1
|
Dorfer S, Ressler JM, Riebenbauer K, Kancz S, Purkhauser K, Bachmayr V, Cataisson C, Kirnbauer R, Petzelbauer P, Wiesmueller M, Egg M, Hoeller C, Handisurya A. BRAF Inhibition and UVB Light Synergistically Promote Mus musculus Papillomavirus 1-Induced Skin Tumorigenesis. Cancers (Basel) 2024; 16:3133. [PMID: 39335105 PMCID: PMC11440113 DOI: 10.3390/cancers16183133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The development of keratinocytic skin tumors, presumably attributable to paradoxical activation of the MAPK pathway, represents a relevant side effect of targeted therapies with BRAF inhibitors (BRAFis). The role of cutaneous papillomavirus infection in BRAFi-associated skin carcinogenesis, however, is still inconclusive. Employing the Mus musculus papillomavirus 1 (MmuPV1) skin infection model, the impact of BRAFis and UVB exposure on papillomavirus induced skin tumorigenesis was investigated in immunocompetent FVB/NCrl mice. Systemic BRAF inhibition in combination with UVB light induced skin tumors in 62% of the MmuPV1-infected animals. In contrast, significantly fewer tumors were observed in the absence of either BRAF inhibition, UVB irradiation or virus infection, as demonstrated by lesional outgrowth in 20%, 5% and 0% of the mice, respectively. Combinatory exposure to BRAFis and UVB favored productive viral infection, which was shown by high numbers of MmuPV1 genome copies and E1^E4 spliced transcripts and an abundance of E6/E7 oncogene mRNA and viral capsid proteins. BRAF inhibition, but not viral infection or UVB light, activated ERK1/2, whereas γH2AX expression, inducible by UVB light, remained unaltered by BRAFis. These results provide experimental evidence that BRAF inhibition and UVB irradiation synergistically promote MmuPV1-induced skin tumor development in vivo. This indicates an alternative pathway by which papillomavirus skin infection may contribute to BRAFi-associated skin tumorigenesis.
Collapse
Affiliation(s)
- Sonja Dorfer
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (S.D.); (J.M.R.); (K.P.); (V.B.); (R.K.); (P.P.); (M.W.); (M.E.); (C.H.)
| | - Julia Maria Ressler
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (S.D.); (J.M.R.); (K.P.); (V.B.); (R.K.); (P.P.); (M.W.); (M.E.); (C.H.)
| | - Katharina Riebenbauer
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (S.D.); (J.M.R.); (K.P.); (V.B.); (R.K.); (P.P.); (M.W.); (M.E.); (C.H.)
| | - Stefanie Kancz
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (S.D.); (J.M.R.); (K.P.); (V.B.); (R.K.); (P.P.); (M.W.); (M.E.); (C.H.)
| | - Kim Purkhauser
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (S.D.); (J.M.R.); (K.P.); (V.B.); (R.K.); (P.P.); (M.W.); (M.E.); (C.H.)
| | - Victoria Bachmayr
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (S.D.); (J.M.R.); (K.P.); (V.B.); (R.K.); (P.P.); (M.W.); (M.E.); (C.H.)
| | - Christophe Cataisson
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Reinhard Kirnbauer
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (S.D.); (J.M.R.); (K.P.); (V.B.); (R.K.); (P.P.); (M.W.); (M.E.); (C.H.)
| | - Peter Petzelbauer
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (S.D.); (J.M.R.); (K.P.); (V.B.); (R.K.); (P.P.); (M.W.); (M.E.); (C.H.)
| | - Markus Wiesmueller
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (S.D.); (J.M.R.); (K.P.); (V.B.); (R.K.); (P.P.); (M.W.); (M.E.); (C.H.)
| | - Maximilian Egg
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (S.D.); (J.M.R.); (K.P.); (V.B.); (R.K.); (P.P.); (M.W.); (M.E.); (C.H.)
| | - Christoph Hoeller
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (S.D.); (J.M.R.); (K.P.); (V.B.); (R.K.); (P.P.); (M.W.); (M.E.); (C.H.)
| | - Alessandra Handisurya
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (S.D.); (J.M.R.); (K.P.); (V.B.); (R.K.); (P.P.); (M.W.); (M.E.); (C.H.)
