1
|
Grounds MD, Lloyd EM. Considering the Promise of Vamorolone for Treating Duchenne Muscular Dystrophy. J Neuromuscul Dis 2023; 10:1013-1030. [PMID: 37927274 PMCID: PMC10657680 DOI: 10.3233/jnd-230161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 11/07/2023]
Abstract
This commentary provides an independent consideration of data related to the drug vamorolone (VBP15) as an alternative steroid proposed for treatment of Duchenne muscular dystrophy (DMD). Glucocorticoids such as prednisone and deflazacort have powerful anti-inflammatory benefits and are the standard of care for DMD, but their long-term use can result in severe adverse side effects; thus, vamorolone was designed as a unique dissociative steroidal anti-inflammatory drug, to retain efficacy and minimise these adverse effects. Extensive clinical trials (ongoing) have investigated the use of vamorolone for DMD, with two trials also for limb-girdle muscular dystrophies including dysferlinopathy (current), plus a variety of pre-clinical trials published. Vamorolone looks very promising, with similar efficacy and some reduced adverse effects (e.g., related to height) compared with other glucocorticoids, specifically prednisone/prednisolone, although it has not yet been directly compared with deflazacort. Of particular interest to clarify is the optimal clinical dose and other aspects of vamorolone that are proposed to provide additional benefits for membranes of dystrophic muscle: to stabilise and protect the sarcolemma from damage and enhance repair. The use of vamorolone (and other glucocorticoids) needs to be evaluated in terms of overall long-term efficacy and cost, and also in comparison with many candidate non-steroidal drugs with anti-inflammatory and other benefits for DMD.
Collapse
Affiliation(s)
- Miranda D. Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Erin M. Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
2
|
A glucocorticoid-receptor agonist ameliorates bleomycin-induced alveolar simplification in newborn rats. Pediatr Res 2022; 93:1551-1558. [PMID: 36068343 DOI: 10.1038/s41390-022-02257-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 07/13/2022] [Accepted: 07/24/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Glucocorticoids (GCs) are highly effective yet problematic agents against bronchopulmonary dysplasia (BPD). The dimeric trans-activation of GCs induces unfavorable effects, while monomeric trans-repression suppresses inflammation-related genes. Recently, non-steroidal-selective glucocorticoid-receptor agonists and modulators (SEGRAMs) with only the trans-repressive action have been designed. METHODS Using a bleomycin (Bleo)-induced alveolar simplification newborn rat model (recapitulating arrested alveolarization during BPD), we evaluated the therapeutic effects of compound-A (CpdA), a SEGRAM. Sprague-Dawley rats were administered Bleo from postnatal day (PD) 0 to 10 and treated with dexamethasone (Dex) or CpdA from PD 0 to 13. The morphological changes and mRNA expression of inflammatory mediators, including interleukin (IL)-1β, C-X-C motif chemokine ligand 1 (CXCL1), and C-C motif chemokine 2 (CCL2) were investigated. RESULTS Similar to the effects of Dex, CpdA exerted protective effects on morphological derangements and inhibited macrophage infiltration and production of pro-inflammatory mediators in Bleo-treated animals. The effects of CpdA were probably mediated by GC receptor (GR)-dependent trans-repression, because unlike the Dex-treated group, anti-inflammatory genes specifically induced by GR-dependent trans-activation (such as "glucocorticoid-induced leucine zipper, GILZ") were not upregulated. CONCLUSIONS CpdA improved lung inflammation, inhibited the arrest of alveolar maturation, and restored histological and biochemical changes in a Bleo-induced alveolar simplification model. IMPACT SEGRAMs have attracted widespread attention because they are expected to not exhibit unfavorable effects of GCs. Compound A, one of the SEGRAMs, improved lung morphometric changes and decreased lung inflammation in a bleomycin-induced arrested alveolarization, a newborn rat model representing one of the main features of BPD pathology. Compound A did not elicit bleomycin-induced poor weight gain, in contrast to dexamethasone treatment. SEGRAMs, including compound A, may be promising candidates for the therapy of BPD with less adverse effects compared with GCs.
Collapse
|
3
|
Gartz M, Haberman M, Prom MJ, Beatka MJ, Strande JL, Lawlor MW. A Long-Term Study Evaluating the Effects of Nicorandil Treatment on Duchenne Muscular Dystrophy-Associated Cardiomyopathy in mdx Mice. J Cardiovasc Pharmacol Ther 2022; 27:10742484221088655. [PMID: 35353647 DOI: 10.1177/10742484221088655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a neuromuscular disease caused by dystrophin gene mutations affecting striated muscle. Due to advances in skeletal muscle treatment, cardiomyopathy has emerged as a leading cause of death. Previously, nicorandil, a drug with antioxidant and nitrate-like properties, ameliorated cardiac damage and improved cardiac function in young, injured mdx mice. Nicorandil mitigated damage by stimulating antioxidant activity and limiting pro-oxidant expression. Here, we examined whether nicorandil was similarly cardioprotective in aged mdx mice. METHODS AND RESULTS Nicorandil (6 mg/kg) was given over 15 months. Echocardiography of mdx mice showed some functional defects at 12 months compared to wild-type (WT) mice, but not at 15 months. Disease manifestation was evident in mdx mice via treadmill assays and survival, but not open field and grip strength assays. Cardiac levels of SOD2 and NOX4 were decreased in mdx vs. WT. Nicorandil increased survival in mdx but did not alter cardiac function, fibrosis, diaphragm function or muscle fatigue. CONCLUSIONS In contrast to our prior work in young, injured mdx mice, nicorandil did not exert cardioprotective effects in 15 month aged mdx mice. Discordant findings may be explained by the lack of cardiac disease manifestation in aged mdx mice compared to WT, whereas significant cardiac dysfunction was previously seen with the sub-acute injury in young mice. Therefore, we are not able to conclude any cardioprotective effects with long-term nicorandil treatment in aging mdx mice.
Collapse
Affiliation(s)
- Melanie Gartz
- Department of Cell Biology, Neurobiology and Anatomy, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Cardiovascular Research Center, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Neuroscience Research Center, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Pathology and Laboratory Medicine, 5506Medical College of Wisconsin, Milwaukee, WI, USA
| | - Margaret Haberman
- Cardiovascular Research Center, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Neuroscience Research Center, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Pathology and Laboratory Medicine, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Medicine, 5506Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mariah J Prom
- Neuroscience Research Center, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Pathology and Laboratory Medicine, 5506Medical College of Wisconsin, Milwaukee, WI, USA
| | - Margaret J Beatka
- Neuroscience Research Center, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Pathology and Laboratory Medicine, 5506Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jennifer L Strande
- Cardiovascular Research Center, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Medicine, 5506Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael W Lawlor
- Neuroscience Research Center, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Pathology and Laboratory Medicine, 5506Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
4
|
Lindsay A, Trewin AJ, Sadler KJ, Laird C, Della Gatta PA, Russell AP. Sensitivity to behavioral stress impacts disease pathogenesis in dystrophin-deficient mice. FASEB J 2021; 35:e22034. [PMID: 34780665 DOI: 10.1096/fj.202101163rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/11/2022]
Abstract
Mutation to the gene encoding dystrophin can cause Duchenne muscular dystrophy (DMD) and increase the sensitivity to stress in vertebrate species, including the mdx mouse model of DMD. Behavioral stressors can exacerbate some dystrophinopathy phenotypes of mdx skeletal muscle and cause hypotension-induced death. However, we have discovered that a subpopulation of mdx mice present with a wildtype-like response to mild (forced downhill treadmill exercise) and moderate (scruff restraint) behavioral stressors. These "stress-resistant" mdx mice are more physically active, capable of super-activating the hypothalamic-pituitary-adrenal and renin-angiotensin-aldosterone pathways following behavioral stress and they express greater levels of mineralocorticoid and glucocorticoid receptors in striated muscle relative to "stress-sensitive" mdx mice. Stress-resistant mdx mice also presented with a less severe striated muscle histopathology and greater exercise and skeletal muscle oxidative capacity at rest. Most interestingly, female mdx mice were more physically active following behavioral stressors compared to male mdx mice; a response abolished after ovariectomy and rescued with estradiol. We demonstrate that the response to behavioral stress greatly impacts disease severity in mdx mice suggesting the management of stress in patients with DMD be considered as a therapeutic approach to ameliorate disease progression.
