K, Ocalewicz K. Telomerase Activity in Somatic Tissues and Ovaries of Diploid and Triploid Rainbow Trout ( Oncorhynchus mykiss) Females. Cells 2023; 12:1772. [PMID: 37443805 PMCID: PMC10340188 DOI: 10.3390/cells12131772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/20/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Telomerase activity has been found in the somatic tissues of rainbow trout. The enzyme is essential for maintaining telomere length but also assures homeostasis of the fish organs, playing an important role during tissue regeneration. The unique morphological and physiological characteristics of triploid rainbow trout, when compared to diploid specimens, make them a promising model for studies concerning telomerase activity. Thus, in this study, we examined the expression of the Tert gene in various organs of subadult and adult diploid and triploid rainbow trout females. Upregulated Tert mRNA transcription was observed in all the examined somatic tissues sampled from the triploid fish when compared to diploid individuals. Contrastingly, Tert expression in the ovaries was significantly decreased in the triploid specimens. Within the diploids, the highest expression of Tert was observed in the liver and in the ovaries of the subadult individuals. In the triploids, Tert expression was increased in the somatic tissues, while the ovaries exhibited lower activity of telomerase compared to other organs and decreased compared to the ovaries in the diploids. The ovaries of triploid individuals were underdeveloped, consisting of only a few oocytes. The lack of germ cells, which are usually characterized by high Tert expression, might be responsible for the decrease in telomerase activity in the triploid ovaries. The increase in Tert expression in triploid somatic tissues suggests that they require higher telomerase activity to cope with environmental stress and maintain internal homeostasis.
Collapse
Affiliation(s)
- Ligia Panasiak
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdansk, M. Piłsudskiego 46 Av., 81-378 Gdynia, Poland; (M.K.); (K.O.)
| | - Marcin Kuciński
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdansk, M. Piłsudskiego 46 Av., 81-378 Gdynia, Poland; (M.K.); (K.O.)
| | - Piotr Hliwa
- Department of Ichthyology and Aquaculture, University of Warmia and Mazury in Olsztyn, Warszawska St. 117, 10-719 Olsztyn, Poland;
| | - Konrad Pomianowski
- Laboratory of Physiology of Marine Organisms, Genetics and Marine Biotechnology Department, Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland;
| | - Konrad Ocalewicz
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdansk, M. Piłsudskiego 46 Av., 81-378 Gdynia, Poland; (M.K.); (K.O.)
| |
Collapse
|
9
|
Zhao N, Yin G, Liu C, Zhang W, Shen Y, Wang D, Lin Z, Yang J, Mao J, Guo R, Zhang Y, Wang F, Liu Z, Lu X, Liu L. Critically short telomeres derepress retrotransposons to promote genome instability in embryonic stem cells. Cell Discov 2023; 9:45. [PMID: 37130870 PMCID: PMC10154409 DOI: 10.1038/s41421-023-00538-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/08/2023] [Indexed: 05/04/2023] Open
Abstract
Telomeres, at the ends of chromosomes, protect chromosomes from fusion and preserve genomic stability. However, the molecular mechanisms underlying telomere attrition-induced genome instability remain to be understood. We systematically analyzed the expression of retrotransposons and performed genomic sequencing of different cell and tissue types with telomeres of varying lengths due to telomerase deficiency. We found that critically short telomeres altered retrotransposon activity to promote genomic instability in mouse embryonic stem cells, as evidenced by elevated numbers of single nucleotide variants, indels and copy number variations (CNVs). Transpositions of retrotransposons such as LINE1 resulting from the short telomeres can also be found in these genomes with elevated number of mutations and CNVs. Retrotransposon activation is linked to increased chromatin accessibility, and reduced heterochromatin abundance correlates with short telomeres. Re-elongation of telomeres upon recovery of telomerase partly represses retrotransposons and heterochromatin accumulation. Together, our findings suggest a potential mechanism by which telomeres maintain genomic stability by suppressing chromatin accessibility and retrotransposon activity.
Collapse
Affiliation(s)
- Nannan Zhao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Guoxing Yin
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Chun Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Weiyu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- College of Pharmacy, Nankai University, Tianjin, China
| | - Yang Shen
- Genome Institute of Singapore, Singapore, Singapore
| | - Dan Wang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology, Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhenzhen Lin
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology, Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jiao Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Jian Mao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Renpeng Guo
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Yongwang Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- College of Pharmacy, Nankai University, Tianjin, China
| | - Feng Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhe Liu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Department of Immunology, Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
- College of Pharmacy, Nankai University, Tianjin, China.
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, China.
| |
Collapse
|
10
|
Wang KX, Ye C, Yang X, Ma P, Yan C, Luo L. New Insights into the Understanding of Mechanisms of Radiation-Induced Heart Disease. Curr Treat Options Oncol 2023; 24:12-29. [PMID: 36598620 DOI: 10.1007/s11864-022-01041-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 01/05/2023]
Abstract
OPINION STATEMENT Cancer patients who receive high-dose thoracic radiotherapy may develop radiation-induced heart disease (RIHD). The clinical presentation of RIHD comprises coronary artery atherosclerosis, valvular disease, pericarditis, cardiomyopathy, and conduction defects. These complications have significantly reduced due to the improved radiotherapy techniques. However, such methods still could not avoid heart radiation exposure. Furthermore, people who received relatively low-dose radiation exposures have exhibited significantly elevated RIHD risks in cohort studies of atomic bomb survivors and occupational exposures. The increased potential in exposure to natural and artificial ionizing radiation sources has emphasized the necessity to understand the development of RIHD. The pathological processes of RIHD include endothelial dysfunction, inflammation, fibrosis, and hypertrophy. The underlying mechanisms may involve the changes in oxidative stress, DNA damage response, telomere erosion, mitochondrial dysfunction, epigenetic regulation, circulation factors, protein post-translational modification, and metabolites. This review will discuss the recent advances in the mechanisms of RIHD at cellular and molecular levels.
Collapse
Affiliation(s)
- Kai-Xuan Wang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou City, Jiangsu Province, 221004, People's Republic of China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, People's Republic of China
| | - Cong Ye
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou City, Jiangsu Province, 221004, People's Republic of China
| | - Xu Yang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou City, Jiangsu Province, 221004, People's Republic of China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, People's Republic of China
| | - Ping Ma
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, People's Republic of China
| | - Chen Yan
- Department of Rheumatology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang City, Jiangxi Province, 330006, People's Republic of China.
| | - Lan Luo
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou City, Jiangsu Province, 221004, People's Republic of China.
| |
Collapse
|
11
|
Ellis PS, Martins RR, Thompson EJ, Farhat A, Renshaw SA, Henriques CM. A subset of gut leukocytes has telomerase-dependent "hyper-long" telomeres and require telomerase for function in zebrafish. Immun Ageing 2022; 19:31. [PMID: 35820929 PMCID: PMC9277892 DOI: 10.1186/s12979-022-00287-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Telomerase, the enzyme capable of elongating telomeres, is usually restricted in human somatic cells, which contributes to progressive telomere shortening with cell-division and ageing. T and B-cells cells are somatic cells that can break this rule and can modulate telomerase expression in a homeostatic manner. Whereas it seems intuitive that an immune cell type that depends on regular proliferation outbursts for function may have evolved to modulate telomerase expression it is less obvious why others may also do so, as has been suggested for macrophages and neutrophils in some chronic inflammation disease settings. The gut has been highlighted as a key modulator of systemic ageing and is a key tissue where inflammation must be carefully controlled to prevent dysfunction. How telomerase may play a role in innate immune subtypes in the context of natural ageing in the gut, however, remains to be determined. RESULTS Using the zebrafish model, we show that subsets of gut immune cells have telomerase-dependent"hyper-long" telomeres, which we identified as being predominantly macrophages and dendritics (mpeg1.1+ and cd45+mhcII+). Notably, mpeg1.1+ macrophages have much longer telomeres in the gut than in their haematopoietic tissue of origin, suggesting that there is modulation of telomerase in these cells, in the gut. Moreover, we show that a subset of gut mpeg1.1+ cells express telomerase (tert) in young WT zebrafish, but that the relative proportion of these cells decreases with ageing. Importantly, this is accompanied by telomere shortening and DNA damage responses with ageing and a telomerase-dependent decrease in expression of autophagy and immune activation markers. Finally, these telomerase-dependent molecular alterations are accompanied by impaired phagocytosis of E. coli and increased gut permeability in vivo. CONCLUSIONS Our data show that limiting levels of telomerase lead to alterations in gut immunity, impacting on the ability to clear pathogens in vivo. These are accompanied by increased gut permeability, which, together, are likely contributors to local and systemic tissue degeneration and increased susceptibility to infection with ageing.
Collapse
Affiliation(s)
- Pam S Ellis
- The Bateson Centre, MRC-Arthritis Research UK Centre for Integrated Research Into Musculoskeletal Ageing and Department of Oncology and Metabolism, Healthy Lifespan Institute, University of Sheffield Medical School, Sheffield, UK
| | - Raquel R Martins
- The Bateson Centre, MRC-Arthritis Research UK Centre for Integrated Research Into Musculoskeletal Ageing and Department of Oncology and Metabolism, Healthy Lifespan Institute, University of Sheffield Medical School, Sheffield, UK
| | - Emily J Thompson
- The Bateson Centre, MRC-Arthritis Research UK Centre for Integrated Research Into Musculoskeletal Ageing and Department of Oncology and Metabolism, Healthy Lifespan Institute, University of Sheffield Medical School, Sheffield, UK
| | - Asma Farhat
- The Bateson Centre, MRC-Arthritis Research UK Centre for Integrated Research Into Musculoskeletal Ageing and Department of Oncology and Metabolism, Healthy Lifespan Institute, University of Sheffield Medical School, Sheffield, UK
| | - Stephen A Renshaw
- The Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Catarina M Henriques
- The Bateson Centre, MRC-Arthritis Research UK Centre for Integrated Research Into Musculoskeletal Ageing and Department of Oncology and Metabolism, Healthy Lifespan Institute, University of Sheffield Medical School, Sheffield, UK.
| |
Collapse
|
12
|
Villarinho NJ, Vasconcelos FDC, Mazzoccoli L, da Silva Robaina MC, Pessoa LS, Siqueira PET, Maia RC, de Oliveira DM, Leite de Sampaio E Spohr TC, Lopes GF. Effects of long-term exposure to MST-312 on lung cancer cells tumorigenesis: Role of SHH/GLI-1 axis. Cell Biol Int 2022; 46:1468-1479. [PMID: 35811464 DOI: 10.1002/cbin.11843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 01/26/2022] [Accepted: 04/25/2022] [Indexed: 11/12/2022]
Abstract
Replicative immortality is a key feature of cancer cells and it is maintained by the expression of telomerase, a promising target of novel therapies. Long-term telomerase inhibition can induce resistance, but the mechanisms underlying this process remain unclear. The Sonic hedgehog pathway (SHH) is an embryogenic pathway involved in tumorigenesis and modulates the transcription of telomerase. We evaluated the effects of long-term treatment of the telomerase inhibitor MST-312 in morphology, proliferation, resistance, and in the SHH pathway molecules expression levels in lung cancer cells. Cells treated for 12 weeks with MST-312 showed changes in morphology, such as spindle-shaped cells, and a shift in the distribution of F-ACTIN from cortical to diffuse. Treatment also significantly reduced cells' efficiency to form spheroids and their clonogenic potential, independently of the cell cycle and telomeric DNA content. Moreover, GLI-1 expression levels were significantly reduced after 12 weeks of MST-312 treatment, indicating a possible inhibition of this signaling axis in the SHH pathway, without hindering NANOG and OCT4 expression. Here, we described a novel implication of long-term treatment with MST-312 functionally and molecularly, shedding new light on the molecular mechanisms of this drug in vitro.
