1
|
Sun L, Wang N, Feng Y, Huo X, Feng Q, Zhao X, Li Y, Yan L, Xie X, Hu J. The distribution of heterophilic antigens and their relationship with autoimmune diseases. Front Immunol 2023; 14:1275658. [PMID: 38022676 PMCID: PMC10667719 DOI: 10.3389/fimmu.2023.1275658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Microbial infections are associated with the occurrence of autoimmune diseases, but the mechanisms of microbial infection inducing autoimmune diseases are not fully understood. The existence of heterophilic antigens between microorganisms and human tissues may explain part of the pathogenesis of autoimmune diseases. Here, we investigate the distribution of heterophilic antigens and its relationship with autoimmune diseases. Methods Monoclonal antibodies against a variety of microorganisms were prepared. The titer, subclass and reactivity of antibodies with microorganisms were identified, and heterophilic antibodies that cross-reacted with human tissues were screened by human tissue microarray. The reactivity of these heterophilic antibodies with different individuals and different species was further examined by immunohistochemistry. Results In this study, 21 strains of heterophilic antibodies were screened. The results showed that these heterophilic antibodies were produced due to the existence of heterophilic antigens between microorganism and human body and the distribution of heterophilic antigens had individual, tissue and species differences. Conclusion Our study showed that heterophilic antigens exist widely between microorganisms and human body, and the heterophilic antigens carried by microorganisms may break the immune tolerance of the body through carrier effect and initiate immune response, which may be one of the important mechanisms of infection inducing autoimmune diseases.
Collapse
Affiliation(s)
- Lijun Sun
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
- Shaanxi Province Research Center of Cell Immunological Engineering and Technology, Xi’an, Shaanxi, China
| | - Nana Wang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
- Shaanxi Province Research Center of Cell Immunological Engineering and Technology, Xi’an, Shaanxi, China
| | - Yangmeng Feng
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
- Shaanxi Province Research Center of Cell Immunological Engineering and Technology, Xi’an, Shaanxi, China
| | - Xueping Huo
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
- Shaanxi Province Research Center of Cell Immunological Engineering and Technology, Xi’an, Shaanxi, China
| | - Qing Feng
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
- Shaanxi Province Research Center of Cell Immunological Engineering and Technology, Xi’an, Shaanxi, China
| | - Xiangrong Zhao
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
- Shaanxi Province Research Center of Cell Immunological Engineering and Technology, Xi’an, Shaanxi, China
| | - Yan Li
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
- Shaanxi Province Research Center of Cell Immunological Engineering and Technology, Xi’an, Shaanxi, China
| | - Liting Yan
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
- Shaanxi Province Research Center of Cell Immunological Engineering and Technology, Xi’an, Shaanxi, China
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Jun Hu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
- Shaanxi Province Research Center of Cell Immunological Engineering and Technology, Xi’an, Shaanxi, China
| |
Collapse
|
2
|
Liu H, Geravandi S, Grasso AM, Sikdar S, Pugliese A, Maedler K. Enteroviral infections are not associated with type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1236574. [PMID: 38027145 PMCID: PMC10643152 DOI: 10.3389/fendo.2023.1236574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction For more than a century, enteroviral infections have been associated with autoimmunity and type 1 diabetes (T1D). Uncontrolled viral response pathways repeatedly presented during childhood highly correlate with autoimmunity and T1D. Virus responses evoke chemokines and cytokines, the "cytokine storm" circulating through the body and attack cells especially vulnerable to inflammatory destruction. Intra-islet inflammation is a major trigger of β-cell failure in both T1D and T2D. The genetic contribution of islet inflammation pathways is apparent in T1D, with several mutations in the interferon system. In contrast, in T2D, gene mutations are related to glucose homeostasis in β cells and insulin-target tissue and rarely within viral response pathways. Therefore, the current study evaluated whether enteroviral RNA can be found in the pancreas from organ donors with T2D and its association with disease progression. Methods Pancreases from well-characterized 29 organ donors with T2D and 15 age- and BMI-matched controls were obtained from the network for pancreatic organ donors with diabetes and were analyzed in duplicates. Single-molecule fluorescence in-situ hybridization analyses were performed using three probe sets to detect positive-strand enteroviral RNA; pancreas sections were co-stained by classical immunostaining for insulin and CD45. Results There was no difference in the presence or localization of enteroviral RNA in control nondiabetic and T2D pancreases; viral infiltration showed large heterogeneity in both groups ranging from 0 to 94 virus+ cells scattered throughout the pancreas, most of them in the exocrine pancreas. Very rarely, a single virus+ cell was found within islets or co-stained with CD45+ immune cells. Only one single T2D donor presented an exceptionally high number of viruses, similarly as seen previously in T1D, which correlated with a highly reduced number of β cells. Discussion No association of enteroviral infection in the pancreas and T2D diabetes could be found. Despite great similarities in inflammatory markers in islets in T1D and T2D, long-term enteroviral infiltration is a distinct pathological feature of T1D-associated autoimmunity and in T1D pancreases.
Collapse
Affiliation(s)
- Huan Liu
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
- The JDRF nPOD-Virus Group
| | - Shirin Geravandi
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
- The JDRF nPOD-Virus Group
| | - Ausilia Maria Grasso
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Saheri Sikdar
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Alberto Pugliese
- The JDRF nPOD-Virus Group
- Diabetes Research Institute, Department of Medicine, Division of Endocrinology and Metabolism, Miami, FL, United States
- Department of Microbiology and Immunology, Leonard Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Diabetes Immunology & The Wanek Family Project for Type 1 Diabetes, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, United States
| | - Kathrin Maedler
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
- The JDRF nPOD-Virus Group
| |
Collapse
|
3
|
Sun JY, Guo CY, Wang GR, Yan LT, Feng Q, Li Y, Huo XP, Xie X, Hu J, Sun LJ. Identification of Heterophilic Epitopes of H1N1 Influenza Virus Hemagglutinin. Curr Microbiol 2023; 80:188. [PMID: 37074450 DOI: 10.1007/s00284-023-03294-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/30/2023] [Indexed: 04/20/2023]
Abstract
Our previous studies found that the H1-50 monoclonal antibody (mAb) of influenza A virus hemagglutinin (HA) cross-reacted with pancreatic tissue and islet β-cells, and further studies showed that H1-50 mAb binds to prohibitin (PHB) protein of islet β-cells. These suggest that there are heterophilic epitopes between influenza virus HA and pancreatic tissue, which may be involved in the pathogenesis of type 1 diabetes. To further investigate these heterophilic epitopes, we screened binding epitopes of H1-50 mAb using a phage 12-peptide library. DNA sequencing and comparative analysis were performed on specific positive phage clones, and the sequence of 12-peptide binding to H1-50 mAb was obtained. The binding epitopes of H1-50 mAb in influenza virus HA were determined by sequence analysis and experimental verification, and their distribution within the three-dimensional structure was assessed by PyMOL. The results showed that H1-50 mAb specifically binds to polypeptides (306-SLPFQNIHPITIGK-319) of influenza A virus HA, located in the stem of the HA protein. However, there is no specific binding sequence between H1-50 mAb and the PHB protein of islet β-cells in the primary structure, and we speculate that the binding of H1-50 mAb to islet β-cells may depend on the spatial conformation. The identification of the heterophilic epitopes of H1N1 influenza virus hemagglutinin provides a new perspective on type 1 diabetes that may be caused by influenza virus infection, which may contribute to the prevention and control of influenza.