Collapse
Affiliation(s)
- Angus Lindsay
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Adam J Trewin
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Kate J Sadler
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Claire Laird
- Researcher Development, Deakin Research, Deakin University, Geelong, Victoria, Australia
| | - Paul A Della Gatta
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Aaron P Russell
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
5
|
Benny Klimek ME, Vila MC, Edwards K, Boehler J, Novak J, Zhang A, Van der Meulen J, Tatum K, Quinn J, Fiorillo A, Burki U, Straub V, Lu QL, Hathout Y, van Den Anker J, Partridge TA, Morales M, Hoffman E, Nagaraju K. Effects of Chronic, Maximal Phosphorodiamidate Morpholino Oligomer (PMO) Dosing on Muscle Function and Dystrophin Restoration in a Mouse Model of Duchenne Muscular Dystrophy. J Neuromuscul Dis 2021; 8:S369-S381. [PMID: 34569970 DOI: 10.3233/jnd-210701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Phosphorodiamidate morpholino oligomer (PMO)-mediated exon skipping is currently used in clinical development to treat Duchenne muscular dystrophy (DMD), with four exon-skipping drugs achieving regulatory approval. Exon skipping elicits a truncated, but semi-functional dystrophin protein, similar to the truncated dystrophin expressed in patients with Becker Muscular dystrophy (BMD) where the disease phenotype is less severe than DMD. Despite promising results in both dystrophic animal models and DMD boys, restoration of dystrophin by exon skipping is highly variable, leading to contradictory functional outcomes in clinical trials. OBJECTIVE To develop optimal PMO dosing protocols that result in increased dystrophin and improved outcome measures in preclinical models of DMD. METHODS Tested effectiveness of multiple chronic, high dose PMO regimens using biochemical, histological, molecular, and imaging techniques in mdx mice. RESULTS A chronic, monthly regimen of high dose PMO increased dystrophin rescue in mdx mice and improved specific force in the extensor digitorum longus (EDL) muscle. However, monthly high dose PMO administration still results in variable dystrophin expression localized throughout various muscles. CONCLUSIONS High dose monthly PMO administration restores dystrophin expression and increases muscle force; however, the variability of dystrophin expression at both the inter-and intramuscular level remains. Additional strategies to optimize PMO uptake including increased dosing frequencies or combination treatments with other yet-to-be-defined therapies may be necessary to achieve uniform dystrophin restoration and increases in muscle function.
Collapse
Affiliation(s)
| | - Maria Candida Vila
- Center for Genetic Medicine, Children's National Health System, Washington, DC, USA.,The George Washington University, Institute of Biomedical Sciences, Washington, DC, USA
| | - Katie Edwards
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY, USA
| | - Jessica Boehler
- Center for Genetic Medicine, Children's National Health System, Washington, DC, USA.,The George Washington University, Institute of Biomedical Sciences, Washington, DC, USA
| | - James Novak
- Center for Genetic Medicine, Children's National Health System, Washington, DC, USA
| | - Aiping Zhang
- Center for Genetic Medicine, Children's National Health System, Washington, DC, USA
| | - Jack Van der Meulen
- Center for Genetic Medicine, Children's National Health System, Washington, DC, USA
| | - Kathleen Tatum
- Center for Genetic Medicine, Children's National Health System, Washington, DC, USA
| | - James Quinn
- Center for Genetic Medicine, Children's National Health System, Washington, DC, USA
| | - Alyson Fiorillo
- Center for Genetic Medicine, Children's National Health System, Washington, DC, USA
| | - Umar Burki
- Center for Genetic Medicine, Children's National Health System, Washington, DC, USA
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases at Newcastle, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Qi Long Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Neuromuscular/ALS Center, Department of Neurology, Carolinas Medical Center, Charlotte, NC, USA
| | - Yetrib Hathout
- Center for Genetic Medicine, Children's National Health System, Washington, DC, USA.,The George Washington University, Institute of Biomedical Sciences, Washington, DC, USA.,School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY, USA
| | - John van Den Anker
- Center for Genetic Medicine, Children's National Health System, Washington, DC, USA.,Center for Translational Science, Children's National Health System, Washington, DC, USA
| | - Terence A Partridge
- Center for Genetic Medicine, Children's National Health System, Washington, DC, USA.,The George Washington University, Institute of Biomedical Sciences, Washington, DC, USA
| | - Melissa Morales
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY, USA
| | - Eric Hoffman
- Center for Genetic Medicine, Children's National Health System, Washington, DC, USA.,The George Washington University, Institute of Biomedical Sciences, Washington, DC, USA.,School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY, USA
| | - Kanneboyina Nagaraju
- Center for Genetic Medicine, Children's National Health System, Washington, DC, USA.,The George Washington University, Institute of Biomedical Sciences, Washington, DC, USA.,School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
6
|
Conceição M, Forcina L, Wiklander OPB, Gupta D, Nordin JZ, Vrellaku B, McClorey G, Mäger I, Gӧrgens A, Lundin P, Musarò A, Wood MJA, Andaloussi SE, Roberts TC. Engineered extracellular vesicle decoy receptor-mediated modulation of the IL6 trans-signalling pathway in muscle. Biomaterials 2020; 266:120435. [PMID: 33049461 DOI: 10.1016/j.biomaterials.2020.120435] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/27/2020] [Accepted: 10/04/2020] [Indexed: 12/28/2022]
Abstract
The cytokine interleukin 6 (IL6) is a key mediator of inflammation that contributes to skeletal muscle pathophysiology. IL6 activates target cells by two main mechanisms, the classical and trans-signalling pathways. While classical signalling is associated with the anti-inflammatory activities of the cytokine, the IL6 trans-signalling pathway mediates chronic inflammation and is therefore a target for therapeutic intervention. Extracellular vesicles (EVs) are natural, lipid-bound nanoparticles, with potential as targeted delivery vehicles for therapeutic macromolecules. Here, we engineered EVs to express IL6 signal transducer (IL6ST) decoy receptors to selectively inhibit the IL6 trans-signalling pathway. The potency of the IL6ST decoy receptor EVs was optimized by inclusion of a GCN4 dimerization domain and a peptide sequence derived from syntenin-1 which targets the decoy receptor to EVs. The resulting engineered EVs were able to efficiently inhibit activation of the IL6 trans-signalling pathway in reporter cells, while having no effect on the IL6 classical signalling. IL6ST decoy receptor EVs, were also capable of blocking the IL6 trans-signalling pathway in C2C12 myoblasts and myotubes, thereby inhibiting the phosphorylation of STAT3 and partially reversing the anti-differentiation effects observed when treating cells with IL6/IL6R complexes. Treatment of a Duchenne muscular dystrophy mouse model with IL6ST decoy receptor EVs resulted in a reduction in STAT3 phosphorylation in the quadriceps and gastrocnemius muscles of these mice, thereby demonstrating in vivo activity of the decoy receptor EVs as a potential therapy. Taken together, this study reveals the IL6 trans-signalling pathway as a promising therapeutic target in DMD, and demonstrates the therapeutic potential of IL6ST decoy receptor EVs.