Collapse
Affiliation(s)
- Nicolas Jones Villarinho
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer IECPN, Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-graduação em Medicina (Anatomia Patológica), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavia da Cunha Vasconcelos
- Laboratório de Hemato-oncologia Celular e Molecular, Coordenação de Pesquisa, Instituto Nacional do Câncer, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciano Mazzoccoli
- Laboratório de Hemato-oncologia Celular e Molecular, Coordenação de Pesquisa, Instituto Nacional do Câncer, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcela Cristina da Silva Robaina
- Laboratório de Hemato-oncologia Celular e Molecular, Coordenação de Pesquisa, Instituto Nacional do Câncer, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Santos Pessoa
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer IECPN, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pablo Enrique Torres Siqueira
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer IECPN, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Ciuvalschi Maia
- Laboratório de Hemato-oncologia Celular e Molecular, Coordenação de Pesquisa, Instituto Nacional do Câncer, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diego Madureira de Oliveira
- Departamento de Bases Biológicas da Saúde, Universidade Federal de Brasília-Campus Ceilândia, Brasilia, Brazil
| | - Tania Cristina Leite de Sampaio E Spohr
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer IECPN, Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-graduação em Medicina (Anatomia Patológica), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giselle Faria Lopes
- Programa de Pós-graduação em Medicina (Anatomia Patológica), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Hemato-oncologia Celular e Molecular, Coordenação de Pesquisa, Instituto Nacional do Câncer, Rio de Janeiro, Rio de Janeiro, Brazil.,Divisão de Bioprodutos, Departamento de Biotecnologia Marinha, Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM), Arraial do Cabo, Brazil
| |
Collapse
|
13
|
Senotherapeutics in Cancer and HIV. Cells 2022; 11:cells11071222. [PMID: 35406785 PMCID: PMC8997781 DOI: 10.3390/cells11071222] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022] Open
Abstract
Cellular senescence is a stress-response mechanism that contributes to homeostasis maintenance, playing a beneficial role during embryogenesis and in normal adult organisms. In contrast, chronic senescence activation may be responsible for other events such as age-related disorders, HIV and cancer development. Cellular senescence activation can be triggered by different insults. Regardless of the inducer, there are several phenotypes generally shared among senescent cells: cell division arrest, an aberrant shape, increased size, high granularity because of increased numbers of lysosomes and vacuoles, apoptosis resistance, defective metabolism and some chromatin alterations. Senescent cells constitute an important area for research due to their contributions to the pathogenesis of different diseases such as frailty, sarcopenia and aging-related diseases, including cancer and HIV infection, which show an accelerated aging. Hence, a new pharmacological category of treatments called senotherapeutics is under development. This group includes senolytic drugs that selectively attack senescent cells and senostatic drugs that suppress SASP factor delivery, inhibiting senescent cell development. These new drugs can have positive therapeutic effects on aging-related disorders and act in cancer as antitumor drugs, avoiding the undesired effects of senescent cells such as those from SASP. Here, we review senotherapeutics and how they might affect cancer and HIV disease, two very different aging-related diseases, and review some compounds acting as senolytics in clinical trials.
Collapse
|
14
|
Astragalus membranaceus treatment combined with caloric restriction may enhance genesis factors and decrease apoptosis in the hippocampus of rats. Arch Gerontol Geriatr 2022; 99:104584. [DOI: 10.1016/j.archger.2021.104584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 11/21/2022]
|
15
|
Miglani M, Rain M, Pasha Q, Raj VS, Thinlas T, Mohammad G, Gupta A, Pandey RP, Vibhuti A. Shorter telomere length, higher telomerase activity in association with tankyrase gene polymorphism contribute to high-altitude pulmonary edema. Hum Mol Genet 2021; 29:3094-3106. [PMID: 32916703 DOI: 10.1093/hmg/ddaa205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/30/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
High-altitude pulmonary edema (HAPE) is a noncardiogenic form of pulmonary edema, which is induced upon exposure to hypobaric hypoxia at high altitude (HA). Hypobaric hypoxia generates reactive oxygen species that may damage telomeres and disturb normal physiological processes. Telomere complex comprises of multiple proteins, of which, tankyrase (TNKS) is actively involved in DNA damage repairs. We hence investigated the association of TNKS and telomeres with HAPE to delineate their potential role at HA. The study was performed in three groups, High-altitude pulmonary edema patients (HAPE-p, n = 200), HAPE-resistant sojourners (HAPE-r, n = 200) and highland permanent healthy residents (HLs, n = 200). Variants of TNKS were genotyped using polymerase chain reaction-restriction fragment length polymorphism. Plasma TNKS level was estimated using enzyme-linked immunosorbent assay, expression of TNKS and relative telomere length were assessed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and telomerase activity was assessed by the telomere repeat amplification protocol assay. TNKS poly-ADP ribosylates the telomere-repeat factor (TRF), which is a negative regulator of telomere length. Consequently, TRF expression was also measured by RT-qPCR. The TNKS heterozygotes rs7015700GA were prevalent in HLs compared to the HAPE-p and HAPE-r. The plasma TNKS was significantly decreased in HAPE-p than HAPE-r (P = 0.006). TNKS was upregulated 9.27 folds in HAPE-p (P = 1.01E-06) and downregulated in HLs by 3.3 folds (P = 0.02). The telomere length was shorter in HAPE-p compared to HAPE-r (P = 0.03) and HLs (P = 4.25E-4). The telomerase activity was significantly higher in HAPE-p compared to both HAPE-r (P = 0.01) and HLs (P = 0.001). HAPE-p had the lowest TNKS levels (0.186 ± 0.031 ng/μl) and the highest telomerase activity (0.0268 amoles/μl). The findings of the study indicate the association of TNKS and telomeres with HA adaptation/maladaptation.
Collapse
Affiliation(s)
- Manjula Miglani
- Department of Biotechnology, SRM University, Delhi-NCR, Sonepat, Haryana 131029, India.,Functional Genomics Unit, Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi, 110007, India
| | - Manjari Rain
- Functional Genomics Unit, Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi, 110007, India
| | - Qadar Pasha
- Functional Genomics Unit, Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi, 110007, India
| | - V Samuel Raj
- Department of Biotechnology, SRM University, Delhi-NCR, Sonepat, Haryana 131029, India
| | - Tashi Thinlas
- Department of Medicine, Sonam Norboo Memorial Hospital, Leh-Ladakh 194101, India
| | - Ghulam Mohammad
- Department of Medicine, Sonam Norboo Memorial Hospital, Leh-Ladakh 194101, India
| | - Archana Gupta
- Department of Biotechnology, SRM University, Delhi-NCR, Sonepat, Haryana 131029, India
| | - Ramendra Pati Pandey
- Department of Biotechnology, SRM University, Delhi-NCR, Sonepat, Haryana 131029, India
| | - Arpana Vibhuti
- Department of Biotechnology, SRM University, Delhi-NCR, Sonepat, Haryana 131029, India
| |
Collapse
|
16
|
Chang X, Chua KY, Wang L, Liu J, Yuan JM, Khor CC, Heng CK, Koh WP, Dorajoo R. Midlife Leukocyte Telomere Length as an Indicator for Handgrip Strength in Late Life. J Gerontol A Biol Sci Med Sci 2021; 76:172-175. [PMID: 33045076 DOI: 10.1093/gerona/glaa260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Telomere attrition has been proposed as a hallmark of aging. We previously reported on the association between blood leukocyte telomere length (LTL) at midlife and risk of chronic diseases and mortality. METHODS In this study, we investigated the effect of midlife LTL and genetic proxies on 5 markers of aging outcomes, namely handgrip strength, timed up-and-go (TUG), Singapore-modified Mini-Mental State Examination (SM-MMSE) scores, anxiety, and depression indices, measured after a median 20-year follow-up in the Singapore Chinese Health Study (N = 9581). RESULTS We observed a significant association between midlife LTL and handgrip strength later in life (p = .004, padjust = .020), as well as a nominal significant association between midlife LTL and TUG later in life (p = .036, padjust = .180). The weighted Genetic Risk Score (wGRS) comprising 15 previously reported LTL reducing loci in East Asians was not significantly associated with handgrip strength. However, results from Structural Equation Modeling showed that the effect of this wGRS on handgrip strength was mediated through LTL (proportion of wGRS effect on handgrip strength mediated through LTL = 33.3%, p = .010). CONCLUSIONS Longer midlife LTL was associated with increased handgrip strength later in life.
Collapse
Affiliation(s)
- Xuling Chang
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Kevin Yiqiang Chua
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Ling Wang
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pennsylvania.,Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania
| | - Chiea-Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.,Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Chew-Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Woon-Puay Koh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore.,Health Services and Systems Research, Duke-NUS Medical School Singapore, Singapore
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.,Health Services and Systems Research, Duke-NUS Medical School Singapore, Singapore
| |
Collapse
|
17
|
Cuttler K, Bignoux MJ, Otgaar TC, Chigumba S, Ferreira E, Weiss SFT. LRP::FLAG Reduces Phosphorylated Tau Levels in Alzheimer's Disease Cell Culture Models. J Alzheimers Dis 2021; 76:753-768. [PMID: 32568204 DOI: 10.3233/jad-200244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) plaque and neurofibrillary tangle formation, respectively. Neurofibrillary tangles form as a result of the intracellular accumulation of hyperphosphorylated tau. Telomerase activity and levels of the human reverse transcriptase (hTERT) subunit of telomerase are significantly decreased in AD. Recently, it has been demonstrated that the 37 kDa/67 kDa laminin receptor (LRP/LR) interacts with telomerase and is implicated in Aβ pathology. Since both LRP/LR and telomerase are known to play a role in the Aβ facet of AD, we hypothesized that they might also play a role in tauopathy. OBJECTIVE This study aimed to determine if LRP/LR has a relationship with tau and whether overexpression of LRP::FLAG has an effect on tauopathy-related proteins. METHODS We employed confocal microscopy and FRET to determine whether LRP/LR and tau co-localize and interact. LRP::FLAG overexpression in HEK-293 and SH-SY5Y cells as well as analysis of tauopathy-related proteins was assessed by western blotting. RESULTS We demonstrate that LRP/LR co-localizes with tau in the perinuclear cell compartment and confirmed a direct interaction between LRP/LR and tau in HEK-293 cells. Overexpression of LRP::FLAG in HEK-293 and SH-SY5Y cells decreased total and phosphorylated tau levels with a concomitant decrease in PrPc levels, a tauopathy-related protein. LRP::FLAG overexpression also resulted in increased hTERT levels. CONCLUSION This data suggest that LRP/LR extends its role in AD through a direct interaction with tau, and recommend LRP::FLAG as a possible alternative AD therapeutic via decreasing phosphorylated tau levels.