Collapse
Affiliation(s)
- Jing-Ying Sun
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
- Shaanxi Province Research Center of Cell Immunological Engineering and Technology, Xi'an, 710068, Shaanxi, China
| | - Chun-Yan Guo
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
- Shaanxi Province Research Center of Cell Immunological Engineering and Technology, Xi'an, 710068, Shaanxi, China
| | - Guo-Rong Wang
- General Surgery Department of Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Li-Ting Yan
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
- Shaanxi Province Research Center of Cell Immunological Engineering and Technology, Xi'an, 710068, Shaanxi, China
| | - Qing Feng
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
- Shaanxi Province Research Center of Cell Immunological Engineering and Technology, Xi'an, 710068, Shaanxi, China
| | - Yan Li
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
- Shaanxi Province Research Center of Cell Immunological Engineering and Technology, Xi'an, 710068, Shaanxi, China
| | - Xue-Ping Huo
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
- Shaanxi Province Research Center of Cell Immunological Engineering and Technology, Xi'an, 710068, Shaanxi, China
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Jun Hu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China.
- Shaanxi Province Research Center of Cell Immunological Engineering and Technology, Xi'an, 710068, Shaanxi, China.
| | - Li-Jun Sun
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China.
- Shaanxi Province Research Center of Cell Immunological Engineering and Technology, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
4
|
Enteroviruses and T1D: Is It the Virus, the Genes or Both which Cause T1D. Microorganisms 2020; 8:microorganisms8071017. [PMID: 32650582 PMCID: PMC7409303 DOI: 10.3390/microorganisms8071017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disorder that results from the selective destruction of insulin-producing β-cells in the pancreas. Up to now, the mechanisms triggering the initiation and progression of the disease are, in their complexity, not fully understood and imply the disruption of several tolerance networks. Viral infection is one of the environmental factors triggering diabetes, which is initially based on the observation that the disease’s incidence follows a periodic pattern within the population. Moreover, the strong correlation of genetic susceptibility is a prerequisite for enteroviral infection associated islet autoimmunity. Epidemiological data and clinical findings indicate enteroviral infections, mainly of the coxsackie B virus family, as potential pathogenic mechanisms to trigger the autoimmune reaction towards β-cells, resulting in the boost of inflammation following β-cell destruction and the onset of T1D. This review discusses previously identified virus-associated genetics and pathways of β-cell destruction. Is it the virus itself which leads to β-cell destruction and T1D progression? Or is it genetic, so that the virus may activate auto-immunity and β-cell destruction only in genetically predisposed individuals?
Collapse
|
5
|
Saarinen NVV, Stone VM, Hankaniemi MM, Mazur MA, Vuorinen T, Flodström-Tullberg M, Hyöty H, Hytönen VP, Laitinen OH. Antibody Responses against Enterovirus Proteases are Potential Markers for an Acute Infection. Viruses 2020; 12:E78. [PMID: 31936473 PMCID: PMC7020046 DOI: 10.3390/v12010078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Enteroviruses are a group of common non-enveloped RNA viruses that cause symptoms ranging from mild respiratory infections to paralysis. Due to the abundance of enterovirus infections it is hard to distinguish between on-going and previous infections using immunological assays unless the IgM fraction is studied. METHODS In this study we show using Indirect ELISA and capture IgM ELISA that an IgG antibody response against the nonstructural enteroviral proteins 2A and 3C can be used to distinguish between IgM positive (n = 22) and IgM negative (n = 20) human patients with 83% accuracy and a diagnostic odds ratio of 30. Using a mouse model, we establish that the antibody response to the proteases is short-lived compared to the antibody response to the structural proteins in. As such, the protease antibody response serves as a potential marker for an acute infection. CONCLUSIONS Antibody responses against enterovirus proteases are shorter-lived than against structural proteins and can differentiate between IgM positive and negative patients, and therefore they are a potential marker for acute infections.
Collapse
Affiliation(s)
- Niila V. V. Saarinen
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland; (N.V.V.S.); (V.M.S.); (M.M.H.); (M.F.-T.); (H.H.); (V.P.H.)
| | - Virginia M. Stone
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland; (N.V.V.S.); (V.M.S.); (M.M.H.); (M.F.-T.); (H.H.); (V.P.H.)
- Karolinska Institutet, The Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska University Hospital, 14152 Stockholm, Sweden;
| | - Minna M. Hankaniemi
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland; (N.V.V.S.); (V.M.S.); (M.M.H.); (M.F.-T.); (H.H.); (V.P.H.)
| | - Magdalena A. Mazur
- Karolinska Institutet, The Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska University Hospital, 14152 Stockholm, Sweden;
| | - Tytti Vuorinen
- Turku University Hospital, Clinical Microbiology and University of Turku, Institute of Biomedicine, 20520 Turku, Finland;
| | - Malin Flodström-Tullberg
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland; (N.V.V.S.); (V.M.S.); (M.M.H.); (M.F.-T.); (H.H.); (V.P.H.)