Collapse
Affiliation(s)
- Mariana Conceição
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, UK.
| | - Laura Forcina
- DAHFMO-Unit of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, IMM, Sapienza University of Rome, Rome, Italy
| | - Oscar P B Wiklander
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Evox Therapeutics Limited, Oxford Science Park, Oxford, UK
| | - Dhanu Gupta
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Evox Therapeutics Limited, Oxford Science Park, Oxford, UK
| | - Joel Z Nordin
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Evox Therapeutics Limited, Oxford Science Park, Oxford, UK
| | | | - Graham McClorey
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, UK
| | - Imre Mäger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, UK
| | - André Gӧrgens
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Evox Therapeutics Limited, Oxford Science Park, Oxford, UK; Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Per Lundin
- Evox Therapeutics Limited, Oxford Science Park, Oxford, UK
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, IMM, Sapienza University of Rome, Rome, Italy; Center for Life Nano Science @Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, UK; MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Samir El Andaloussi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Evox Therapeutics Limited, Oxford Science Park, Oxford, UK
| | - Thomas C Roberts
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, UK; MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Interleukin-6: A neuro-active cytokine contributing to cognitive impairment in Duchenne muscular dystrophy? Cytokine 2020; 133:155134. [DOI: 10.1016/j.cyto.2020.155134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/24/2022]
|
8
|
Liu K, Wang G, Li L, Chen G, Gong X, Zhang Q, Wang H. GR-C/EBPα-IGF1 axis mediated azithromycin-induced liver developmental toxicity in fetal mice. Biochem Pharmacol 2020; 180:114130. [PMID: 32615080 DOI: 10.1016/j.bcp.2020.114130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 01/23/2023]
Abstract
Azithromycin is considered an effective drug to treat the perinatal mycoplasma infection. However, there is a lack of studies on developmental toxicity of azithromycin. In this study, we observed the developmental toxicity of fetal liver induced by prenatal azithromycin exposure (PAE) in mice and explored the potential mechanism. Pregnant Kunming mice were intraperitoneally injected with azithromycin (37.5 and 150 mg/kg·d) from gestational day (GD) 9 to 18. After PAE, the bodyweight gain rates of pregnant mice and the birthweights of the offspring were decreased, and the liver morphology, development indexes and metabolic function were all altered in different degree in the PAE fetuses. Meanwhile, PAE decreased the fetal serum insulin-like growth factor 1 (IGF1) levels and liver IGF1 signal pathway expression, accompanied by glucocorticoid receptor-CCAAT enhancer-binding protein α (GR-C/EBPα) signal enhancement. Furthermore, azithromycin disturbed hepatocyte differentiation, maturation and metabolic function via upregulating GR-C/EBPα signal and reducing the expression and secretion levels of IGF1 in HepG2 cells. These changes could be reversed by GR siRNA or exogenous IGF1. These results indicated that PAE could cause fetal liver developmental toxicity in mice, and one of the main mechanisms was that azithromycin activated the GR-C/EBPα signal, inhibited the IGF1 signal pathway, and then disturbed the hepatic proliferation, apoptosis, differentiation, and glycose and lipid metabolism.
Collapse
Affiliation(s)
- Kexin Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Guihua Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Li Li
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Guanghui Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Xiaohan Gong
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Qi Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
9
|
Razzaque MS, Atfi A. Regulatory Role of the Transcription Factor Twist1 in Cancer-Associated Muscle Cachexia. Front Physiol 2020; 11:662. [PMID: 32655411 PMCID: PMC7324683 DOI: 10.3389/fphys.2020.00662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
Muscle cachexia is a catabolic response, usually takes place in various fatal diseases, such as sepsis, burn injury, and chronic kidney disease. Muscle cachexia is also a common co-morbidity seen in the vast majority of advanced cancer patients, often associated with low quality of life and death due to general organ dysfunction. The triggering events and underlying molecular mechanisms of muscle wasting are not yet clearly defined. Our recent study has shown that the ectopic expression of Twist1 in muscle progenitor cells is sufficient to drive muscle structural protein breakdown and attendant muscle atrophy, reminiscent of muscle cachexia. Intriguingly, muscle Twist1 expression is highly induced in cachectic muscles from several mouse models of pancreatic ductal adenocarcinoma (PDAC), raising the interesting possibility that Twist1 may mediate PDAC-driven muscle cachexia. Along these lines, both genetic and pharmacological inactivation of Twist1 function was highly significant at protecting against cancer cachexia, which translated into a significant survival benefit in the experimental PDAC animals. From a translational perspective, elevated expression of Twist1 is also detected in cancer patients with severe muscle wasting, implicating a role of Twist1 in cancer cachexia, and further providing a possible target for therapeutic attenuation of cachexia to improve cancer patient survival. In this article, we will briefly summarize how Twist1 acts as a master regulator of tumor-induced cachexia, and discuss the relevance of our findings to muscle wasting diseases in general. The mechanism of decreased muscle mass in various catabolic conditions is thought to rely on similar pathways, and, therefore, Twist1-induced cancer cachexia may benefit diverse groups of patients with clinical complications associated with loss of muscle mass and functions, beyond the expected benefits for cancer patients.
Collapse
Affiliation(s)
- Mohammed S Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | - Azeddine Atfi
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
10
|
Louw A. GR Dimerization and the Impact of GR Dimerization on GR Protein Stability and Half-Life. Front Immunol 2019; 10:1693. [PMID: 31379877 PMCID: PMC6653659 DOI: 10.3389/fimmu.2019.01693] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/08/2019] [Indexed: 12/14/2022] Open
Abstract
Pharmacologically, glucocorticoids, which mediate their effects via the glucocorticoid receptor (GR), are a most effective therapy for inflammatory diseases despite the fact that chronic use causes side-effects and acquired GC resistance. The design of drugs with fewer side-effects and less potential for the development of resistance is therefore considered crucial for improved therapy. Dimerization of the GR is an integral step in glucocorticoid signaling and has been identified as a possible molecular site to target for drug development of anti-inflammatory drugs with an improved therapeutic index. Most of the current understanding regarding the role of GR dimerization in GC signaling derives for dimerization deficient mutants, although the role of ligands biased toward monomerization has also been described. Even though designing for loss of dimerization has mostly been applied for reduction of side-effect profile, designing for loss of dimerization may also be a fruitful strategy for the development of GC drugs with less potential to develop GC resistance. GC-induced resistance affects up to 30% of users and is due to a reduction in the GR functional pool. Several molecular mechanisms of GC-mediated reductions in GR pool have been described, one of which is the autologous down-regulation of GR density by the ubiquitin-proteasome-system (UPS). Loss of GR dimerization prevents autologous down-regulation of the receptor through modulation of interactions with components of the UPS and post-translational modifications (PTMs), such as phosphorylation, which prime the GR for degradation. Rational design of conformationally biased ligands that select for a monomeric GR conformation, which increases GC sensitivity through improving GR protein stability and increasing half-life, may be a productive avenue to explore. However, potential drawbacks to this approach should be considered as well as the advantages and disadvantages in chronic vs. acute treatment regimes.
Collapse
Affiliation(s)
- Ann Louw
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
11
|
Wilkinson L, Verhoog NJD, Louw A. Disease- and treatment-associated acquired glucocorticoid resistance. Endocr Connect 2018; 7:R328-R349. [PMID: 30352419 PMCID: PMC6280593 DOI: 10.1530/ec-18-0421] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/11/2018] [Indexed: 12/16/2022]
Abstract
The development of resistance to glucocorticoids (GCs) in therapeutic regimens poses a major threat. Generally, GC resistance is congenital or acquired over time as a result of disease progression, prolonged GC treatment or, in some cases, both. Essentially, disruptions in the function and/or pool of the glucocorticoid receptor α (GRα) underlie this resistance. Many studies have detailed how alterations in GRα function lead to diminished GC sensitivity; however, the current review highlights the wealth of data concerning reductions in the GRα pool, mediated by disease-associated and treatment-associated effects, which contribute to a significant decrease in GC sensitivity. Additionally, the current understanding of the molecular mechanisms involved in driving reductions in the GRα pool is discussed. After highlighting the importance of maintaining the level of the GRα pool to combat GC resistance, we present current strategies and argue that future strategies to prevent GC resistance should involve biased ligands with a predisposition for reduced GR dimerization, a strategy originally proposed as the SEMOGRAM-SEDIGRAM concept to reduce the side-effect profile of GCs.