Collapse
Affiliation(s)
- Katelyn Cuttler
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa.,Present Address: Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, Republic of South Africa
| | - Monique J Bignoux
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Tyrone C Otgaar
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Stephanie Chigumba
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Eloise Ferreira
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Stefan F T Weiss
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
18
|
Vaena S, Chakraborty P, Lee HG, Janneh AH, Kassir MF, Beeson G, Hedley Z, Yalcinkaya A, Sofi MH, Li H, Husby ML, Stahelin RV, Yu XZ, Mehrotra S, Ogretmen B. Aging-dependent mitochondrial dysfunction mediated by ceramide signaling inhibits antitumor T cell response. Cell Rep 2021; 35:109076. [PMID: 33951438 PMCID: PMC8127241 DOI: 10.1016/j.celrep.2021.109076] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/10/2021] [Accepted: 04/12/2021] [Indexed: 01/09/2023] Open
Abstract
We lack a mechanistic understanding of aging-mediated changes in mitochondrial bioenergetics and lipid metabolism that affect T cell function. The bioactive sphingolipid ceramide, induced by aging stress, mediates mitophagy and cell death; however, the aging-related roles of ceramide metabolism in regulating T cell function remain unknown. Here, we show that activated T cells isolated from aging mice have elevated C14/C16 ceramide accumulation in mitochondria, generated by ceramide synthase 6, leading to mitophagy/mitochondrial dysfunction. Mechanistically, aging-dependent mitochondrial ceramide inhibits protein kinase A, leading to mitophagy in activated T cells. This aging/ceramide-dependent mitophagy attenuates the antitumor functions of T cells in vitro and in vivo. Also, inhibition of ceramide metabolism or PKA activation by genetic and pharmacologic means prevents mitophagy and restores the central memory phenotype in aging T cells. Thus, these studies help explain the mechanisms behind aging-related dysregulation of T cells' antitumor activity, which can be restored by inhibiting ceramide-dependent mitophagy.
Collapse
Affiliation(s)
- Silvia Vaena
- Departments of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Paramita Chakraborty
- Department of Surgery, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Han Gyul Lee
- Departments of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Alhaji H Janneh
- Departments of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Mohamed Faisal Kassir
- Departments of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Gyda Beeson
- College of Pharmacy, Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Zachariah Hedley
- Department of Surgery, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Ahmet Yalcinkaya
- Departments of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - M Hanief Sofi
- Department of Microbiology and Immunology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Hong Li
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Department of Public Health, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Monica L Husby
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Robert V Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Besim Ogretmen
- Departments of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA.
| |
Collapse
|
19
|
Abooshahab R, Dass CR. The biological relevance of pigment epithelium-derived factor on the path from aging to age-related disease. Mech Ageing Dev 2021; 196:111478. [PMID: 33812881 DOI: 10.1016/j.mad.2021.111478] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 01/07/2023]
Abstract
Pigment epithelium-derived factor (PEDF) is an endogenously produced protein that contributes to cell growth arrest, and reduced levels of PEDF are associated with the progression of cellular senescence and the aging process. However, the mechanisms underlying PEDF regulation of these events are not completely clear. Increased PEDF activity may induce anti-aging processes, suggesting the potential therapeutic value of PEDF as an anti-aging and age-related disease. In this review, we recapitulate the molecular and cellular mechanisms of aging following the characteristics and specific roles of the PEDF in cell cycle arrest and its relevance to cellular senescence and aging pathways. In this context, the discovery and fluctuations of PEDF in age-related diseases are summarised. In light of the importance of PEDF in cellular senescence and aging processes, better comprehension of the mechanism(s) of PEDF in the regulation of cell cycle and the aging process can conceivably facilitate the development of therapeutic strategies for diseases that occur with aging.
Collapse
Affiliation(s)
- Raziyeh Abooshahab
- Curtin Medical School, Curtin University, Bentley, 6102, Australia; Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Crispin R Dass
- Curtin Medical School, Curtin University, Bentley, 6102, Australia; Curtin Health Innovation Research Institute, Bentley, 6102, Australia.
| |
Collapse
|
20
|
Meccariello R, D’Angelo S. Impact of Polyphenolic-Food on Longevity: An Elixir of Life. An Overview. Antioxidants (Basel) 2021; 10:507. [PMID: 33805092 PMCID: PMC8064059 DOI: 10.3390/antiox10040507] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Aging and, particularly, the onset of age-related diseases are associated with tissue dysfunction and macromolecular damage, some of which can be attributed to accumulation of oxidative damage. Recently, growing interest has emerged on the beneficial effects of plant-based diets for the prevention of chronic diseases including obesity, diabetes, and cardiovascular disease. Several studies collectively suggests that the intake of polyphenols and their major food sources may exert beneficial effects on improving insulin resistance and related diabetes risk factors, such as inflammation and oxidative stress. They are the most abundant antioxidants in the diet, and their intake has been associated with a reduced aging in humans. Polyphenolic intake has been shown to be effective at ameliorating several age-related phenotypes, including oxidative stress, inflammation, impaired proteostasis, and cellular senescence, both in vitro and in vivo. In this paper, effects of these phytochemicals (either pure forms or polyphenolic-food) are reviewed and summarized according to affected cellular signaling pathways. Finally, the effectiveness of the anti-aging preventive action of nutritional interventions based on diets rich in polyphenolic food, such as the diets of the Blue zones, are discussed.
Collapse
Affiliation(s)
| | - Stefania D’Angelo
- Department of Movement Sciences and Wellbeing, University of Naples Parthenope, 80133 Naples, Italy;
| |
Collapse
|
21
|
Tejasvi MLA, Ck AA, Reddy ER, Kulkarni P, Bhayya H, Kugaji MS. Individuals Age Determination from Human Dental Pulp Through DNA Analysis by PCR. Glob Med Genet 2021; 8:57-61. [PMID: 33987624 PMCID: PMC8110361 DOI: 10.1055/s-0041-1723084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Objectives
Age estimation in forensic odontology is having a great importance in recent times because of the request by court or other government authorities so that immigrants whose real age is unknown should not suffer unfair disadvantages because of their supposed age, and so that all legal procedures to which an individual's age is relevant can be properly followed.
Purpose
The present study was planned to be conducted on pulp tissue and dental hard tissues derived from individuals for DNA isolation and age determination .
Materials and Methods
The present study was an experimental single-blinded study consisting of 30 extracted teeth categorized into three groups as follows: Group A: 10 to 20 years, Group B: 21 to 30 years, Group C: 31 to 40 years. DNA was isolated from the pulp of each tooth and quantitative polymerase chain reaction (qPCR) for calculating telomere length was performed.
Results
With increase in age, the length of telomere gets shortened which will be helpful in analyzing the age of the person when morphological and biological remnants are not available except the tooth.
Conclusion
The present study found that estimation of human age based on the relative TL measured by the real-time quantitative PCR may be a useful method for age prediction, especially when there is no morphologic information in the biological sample. This is the first study to accesses the age of a person by telomere length using dental pulp.
Collapse
Affiliation(s)
- M L Avinash Tejasvi
- Department of Oral Medicine and Radiology, Kamineni Institute of Dental Sciences, Narketpally, Telangana, India
| | - Anulekha Avinash Ck
- Department of Prosthodontics, Kamineni Institute of Dental Sciences, Narketpally, Telangana, India
| | - E Rajendra Reddy
- Department of Pedodontics, Kamineni Institute Dental Sciences, Narketpally, Telangana, India
| | - Pavan Kulkarni
- Department of Oral Pathology, Kamineni Institute of Dental Sciences, Narketpally, Telangana, India
| | - Harsha Bhayya
- Department of Oral Medicine and Radiology, Kamineni Institute of Dental Sciences, Narketpally, Telangana, India
| | - Manohar S Kugaji
- Department of Genetics, Central Research Laboratory, Maratha Mandal's NGH Institute of Dental Sciences and Research Centre, Belagavi, Karnataka, India
| |
Collapse
|
22
|
Noureen N, Wu S, Lv Y, Yang J, Alfred Yung WK, Gelfond J, Wang X, Koul D, Ludlow A, Zheng S. Integrated analysis of telomerase enzymatic activity unravels an association with cancer stemness and proliferation. Nat Commun 2021; 12:139. [PMID: 33420056 PMCID: PMC7794223 DOI: 10.1038/s41467-020-20474-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Active telomerase is essential for stem cells and most cancers to maintain telomeres. The enzymatic activity of telomerase is related but not equivalent to the expression of TERT, the catalytic subunit of the complex. Here we show that telomerase enzymatic activity can be robustly estimated from the expression of a 13-gene signature. We demonstrate the validity of the expression-based approach, named EXTEND, using cell lines, cancer samples, and non-neoplastic samples. When applied to over 9,000 tumors and single cells, we find a strong correlation between telomerase activity and cancer stemness. This correlation is largely driven by a small population of proliferating cancer cells that exhibits both high telomerase activity and cancer stemness. This study establishes a computational framework for quantifying telomerase enzymatic activity and provides new insights into the relationships among telomerase, cancer proliferation, and stemness.
Collapse
Affiliation(s)
- Nighat Noureen
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, TX, USA
- Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX, USA
| | - Shaofang Wu
- Department of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Yingli Lv
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, TX, USA
| | - Juechen Yang
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, TX, USA
| | - W K Alfred Yung
- Department of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Jonathan Gelfond
- Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX, USA
| | - Xiaojing Wang
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, TX, USA
- Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX, USA
| | - Dimpy Koul
- Department of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew Ludlow
- Department of Movement Science, University of Michigan, Ann Arbor, MI, USA
| | - Siyuan Zheng
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, TX, USA.
- Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
23
|
Li H, Wang B, Li D, Li J, Luo Y, Dan J. Roles of telomeres and telomerase in age‑related renal diseases (Review). Mol Med Rep 2020; 23:96. [PMID: 33300081 PMCID: PMC7723152 DOI: 10.3892/mmr.2020.11735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/30/2020] [Indexed: 01/20/2023] Open
Abstract
Age‑related renal diseases, which account for various progressive renal disorders associated with cellular and organismal senescence, are becoming a substantial public health burden. However, their aetiologies are complicated and their pathogeneses remain poorly understood. Telomeres and telomerase are known to be essential for maintaining the integrity and stability of eukaryotic genomes and serve crucial roles in numerous related signalling pathways that activate renal functions, such as repair and regeneration. Previous studies have reported that telomere dysfunction served a role in various types of age‑related kidney disease through various different molecular pathways. The present review aimed to summarise the current knowledge of the association between telomeres and ageing‑related kidney diseases and explored the contribution of dysfunctional telomeres to these diseases. The findings may help to provide novel strategies for treating patients with renal disease.
Collapse
Affiliation(s)
- Haili Li
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Boyuan Wang
- The Key Lab of Sports and Rehabilitation, Faculty of Physical Education, Yuxi Normal University, Yuxi, Yunnan 653100, P.R. China
| | - Daoqun Li
- Department of Human Anatomy, School of Basic Medicine and Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong 250014, P.R. China
| | - Jinyuan Li
- Department of General Surgery, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Ying Luo
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Juhua Dan
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
24
|
Alam MR, Kim DK. Alterations in telomere length and mitochondrial DNA copy number in human lymphocytes on short-term exposure to moderate hypoxia. Toxicol Rep 2020; 7:1443-1447. [PMID: 33163366 PMCID: PMC7600389 DOI: 10.1016/j.toxrep.2020.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022] Open
Abstract
Exposure to moderate hypoxia for 24 h significantly increased telomere length. Telomere elongation is related to the duration of hypoxia exposure. Mitochondrial DNA copy number was unaffected by hypoxia exposure. Mitochondrial DNA copy number is a more stable marker than telomere length alteration under hypoxia.
Hypoxia is related to a variety of diseases, such as cardiovascular and inflammatory diseases and various cancers. Telomere length (TL) may vary according to the hypoxia level and cell types. To the best of our knowledge, no study has investigated the effect of moderate hypoxia on TL and mitochondrial DNA copy number (mtDNAcn) in human lymphocytes. Therefore, in this study, we analyzed the effect of moderate hypoxia on TL in correlation with mtDNAcn. This study included 32 healthy male nonsmoker’s subjects; in this cohort, we had previously studied sister chromatid exchange and microsatellite instability. Blood samples from each subject were divided into three groups: a control group and two experimental groups exposed to moderate hypoxia for 12 or 24 h. Relative TL and mtDNAcn were measured by a quantitative real-time polymerase chain reaction. The TL in the control group did not significantly differ from that in the experimental group subjected to hypoxia for 12 h; however, the TL in the 24 h hypoxia–treated experimental group was significantly higher than that in the control group. The correlation between TL and mtDNAcn was not statistically significant in the two hypoxic states. The increase in TL was observed on exposure to hypoxia for 24 h and not for 12 h; thus, the findings suggest that telomere elongation is related to hypoxia exposure duration. The mtDNAcn in the two experimental groups did not significantly differ from that in the control group. These observations suggest that mtDNAcn alterations show more genetic stability than TL alterations. To the best of our knowledge, this is the first in vitro study on human lymphocytes reporting an increase in TL and no alteration in mtDNAcn after short-time exposure to moderate hypoxia.
Collapse
Affiliation(s)
- Mohammad Rizwan Alam
- Department of Medical Genetics, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Dae-Kwang Kim
- Department of Medical Genetics, School of Medicine, Keimyung University, Daegu, Republic of Korea.,Hanvit Institute for Medical Genetics, Daegu, Republic of Korea
| |
Collapse
|
25
|
Kamal S, Junaid M, Ejaz A, Bibi I, Akash MSH, Rehman K. The secrets of telomerase: Retrospective analysis and future prospects. Life Sci 2020; 257:118115. [PMID: 32698073 DOI: 10.1016/j.lfs.2020.118115] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022]
Abstract
Telomerase plays a significant role to maintain and regulate the telomere length, cellular immortality and senescence by the addition of guanine-rich repetitive sequences. Chronic inflammation or oxidative stress-induced infection downregulates TERT gene modifying telomerase activity thus contributing to the early steps of gastric carcinogenesis process. Furthermore, telomere-telomerase system performs fundamental role in the pathogenesis and progression of diabetes mellitus as well as in its vascular intricacy. The cessation of cell proliferation in cultured cells by inhibiting the telomerase activity of transformed cells renders the rationale for culling of telomerase as a target therapy for the treatment of metabolic disorders and various types of cancers. In this article, we have briefly described the role of immune system and malignant cells in the expression of telomerase with critical analysis on the gaps and potential for future studies. The key findings regarding the secrets of the telomerase summarized in this article will help in future treatment modalities for the prevention of various types of cancers and metabolic disorders notably diabetes mellitus.
Collapse
Affiliation(s)
- Shagufta Kamal
- Department of Biochemistry, Government College University Faisalabad, Pakistan
| | - Muhammad Junaid
- Department of Biochemistry, Government College University Faisalabad, Pakistan
| | - Arslan Ejaz
- Department of Biochemistry, Government College University Faisalabad, Pakistan
| | - Ismat Bibi
- Department of Chemistry, Islamia University, Bahawalpur, Pakistan
| | | | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
26
|
Stabilization of telomere by the antioxidant property of polyphenols: Anti-aging potential. Life Sci 2020; 259:118341. [PMID: 32853653 DOI: 10.1016/j.lfs.2020.118341] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 12/28/2022]
Abstract
Aging is a form of a gradual loss of physiological integrity that results in impaired cellular function and ultimately increased vulnerability to disease and death. This process is a significant risk factor for critical age-related disorders such as cancer, diabetes, cardiovascular disease, and neurological conditions. Several mechanisms contribute to aging, most notably progressive telomeres shortening, which can be counteracted by telomerase enzyme activity and increasing in this enzyme activity associated with partly delaying the onset of aging. Individual behaviors and environmental factors such as nutrition affect the life-span by impact the telomerase activity rate. Healthy eating habits, including antioxidant intakes, such as polyphenols, can have a positive effect on telomere length by this mechanism. In this review, after studying the underlying mechanisms of aging and understanding the relationships between telomeres, telomerase, and aging, it has been attempted to explain the effect of polyphenols on reversing the oxidative stress and aging process.
Collapse
|
27
|
Mavrogonatou E, Pratsinis H, Kletsas D. The role of senescence in cancer development. Semin Cancer Biol 2020; 62:182-191. [DOI: 10.1016/j.semcancer.2019.06.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023]
|
28
|
Armenian SH, Gibson CJ, Rockne RC, Ness KK. Premature Aging in Young Cancer Survivors. J Natl Cancer Inst 2020; 111:226-232. [PMID: 30715446 DOI: 10.1093/jnci/djy229] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 11/29/2018] [Accepted: 12/10/2018] [Indexed: 12/23/2022] Open
Abstract
Advances in early detection, treatment, and supportive care have resulted in an estimated 16 million cancer survivors who are alive in the United States today. Outcomes have notably improved for children with cancer as well as young adults with hematologic malignancies due, in part, to the intensification of cancer treatment, including the use of hematopoietic cell transplantation. Emerging evidence suggests that these cancer survivors are at risk for premature aging, manifesting as early onset of chronic health conditions and a higher risk of mortality compared with the general population. Although the pathophysiology of premature aging in these survivors has not been fully elucidated, emerging concepts in aging research could help shed light on this phenomenon. Longitudinal studies are needed to better characterize aging in these survivors, setting the stage for much-needed interventions to halt the trajectory of accelerated aging. These efforts will be enhanced through collaborations between translational researchers, clinical oncologists, primary care providers, geriatricians, patient caretakers, and other stakeholders committed to improving the lives of the growing population of survivors.
Collapse
Affiliation(s)
| | | | | | - Kirsten K Ness
- Department of Epidemiology and Cancer Control, St Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
29
|
Pine needle hexane extract promote cell cycle arrest and premature senescence via p27 KIP1 upregulation gastric cancer cells. Food Sci Biotechnol 2020; 29:845-853. [PMID: 32523794 DOI: 10.1007/s10068-019-00730-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/09/2019] [Accepted: 12/17/2019] [Indexed: 01/06/2023] Open
Abstract
Pinus densiflora sieb. et zucc.(pine needle) is a traditional medicine used in several East Asian countries. However, the efficacy of pine needle has rarely been reported. In this study showed that the anti-proliferative effects and the mechanisms of hexane layer of pine needle MeOH extract (PNH) on gastric cancer cells. At first, PNH inhibited the proliferation of gastric cancer cells in a dose-dependent manner. Moreover, PNH treatment induced G1 phase cell cycle arrest through the increased p27KIP1 expression and decreased cyclin dependent kinase (CDKs) activity. Furthermore, PNH treatment induced premature senescence without oncogenic stress, through the expression of p27KIP1 and Skp2. Taken together, these results showed that PNH inhibited gastric cancer cell proliferation through the induction of G1-cell cycle arrest and premature senescence via induced p27KIP1 expression, as controlled by Skp2 reduction. Also, PNH could be a candidate for anti-gastric cancer treatment and may be useful in the development of anti-gastric cancer drugs.
Collapse
|
30
|
Monteforte S, Cattelan S, Morosinotto C, Pilastro A, Grapputo A. Maternal predator-exposure affects offspring size at birth but not telomere length in a live-bearing fish. Ecol Evol 2020; 10:2030-2039. [PMID: 32128135 PMCID: PMC7042736 DOI: 10.1002/ece3.6035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 01/01/2023] Open
Abstract
The perception of predation risk could affect prey phenotype both within and between generations (via parental effects). The response to predation risk could involve modifications in physiology, morphology, and behavior and can ultimately affect long-term fitness. Among the possible modifications mediated by the exposure to predation risk, telomere length could be a proxy for investigating the response to predation risk both within and between generations, as telomeres can be significantly affected by environmental stress. Maternal exposure to the perception of predation risk can affect a variety of offspring traits but the effect on offspring telomere length has never been experimentally tested. Using a live-bearing fish, the guppy (Poecilia reticulata), we tested if the perceived risk of predation could affect the telomere length of adult females directly and that of their offspring with a balanced experimental setup that allowed us to control for both maternal and paternal contribution. We exposed female guppies to the perception of predation risk during gestation using a combination of both visual and chemical cues and we then measured female telomere length after the exposure period. Maternal effects mediated by the exposure to predation risk were measured on offspring telomere length and body size at birth. Contrary to our predictions, we did not find a significant effect of predation-exposure neither on female nor on offspring telomere length, but females exposed to predation risk produced smaller offspring at birth. We discuss the possible explanations for our findings and advocate for further research on telomere dynamics in ectotherms.