- Karolinska Institutet, The Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska University Hospital, 14152 Stockholm, Sweden;
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland; (N.V.V.S.); (V.M.S.); (M.M.H.); (M.F.-T.); (H.H.); (V.P.H.)
| | - Vesa P. Hytönen
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland; (N.V.V.S.); (V.M.S.); (M.M.H.); (M.F.-T.); (H.H.); (V.P.H.)
| | - Olli H. Laitinen
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland; (N.V.V.S.); (V.M.S.); (M.M.H.); (M.F.-T.); (H.H.); (V.P.H.)
| |
Collapse
|
6
|
Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms. Viruses 2019; 11:v11080762. [PMID: 31430946 PMCID: PMC6723519 DOI: 10.3390/v11080762] [Citation(s) in RCA: 322] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 07/27/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
For a long time, viruses have been shown to modify the clinical picture of several autoimmune diseases, including type 1 diabetes (T1D), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjögren’s syndrome (SS), herpetic stromal keratitis (HSK), celiac disease (CD), and multiple sclerosis (MS). Best examples of viral infections that have been proposed to modulate the induction and development of autoimmune diseases are the infections with enteric viruses such as Coxsackie B virus (CVB) and rotavirus, as well as influenza A viruses (IAV), and herpesviruses. Other viruses that have been studied in this context include, measles, mumps, and rubella. Epidemiological studies in humans and experimental studies in animal have shown that viral infections can induce or protect from autoimmunopathologies depending on several factors including genetic background, host-elicited immune responses, type of virus strain, viral load, and the onset time of infection. Still, data delineating the clear mechanistic interaction between the virus and the immune system to induce autoreactivity are scarce. Available data indicate that viral-induced autoimmunity can be activated through multiple mechanisms including molecular mimicry, epitope spreading, bystander activation, and immortalization of infected B cells. Contrarily, the protective effects can be achieved via regulatory immune responses which lead to the suppression of autoimmune phenomena. Therefore, a better understanding of the immune-related molecular processes in virus-induced autoimmunity is warranted. Here we provide an overview of the current understanding of viral-induced autoimmunity and the mechanisms that are associated with this phenomenon.
Collapse
|
7
|
Blanter M, Sork H, Tuomela S, Flodström-Tullberg M. Genetic and Environmental Interaction in Type 1 Diabetes: a Relationship Between Genetic Risk Alleles and Molecular Traits of Enterovirus Infection? Curr Diab Rep 2019; 19:82. [PMID: 31401790 PMCID: PMC6689284 DOI: 10.1007/s11892-019-1192-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW We provide an overview of the current knowledge regarding the natural history of human type 1 diabetes (T1D) and the documented associations between virus infections (in particular the enteroviruses) and disease development. We review studies that examine whether T1D-specific risk alleles in genes involved in the function of the immune system can alter susceptibility to virus infections or affect the magnitude of the host antiviral response. We also highlight where the major gaps in our knowledge exist and consider possible implications that new insights gained from the discussed gene-environment interaction studies may bring. RECENT FINDINGS A commonality between several of the studied T1D risk variants studied is their role in modulating the host immune response to viral infection. Generally, little support exists indicating that the risk variants increase susceptibility to infection and moreover, they usually appear to predispose the immune system towards a hyper-reactive state, decrease the risk of infection, and/or favor the establishment of viral persistence. In conclusion, although the current number of studies is limited, this type of research can provide important insights into the mechanisms that are central to disease pathogenesis and further describe how genetic and environmental factors jointly influence the risk of T1D development. The latter may provide genetic markers that could be used for patient stratification and for the selection of method(s) for disease prevention.
Collapse
Affiliation(s)
- Marfa Blanter
- 0000 0000 9241 5705grid.24381.3cCenter for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- 0000 0001 0668 7884grid.5596.fLaboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, EU Belgium
| | - Helena Sork
- 0000 0000 9241 5705grid.24381.3cCenter for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Soile Tuomela
- 0000 0000 9241 5705grid.24381.3cCenter for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Malin Flodström-Tullberg
- 0000 0000 9241 5705grid.24381.3cCenter for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
Skog O, Klingel K, Roivainen M, Korsgren O. Large enteroviral vaccination studies to prevent type 1 diabetes should be well founded and rely on scientific evidence. Diabetologia 2019; 62:1097-1099. [PMID: 30810767 DOI: 10.1007/s00125-019-4841-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Oskar Skog
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory C11, Clinical Immunology, Uppsala University, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden.
| | - Karin Klingel
- Institute for Pathology and Neuropathology, University Hospital Tuebingen, Tuebingen, Germany
| | - Merja Roivainen
- National Institute for Health and Welfare, Helsinki, Finland
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory C11, Clinical Immunology, Uppsala University, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Harms RZ, Borengasser K, Kumar V, Sarvetnick N. Anti-human Interleukin(IL)-4 Clone 8D4-8 Cross-Reacts With Myosin-9 Associated With Apoptotic Cells and Should Not Be Used for Flow Cytometry Applications Querying IL-4 Expression. Front Cell Dev Biol 2019; 7:46. [PMID: 31024909 PMCID: PMC6465524 DOI: 10.3389/fcell.2019.00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/15/2019] [Indexed: 11/17/2022] Open
Abstract
Interleukin(IL)-4 is produced by T cells and other leukocytes and is a critical mediator of monocyte and B cell responses. During routine flow cytometry panel validation for the investigation of intracellular cytokines, we observed unique IL-4 expression patterns associated with the widely available monoclonal antibody 8D4-8. Namely, IL-4 (8D4-8) expression was observed in the absence of cellular activation and enhanced following staurosporine exposure. Mass spectrometry analysis of immunoprecipitates from peripheral blood lymphocytes (PBL) revealed that 8D4-8 cross-reacts with the ubiquitous cytoskeletal protein myosin-9. We confirmed these results by western blotting immunoprecipitates, using immunofluorescence among staurosporine-treated Caco-2 cells, and by surface-labeling PBL for 8D4-8 and myosin-9 and analyzing by flow cytometry. Although previously reported from several independent groups, we found no evidence to support the hypothesis that IL-4 is produced by apoptotic cells. Rather, this appears to have been myosin-9. Our data indicate clone 8D4-8 should not be used in the flow cytometric study of IL-4. Furthermore, our work calls for a reevaluation of previous flow cytometric studies that have used this clone for IL-4 analysis and highlights the importance of validation in antibody-based assays.