Collapse
Affiliation(s)
- Legh Wilkinson
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Ann Louw
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
- Correspondence should be addressed to A Louw:
| |
Collapse
|
12
|
Ismail HM, Dorchies OM, Scapozza L. The potential and benefits of repurposing existing drugs to treat rare muscular dystrophies. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1452733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Hesham M. Ismail
- Pharmaceutical Biochemistry, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Geneva, Switzerland
| | - Olivier M. Dorchies
- Pharmaceutical Biochemistry, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Geneva, Switzerland
| | - Leonardo Scapozza
- Pharmaceutical Biochemistry, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Geneva, Switzerland
| |
Collapse
|
13
|
Mu X, Tang Y, Takayama K, Chen W, Lu A, Wang B, Weiss K, Huard J. RhoA/ROCK inhibition improves the beneficial effects of glucocorticoid treatment in dystrophic muscle: implications for stem cell depletion. Hum Mol Genet 2018; 26:2813-2824. [PMID: 28549178 DOI: 10.1093/hmg/ddx117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/10/2017] [Indexed: 12/31/2022] Open
Abstract
Glucocorticoid treatment represents a standard palliative treatment for Duchenne muscular dystrophy (DMD) patients, but various adverse effects have limited this treatment. In an effort to understand the mechanism(s) by which glucocorticoids impart their effects on the dystrophic muscle, and potentially reduce the adverse effects, we have studied the effect of prednisolone treatment in dystrophin/utrophin double knockout (dKO) mice, which exhibit a severe dystrophic phenotype due to rapid muscle stem cell depletion. Our results indicate that muscle stem cell depletion in dKO muscle is related to upregulation of mTOR, and that prednisolone treatment reduces the expression of mTOR and other pro-inflammatory mediators, consequently slowing down muscle stem cell depletion. However, prednisolone treatment was unable to improve the myogenesis of stem cells and reduce fibrosis in dKO muscle. We then studied whether glucocorticoid treatment can be improved by co-administration of an inhibitor of RhoA/ROCK signaling, which can be activated by glucocorticoids and was found in our previous work to be over-activated in dystrophic muscle. Our results indicate that the combination of RhoA/ROCK inhibition and glucocorticoid treatment in dystrophic muscle have a synergistic effect in alleviating the dystrophic phenotype. Taken together, our study not only shed light on the mechanism by which glucocorticoid imparts its beneficial effect on dystrophic muscle, but also revealed the synergistic effect of RhoA/ROCK inhibition and glucocorticoid treatment, which could lead to the development of more efficient therapeutic approaches for treating DMD patients.
Collapse
Affiliation(s)
- Xiaodong Mu
- Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston, Houston, TX 77054, USA.,Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA
| | - Ying Tang
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Koji Takayama
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Wanqun Chen
- Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston, Houston, TX 77054, USA.,Department of Biochemistry and Molecular Biology, Jinan University, Guangdong, China
| | - Aiping Lu
- Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston, Houston, TX 77054, USA.,Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA
| | - Bing Wang
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Kurt Weiss
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Johnny Huard
- Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston, Houston, TX 77054, USA.,Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA
| |
Collapse
|
14
|
He B, Li X, Hu T, Lian W, Zhang M. Construction of a lentiviral vector containing shRNA targeting ADAM17 and its role in attenuating endotoxemia in mice. Mol Med Rep 2017; 16:6013-6019. [PMID: 28849138 PMCID: PMC5865799 DOI: 10.3892/mmr.2017.7307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 06/26/2017] [Indexed: 11/09/2022] Open
Abstract
Systemic inflammatory response syndrome is a pathophysiological inflammatory response mediated largely by tumor necrosis factor-α (TNF-α), in response to infectious or non-infectious stimuli. TNF-α secretion in response to bacterial lipopolysaccharide (LPS) is regulated in part by disintegrin and metalloproteinase domain-containing protein 17 (ADAM17). Therefore, the present study aimed to identify an effective inhibitor of ADAM17, in order to control inflammation and associated processes. In the present study, a lentiviral vector expressing short hairpin (sh)RNA targeting the ADAM17 gene was constructed. U937 cells were infected with the lentivirus and stimulated with LPS. ADAM17 expression was assessed by western blotting and TNF-α secretion was assessed by ELISA analysis. The lentivirus was additionally tested in vivo in a mouse model of endotoxemia and sTNF-α expression was assessed by flow cytometry in peritoneal macrophages. In vitro, the ADAM17 shRNA lentivirus reduced ADAM17 expression, and prevented TNF-α maturation in U937 cells. In vivo, mice exposed to the ADAM17 shRNA lentivirus prior to LPS-induced endotoxemia exhibited fewer signs of inflammation and less tissue damage compared with the control mice. In conclusion, the present study successfully constructed a shRNA lentiviral vector targeting the ADAM17 gene that exhibited apparent in vitro and in vivo effects on TNF-α processing in response to an LPS challenge. The results of the present study may aid the design and improvement of drugs designed to inhibit the function of ADAM17, and suggested a novel means of controlling inflammation and associated processes.
Collapse
Affiliation(s)
- Bing He
- Department of Pediatrics, Renming Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiaoou Li
- Department of Pediatrics, Renming Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Tuo Hu
- Department of Pediatrics, Renming Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wenjing Lian
- Department of Pediatrics, Renming Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Mingxia Zhang
- Department of Pediatrics, Renming Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
15
|
Jensen L, Petersson S, Illum N, Laugaard-Jacobsen H, Thelle T, Jørgensen L, Schrøder H. Muscular response to the first three months of deflazacort treatment in boys with Duchenne muscular dystrophy. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2017; 17:8-18. [PMID: 28574407 PMCID: PMC5492315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
OBJECTIVE Duchenne muscular dystrophy (DMD) patients are often treated with glucocorticoids; yet their precise molecular action remains unknown. METHODS We investigated muscle biopsies from nine boys with DMD (aged: 7,6±2,8 yrs.) collected before and after three months of deflazacort treatment and compared them to eight healthy boys (aged: 5,3±2,4 yrs.). mRNA transcripts involved in activation of satellite cells, myogenesis, regeneration, adipogenesis, muscle growth and tissue inflammation were assessed. Serum creatine kinase (CK) levels and muscle protein expression by immunohistochemistry of selected targets were also analysed. RESULTS Transcript levels for ADIPOQ, CD68, CDH15, FGF2, IGF1R, MYF5, MYF6, MYH8, MYOD, PAX7, and TNFα were significantly different in untreated patients vs. normal muscle (p⟨0.05). Linear tests for trend indicated that the expression levels of treated patients were approaching normal values (p⟨0.05) following treatment (towards an increase; CDH15, C-MET, DLK1, FGF2, IGF1R, MYF5, MYF6, MYOD, PAX7; towards a decrease: CD68, MYH8, TNFα). Treatment reduced CK levels (p⟨0.05), but we observed no effect on muscle protein expression. CONCLUSIONS This study provides insight into the molecular actions of glucocorticoids in DMD at the mRNA level, and we show that multiple regulatory pathways are influenced. This information can be important in the development of new treatments.