Collapse
Affiliation(s)
| | | | - Chiara Morosinotto
- Department of BiologyUniversity of PadovaPadovaItaly
- Bioeconomy Research TeamNovia University of Applied SciencesEkenäsFinland
| | | | | |
Collapse
|
31
|
Tomasetti C, Poling J, Roberts NJ, London NR, Pittman ME, Haffner MC, Rizzo A, Baras A, Karim B, Kim A, Heaphy CM, Meeker AK, Hruban RH, Iacobuzio-Donahue CA, Vogelstein B. Cell division rates decrease with age, providing a potential explanation for the age-dependent deceleration in cancer incidence. Proc Natl Acad Sci U S A 2019; 116:20482-20488. [PMID: 31548407 PMCID: PMC6789572 DOI: 10.1073/pnas.1905722116] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A new evaluation of previously published data suggested to us that the accumulation of mutations might slow, rather than increase, as individuals age. To explain this unexpected finding, we hypothesized that normal stem cell division rates might decrease as we age. To test this hypothesis, we evaluated cell division rates in the epithelium of human colonic, duodenal, esophageal, and posterior ethmoid sinonasal tissues. In all 4 tissues, there was a significant decrease in cell division rates with age. In contrast, cell division rates did not decrease in the colon of aged mice, and only small decreases were observed in their small intestine or esophagus. These results have important implications for understanding the relationship between normal stem cells, aging, and cancer. Moreover, they provide a plausible explanation for the enigmatic age-dependent deceleration in cancer incidence in very old humans but not in mice.
Collapse
Affiliation(s)
- Cristian Tomasetti
- Division of Biostatistics and Bioinformatics, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205;
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21205
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Justin Poling
- Pathology, Williamson Medical Center, Brentwood, TN 37207
| | - Nicholas J Roberts
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21205
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University, Baltimore, MD 21231
| | - Nyall R London
- Department of Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Meredith E Pittman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Michael C Haffner
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21205
- Department of Pathology, The Johns Hopkins University, Baltimore, MD 21231
| | - Anthony Rizzo
- Department of Pathology, The Johns Hopkins University, Baltimore, MD 21231
| | - Alex Baras
- Department of Pathology, The Johns Hopkins University, Baltimore, MD 21231
| | - Baktiar Karim
- Pathology & Histotechnology Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Antonio Kim
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21205
| | - Christopher M Heaphy
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21205
- Department of Pathology, The Johns Hopkins University, Baltimore, MD 21231
| | - Alan K Meeker
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21205
- Department of Pathology, The Johns Hopkins University, Baltimore, MD 21231
| | - Ralph H Hruban
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21205
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University, Baltimore, MD 21231
- Department of Pathology, The Johns Hopkins University, Baltimore, MD 21231
- Ludwig Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Christine A Iacobuzio-Donahue
- Department of Pathology, Rubenstein Center for Pancreatic Cancer Research, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Bert Vogelstein
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21205;
- Ludwig Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
32
|
Cardillo GDM, De-Paula VDJR, Ikenaga EH, Costa LR, Catanozi S, Schaeffer EL, Gattaz WF, Kerr DS, Forlenza OV. Chronic Lithium Treatment Increases Telomere Length in Parietal Cortex and Hippocampus of Triple-Transgenic Alzheimer's Disease Mice. J Alzheimers Dis 2019; 63:93-101. [PMID: 29614649 DOI: 10.3233/jad-170838] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Telomere length (TL) is a biomarker of cell aging, and its shortening has been linked to several age-related diseases. In Alzheimer's disease (AD), telomere shortening has been associated with neuroinflammation and oxidative stress. The majority of studies on TL in AD were based on leucocyte DNA, with little information about its status in the central nervous system. In addition to other neuroprotective effects, lithium has been implicated in the maintenance of TL. The present study aims to determine the effect of chronic lithium treatment on TL in different regions of the mouse brain, using a triple-transgenic mouse model (3xTg-AD). Eighteen transgenic and 22 wild-type (Wt) male mice were treated for eight months with chow containing 1.0 g (Li1) or 2.0 g (Li2) of lithium carbonate/kg, or standard chow (Li0). DNA was extracted from parietal cortex, hippocampus and olfactory epithelium and TL was quantified by real-time PCR. Chronic lithium treatment was associated with longer telomeres in the hippocampus (Li2, p = 0.0159) and in the parietal cortex (Li1, p = 0.0375) of 3xTg-AD compared to Wt. Our findings suggest that chronic lithium treatment does affect telomere maintenance, but the magnitude and nature of this effect depend on the working concentrations of lithium and characteristics of the tissue. This effect was observed when comparing 3xTg-AD with Wt mice, suggesting that the presence of AD pathology was required for the lithium modulation of TL.
Collapse
Affiliation(s)
- Giancarlo de Mattos Cardillo
- Laboratory of Neuroscience (LIM-27), Instituto de Psiquiatria do Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Vanessa de Jesus Rodrigues De-Paula
- Laboratory of Neuroscience (LIM-27), Instituto de Psiquiatria do Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Laboratory of Psysbio (LIM-23), Instituto de Psiquiatria do Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP, Brazil
| | - Eliza Hiromi Ikenaga
- Laboratory of Neuroscience (LIM-27), Instituto de Psiquiatria do Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Luciana Rodrigues Costa
- Laboratory of Neuroscience (LIM-27), Instituto de Psiquiatria do Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Sergio Catanozi
- Lipids Laboratory (LIM-10), Endocrinology and Metabolism Division of Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Evelin Lisete Schaeffer
- Laboratory of Neuroscience (LIM-27), Instituto de Psiquiatria do Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Wagner Farid Gattaz
- Laboratory of Neuroscience (LIM-27), Instituto de Psiquiatria do Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Daniel Shikanai Kerr
- Laboratory of Neuroscience (LIM-27), Instituto de Psiquiatria do Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Instituto Federal de Educacao, Ciencia e Tecnologia Catarinense-Campus Camboriu, Camboriu, SC, Brazil
| | - Orestes Vicente Forlenza
- Laboratory of Neuroscience (LIM-27), Instituto de Psiquiatria do Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
33
|
Tsoukalas D, Fragkiadaki P, Docea AO, Alegakis AK, Sarandi E, Thanasoula M, Spandidos DA, Tsatsakis A, Razgonova MP, Calina D. Discovery of potent telomerase activators: Unfolding new therapeutic and anti-aging perspectives. Mol Med Rep 2019; 20:3701-3708. [PMID: 31485647 PMCID: PMC6755196 DOI: 10.3892/mmr.2019.10614] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022] Open
Abstract
Telomere length, a marker of cellular aging, decreases with age and it has been associated with aging‑related diseases. Environmental factors, including diet and lifestyle factors, affect the rate of telomere shortening which can be reversed by telomerase. Telomerase activation by natural molecules has been suggested to be an anti‑aging modulator that can play a role in the treatment of aging‑related diseases. This study aimed to investigate the effect of natural compounds on telomerase activity in human peripheral blood mononuclear cells (PBMCs). The tested compounds included Centella asiatica extract formulation (08AGTLF), Astragalus extract formulation (Nutrient 4), TA‑65 (containing Astragalus membranaceus extract), oleanolic acid (OA), maslinic acid (MA), and 3 multi‑nutrient formulas (Nutrients 1, 2 and 3) at various concentrations. The mean absorbance values of telomerase activity measured following treatment with some of the above‑mentioned formulations were statistically significantly higher compared to those of the untreated cells. In particular, in order of importance with respect to telomerase activation from highest to lowest, 08AGTLF, OA, Nutrient 4, TA‑65, MA, Nutrient 3 and Nutrient 2, triggered statistically significant increase in telomerase activity compared to the untreated cells. 08AGTLF reached the highest levels of telomerase activity reported to date, at least to our knowledge, increasing telomerase activity by 8.8 folds compared to untreated cells, while Nutrient 4 and OA were also potent activators (4.3‑fold and 5.9‑fold increase, respectively). On the whole, this study indicates that the synergistic effect of nutrients and natural compounds can activate telomerase and produce more potent formulations. Human clinical studies using these formulations are required to evaluate their mode of action. This would reveal the health benefits of telomerase activation through natural molecules and would shed new light onto the treatment of aging‑related diseases.
Collapse
Affiliation(s)
- Dimitris Tsoukalas
- Metabolomic Μedicine, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece
| | - Persefoni Fragkiadaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy, Faculty of Pharmacy, 200349 Craiova, Romania
| | - Athanasios K Alegakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Evangelia Sarandi
- Metabolomic Μedicine, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece
| | - Maria Thanasoula
- Metabolomic Μedicine, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy, Faculty of Pharmacy, 200349 Craiova, Romania
| |
Collapse
|
34
|
Mazzolini R, Gonzàlez N, Garcia-Garijo A, Millanes-Romero A, Peiró S, Smith S, García de Herreros A, Canudas S. Snail1 transcription factor controls telomere transcription and integrity. Nucleic Acids Res 2019; 46:146-158. [PMID: 29059385 PMCID: PMC5758914 DOI: 10.1093/nar/gkx958] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/16/2017] [Indexed: 02/06/2023] Open
Abstract
Besides controlling epithelial-to-mesenchymal transition (EMT) and cell invasion, the Snail1 transcriptional factor also provides cells with cancer stem cell features. Since telomere maintenance is essential for stemness, we have examined the control of telomere integrity by Snail1. Fluorescence in situ hybridization (FISH) analysis indicates that Snail1-depleted mouse mesenchymal stem cells (MSC) have both a dramatic increase of telomere alterations and shorter telomeres. Remarkably, Snail1-deficient MSC present higher levels of both telomerase activity and the long non-coding RNA called telomeric repeat-containing RNA (TERRA), an RNA that controls telomere integrity. Accordingly, Snail1 expression downregulates expression of the telomerase gene (TERT) as well as of TERRA 2q, 11q and 18q. TERRA and TERT are transiently downregulated during TGFβ-induced EMT in NMuMG cells, correlating with Snail1 expression. Global transcriptome analysis indicates that ectopic expression of TERRA affects the transcription of some genes induced during EMT, such as fibronectin, whereas that of TERT does not modify those genes. We propose that Snail1 repression of TERRA is required not only for telomere maintenance but also for the expression of a subset of mesenchymal genes.