Collapse
Affiliation(s)
- Robert Z Harms
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kiana Borengasser
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, NE, United States
| | - Vikas Kumar
- Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Omaha, NE, United States
| | - Nora Sarvetnick
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, NE, United States.,Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
10
|
Saarinen NVV, Laiho JE, Richardson SJ, Zeissler M, Stone VM, Marjomäki V, Kantoluoto T, Horwitz MS, Sioofy-Khojine A, Honkimaa A, Hankaniemi MM, Flodström-Tullberg M, Hyöty H, Hytönen VP, Laitinen OH. A novel rat CVB1-VP1 monoclonal antibody 3A6 detects a broad range of enteroviruses. Sci Rep 2018; 8:33. [PMID: 29311608 PMCID: PMC5758616 DOI: 10.1038/s41598-017-18495-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/12/2017] [Indexed: 11/09/2022] Open
Abstract
Enteroviruses (EVs) are common RNA viruses that cause diseases ranging from rash to paralytic poliomyelitis. For example, EV-A and EV-C viruses cause hand-foot and mouth disease and EV-B viruses cause encephalitis and myocarditis, which can result in severe morbidity and mortality. While new vaccines and treatments for EVs are under development, methods for studying and diagnosing EV infections are still limited and therefore new diagnostic tools are required. Our aim was to produce and characterize new antibodies that work in multiple applications and detect EVs in tissues and in vitro. Rats were immunized with Coxsackievirus B1 capsid protein VP1 and hybridomas were produced. Hybridoma clones were selected based on their reactivity in different immunoassays. The most promising clone, 3A6, was characterized and it performed well in multiple techniques including ELISA, immunoelectron microscopy, immunocyto- and histochemistry and in Western blotting, detecting EVs in infected cells and tissues. It recognized several EV-Bs and also the EV-C representative Poliovirus 3, making it a broad-spectrum EV specific antibody. The 3A6 rat monoclonal antibody can help to overcome some of the challenges faced with commonly used EV antibodies: it enables simultaneous use of mouse-derived antibodies in double staining and it is useful in murine models.
Collapse
Affiliation(s)
- Niila V V Saarinen
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Jutta E Laiho
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | | | | | - Virginia M Stone
- Department of Medicine HS, Karolinska Institutet, Stockholm, Sweden
| | - Varpu Marjomäki
- Department of Biological and Environmental Science/Nanoscience center, University of Jyväskylä, Jyväskylä, Finland
| | - Tino Kantoluoto
- Department of Biological and Environmental Science/Nanoscience center, University of Jyväskylä, Jyväskylä, Finland
| | - Marc S Horwitz
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | | | - Anni Honkimaa
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Minna M Hankaniemi
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | | | - Heikki Hyöty
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Vesa P Hytönen
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Olli H Laitinen
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.
| |
Collapse
|
11
|
Abstract
OBJECTIVES The aims of this study were to investigate the presence of human herpesvirus 6 (HHV6) A and B in human pancreata and to search for signs of active infection in this organ of subjects with and without type 1 diabetes (T1D). METHODS Pancreata from brain-dead organ donors with and without T1D were examined for the presence of HHV6 genomic sequences by polymerase chain reaction (PCR), transcripts by reverse transcriptase-PCR, and protein by immunohistochemistry. Quantitative PCR of isolated pancreatic islets and exocrine cell clusters was used to determine the intrapancreatic location of HHV6 DNA. RESULTS Human herpesvirus 6B genomic sequences were present in 1 of 2 donors who died of acute-onset T1D, 4 of 6 donors with long-standing T1D, and 9 of 12 nondiabetic donors. Higher copy numbers of HHV6B DNA were present in isolated islets than in exocrine tissue from the same donors. No signs of active HHV6 transcription were found. Human herpesvirus 6A was not present in any tested pancreas. CONCLUSIONS The herein presented data demonstrate, for the first time, the presence of a latent HHV6B infection in the pancreas and islets of Langerhans. Whether this virus can contribute to disease in the pancreas remains to be determined.
Collapse
|
12
|
Busse N, Paroni F, Richardson SJ, Laiho JE, Oikarinen M, Frisk G, Hyöty H, de Koning E, Morgan NG, Maedler K. Detection and localization of viral infection in the pancreas of patients with type 1 diabetes using short fluorescently-labelled oligonucleotide probes. Oncotarget 2017; 8:12620-12636. [PMID: 28147344 PMCID: PMC5355040 DOI: 10.18632/oncotarget.14896] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/19/2017] [Indexed: 01/08/2023] Open
Abstract
Enteroviruses, specifically of the Coxsackie B virus family, have been implicated in triggering islet autoimmunity and type 1 diabetes, but their presence in pancreata of patients with diabetes has not been fully confirmed. To detect the presence of very low copies of the virus genome in tissue samples from T1D patients, we designed a panel of fluorescently labeled oligonucleotide probes, each of 17-22 nucleotides in length with a unique sequence to specifically bind to the enteroviral genome of the picornaviridae family. With these probes enteroviral RNA was detected with high sensitivity and specificity in infected cells and tissues, including in FFPE pancreas sections from patients with T1D. Detection was not impeded by variations in sample processing and storage thereby overcoming the potential limitations of fragmented RNA. Co-staining of small RNA probes in parallel with classical immunstaining enabled virus detection in a cell-specific manner and more sensitively than by viral protein.
Collapse
Affiliation(s)
- Niels Busse
- Islet Biology Laboratory, University of Bremen, Germany
| | | | | | - Jutta E Laiho
- Department of Virology, School of Medicine, University of Tampere, Tampere, Finland
| | - Maarit Oikarinen
- Department of Virology, School of Medicine, University of Tampere, Tampere, Finland
| | - Gun Frisk
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Heikki Hyöty
- Department of Virology, School of Medicine, University of Tampere, Tampere, Finland.,Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Eelco de Koning
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Hubrecht Institute/University Medical Center Utrecht, Utrecht, The Netherlands
| | - Noel G Morgan
- Islet Biology Exeter, University of Exeter Medical School, UK
| | | |
Collapse
|
13
|
Wang M, Dong Q, Wang H, He Y, Chen Y, Zhang H, Wu R, Chen X, Zhou B, He J, Kung HF, Huang C, Wei Y, Huang JD, Xu H, He ML. Oblongifolin M, an active compound isolated from a Chinese medical herb Garcinia oblongifolia, potently inhibits enterovirus 71 reproduction through downregulation of ERp57. Oncotarget 2017; 7:8797-808. [PMID: 26848777 PMCID: PMC4891005 DOI: 10.18632/oncotarget.7122] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/19/2016] [Indexed: 02/05/2023] Open
Abstract
There is no effective drug to treat EV71 infection yet. Traditional Chinese herbs are great resources for novel antiviral compounds. Here we showed that Oblongifolin M (OM), an active compound isolated from Garcinia oblongifolia, potently inhibited EV71 infection in a dose dependent manner. To identify its potential effectors in the host cells, we successfully identified 18 proteins from 52 differentially expressed spots by comparative proteomics studies. Further studies showed that knockdown of ERp57 inhibited viral replication through downregulating viral IRES (internal ribosome entry site) activities, whereas ectopic expression of ERp57 increased IRES activity and partly rescued the inhibitory effects of OM on viral replication. We demonstrated that OM is an effective antiviral agent; and that ERp57 is one of its cellular effectors against EV71 infection.