Collapse
Affiliation(s)
- L. Jensen
- Department of Clinical Pathology, Institute of Clinical Research, University of Southern Denmark and Odense University Hospital, 5000 Odense C, Denmark
| | - S.J. Petersson
- Department of Clinical Pathology, Institute of Clinical Research, University of Southern Denmark and Odense University Hospital, 5000 Odense C, Denmark
| | - N.O. Illum
- H.C. Andersen Children’s Hospital, Odense University Hospital, 5000 Odense C, Denmark
| | | | - T. Thelle
- Pediatric Department, Regional Hospital Central Jutland, 8800 Viborg, Denmark
| | - L.H. Jørgensen
- Department of Clinical Pathology, Institute of Clinical Research, University of Southern Denmark and Odense University Hospital, 5000 Odense C, Denmark
| | - H.D. Schrøder
- Department of Clinical Pathology, Institute of Clinical Research, University of Southern Denmark and Odense University Hospital, 5000 Odense C, Denmark,Corresponding author: Henrik Daa Schrøder, Institute of Clinical Research, Clinical Pathology, Odense University Hospital, JB. Winsløw Vej 15, 2. DK-5000 Odense C, Denmark E-mail:
| |
Collapse
|
16
|
Lesovaya E, Yemelyanov A, Swart AC, Swart P, Haegeman G, Budunova I. Discovery of Compound A--a selective activator of the glucocorticoid receptor with anti-inflammatory and anti-cancer activity. Oncotarget 2016; 6:30730-44. [PMID: 26436695 PMCID: PMC4741564 DOI: 10.18632/oncotarget.5078] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/19/2015] [Indexed: 12/19/2022] Open
Abstract
Glucocorticoids are among the most effective anti-inflammatory drugs, and are widely used for cancer therapy. Unfortunately, chronic treatment with glucocorticoids results in multiple side effects. Thus, there was an intensive search for selective glucocorticoid receptor (GR) activators (SEGRA), which retain therapeutic potential of glucocorticoids, but with fewer adverse effects. GR regulates gene expression by transactivation (TA), by binding as homodimer to gene promoters, or transrepression (TR), via diverse mechanisms including negative interaction between monomeric GR and other transcription factors. It is well accepted that metabolic and atrophogenic effects of glucocorticoids are mediated by GR TA. Here we summarized the results of extensive international collaboration that led to discovery and characterization of Compound A (CpdA), a unique SEGRA with a proven “dissociating” GR ligand profile, preventing GR dimerization and shifting GR activity towards TR both in vitro and in vivo. We outlined here the unusual story of compound's discovery, and presented a comprehensive overview of CpdA ligand properties, its anti-inflammatory effects in numerous animal models of inflammation and autoimmune diseases, as well as its anti-cancer effects. Finally, we presented mechanistic analysis of CpdA and glucocorticoid effects in skin, muscle, bone, and regulation of glucose and fat metabolism to explain decreased CpdA side effects compared to glucocorticoids. Overall, the results obtained by our and other laboratories underline translational potential of CpdA and its derivatives for treatment of inflammation, autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Ekaterina Lesovaya
- Department of Chemical Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia
| | - Alexander Yemelyanov
- Pulmonary Division, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Amanda C Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Pieter Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Irina Budunova
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
17
|
Rae MG, O'Malley D. Cognitive dysfunction in Duchenne muscular dystrophy: a possible role for neuromodulatory immune molecules. J Neurophysiol 2016; 116:1304-15. [PMID: 27385793 DOI: 10.1152/jn.00248.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/29/2016] [Indexed: 11/22/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X chromosome-linked disease characterized by progressive physical disability, immobility, and premature death in affected boys. Underlying the devastating symptoms of DMD is the loss of dystrophin, a structural protein that connects the extracellular matrix to the cell cytoskeleton and provides protection against contraction-induced damage in muscle cells, leading to chronic peripheral inflammation. However, dystrophin is also expressed in neurons within specific brain regions, including the hippocampus, a structure associated with learning and memory formation. Linked to this, a subset of boys with DMD exhibit nonprogressing cognitive dysfunction, with deficits in verbal, short-term, and working memory. Furthermore, in the genetically comparable dystrophin-deficient mdx mouse model of DMD, some, but not all, types of learning and memory are deficient, and specific deficits in synaptogenesis and channel clustering at synapses has been noted. Little consideration has been devoted to the cognitive deficits associated with DMD compared with the research conducted into the peripheral effects of dystrophin deficiency. Therefore, this review focuses on what is known about the role of full-length dystrophin (Dp427) in hippocampal neurons. The importance of dystrophin in learning and memory is assessed, and the potential importance that inflammatory mediators, which are chronically elevated in dystrophinopathies, may have on hippocampal function is also evaluated.
Collapse
Affiliation(s)
- Mark G Rae
- Department of Physiology, University College Cork, Cork, Ireland; and
| | - Dervla O'Malley
- Department of Physiology, University College Cork, Cork, Ireland; and APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
18
|
Manning J, Buckley MM, O'Halloran KD, O'Malley D. In vivo neutralization of IL-6 receptors ameliorates gastrointestinal dysfunction in dystrophin-deficient mdx mice. Neurogastroenterol Motil 2016; 28:1016-26. [PMID: 26920808 DOI: 10.1111/nmo.12803] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/25/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a fatal disease characterized by progressive deterioration and degeneration of striated muscle. A mutation resulting in the loss of dystrophin, a structural protein which protects cells from contraction-induced damage, underlies DMD pathophysiology. Damage to muscle fibers results in chronic inflammation and elevated levels of proinflammatory cytokines such as interleukin-6 (IL-6). However, loss of cellular dystrophin also affects neurons and smooth muscle in the gastrointestinal (GI) tract with complaints such as hypomotility, pseudo-obstruction, and constipation reported in DMD patients. METHODS Using dystrophin-deficient mdx mice, studies were carried out to examine colonic morphology and function compared with wild-type mice. Treatment with neutralizing IL-6 receptor antibodies (xIL-6R) and/or the corticotropin-releasing factor (CRF) 2 receptor agonist, urocortin 2 (uro2) was tested to determine if they ameliorated GI dysfunction in mdx mice. KEY RESULTS Mdx mice exhibited thickening of colonic smooth muscle layers and delayed stress-induced defecation. In organ bath studies, neurally mediated IL-6-evoked contractions were larger in mdx colons. In vivo treatment of mdx mice with xIL-6R normalized defecation rates and colon lengths. Uro2 treatment did not affect motility or morphology. The potentiated colonic contractile response to IL-6 was attenuated by treatment with xIL-6R. CONCLUSIONS & INFERENCES These findings confirm the importance of dystrophin in normal GI function and implicate IL-6 as an important regulator of GI motility in the mdx mouse. Inhibition of IL-6 signaling may offer a potential new therapeutic strategy for treating DMD-associated GI symptoms.
Collapse
Affiliation(s)
- J Manning
- Department of Physiology, University College Cork, Cork, Ireland
| | - M M Buckley
- Department of Physiology, University College Cork, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| | - K D O'Halloran
- Department of Physiology, University College Cork, Cork, Ireland
| | - D O'Malley
- Department of Physiology, University College Cork, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
19
|
Chang NC, Chevalier FP, Rudnicki MA. Satellite Cells in Muscular Dystrophy - Lost in Polarity. Trends Mol Med 2016; 22:479-496. [PMID: 27161598 PMCID: PMC4885782 DOI: 10.1016/j.molmed.2016.04.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 12/21/2022]
Abstract
Recent findings employing the mdx mouse model for Duchenne muscular dystrophy (DMD) have revealed that muscle satellite stem cells play a direct role in contributing to disease etiology and progression of DMD, the most common and severe form of muscular dystrophy. Lack of dystrophin expression in DMD has critical consequences in satellite cells including an inability to establish cell polarity, abrogation of asymmetric satellite stem-cell divisions, and failure to enter the myogenic program. Thus, muscle wasting in dystrophic mice is not only caused by myofiber fragility but is exacerbated by intrinsic satellite cell dysfunction leading to impaired regeneration. Despite intense research and clinical efforts, there is still no effective cure for DMD. In this review we highlight recent research advances in DMD and discuss the current state of treatment and, importantly, how we can incorporate satellite cell-targeted therapeutic strategies to correct satellite cell dysfunction in DMD.