Collapse
Affiliation(s)
- Rocco Mazzolini
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Núria Gonzàlez
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Andrea Garcia-Garijo
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Alba Millanes-Romero
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Sandra Peiró
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Susan Smith
- Kimmel Center for Biology and Medicine at the Skirball Institute, Department of Pathology, New York University School of Medicine, New York University, USA
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sílvia Canudas
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Unitat de Nutrició Humana, Facultat de Medicina i Ciències de la Salut, Institut d'Investigació Sanitaria Pere Virgili (IISPV), Reus, Spain.,CIBER Fisiología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
35
|
Tsoukalas D, Fragkiadaki P, Docea AO, Alegakis AK, Sarandi E, Vakonaki E, Salataj E, Kouvidi E, Nikitovic D, Kovatsi L, Spandidos DA, Tsatsakis A, Calina D. Association of nutraceutical supplements with longer telomere length. Int J Mol Med 2019; 44:218-226. [PMID: 31115552 PMCID: PMC6559326 DOI: 10.3892/ijmm.2019.4191] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/02/2019] [Indexed: 11/06/2022] Open
Abstract
Telomeres are nucleotide tandem repeats located at the tip of eukaryotic chromosomes that maintain genomic integrity. The gradual shortening of telomeres leads to cellular senescence and apoptosis, a key mechanism of aging and age‑related chronic diseases. Epigenetic factors, such as nutrition, exercise and tobacco can affect the rate at which telomeres shorten and can modify the risk of developing chronic diseases. In this study, we evaluated the effects of a combination of nutraceutical supplements (NS) on telomere length (TL) in healthy volunteers with no medical history of any disease. Participants (n=47) were selected from healthy outpatients visiting a private clinic and were divided into the experimental group (n=16), that received the NS and the control group (n=31). We estimated the length of single telomeres in metaphase spread leukocytes, isolated from peripheral blood, using quantitative‑fluorescent in situ hybridization (Q‑FISH) analysis. The length of the whole telomere genome was significantly increased (P<0.05) for the mean, 1st quartile and median measurements in the experimental group. Similar findings were observed for short TL (20th percentile) (P<0.05) for the median and 3rd quartile measurements in the NS group, compared to the control group. The beneficial effects of the supplements on the length of short telomeres remained significant (P<0.05) following adjustment for age and sex. Telomeres were moderately longer in female patients compared to the male patients. On the whole, the findings of this study suggest that the administration of NS may be linked to sustaining the TL.
Collapse
Affiliation(s)
- Dimitris Tsoukalas
- Metabolomic Medicine Clinic, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
- Department of Clinical Pharmacy, University of Medicine and Pharmacy, Faculty of Pharmacy, Craiova 200349, Romania
| | - Persefoni Fragkiadaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
- Spin-Off Toxplus S.A., 71601 Heraklion, Greece
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy, Faculty of Pharmacy, Craiova 200349, Romania
| | | | - Evangelia Sarandi
- Metabolomic Medicine Clinic, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Elena Vakonaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
- Spin-Off Toxplus S.A., 71601 Heraklion, Greece
| | - Eralda Salataj
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, 70013 Heraklion
| | - Elisavet Kouvidi
- Department of Hematology, University of Crete, School of Medicine
| | - Dragana Nikitovic
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71003 Heraklion
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
- Spin-Off Toxplus S.A., 71601 Heraklion, Greece
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy, Faculty of Pharmacy, Craiova 200349, Romania
| |
Collapse
|
36
|
Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria M, Alimonti A. Cellular Senescence: Aging, Cancer, and Injury. Physiol Rev 2019; 99:1047-1078. [PMID: 30648461 DOI: 10.1152/physrev.00020.2018] [Citation(s) in RCA: 660] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a permanent state of cell cycle arrest that occurs in proliferating cells subjected to different stresses. Senescence is, therefore, a cellular defense mechanism that prevents the cells to acquire an unnecessary damage. The senescent state is accompanied by a failure to re-enter the cell cycle in response to mitogenic stimuli, an enhanced secretory phenotype and resistance to cell death. Senescence takes place in several tissues during different physiological and pathological processes such as tissue remodeling, injury, cancer, and aging. Although senescence is one of the causative processes of aging and it is responsible of aging-related disorders, senescent cells can also play a positive role. In embryogenesis and tissue remodeling, senescent cells are required for the proper development of the embryo and tissue repair. In cancer, senescence works as a potent barrier to prevent tumorigenesis. Therefore, the identification and characterization of key features of senescence, the induction of senescence in cancer cells, or the elimination of senescent cells by pharmacological interventions in aging tissues is gaining consideration in several fields of research. Here, we describe the known key features of senescence, the cell-autonomous, and noncell-autonomous regulators of senescence, and we attempt to discuss the functional role of this fundamental process in different contexts in light of the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Arianna Calcinotto
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Jaskaren Kohli
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Elena Zagato
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Laura Pellegrini
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Marco Demaria
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Andrea Alimonti
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| |
Collapse
|
37
|
El-Badawy A, Ghoneim NI, Nasr MA, Elkhenany H, Ahmed TA, Ahmed SM, El-Badri N. Telomerase reverse transcriptase coordinates with the epithelial-to-mesenchymal transition through a feedback loop to define properties of breast cancer stem cells. Biol Open 2018; 7:bio.034181. [PMID: 29907642 PMCID: PMC6078341 DOI: 10.1242/bio.034181] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Telomerase and its core component, telomerase reverse transcriptase (hTERT), are critical for stem cell compartment integrity. Normal adult stem cells have the longest telomeres in a given tissue, a property mediated by high hTERT expression and high telomerase enzymatic activity. In contrast, cancer stem cells (CSCs) have short telomeres despite high expression of hTERT, indicating that the role of hTERT in CSCs is not limited to telomere elongation and/or maintenance. The function of hTERT in CSCs remains poorly understood. Here, we knocked down hTERT expression in CSCs and observed a morphological shift to a more epithelial phenotype, suggesting a role for hTERT in the epithelial-to-mesenchymal transition (EMT) of CSCs. Therefore, in this study, we systematically explored the relationship between hTERT and EMT and identified a reciprocal, bi-directional feedback loop between hTERT and EMT in CSCs. We found that hTERT expression is mutually exclusive to the mesenchymal phenotype and that, reciprocally, loss of the mesenchymal phenotype represses hTERT expression. We also showed that hTERT plays a critical role in the expression of key CSC markers and nuclear β-catenin localization, increases the percentage of cells with side-population properties, and upregulates the CD133 expression. hTERT also promotes chemoresistance properties, tumorsphere formation and other important functional CSC properties. Subsequently, hTERT knockdown leads to the loss of the above advantages, indicating a loss of CSC properties. Our findings suggest that targeting hTERT might improve CSCs elimination by transitioning them from the aggressive mesenchymal state to a more steady epithelial state, thereby preventing cancer progression. Summary: This study describe a reciprocal, bi-directional feedback loop between hTERT and EMT to regulate properties of CSCs, suggesting that targeting hTERT may eliminate CSCs, thereby preventing cancer progression.
Collapse
Affiliation(s)
- Ahmed El-Badawy
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City 12588, Egypt
| | - Nehal I Ghoneim
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City 12588, Egypt
| | - Mohamed A Nasr
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City 12588, Egypt
| | - Hoda Elkhenany
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City 12588, Egypt.,Department of Surgery, College of Veterinary Medicine, Alexandria University, Alexandria 22785, Egypt
| | - Toka A Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City 12588, Egypt
| | - Sara M Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City 12588, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City 12588, Egypt
| |
Collapse
|
38
|
Ortiz-Ramírez M, Sánchez-García S, García-Dela Torre P, Reyes-Maldonado E, Sánchez-Arenas R, Rosas-Vargas H. Telomere shortening and frailty in Mexican older adults. Geriatr Gerontol Int 2018; 18:1286-1292. [PMID: 29989281 DOI: 10.1111/ggi.13463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 04/20/2018] [Accepted: 05/27/2018] [Indexed: 11/27/2022]
Abstract
AIM Telomere shortening has been associated with several age-related diseases, in addition to being considered a hallmark of aging. Frailty is a clinical syndrome characterized by an accentuated physiological and functional decline that might be a predictor of an adverse condition in older age. The present study evaluated the relationship between frailty and telomere shortening in older adults from Mexico City, Mexico. METHODS This was a cross-sectional study. Data were collected from 323 frail older adults, including physical and environmental factors, such as body mass index, comorbidities, physical activity and tobacco consumption. Telomere length was measured by real-time polymerase chain reaction. The frailty syndrome was diagnosed using the Fried criteria. RESULTS An association between frailty and telomere shortening was found in both sexes. Telomere length decreased from 6.05 kb (5.54-6.48 kb) to 4.20 kb (3.80-4.54 kb; P < 0.001). It was also observed that tobacco consumption could be a significant modifying factor in the association between these two variables. Previous reports are contradictory, suggesting that there is no relationship between telomere length and frailty; however, it is possible that there are genetic and/or environmental variables to be elucidated, that might influence this association, particularly in the studied population. CONCLUSIONS Telomere length is inversely related to frailty in Mexican frail older adults, and tobacco consumption is the main environmental modifying factor. Geriatr Gerontol Int 2018; 18: 1286-1292.