Collapse
Affiliation(s)
- Mengjie Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Qi Dong
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.,Stanley Ho Center for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Hua Wang
- Stanley Ho Center for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Yaqing He
- Shenzhen Center for Disease Control and Prevention (Shenzhen CDC), Shenzhen, China
| | - Ying Chen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Hong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinchun Chen
- Institute of Infectious Diseases, The 3rd Peoples' Hospital of Shenzhen, Shenzhen, China
| | - Boping Zhou
- Institute of Infectious Diseases, The 3rd Peoples' Hospital of Shenzhen, Shenzhen, China
| | - Jason He
- College of Letter and Sciences, University of California at Berkeley, Berkeley, CA, USA
| | - Hsiang-Fu Kung
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.,Stanley Ho Center for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jian-dong Huang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
14
|
Ettischer-Schmid N, Normann A, Sauter M, Kraft L, Kalbacher H, Kandolf R, Flehmig B, Klingel K. A new monoclonal antibody (Cox mAB 31A2) detects VP1 protein of coxsackievirus B3 with high sensitivity and specificity. Virchows Arch 2016; 469:553-562. [PMID: 27566306 DOI: 10.1007/s00428-016-2008-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/14/2016] [Accepted: 08/18/2016] [Indexed: 12/24/2022]
Abstract
Human enteroviruses, e.g. coxsackieviruses, induce a variety of severe acute and chronic forms of disease, including myocarditis, meningitis and diabetes mellitus type 1. To visualize enterovirus infection with a diagnostic intent, many studies have applied a commercially available antibody (anti-CVB5 VP1, clone 5-D8/1, Dako, Hamburg, Germany) that identifies VP1 of different enteroviral serotypes. Many antibodies, however, have been found to bind non-specifically to proteins of cardiomyocytes and in the interstitial space, resulting in non-specific staining in immunohistochemistry. In this paper we show that the anti-CVB5 VP1 antibody, recognizing VP1 of coxsackieviruses and widely used in diagnostics and research, shows strong cross-reactivity with cellular proteins in the heart (and pancreas) of humans and mice, which calls for a more specific antibody to be used for diagnostic purposes. We observed by Western blot analyses of lysates from human heart tissue samples and HeLa cells two cross-reactive bands when using clone 5-D8/1. Peptide mass fingerprinting (MALDI-TOF) identified these proteins as creatine kinase (B-type) and tubulin, confirming that this mAb detects cellular proteins in addition to viral VP1. In order to overcome the problems of false positive VP1 staining we generated a new highly specific and sensitive monoclonal antibody (Cox mAB 31A2) that recognizes VP1 from CVB3. The new antibody was characterized and was found to function well in immunohistochemistry, immunofluorescence staining, Western blotting, ELISA and FACS analyses.
Collapse
Affiliation(s)
- Nicole Ettischer-Schmid
- Institute for Pathology, Department of Molecular Pathology, University Hospital of Tuebingen, Liebermeisterstrasse 8, D-72076, Tuebingen, Germany
| | | | - Martina Sauter
- Institute for Pathology, Department of Molecular Pathology, University Hospital of Tuebingen, Liebermeisterstrasse 8, D-72076, Tuebingen, Germany
| | - Lisa Kraft
- Institute for Pathology, Department of Molecular Pathology, University Hospital of Tuebingen, Liebermeisterstrasse 8, D-72076, Tuebingen, Germany
- Interfaculty Institute of Biochemistry, University of Tuebingen, D-72076, Tuebingen, Germany
| | - Hubert Kalbacher
- Interfaculty Institute of Biochemistry, University of Tuebingen, D-72076, Tuebingen, Germany
| | - Reinhard Kandolf
- Institute for Pathology, Department of Molecular Pathology, University Hospital of Tuebingen, Liebermeisterstrasse 8, D-72076, Tuebingen, Germany
| | | | - Karin Klingel
- Institute for Pathology, Department of Molecular Pathology, University Hospital of Tuebingen, Liebermeisterstrasse 8, D-72076, Tuebingen, Germany.
| |
Collapse
|
15
|
Maccari G, Genoni A, Sansonno S, Toniolo A. Properties of Two Enterovirus Antibodies that are Utilized in Diabetes Research. Sci Rep 2016; 6:24757. [PMID: 27091243 PMCID: PMC4835795 DOI: 10.1038/srep24757] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/05/2016] [Indexed: 12/16/2022] Open
Abstract
Human enteroviruses (EVs) comprise >100 different types. Research suggests a non-chance association between EV infections and type 1 diabetes. Immunohistochemical studies with the anti-EV antibody 5D-8.1 have shown that the EV capsid antigen is present in pancreatic islet cells of diabetic subjects. When it was noticed that 5D-8.1 may cross-react with human proteins, doubt was casted on the significance of the above histopathologic findings. To address this issue, properties of EV antibodies 5D-8.1 and 9D5 have been investigated using peptide microarrays, peptide substitution scanning, immunofluorescence of EV-infected cells, EV neutralization assays, bioinformatics analysis. Evidence indicates that the two antibodies bind to distinct non-neutralizing linear epitopes in VP1 and are specific for a vast spectrum of EV types (not for other human viruses). However, their epitopes may align with a few human proteins at low expected values. When tested by immunofluorescence, high concentrations of 5D-8.1 yelded faint cytoplasmic staining in uninfected cells. At reduced concentrations, both antibodies produced dotted staining only in the cytoplasm of infected cells and recognized both acute and persistent EV infection. Thus, the two monoclonals represent distinct and independent probes for hunting EVs in tissues of patients with diabetes or other endocrine conditions.