Collapse
Affiliation(s)
- Natasha C Chang
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Fabien P Chevalier
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Michael A Rudnicki
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
20
|
Benny Klimek ME, Sali A, Rayavarapu S, Van der Meulen JH, Nagaraju K. Effect of the IL-1 Receptor Antagonist Kineret® on Disease Phenotype in mdx Mice. PLoS One 2016; 11:e0155944. [PMID: 27213537 PMCID: PMC4877010 DOI: 10.1371/journal.pone.0155944] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/07/2016] [Indexed: 12/20/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked muscle disease caused by mutations in the dystrophin gene. The pathology of DMD manifests in patients with progressive muscle weakness, loss of ambulation and ultimately death. One of the characteristics of DMD is muscle inflammation, and dystrophin-deficient skeletal muscles produce higher levels of the pro-inflammatory cytokine interleukin 1β (IL-1β) in response to toll like receptor (TLR) stimulation compared to controls; therefore, blocking the IL-1β pathway could improve the disease phenotype in mdx mice, a mouse model of DMD. Kineret® or IL-1Ra is a recombinant IL-1 receptor antagonist approved by the FDA for treating rheumatoid arthritis. To determine the efficacy of IL-1Ra in a DMD model, we administered subcutaneous injections of saline control or IL-1Ra (25 mg/kg/day) to mdx mice daily for 45 days beginning at 5 weeks of age. Functional and histological parameters were measured at the conclusion of the study. IL-1Ra only partially inhibited this signaling pathway in this study; however, there were still interesting observations to be noted. For example, although not significantly changed, splenocytes from the IL-1Ra-treated group secreted less IL-1β after LPS stimulation compared to control mice indicating a blunted response and incomplete inhibition of the pathway (37% decrease). In addition, normalized forelimb grip strength was significantly increased in IL-1Ra-treated mice. There were no changes in EDL muscle-specific force measurements, histological parameters, or motor coordination assessments in the dystrophic mice after IL-1Ra treatment. There was a significant 27% decrease in the movement time and total distance traveled by the IL-1Ra treated mice, correlating with previous studies examining effects of IL-1 on behavior. Our studies indicate partial blocking of IL-1β with IL-1Ra significantly altered only a few behavioral and strength related disease parameters; however, treatment with inhibitors that completely block IL-1β, pathways upstream of IL-1β production or combining various inhibitors may produce more favorable outcomes.
Collapse
Affiliation(s)
- Margaret E. Benny Klimek
- Research Center for Genetic Medicine, Children’s National Medical Center, Washington, District of Columbia, United States of America
| | - Arpana Sali
- Research Center for Genetic Medicine, Children’s National Medical Center, Washington, District of Columbia, United States of America
| | - Sree Rayavarapu
- Research Center for Genetic Medicine, Children’s National Medical Center, Washington, District of Columbia, United States of America
| | - Jack H. Van der Meulen
- Research Center for Genetic Medicine, Children’s National Medical Center, Washington, District of Columbia, United States of America
| | - Kanneboyina Nagaraju
- Research Center for Genetic Medicine, Children’s National Medical Center, Washington, District of Columbia, United States of America
- Department of Integrative Systems Biology, The George Washington University, Washington, District of Columbia, United States of America
- * E-mail:
| |
Collapse
|
21
|
Pelosi L, Berardinelli MG, Forcina L, Spelta E, Rizzuto E, Nicoletti C, Camilli C, Testa E, Catizone A, De Benedetti F, Musarò A. Increased levels of interleukin-6 exacerbate the dystrophic phenotype in mdx mice. Hum Mol Genet 2015; 24:6041-53. [PMID: 26251044 PMCID: PMC4599671 DOI: 10.1093/hmg/ddv323] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/03/2015] [Indexed: 12/13/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is characterized by progressive lethal muscle degeneration and chronic inflammatory response. The mdx mouse strain has served as the animal model for human DMD. However, while DMD patients undergo extensive necrosis, the affected muscles of adult mdx mice rapidly regenerates and regains structural and functional integrity. The basis for the mild effects observed in mice compared with the lethal consequences in humans remains unknown. In this study, we provide evidence that interleukin-6 (IL-6) is causally linked to the pathogenesis of muscular dystrophy. We report that forced expression of IL-6, in the adult mdx mice, recapitulates the severe phenotypic characteristics of DMD in humans. Increased levels of IL-6 exacerbate the dystrophic muscle phenotype, sustaining inflammatory response and repeated cycles of muscle degeneration and regeneration, leading to exhaustion of satellite cells. The mdx/IL6 mouse closely approximates the human disease and more faithfully recapitulates the disease progression in humans. This study promises to significantly advance our understanding of the pathogenic mechanisms that lead to DMD.
Collapse
Affiliation(s)
- Laura Pelosi
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM and
| | | | - Laura Forcina
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM and
| | - Elisa Spelta
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM and
| | - Emanuele Rizzuto
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Rome 00184, Italy
| | - Carmine Nicoletti
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM and
| | - Carlotta Camilli
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM and
| | - Erika Testa
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM and
| | - Angela Catizone
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome 00161, Italy
| | | | - Antonio Musarò
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM and Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome 00161, Italy
| |
Collapse
|
22
|
Sinadinos A, Young CNJ, Al-Khalidi R, Teti A, Kalinski P, Mohamad S, Floriot L, Henry T, Tozzi G, Jiang T, Wurtz O, Lefebvre A, Shugay M, Tong J, Vaudry D, Arkle S, doRego JC, Górecki DC. P2RX7 purinoceptor: a therapeutic target for ameliorating the symptoms of duchenne muscular dystrophy. PLoS Med 2015; 12:e1001888. [PMID: 26461208 PMCID: PMC4604078 DOI: 10.1371/journal.pmed.1001888] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 09/04/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is the most common inherited muscle disease, leading to severe disability and death in young men. Death is caused by the progressive degeneration of striated muscles aggravated by sterile inflammation. The pleiotropic effects of the mutant gene also include cognitive and behavioral impairments and low bone density. Current interventions in DMD are palliative only as no treatment improves the long-term outcome. Therefore, approaches with a translational potential should be investigated, and key abnormalities downstream from the absence of the DMD product, dystrophin, appear to be strong therapeutic targets. We and others have demonstrated that DMD mutations alter ATP signaling and have identified P2RX7 purinoceptor up-regulation as being responsible for the death of muscles in the mdx mouse model of DMD and human DMD lymphoblasts. Moreover, the ATP-P2RX7 axis, being a crucial activator of innate immune responses, can contribute to DMD pathology by stimulating chronic inflammation. We investigated whether ablation of P2RX7 attenuates the DMD model mouse phenotype to assess receptor suitability as a therapeutic target. METHODS AND FINDINGS Using a combination of molecular, histological, and biochemical methods and behavioral analyses in vivo we demonstrate, to our knowledge for the first time, that genetic ablation of P2RX7 in the DMD model mouse produces a widespread functional attenuation of both muscle and non-muscle symptoms. In dystrophic muscles at 4 wk there was an evident recovery in key functional and molecular parameters such as improved muscle structure (minimum Feret diameter, p < 0.001), increased muscle strength in vitro (p < 0.001) and in vivo (p = 0.012), and pro-fibrotic molecular signatures. Serum creatine kinase (CK) levels were lower (p = 0.025), and reduced cognitive impairment (p = 0.006) and bone structure alterations (p < 0.001) were also apparent. Reduction of inflammation and fibrosis persisted at 20 mo in leg (p = 0.038), diaphragm (p = 0.042), and heart muscles (p < 0.001). We show that the amelioration of symptoms was proportional to the extent of receptor depletion and that improvements were observed following administration of two P2RX7 antagonists (CK, p = 0.030 and p = 0.050) without any detectable side effects. However, approaches successful in animal models still need to be proved effective in clinical practice. CONCLUSIONS These results are, to our knowledge, the first to establish that a single treatment can improve muscle function both short and long term and also correct cognitive impairment and bone loss in DMD model mice. The wide-ranging improvements reflect the convergence of P2RX7 ablation on multiple disease mechanisms affecting skeletal and cardiac muscles, inflammatory cells, brain, and bone. Given the impact of P2RX7 blockade in the DMD mouse model, this receptor is an attractive target for translational research: existing drugs with established safety records could potentially be repurposed for treatment of this lethal disease.