Collapse
Affiliation(s)
- Mauricio Ortiz-Ramírez
- Hematopathology Laboratory, National School of Biological Sciences, National Polytechnique Institute, Mexico City, Mexico.,Medical Research Unit on Human Genetics, Pediatric Hospital, Siglo XXI National Medical Center, Mexican Institute for Social Security, Mexico City, Mexico
| | - Sergio Sánchez-García
- Epidemiological Research and Health Services Unit, Aging Sub-Unit; Siglo XXI National Medical Center, Mexican Institute for Social Security, Mexico City, Mexico
| | - Paola García-Dela Torre
- Medical Research Unit for Neurological Diseases, Specialty Hospital, Siglo XXI National Medical Center, Mexican Institute for Social Security, Mexico City, Mexico
| | - Elba Reyes-Maldonado
- Hematopathology Laboratory, National School of Biological Sciences, National Polytechnique Institute, Mexico City, Mexico
| | - Rosalinda Sánchez-Arenas
- Medical Research Unit for Neurological Diseases, Specialty Hospital, Siglo XXI National Medical Center, Mexican Institute for Social Security, Mexico City, Mexico
| | - Haydeé Rosas-Vargas
- Medical Research Unit on Human Genetics, Pediatric Hospital, Siglo XXI National Medical Center, Mexican Institute for Social Security, Mexico City, Mexico
| |
Collapse
|
39
|
Mitochondria, its DNA and telomeres in ageing and human population. Biogerontology 2018; 19:189-208. [DOI: 10.1007/s10522-018-9748-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/23/2018] [Indexed: 12/11/2022]
|
40
|
Xie X, Chen Y, Ma L, Shen Q, Huang L, Zhao B, Wu T, Fu Z. Major depressive disorder mediates accelerated aging in rats subjected to chronic mild stress. Behav Brain Res 2017; 329:96-103. [DOI: 10.1016/j.bbr.2017.04.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 04/08/2017] [Accepted: 04/11/2017] [Indexed: 01/12/2023]
|
41
|
Wang X, Sundquist K, Hedelius A, Palmér K, Memon AA, Sundquist J. Leukocyte telomere length and depression, anxiety and stress and adjustment disorders in primary health care patients. BMC Psychiatry 2017; 17:148. [PMID: 28438147 PMCID: PMC5404668 DOI: 10.1186/s12888-017-1308-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 04/11/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The primary aim was to examine possible differences in telomere length between primary health care patients, with depression, anxiety or stress and adjustment disorders, and healthy controls. The second aim was to examine the association between telomere length and baseline characteristics in the patients. The third aim was to examine the potential effects of the 8-week treatments (mindfulness-based group therapy or treatment as usual, i.e. mostly cognitive-based therapy) on telomere length, and to examine whether there was a difference in the potential effect on telomere length between the two groups. METHODS A total of 501 individuals including 181 patients (aged 20-64 years), with depression, anxiety and stress and adjustment disorders, and 320 healthy controls (aged 19-70 years) were recruited in the study. Patient data were collected from a randomized controlled trial comparing mindfulness-based group therapy with treatment as usual. We isolated genomic DNA from blood samples, collected at baseline and after the 8-week follow-up. Telomere length was measured by quantitative real-time (qRT)-PCR. RESULTS Telomere length was significantly shorter in the patients (mean = 0.77 ± 0.12,), compared to the controls (mean = 0.81 ± 0.14) (p = 0.006). The difference in telomere length remained significant after controlling for age and sex. Old age, male sex and being overweight were associated with shorter telomere length. There was no significant difference in telomere length between baseline and at the 8-week follow-up in any of the treatment groups and no difference between the two groups. CONCLUSION Our findings confirm that telomere length, as compared with healthy controls, is shortened in patients with depression, anxiety and stress and adjustment disorders. In both groups (mindfulness-based group therapy or treatment as usual), the telomere length remained unchanged after the 8-week treatment/follow-up and there was no difference between the two groups. TRIAL REGISTRATION (ClinicalTrials.gov ID: NCT01476371 ) Registered November 11, 2011.
Collapse
Affiliation(s)
- Xiao Wang
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden.
| | - Kristina Sundquist
- 0000 0001 0930 2361grid.4514.4Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Anna Hedelius
- 0000 0001 0930 2361grid.4514.4Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Karolina Palmér
- 0000 0001 0930 2361grid.4514.4Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Ashfaque A. Memon
- 0000 0001 0930 2361grid.4514.4Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| | - Jan Sundquist
- 0000 0001 0930 2361grid.4514.4Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, Sweden
| |
Collapse
|
42
|
Ludlow AT, Gratidão L, Ludlow LW, Spangenburg EE, Roth SM. Acute exercise activates p38 MAPK and increases the expression of telomere-protective genes in cardiac muscle. Exp Physiol 2017; 102:397-410. [PMID: 28166612 DOI: 10.1113/ep086189] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/20/2017] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the central question of this study? A positive association between telomere length and exercise training has been shown in cardiac tissue of mice. It is currently unknown how each bout of exercise influences telomere-length-regulating proteins. We sought to determine how a bout of exercise altered the expression of telomere-length-regulating genes and a related signalling pathway in cardiac tissue of mice. What is the main finding and its importance? Acute exercise altered the expression of telomere-length-regulating genes in cardiac tissue and might be related to altered mitogen-activated protein kinase signalling. These findings are important in understanding how exercise provides a cardioprotective phenotype with ageing. Age is the greatest risk factor for cardiovascular disease. Telomere length is shorter in the hearts of aged mice compared with young mice, and short telomere length has been associated with an increased risk of cardiovascular disease. One year of voluntary wheel-running exercise attenuates the age-associated loss of telomere length and results in altered gene expression of telomere-length-maintaining and genome-stabilizing proteins in heart tissue of mice. Understanding the early adaptive response of the heart to an endurance exercise bout is paramount to understanding the impact of endurance exercise on heart tissue and cells. To this end, we studied mice before (BL), immediately after (TP1) and 1 h after a treadmill running bout (TP2). We measured the changes in expression of telomere-related genes (shelterin components), DNA-damage-sensing (p53 and Chk2) and DNA-repair genes (Ku70 and Ku80) and mitogen-activated protein kinase (MAPK) signalling. The TP1 animals had increased TRF1 and TRF2 protein and mRNA levels, greater expression of DNA-repair and -response genes (Chk2 and Ku80) and greater protein content of phosphorylated p38 MAPK compared with both BL and TP2 animals. These data provide insights into how physiological stressors remodel the heart tissue and how an early adaptive response mediated by exercise may be maintaining telomere length and/or stabilizing the heart genome through the upregulation of telomere-protective genes.
Collapse
Affiliation(s)
- Andrew T Ludlow
- Department of Kinesiology, School of Public Health, University of Maryland at College Park, College Park, MD, USA.,Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Laila Gratidão
- Department of Kinesiology, School of Public Health, University of Maryland at College Park, College Park, MD, USA.,Kinesiology Graduate Program, Catholic University of Brasilia, Brasilia, Brazil
| | - Lindsay W Ludlow
- Department of Kinesiology, School of Public Health, University of Maryland at College Park, College Park, MD, USA.,Department of Applied Physiology, Southern Methodist University, Dallas, TX, USA
| | - Espen E Spangenburg
- Department of Physiology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - Stephen M Roth
- Department of Kinesiology, School of Public Health, University of Maryland at College Park, College Park, MD, USA
| |
Collapse
|
43
|
Clinical and biological markers of premature aging after autologous SCT in childhood cancer. Bone Marrow Transplant 2017; 52:600-605. [PMID: 28067869 DOI: 10.1038/bmt.2016.334] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/29/2016] [Accepted: 11/02/2016] [Indexed: 01/10/2023]
Abstract
The aim of this study was to analyze the prevalence of frailty and physical health limitations among long-term survivors of high-risk neuroblastoma (HR NBL) and to investigate whether frail health is associated with variables of cardiovascular function, markers of inflammation and telomere length. A national study cohort of 19 (median age 22, range 16-30 years) long-term (>10 years) HR NBL survivors was studied and the findings were compared with 20 age- and sex-matched controls. Frailty was defined as ⩾3 of the following conditions: low muscle mass, low energy expenditure, slow running and weakness. The prevalence of frailty was significantly higher among the HR NBL survivors 9/19 (47%) than among the controls (0%). Thirteen (68%) of the survivors reported significant physical health limitations in vigorous activities, as opposed to none of the controls. The HR NBL survivors had significantly shorter telomere length and higher serum levels of high sensitivity C-reactive protein than did the controls. Frail health and poor physical functioning are prevalent among HR NBL survivors and suggest premature aging. Survivors with gonadal damage, very low fat mass percentage, low glycosylated hemoglobin A1c and increased common carotid artery intima-media thickness may be more prone to early aging after high dose therapy.
Collapse
|
44
|
Basello K, Pacifici F, Capuani B, Pastore D, Lombardo MF, Ferrelli F, Coppola A, Donadel G, Arriga R, Sconocchia G, Bellia A, Rogliani P, Federici M, Sbraccia P, Lauro D, Della-Morte D. Serum- and Glucocorticoid-Inducible Kinase 1 Delay the Onset of Endothelial Senescence by Directly Interacting with Human Telomerase Reverse Transcriptase. Rejuvenation Res 2016; 19:79-89. [PMID: 26230157 DOI: 10.1089/rej.2015.1726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Endothelial senescence is characteristic of vascular aging. Serum- and glucocorticoid-inducible kinase (SGK)1 belongs to a family of serine/threonine kinases regulated by various external stimuli. SGK1 has been shown to be protective against reactive oxygen species (ROS) production and to be involved in processes regulating aging. However, data on the direct relationship between SGK1 and senescence are sparse. In the present study, we sought to investigate the role of SGK1 in cellular aging by using human umbilical vein endothelial cells (HUVECs) infected with different constructs. Senescence was measured at different cellular stages by senescence-associated β-galactosidase (SA-β-gal) activity, human telomerase reverse transcriptase (hTERT) activity, p21 protein levels, and ROS production. HUVECs over-expressing full-length SGK1 (wild-type SGK1 [SGK1WT]) showed a decrease in SA-β-gal and p21 expression and a corresponding increase in hTERT activity in the early stages of aging. Moreover, SGK1WT presented lower levels of ROS production. A direct interaction between SGK1WT and hTERT was also shown by co-immunoprecipitation. The SGK1Δ60 isoform, lacking the amino-terminal 60 amino acids, did not show interaction with hTERT, suggesting a pivotal role of this protein site for the SGK1 anti-aging function. The results from this study may be of particular importance, because SGK1WT over-expression by activating telomerase and reducing ROS levels may delay the processes of endothelial senescence.
Collapse
Affiliation(s)
- Katia Basello
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Italy
| | - Francesca Pacifici
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Italy
| | - Barbara Capuani
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Italy
| | - Donatella Pastore
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Italy
| | - Marco F Lombardo
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Italy
| | - Francesca Ferrelli
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Italy
| | - Andrea Coppola
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Italy
| | - Giulia Donadel
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Italy
| | - Roberto Arriga
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Italy
| | - Giuseppe Sconocchia
- 2 Institute of Translational Pharmacology , National Research Council, Rome, Italy
| | - Alfonso Bellia
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Italy
| | - Paola Rogliani
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Italy
| | - Massimo Federici
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Italy
| | - Paolo Sbraccia
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Italy
| | - Davide Lauro
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Italy
| | - David Della-Morte
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Italy .,3 IRCCS San Raffaele Pisana , Rome, Italy
| |
Collapse
|
45
|
Zhao T, Hu F, Liu X, Tao Q. Blockade of telomerase reverse transcriptase enhances chemosensitivity in head and neck cancers through inhibition of AKT/ERK signaling pathways. Oncotarget 2016; 6:35908-21. [PMID: 26497550 PMCID: PMC4742150 DOI: 10.18632/oncotarget.5468] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 10/06/2015] [Indexed: 12/14/2022] Open
Abstract
Head and Neck squamous cell carcinomas (HNSCC), characterized by the high frequency of local recurrence and distant metastases, is mostly related to highly malignant and resistant to apoptosis, resulting in significant insensitivity to chemotherapy. Telomerase reverse transcriptase (TERT), as the catalytic subunit of telomerase, was implicated in the telomerase-mediated cellular transformation, proliferation, stemness and cell survival. Moreover, overexpression of human TERT (hTERT) is reported to be correlated with advanced invasive stage of the tumor progression and poor prognosis. Here, we show that hTERT potentially mediated the apoptotic resistance and blockade of telomerase reverse transcriptase could enhance chemosensitivity in head and neck cancers. Mechanistically, hTERT interacts with the phosphorylation of AKT and ERK to suppress the expression of p53, ultimately, leading to modulation of the cellular sensitivity to chemotherapy. Thus, these findings suggest that hTERT targeting could be an attractive approach in combination with conventional chemotherapies for patients suffering from chemoinsensitivity or refractory HNSCC.