Collapse
Affiliation(s)
- Giuseppe Maccari
- Center for Nanotechnology and Innovation, Italian Institute of Technology, Pisa, Italy
| | - Angelo Genoni
- Laboratory of Medical Microbiology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Silvia Sansonno
- Department of Medical Sciences, University of Foggia, Foggia, Italy
| | - Antonio Toniolo
- Laboratory of Medical Microbiology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
16
|
Bergamin CS, Dib SA. Enterovirus and type 1 diabetes: What is the matter? World J Diabetes 2015; 6:828-839. [PMID: 26131324 PMCID: PMC4478578 DOI: 10.4239/wjd.v6.i6.828] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/30/2015] [Accepted: 04/09/2015] [Indexed: 02/05/2023] Open
Abstract
A complex interaction of genetic and environmental factors can trigger the immune-mediated mechanism responsible for type 1 diabetes mellitus (T1DM) establishment. Environmental factors may initiate and possibly sustain, accelerate, or retard damage to β-cells. The role of environmental factors in this process has been exhaustive studied and viruses are among the most probable ones, especially enteroviruses. Improvements in enterovirus detection methods and randomized studies with patient follow-up have confirmed the importance of human enterovirus in the pathogenesis of T1DM. The genetic risk of T1DM and particular innate and acquired immune responses to enterovirus infection contribute to a tolerance to T1DM-related autoantigens. However, the frequency, mechanisms, and pathways of virally induced autoimmunity and β-cell destruction in T1DM remain to be determined. It is difficult to investigate the role of enterovirus infection in T1DM because of several concomitant mechanisms by which the virus damages pancreatic β-cells, which, consequently, may lead to T1DM establishment. Advances in molecular and genomic studies may facilitate the identification of pathways at earlier stages of autoimmunity when preventive and therapeutic approaches may be more effective.
Collapse
|
17
|
Application of bioinformatics in probe design enables detection of enteroviruses on different taxonomic levels by advanced in situ hybridization technology. J Clin Virol 2015. [PMID: 26209400 DOI: 10.1016/j.jcv.2015.06.085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Enteroviral infections are common, affecting humans across all age groups. RT-PCR is widely used to detect these viruses in clinical samples. However, there is a need for sensitive and specific in situ detection methods for formalin-fixed tissues, allowing for the anatomical localization of the virus and identification of its serotype. OBJECTIVES The aim was to design novel enterovirus probes, assess the impact of probe design for the detection and optimize the new single molecule in situ hybridization technology for the detection of enteroviruses in formalin-fixed paraffin-embedded samples. STUDY DESIGN Four enterovirus RNA-targeted oligonucleotide RNA probes - two probes for wide range enterovirus detection and two for serotype-targeted detection of Coxsackievirus B1 (CVB1) - were designed and validated for the commercially available QuantiGene ViewRNA in situ hybridization method. The probe specificities were tested using a panel of cell lines infected with different enterovirus serotypes and CVB infected mouse pancreata. RESULTS The two widely reactive probe sets recognized 19 and 20 of the 20 enterovirus serotypes tested, as well as 27 and 31 of the 31 CVB1 strains tested. The two CVB1 specific probe sets detected 30 and 14 of the 31 CVB1 strains, with only minor cross-reactivity to other serotypes. Similar results were observed in stained tissues from CVB -infected mice. CONCLUSIONS These novel in-house designed probe sets enable the detection of enteroviruses from formalin-fixed tissue samples. Optimization of probe sequences makes it possible to tailor the assay for the detection of enteroviruses on the serotype or species level.
Collapse
|
18
|
Krogvold L, Edwin B, Buanes T, Frisk G, Skog O, Anagandula M, Korsgren O, Undlien D, Eike MC, Richardson SJ, Leete P, Morgan NG, Oikarinen S, Oikarinen M, Laiho JE, Hyöty H, Ludvigsson J, Hanssen KF, Dahl-Jørgensen K. Detection of a low-grade enteroviral infection in the islets of langerhans of living patients newly diagnosed with type 1 diabetes. Diabetes 2015; 64:1682-7. [PMID: 25422108 DOI: 10.2337/db14-1370] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/18/2014] [Indexed: 02/05/2023]
Abstract
The Diabetes Virus Detection study (DiViD) is the first to examine fresh pancreatic tissue at the diagnosis of type 1 diabetes for the presence of viruses. Minimal pancreatic tail resection was performed 3-9 weeks after onset of type 1 diabetes in six adult patients (age 24-35 years). The presence of enteroviral capsid protein 1 (VP1) and the expression of class I HLA were investigated by immunohistochemistry. Enterovirus RNA was analyzed from isolated pancreatic islets and from fresh-frozen whole pancreatic tissue using PCR and sequencing. Nondiabetic organ donors served as controls. VP1 was detected in the islets of all type 1 diabetic patients (two of nine controls). Hyperexpression of class I HLA molecules was found in the islets of all patients (one of nine controls). Enterovirus-specific RNA sequences were detected in four of six patients (zero of six controls). The results were confirmed in various laboratories. Only 1.7% of the islets contained VP1(+) cells, and the amount of enterovirus RNA was low. The results provide evidence for the presence of enterovirus in pancreatic islets of type 1 diabetic patients, which is consistent with the possibility that a low-grade enteroviral infection in the pancreatic islets contributes to disease progression in humans.
Collapse
Affiliation(s)
- Lars Krogvold
- Paediatric Department, Oslo University Hospital, Oslo, Norway
| | - Bjørn Edwin
- Intervention Centre and Department of Surgery, Oslo University Hospital, Oslo, Norway Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Trond Buanes
- Faculty of Medicine, University of Oslo, Oslo, Norway Department of Surgery, Oslo University Hospital, Oslo, Norway
| | - Gun Frisk
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Oskar Skog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Mahesh Anagandula
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Dag Undlien
- Faculty of Medicine, University of Oslo, Oslo, Norway Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Morten C Eike
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Sarah J Richardson
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Pia Leete
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Noel G Morgan
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Sami Oikarinen
- Department of Virology, School of Medicine, University of Tampere, Tampere, Finland
| | - Maarit Oikarinen
- Department of Virology, School of Medicine, University of Tampere, Tampere, Finland
| | - Jutta E Laiho
- Department of Virology, School of Medicine, University of Tampere, Tampere, Finland
| | - Heikki Hyöty
- Department of Virology, School of Medicine, University of Tampere, Tampere, Finland Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Johnny Ludvigsson
- Division of Paediatrics, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Kristian F Hanssen
- Faculty of Medicine, University of Oslo, Oslo, Norway Department of Endocrinology, Oslo University Hospital, Oslo, Norway
| | - Knut Dahl-Jørgensen
- Paediatric Department, Oslo University Hospital, Oslo, Norway Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Kotani O, Iwata‐Yoshikawa N, Suzuki T, Sato Y, Nakajima N, Koike S, Iwasaki T, Sata T, Yamashita T, Minagawa H, Taguchi F, Hasegawa H, Shimizu H, Nagata N. Establishment of a panel of in-house polyclonal antibodies for the diagnosis of enterovirus infections. Neuropathology 2015; 35:107-21. [PMID: 25263613 PMCID: PMC7168124 DOI: 10.1111/neup.12171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 09/02/2014] [Indexed: 11/30/2022]
Abstract
The aim of this study was to establish a reliable method of virus detection for the diagnosis of critical enterovirus infections such as acute infective encephalitis, encephalomyelitis and myocarditis. Because histopathological and immunohistochemical analyses of paraffin-embedded tissues play an important role in recognizing infectious agents in tissue samples, six in-house polyclonal antibodies raised against three representative enteroviruses using an indirect immunofluorescence assay and immunohistochemistry were examined. This panel of polyclonal antibodies recognized three serotypes of enterovirus. Two of the polyclonal antibodies were raised against denatured virus particles from enterovirus A71, one was raised against the recombinant VP1 protein of coxsackievirus B3, and the other for poliovirus type 1 were raised against denatured virus particles, the recombinant VP1 protein and peptide 2C. Western blot analysis revealed that each of these antibodies recognized the corresponding viral antigen and none cross-reacted with non-enteroviruses within the family Picornaviridae. However, all cross-reacted to some extent with the antigens derived from other serotypes of enterovirus. Indirect immunofluorescence assay and immunohistochemistry revealed that the virus capsid and non-structural proteins were localized in the cytoplasm of affected culture cells, and skeletal muscles and neurons in neonatal mice experimentally-infected with human enterovirus. The antibodies also recognized antigens derived from recent clinical isolates of enterovirus A71, coxsackievirus B3 and poliovirus. In addition, immunohistochemistry revealed that representative antibodies tested showed the same recognition pattern according to each serotype. Thus, the panel of in-house anti-enterovirus polyclonal antibodies described herein will be an important tool for the screening and pathological diagnosis for enterovirus infections, and may be useful for the classification of different enterovirus serotypes, including coxsackieviruses A and B, echoviruses, enterovirus A71 and poliovirus.