Collapse
Affiliation(s)
- Anthony Sinadinos
- Molecular Medicine, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Christopher N. J. Young
- Molecular Medicine, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Rasha Al-Khalidi
- Molecular Medicine, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Paweł Kalinski
- Departments of Surgery, Immunology, and Bioengineering, School of Medicine, University of Pittsburgh, Pittsburg, Pennsylvania, United States of America
| | - Shafini Mohamad
- School of Engineering, University of Portsmouth, Portsmouth, United Kingdom
| | - Léonore Floriot
- Platform of Behavioural Analysis (SCAC), University of Rouen, Mont-Saint-Aignan,Rouen, France
| | - Tiphaine Henry
- Platform of Behavioural Analysis (SCAC), University of Rouen, Mont-Saint-Aignan,Rouen, France
| | - Gianluca Tozzi
- School of Engineering, University of Portsmouth, Portsmouth, United Kingdom
| | - Taiwen Jiang
- Molecular Medicine, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Olivier Wurtz
- INSERM U982, Plate-Forme d’Imagerie PRIMACEN, IRIB, University of Rouen, Mont-Saint-Aignan, France
| | - Alexis Lefebvre
- Platform of Behavioural Analysis (SCAC), University of Rouen, Mont-Saint-Aignan,Rouen, France
| | - Mikhail Shugay
- Genomics of Adaptive Immunity Lab, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry and Pirogov Russian National Research Medical University, Moscow, Russia
| | - Jie Tong
- School of Engineering, University of Portsmouth, Portsmouth, United Kingdom
| | - David Vaudry
- INSERM U982, Plate-Forme d’Imagerie PRIMACEN, IRIB, University of Rouen, Mont-Saint-Aignan, France
| | - Stephen Arkle
- Molecular Medicine, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Jean-Claude doRego
- Platform of Behavioural Analysis (SCAC), University of Rouen, Mont-Saint-Aignan,Rouen, France
- National Center of Scientific Research (CNRS), Caen, France
| | - Dariusz C. Górecki
- Molecular Medicine, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Sundahl N, Bridelance J, Libert C, De Bosscher K, Beck IM. Selective glucocorticoid receptor modulation: New directions with non-steroidal scaffolds. Pharmacol Ther 2015; 152:28-41. [PMID: 25958032 DOI: 10.1016/j.pharmthera.2015.05.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/23/2015] [Indexed: 12/22/2022]
Abstract
Glucocorticoids remain the frontline treatment for inflammatory disorders, yet represent a double-edged sword with beneficial therapeutic actions alongside adverse effects, mainly in metabolic regulation. Considerable efforts were made to improve this balance by attempting to amplify therapeutic beneficial anti-inflammatory actions and to minimize adverse metabolic actions. Most attention has focused on the development of novel compounds favoring the transrepressing actions of the glucocorticoid receptor, assumed to be important for anti-inflammatory actions, over the transactivating actions, assumed to underpin the undesirable actions. These compounds are classified as selective glucocorticoid receptor agonists (SEGRAs) or selective glucocorticoid receptor modulators (SEGRMs). The latter class is able to modulate the activity of a GR agonist and/or may not classically bind the glucocorticoid receptor ligand-binding pocket. SEGRAs and SEGRMs are collectively denominated SEGRAMs (selective glucocorticoid receptor agonists and modulators). Although this transrepression vs transactivation concept proved to be too simplistic, the developed SEGRAMs were helpful in elucidating various molecular actions of the glucocorticoid receptor, but have also raised many novel questions. We discuss lessons learned from recent mechanistic studies of selective glucocorticoid receptor modulators. This is approached by analyzing recent experimental insights in comparison with knowledge obtained using mutant GR research, thus clarifying the current view on the SEGRAM field. These insights also contribute to our understanding of the processes controlling glucocorticoid-mediated side effects as well as glucocorticoid resistance. Our perspective on non-steroidal SEGRAs and SEGRMs considers remaining opportunities to address research gaps in order to harness the potential for more safe and effective glucocorticoid receptor therapies.
Collapse
Affiliation(s)
- Nora Sundahl
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Gent, Belgium
| | - Jolien Bridelance
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Gent, Belgium
| | - Claude Libert
- Department for Molecular Biomedical Research, VIB, Gent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Gent, Belgium
| | - Karolien De Bosscher
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL), VIB Department of Medical Protein Research, Ghent University, Gent, Belgium.
| | - Ilse M Beck
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Gent, Belgium
| |
Collapse
|
24
|
Shimizu-Motohashi Y, Asakura Y, Motohashi N, Belur NR, Baumrucker MG, Asakura A. Pregnancy-induced amelioration of muscular dystrophy phenotype in mdx mice via muscle membrane stabilization effect of glucocorticoid. PLoS One 2015; 10:e0120325. [PMID: 25775477 PMCID: PMC4361742 DOI: 10.1371/journal.pone.0120325] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 01/20/2015] [Indexed: 12/16/2022] Open
Abstract
Duchenne muscular dystrophy (DMD), the most common and severe type of dystrophinopathy, is an X-linked recessive genetic disease caused by the absence of dystrophin, which leads to fragility and vulnerability of the sarcolemma to mechanical stretching with increased membrane permeability. Currently, glucocorticoids such as prednisolone are the only medication available for DMD. However, molecular pathways responsible for this effect are still unclear. In addition, it remains unclear whether sex-related factors, including pregnancy and the postpartum period, affect the phenotype of dystrophinopathy. Here, we report the amelioration of muscle membrane permeability in the diaphragm muscle of pregnant and postpartum, but not in nulliparous, mdx mice, an animal model for DMD, during the physiological surge of corticosterone, the most abundant glucocorticoid in rodents. Cultures of single muscle fibers and myotubes isolated from mdx mouse diaphragm demonstrate resistance to hypo-osmotic shock when treated with corticosterone but not with estradiol or progesterone. This corticosterone-mediated resistance was diminished by an antagonist of corticosterone, indicating that the glucocorticoid-glucocorticoid receptor axis plays a role in this membrane stabilization effect on muscle. Moreover, subcutaneous injection of corticosterone into mdx mice showed decreased membrane permeability. This is the first report to demonstrate that pregnancy-related resistance to muscle fiber damage in mdx mice due to the membrane stabilization effect of corticosterone. We also propose that this membrane stabilization effect is exerted through annexin A1 up-regulation as the molecular mechanisms of glucocorticoid effects on DMD muscle. Furthermore, single muscle fiber culture studies provide a sensitive chemical screening platform for muscular dystrophies.