Collapse
Affiliation(s)
- Tengda Zhao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China.,Department of Oral and Maxillofacial Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Fengchun Hu
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China.,Department of Stomatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xingguang Liu
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Qian Tao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| |
Collapse
|
46
|
Liu N, Ding D, Hao W, Yang F, Wu X, Wang M, Xu X, Ju Z, Liu JP, Song Z, Shay JW, Guo Y, Cong YS. hTERT promotes tumor angiogenesis by activating VEGF via interactions with the Sp1 transcription factor. Nucleic Acids Res 2016; 44:8693-8703. [PMID: 27325744 PMCID: PMC5062966 DOI: 10.1093/nar/gkw549] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 06/04/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis is recognized as an important hallmark of cancer. Although telomerase is thought to be involved in tumor angiogenesis, the evidence and underlying mechanism remain elusive. Here, we demonstrate that human telomerase reverse transcriptase (hTERT) activates vascular epithelial growth factor (VEGF) gene expression through interactions with the VEGF promoter and the transcription factor Sp1. hTERT binds to Sp1 in vitro and in vivo and stimulates angiogenesis in a manner dependent on Sp1. Deletion of the mTert gene in the first generation of Tert null mice compromised tumor growth, with reduced VEGF expression. In addition, we show that hTERT expression levels are positively correlated with those of VEGF in human gastric tumor samples. Together, our results demonstrate that hTERT facilitates tumor angiogenesis by up-regulating VEGF expression through direct interactions with the VEGF gene and the Sp1 transcription factor. These results provide novel insights into hTERT function in tumor progression in addition to its role in telomere maintenance.
Collapse
Affiliation(s)
- Ning Liu
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China
| | - Deqiang Ding
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China
| | - Wanyu Hao
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China
| | - Fan Yang
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China
| | - Xiaoying Wu
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China
| | - Miao Wang
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China
| | - Xiaoling Xu
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China
| | - Zhenyu Ju
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China
| | - Jun-Ping Liu
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China
| | - Zhangfa Song
- Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou 310016, China
| | - Jerry W Shay
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yunliang Guo
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yu-Sheng Cong
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou 311121, China
| |
Collapse
|
47
|
Bai H, Gao Y, Hoyle DL, Cheng T, Wang ZZ. Suppression of Transforming Growth Factor-β Signaling Delays Cellular Senescence and Preserves the Function of Endothelial Cells Derived from Human Pluripotent Stem Cells. Stem Cells Transl Med 2016; 6:589-600. [PMID: 28191769 PMCID: PMC5442820 DOI: 10.5966/sctm.2016-0089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/09/2016] [Indexed: 12/15/2022] Open
Abstract
Transplantation of vascular cells derived from human pluripotent stem cells (hPSCs) offers an attractive noninvasive method for repairing the ischemic tissues and for preventing the progression of vascular diseases. Here, we found that in a serum‐free condition, the proliferation rate of hPSC‐derived endothelial cells is quickly decreased, accompanied with an increased cellular senescence, resulting in impaired gene expression of endothelial nitric oxide synthase (eNOS) and impaired vessel forming capability in vitro and in vivo. To overcome the limited expansion of hPSC‐derived endothelial cells, we screened small molecules for specific signaling pathways and found that inhibition of transforming growth factor‐β (TGF‐β) signaling significantly retarded cellular senescence and increased a proliferative index of hPSC‐derived endothelial cells. Inhibition of TGF‐β signaling extended the life span of hPSC‐derived endothelial and improved endothelial functions, including vascular network formation on Matrigel, acetylated low‐density lipoprotein uptake, and eNOS expression. Exogenous transforming growth factor‐β1 increased the gene expression of cyclin‐dependent kinase inhibitors, p15Ink4b, p16Ink4a, and p21CIP1, in endothelial cells. Conversely, inhibition of TGF‐β reduced the gene expression of p15Ink4b, p16Ink4a, and p21CIP1. Our findings demonstrate that the senescence of newly generated endothelial cells from hPSCs is mediated by TGF‐β signaling, and manipulation of TGF‐β signaling offers a potential target to prevent vascular aging. Stem Cells Translational Medicine2017;6:589–600
Collapse
Affiliation(s)
- Hao Bai
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yongxing Gao
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dixie L. Hoyle
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Blood Cell Therapy and Technology, Tianjin, People's Republic of China
| | - Zack Z. Wang
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Blood Cell Therapy and Technology, Tianjin, People's Republic of China
| |
Collapse
|
48
|
Ali M, Devkota S, Roh JI, Lee J, Lee HW. Telomerase reverse transcriptase induces basal and amino acid starvation-induced autophagy through mTORC1. Biochem Biophys Res Commun 2016; 478:1198-204. [DOI: 10.1016/j.bbrc.2016.08.094] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/16/2016] [Indexed: 01/06/2023]
|
49
|
Jäger K, Walter M. Therapeutic Targeting of Telomerase. Genes (Basel) 2016; 7:genes7070039. [PMID: 27455328 PMCID: PMC4962009 DOI: 10.3390/genes7070039] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/16/2016] [Accepted: 06/24/2016] [Indexed: 12/20/2022] Open
Abstract
Telomere length and cell function can be preserved by the human reverse transcriptase telomerase (hTERT), which synthesizes the new telomeric DNA from a RNA template, but is normally restricted to cells needing a high proliferative capacity, such as stem cells. Consequently, telomerase-based therapies to elongate short telomeres are developed, some of which have successfully reached the stage I in clinical trials. Telomerase is also permissive for tumorigenesis and 90% of all malignant tumors use telomerase to obtain immortality. Thus, reversal of telomerase upregulation in tumor cells is a potential strategy to treat cancer. Natural and small-molecule telomerase inhibitors, immunotherapeutic approaches, oligonucleotide inhibitors, and telomerase-directed gene therapy are useful treatment strategies. Telomerase is more widely expressed than any other tumor marker. The low expression in normal tissues, together with the longer telomeres in normal stem cells versus cancer cells, provides some degree of specificity with low risk of toxicity. However, long term telomerase inhibition may elicit negative effects in highly-proliferative cells which need telomerase for survival, and it may interfere with telomere-independent physiological functions. Moreover, only a few hTERT molecules are required to overcome senescence in cancer cells, and telomerase inhibition requires proliferating cells over a sufficient number of population doublings to induce tumor suppressive senescence. These limitations may explain the moderate success rates in many clinical studies. Despite extensive studies, only one vaccine and one telomerase antagonist are routinely used in clinical work. For complete eradication of all subpopulations of cancer cells a simultaneous targeting of several mechanisms will likely be needed. Possible technical improvements have been proposed including the development of more specific inhibitors, methods to increase the efficacy of vaccination methods, and personalized approaches. Telomerase activation and cell rejuvenation is successfully used in regenerative medicine for tissue engineering and reconstructive surgery. However, there are also a number of pitfalls in the treatment with telomerase activating procedures for the whole organism and for longer periods of time. Extended cell lifespan may accumulate rare genetic and epigenetic aberrations that can contribute to malignant transformation. Therefore, novel vector systems have been developed for a 'mild' integration of telomerase into the host genome and loss of the vector in rapidly-proliferating cells. It is currently unclear if this technique can also be used in human beings to treat chronic diseases, such as atherosclerosis.
Collapse
Affiliation(s)
- Kathrin Jäger
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany.
| | - Michael Walter
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany.
- Labor Berlin-Charité Vivantes Services GmbH, Sylter Str. 2, Berlin 13353, Germany.
| |
Collapse
|
50
|
Glei DA, Goldman N, Risques RA, Rehkopf DH, Dow WH, Rosero-Bixby L, Weinstein M. Predicting Survival from Telomere Length versus Conventional Predictors: A Multinational Population-Based Cohort Study. PLoS One 2016; 11:e0152486. [PMID: 27049651 PMCID: PMC4822878 DOI: 10.1371/journal.pone.0152486] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/15/2016] [Indexed: 11/19/2022] Open
Abstract
Telomere length has generated substantial interest as a potential predictor of aging-related diseases and mortality. Some studies have reported significant associations, but few have tested its ability to discriminate between decedents and survivors compared with a broad range of well-established predictors that include both biomarkers and commonly collected self-reported data. Our aim here was to quantify the prognostic value of leukocyte telomere length relative to age, sex, and 19 other variables for predicting five-year mortality among older persons in three countries. We used data from nationally representative surveys in Costa Rica (N = 923, aged 61+), Taiwan (N = 976, aged 54+), and the U.S. (N = 2672, aged 60+). Our study used a prospective cohort design with all-cause mortality during five years post-exam as the outcome. We fit Cox hazards models separately by country, and assessed the discriminatory ability of each predictor. Age was, by far, the single best predictor of all-cause mortality, whereas leukocyte telomere length was only somewhat better than random chance in terms of discriminating between decedents and survivors. After adjustment for age and sex, telomere length ranked between 15th and 17th (out of 20), and its incremental contribution was small; nine self-reported variables (e.g., mobility, global self-assessed health status, limitations with activities of daily living, smoking status), a cognitive assessment, and three biological markers (C-reactive protein, serum creatinine, and glycosylated hemoglobin) were more powerful predictors of mortality in all three countries. Results were similar for cause-specific models (i.e., mortality from cardiovascular disease, cancer, and all other causes combined). Leukocyte telomere length had a statistically discernible, but weak, association with mortality, but it did not predict survival as well as age or many other self-reported variables. Although telomere length may eventually help scientists understand aging, more powerful and more easily obtained tools are available for predicting survival.
Collapse
Affiliation(s)
- Dana A. Glei
- Center for Population and Health, Georgetown University, Washington, District of Columbia, United States of America
| | - Noreen Goldman
- Office of Population Research, Princeton University, Princeton, New Jersey, United States of America
| | - Rosa Ana Risques
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - David H. Rehkopf
- Division of General Medical Disciplines, School of Medicine, Stanford University, Stanford, California, United States of America
| | - William H. Dow
- School of Public Health, University of California-Berkeley, Berkeley, California, United States of America
| | - Luis Rosero-Bixby
- Centro Centroamericano de Población, Universidad de Costa Rica, San Jose, Costa Rica
| | - Maxine Weinstein
- Center for Population and Health, Georgetown University, Washington, District of Columbia, United States of America
| |
Collapse
|