Collapse
Affiliation(s)
- Osamu Kotani
- Department of PathologyNational Institute of Infectious DiseasesAichiJapan
- Department of Virology and Viral InfectionsFaculty of Veterinary MedicineNippon Veterinary and Life Science UniversityAichiJapan
| | | | - Tadaki Suzuki
- Department of PathologyNational Institute of Infectious DiseasesAichiJapan
| | - Yuko Sato
- Department of PathologyNational Institute of Infectious DiseasesAichiJapan
| | - Noriko Nakajima
- Department of PathologyNational Institute of Infectious DiseasesAichiJapan
| | - Satoshi Koike
- Neurovirology ProjectTokyo Metropolitan Institute of Medical ScienceAichiJapan
| | - Takuya Iwasaki
- Department of PathologyNational Institute of Infectious DiseasesAichiJapan
| | - Tetsutaro Sata
- Department of PathologyNational Institute of Infectious DiseasesAichiJapan
| | - Teruo Yamashita
- Department of Microbiology and Medical ZoologyAichi Prefectural Institute of Public HealthAichiJapan
| | - Hiroko Minagawa
- Department of Microbiology and Medical ZoologyAichi Prefectural Institute of Public HealthAichiJapan
| | - Fumihiro Taguchi
- Department of Virology and Viral InfectionsFaculty of Veterinary MedicineNippon Veterinary and Life Science UniversityAichiJapan
| | - Hideki Hasegawa
- Department of PathologyNational Institute of Infectious DiseasesAichiJapan
| | - Hiroyuki Shimizu
- Department of Virology IINational Institute of Infectious DiseasesAichiJapan
| | - Noriyo Nagata
- Department of PathologyNational Institute of Infectious DiseasesAichiJapan
| |
Collapse
|
20
|
Fleurbaaij F, van Leeuwen HC, Klychnikov OI, Kuijper EJ, Hensbergen PJ. Mass Spectrometry in Clinical Microbiology and Infectious Diseases. Chromatographia 2015. [DOI: 10.1007/s10337-014-2839-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Chia JK, Chia AY, Wang D, El-Habbal R. Functional Dyspepsia and Chronic Gastritis Associated with Enteroviruses. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ojgas.2015.54005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Schneider DA, von Herrath MG. Potential viral pathogenic mechanism in human type 1 diabetes. Diabetologia 2014; 57:2009-18. [PMID: 25073445 PMCID: PMC4153966 DOI: 10.1007/s00125-014-3340-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 06/09/2014] [Indexed: 12/15/2022]
Abstract
In type 1 diabetes, as a result of as yet unknown triggering events, auto-aggressive CD8(+) T cells, together with a significant number of other inflammatory cells, including CD8(+) T lymphocytes with unknown specificity, infiltrate the pancreas, leading to insulitis and destruction of the insulin-producing beta cells. Type 1 diabetes is a multifactorial disease caused by an interactive combination of genetic and environmental factors. Viruses are major environmental candidates with known potential effects on specific key points in the pathogenesis of type 1 diabetes and recent findings seem to confirm this presumption. However, we still lack well-grounded mechanistic explanations for how exactly viruses may influence type 1 diabetes aetiology. In this review we provide a summary of experimentally defined viral mechanisms potentially involved in the ontology of type 1 diabetes and discuss some novel hypotheses of how viruses may affect the initiation and natural history of the disease.
Collapse
Affiliation(s)
- Darius A. Schneider
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037 USA
- Department of Medicine, UC San Diego, La Jolla, CA USA
| | - Matthias G. von Herrath
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037 USA
- Novo Nordisk Type 1 Diabetes Research Center, Seattle, WA 98109 USA
| |
Collapse
|
23
|
Skog O, Ingvast S, Korsgren O. Evaluation of RT-PCR and immunohistochemistry as tools for detection of enterovirus in the human pancreas and islets of Langerhans. J Clin Virol 2014; 61:242-7. [PMID: 25132399 DOI: 10.1016/j.jcv.2014.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/19/2014] [Accepted: 07/22/2014] [Indexed: 01/25/2023]
Abstract
BACKGROUND Enteroviruses have been implicated in the etiology of type 1 diabetes, supported by immunoreactivity of enteroviral protein in islets, but presence of enteroviral genome has rarely been reported. Failure to detect enterovirus with RT-PCR has been attributed to the possible presence of PCR inhibitors and that only few cells are infected. OBJECTIVES The aim of this study was to evaluate strategies for detection of enterovirus in human islets. STUDY DESIGN A scenario was modeled with defined infected islets among a large number of uninfected pancreatic cells and the sensitivity of immunohistochemistry and PCR for detection of enterovirus was evaluated. RESULTS Enterovirus was detected with PCR when only one single human islet, infected in vitro with a low dose of virus, was mixed with an uninfected pancreatic biopsy. Enterovirus could not be detected by immunohistochemistry under the same conditions, demonstrating the superior sensitivity of PCR also in pancreatic tissue with only a small fraction of infected cells. In addition, we demonstrate that pancreatic cell culture supernatant does not cause degradation of enterovirus at 37°C, indicating that under normal culture conditions released virus is readily detectable. Utilizing PCR, the pancreases of two organ donors that died at onset of type 1 diabetes were found negative for enterovirus genome despite islet cells being positive using immunohistochemistry. CONCLUSIONS These data suggest that PCR should be the preferred screening method for enterovirus in the pancreas and suggest cautious interpretation of immunostaining for enterovirus that cannot be confirmed with PCR.