Collapse
Affiliation(s)
- Yuko Shimizu-Motohashi
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Yoko Asakura
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Norio Motohashi
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Nandkishore R. Belur
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Michael G. Baumrucker
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Atsushi Asakura
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, United States of America
- * E-mail:
| |
Collapse
|
25
|
Kornegay JN, Spurney CF, Nghiem PP, Brinkmeyer-Langford CL, Hoffman EP, Nagaraju K. Pharmacologic management of Duchenne muscular dystrophy: target identification and preclinical trials. ILAR J 2015; 55:119-49. [PMID: 24936034 DOI: 10.1093/ilar/ilu011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked human disorder in which absence of the protein dystrophin causes degeneration of skeletal and cardiac muscle. For the sake of treatment development, over and above definitive genetic and cell-based therapies, there is considerable interest in drugs that target downstream disease mechanisms. Drug candidates have typically been chosen based on the nature of pathologic lesions and presumed underlying mechanisms and then tested in animal models. Mammalian dystrophinopathies have been characterized in mice (mdx mouse) and dogs (golden retriever muscular dystrophy [GRMD]). Despite promising results in the mdx mouse, some therapies have not shown efficacy in DMD. Although the GRMD model offers a higher hurdle for translation, dogs have primarily been used to test genetic and cellular therapies where there is greater risk. Failed translation of animal studies to DMD raises questions about the propriety of methods and models used to identify drug targets and test efficacy of pharmacologic intervention. The mdx mouse and GRMD dog are genetically homologous to DMD but not necessarily analogous. Subcellular species differences are undoubtedly magnified at the whole-body level in clinical trials. This problem is compounded by disparate cultures in clinical trials and preclinical studies, pointing to a need for greater rigor and transparency in animal experiments. Molecular assays such as mRNA arrays and genome-wide association studies allow identification of genetic drug targets more closely tied to disease pathogenesis. Genes in which polymorphisms have been directly linked to DMD disease progression, as with osteopontin, are particularly attractive targets.
Collapse
|
26
|
Heier CR, Guerron AD, Korotcov A, Lin S, Gordish-Dressman H, Fricke S, Sze RW, Hoffman EP, Wang P, Nagaraju K. Non-invasive MRI and spectroscopy of mdx mice reveal temporal changes in dystrophic muscle imaging and in energy deficits. PLoS One 2014; 9:e112477. [PMID: 25390038 PMCID: PMC4229202 DOI: 10.1371/journal.pone.0112477] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/04/2014] [Indexed: 01/16/2023] Open
Abstract
In Duchenne muscular dystrophy (DMD), a genetic disruption of dystrophin protein expression results in repeated muscle injury and chronic inflammation. Magnetic resonance imaging shows promise as a surrogate outcome measure in both DMD and rehabilitation medicine that is capable of predicting clinical benefit years in advance of functional outcome measures. The mdx mouse reproduces the dystrophin deficiency that causes DMD and is routinely used for preclinical drug testing. There is a need to develop sensitive, non-invasive outcome measures in the mdx model that can be readily translatable to human clinical trials. Here we report the use of magnetic resonance imaging and spectroscopy techniques for the non-invasive monitoring of muscle damage in mdx mice. Using these techniques, we studied dystrophic mdx muscle in mice from 6 to 12 weeks of age, examining both the peak disease phase and natural recovery phase of the mdx disease course. T2 and fat-suppressed imaging revealed significant levels of tissue with elevated signal intensity in mdx hindlimb muscles at all ages; spectroscopy revealed a significant deficiency of energy metabolites in 6-week-old mdx mice. As the mdx mice progressed from the peak disease stage to the recovery stage of disease, each of these phenotypes was either eliminated or reduced, and the cross-sectional area of the mdx muscle was significantly increased when compared to that of wild-type mice. Histology indicates that hyper-intense MRI foci correspond to areas of dystrophic lesions containing inflammation as well as regenerating, degenerating and hypertrophied myofibers. Statistical sample size calculations provide several robust measures with the ability to detect intervention effects using small numbers of animals. These data establish a framework for further imaging or preclinical studies, and they support the development of MRI as a sensitive, non-invasive outcome measure for muscular dystrophy.
Collapse
Affiliation(s)
- Christopher R. Heier
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, D.C., United States of America
| | - Alfredo D. Guerron
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, D.C., United States of America
| | - Alexandru Korotcov
- Department of Radiology, Howard University College of Medicine, Washington, D.C., United States of America
| | - Stephen Lin
- Department of Radiology, Howard University College of Medicine, Washington, D.C., United States of America
| | - Heather Gordish-Dressman
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, D.C., United States of America
- Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, D.C., United States of America
| | - Stanley Fricke
- Department of Diagnostic Imaging and Radiology, Children's National Medical Center, Washington, D.C., United States of America
| | - Raymond W. Sze
- Department of Radiology, Children's National Medical Center, Washington, D.C., United States of America
| | - Eric P. Hoffman
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, D.C., United States of America
- Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, D.C., United States of America
| | - Paul Wang
- Department of Radiology, Howard University College of Medicine, Washington, D.C., United States of America
- Department of Electrical Engineering, Fu Jen Catholic University, Taipei, Taiwan
| | - Kanneboyina Nagaraju
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, D.C., United States of America
- Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|
27
|
Uaesoontrachoon K, Quinn JL, Tatem KS, Van Der Meulen JH, Yu Q, Phadke A, Miller BK, Gordish-Dressman H, Ongini E, Miglietta D, Nagaraju K. Long-term treatment with naproxcinod significantly improves skeletal and cardiac disease phenotype in the mdx mouse model of dystrophy. Hum Mol Genet 2014; 23:3239-49. [PMID: 24463621 DOI: 10.1093/hmg/ddu033] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In Duchenne muscular dystrophy (DMD) patients and the mouse model of DMD, mdx, dystrophin deficiency causes a decrease and mislocalization of muscle-specific neuronal nitric oxide synthase (nNOSμ), leading to functional impairments. Previous studies have shown that nitric oxide (NO) donation associated with anti-inflammatory action has beneficial effects in dystrophic mouse models. In this study, we have systematically investigated the effects of naproxcinod, an NO-donating naproxen derivative, on the skeletal and cardiac disease phenotype in mdx mice. Four-week-old mdx and C57BL/10 mice were treated with four different concentrations (0, 10, 21 and 41 mg/kg) of naproxcinod and 0.9 mg/kg of prednisolone in their food for 9 months. All mice were subjected to twice-weekly treadmill sessions, and functional and behavioral parameters were measured at 3, 6 and 9 months of treatment. In addition, we evaluated in vitro force contraction, optical imaging of inflammation, echocardiography and blood pressure (BP) at the 9-month endpoint prior to sacrifice. We found that naproxcinod treatment at 21 mg/kg resulted in significant improvement in hindlimb grip strength and a 30% decrease in inflammation in the fore- and hindlimbs of mdx mice. Furthermore, we found significant improvement in heart function, as evidenced by improved fraction shortening, ejection fraction and systolic BP. In addition, the long-term detrimental effects of prednisolone typically seen in mdx skeletal and heart function were not observed at the effective dose of naproxcinod. In conclusion, our results indicate that naproxcinod has significant potential as a safe therapeutic option for the treatment of muscular dystrophies.
Collapse
Affiliation(s)
| | - James L Quinn
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA
| | - Kathleen S Tatem
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA
| | - Jack H Van Der Meulen
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA
| | - Qing Yu
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA
| | - Aditi Phadke
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA
| | - Brittany K Miller
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA
| | - Heather Gordish-Dressman
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Ennio Ongini
- Nicox Research Institute, Via Ariosto 21-20091, Bresso Milano, Italy
| | - Daniela Miglietta
- Nicox Research Institute, Via Ariosto 21-20091, Bresso Milano, Italy
| | - Kanneboyina Nagaraju
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|