Collapse
Affiliation(s)
- Oskar Skog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Sofie Ingvast
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
24
|
Richardson SJ, Leete P, Dhayal S, Russell MA, Oikarinen M, Laiho JE, Svedin E, Lind K, Rosenling T, Chapman N, Bone AJ, Foulis AK, Frisk G, Flodström-Tullberg M, Hober D, Hyoty H, Pugliese A, Morgan NG. Detection of enterovirus in the islet cells of patients with type 1 diabetes: what do we learn from immunohistochemistry? Reply to Hansson SF, Korsgren S, Pontén F et al [letter]. Diabetologia 2014; 57:647-9. [PMID: 24429580 DOI: 10.1007/s00125-014-3167-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/17/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Sarah J Richardson
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hansson SF, Korsgren S, Pontén F, Korsgren O. Detection of enterovirus in the islet cells of patients with type 1 diabetes: what do we learn from immunohistochemistry? Diabetologia 2014; 57:645-6. [PMID: 24352376 DOI: 10.1007/s00125-013-3138-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 11/15/2013] [Indexed: 12/01/2022]
Affiliation(s)
- Sara F Hansson
- Proteomics Core Facility, University of Gothenburg, Gothenburg, Sweden
| | | | | | | |
Collapse
|
26
|
Abstract
Type 1 diabetes is a multifactorial disease resulting from a complex interplay between host genetics, the immune system and the environment, that culminates in the destruction of insulin-producing beta cells. The incidence of type 1 diabetes is increasing at an alarming rate, especially in children under the age of 5 (Gepts in Diabetes 14(10):619-613, 1965; Foulis et al. in Lancet 29(5):267-274, 1986; Gamble, Taylor and Cumming in British Medical Journal 4(5887):260-262 1973). Genetic predisposition, although clearly important, cannot explain this rise, and so, it has been proposed that changes in the 'environment' and/or changes in 'how we respond to our environment' must contribute to this rising incidence. In order to gain an improved understanding of the factors influencing the disease process, it is important, firstly, to focus on the organ at the centre of the illness-the pancreas. This review summarises our knowledge of the pathology of the endocrine pancreas in human type 1 diabetes and, in particular, explores the progression of this understanding over the past 25 years.
Collapse
Affiliation(s)
- Sarah J Richardson
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building Barrack Road, Exeter, EX2 5DW, Devon, UK,
| | | | | |
Collapse
|
27
|
Richardson SJ, Leete P, Dhayal S, Russell MA, Oikarinen M, Laiho JE, Svedin E, Lind K, Rosenling T, Chapman N, Bone AJ, Foulis AK, Frisk G, Flodstrom-Tullberg M, Hober D, Hyoty H, Morgan NG. Evaluation of the fidelity of immunolabelling obtained with clone 5D8/1, a monoclonal antibody directed against the enteroviral capsid protein, VP1, in human pancreas. Diabetologia 2014; 57:392-401. [PMID: 24190581 DOI: 10.1007/s00125-013-3094-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 10/02/2013] [Indexed: 01/14/2023]
Abstract
AIMS/HYPOTHESIS Enteroviral infection has been implicated in the development of islet autoimmunity in type 1 diabetes and enteroviral antigen expression has been detected by immunohistochemistry in the pancreatic beta cells of patients with recent-onset type 1 diabetes. However, the immunohistochemical evidence relies heavily on the use of a monoclonal antibody, clone 5D8/1, raised against an enteroviral capsid protein, VP1. Recent data suggest that the clone 5D8/1 may also recognise non-viral antigens; in particular, a component of the mitochondrial ATP synthase (ATP5B) and an isoform of creatine kinase (CKB). Therefore, we evaluated the fidelity of immunolabelling by clone 5D8/1 in the islets of patients with type 1 diabetes. METHODS Enteroviral VP1, CKB and ATP5B expression were analysed by western blotting, RT-PCR and immunocytochemistry in a range of cultured cell lines, isolated human islets and human tissue. RESULTS Clone 5D8/1 labelled CKB, but not ATP5B, on western blots performed under denaturing conditions. In cultured human cell lines, isolated human islets and pancreas sections from patients with type 1 diabetes, the immunolabelling of ATP5B, CKB and VP1 by 5D8/1 was readily distinguishable. Moreover, in a human tissue microarray displaying more than 80 different cells and tissues, only two (stomach and colon; both of which are potential sites of enterovirus infection) were immunopositive when stained with clone 5D8/1. CONCLUSIONS/INTERPRETATION When used under carefully optimised conditions, the immunolabelling pattern detected in sections of human pancreas with clone 5D8/1 did not reflect cross-reactivity with either ATP5B or CKB. Rather, 5D8/1 is likely to be representative of enteroviral antigen expression.
Collapse
Affiliation(s)
- Sarah J Richardson
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Coppieters KT, von Herrath M. Antibody cross-reactivity and the viral aetiology of type 1 diabetes. J Pathol 2013; 230:1-3. [PMID: 23389883 DOI: 10.1002/path.4174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 01/05/2023]
Abstract
Type 1 diabetes (T1D) is caused by the destruction of insulin-producing pancreatic β cells by the patient's immune system. While the underlying genetics and immunopathology are fairly well characterized, the environmental trigger remains unidentified. Numerous studies have centred on the role of enteroviruses as aetiological factors that could initiate or accelerate T1D development. The most convincing evidence to date consists of an array of reports documenting the presence of enteroviral nucleic acids in peripheral blood at diagnosis. A prominent hypothesis is that enteroviruses may infect the pancreatic islets and thus be responsible for the islet-specific up-regulation of MHC class I that is commonly observed, possibly enabling T cell recognition and cytotoxicity. Past immunohistochemical studies have indeed shown that antibodies binding the enteroviral capsid protein VP1 preferentially stain the pancreatic β cells from diabetic individuals. New data now indicate that the VP1 antibody used in these studies cross-reacts with mitochondrial proteins.
Collapse
|