| |
Collapse
|
2
|
Laus AC, Gomes INF, da Silva ALV, da Silva LS, Milan MB, AparecidaTeixeira S, Martin ACBM, do Nascimento Braga Pereira L, de Carvalho CEB, Crovador CS, de Paula FE, Nascimento FC, de Freitas HT, de Lima Vazquez V, Reis RM, da Silva-Oliveira RJ. Establishment and molecular characterization of HCB-541, a novel and aggressive human cutaneous squamous cell carcinoma cell line. Hum Cell 2024; 37:1170-1183. [PMID: 38565739 PMCID: PMC11194207 DOI: 10.1007/s13577-024-01054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a common type of skin cancer that can result in significant morbidity, although it is usually well-managed and rarely metastasizes. However, the lack of commercially available cSCC cell lines hinders our understanding of this disease. This study aims to establish and characterize a new metastatic cSCC cell line derived from a Brazilian patient. A tumor biopsy was taken from a metastatic cSCC patient, immortalized, and named HCB-541 after several passages. The cytokeratin expression profile, karyotypic alterations, mutational analysis, mRNA and protein differential expression, tumorigenic capacity in xenograft models, and drug sensitivity were analyzed. The HCB-541 cell line showed a doubling time between 20 and 30 h and high tumorigenic capacity in the xenograft mouse model. The HCB-541 cell line showed hypodiploid and hypotetraploidy populations. We found pathogenic mutations in TP53 p.(Arg248Leu), HRAS (Gln61His) and TERT promoter (C228T) and high-level microsatellite instability (MSI-H) in both tumor and cell line. We observed 37 cancer-related genes differentially expressed when compared with HACAT control cells. The HCB-541 cells exhibited high phosphorylated levels of EGFR, AXL, Tie, FGFR, and ROR2, and high sensitivity to cisplatin, carboplatin, and EGFR inhibitors. Our study successfully established HCB-541, a new cSCC cell line that could be useful as a valuable biological model for understanding the biology and therapy of metastatic skin cancer.
Collapse
Affiliation(s)
- Ana Carolina Laus
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Izabela Natalia Faria Gomes
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Aline Larissa Virginio da Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Luciane Sussuchi da Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Mirella Baroni Milan
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Silvia AparecidaTeixeira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Ana Carolina Baptista Moreno Martin
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Letícia do Nascimento Braga Pereira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | | | - Camila Souza Crovador
- Department of Surgery of Melanoma and Sarcoma, Barretos Cancer Hospital, São Paulo, Brazil
| | - Flávia Escremin de Paula
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Flávia Caroline Nascimento
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Helder Teixeira de Freitas
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Vinicius de Lima Vazquez
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
- Department of Surgery of Melanoma and Sarcoma, Barretos Cancer Hospital, São Paulo, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
- Life and Health Sciences Research Institute (ICVS) Medical School, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Barretos School of Health Sciences, Dr. Paulo Prata-FACISB, Barretos, São Paulo, Brazil
| | - Renato José da Silva-Oliveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil.
- Barretos School of Health Sciences, Dr. Paulo Prata-FACISB, Barretos, São Paulo, Brazil.
| |
Collapse
|
3
|
Morgan HJ, Olivero C, Shorning BY, Gibbs A, Phillips AL, Ananthan L, Lim AXH, Martuscelli L, Borgogna C, De Andrea M, Hufbauer M, Goodwin R, Akgül B, Gariglio M, Patel GK. HPV8-induced STAT3 activation led keratinocyte stem cell expansion in human actinic keratoses. JCI Insight 2024; 9:e177898. [PMID: 38916963 PMCID: PMC11383611 DOI: 10.1172/jci.insight.177898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
Despite epidermal turnover, the skin is host to a complex array of microbes, including viruses, such as HPV, which must infect and manipulate skin keratinocyte stem cells (KSCs) to survive. This crosstalk between the virome and KSC populations remains largely unknown. Here, we investigated the effect of HPV8 on KSCs using various mouse models. We observed that the HPV8 early region gene E6 specifically caused Lrig1+ hair follicle junctional zone KSC proliferation and expansion, which would facilitate viral transmission. Within Lrig1+ KSCs specifically, HPV8 E6 bound intracellular p300 to phosphorylate the STAT3 transcriptional regulatory node. This induced ΔNp63 expression, resulting in KSC expansion into the overlying epidermis. HPV8 was associated with 70% of human actinic keratoses. Together, these results define the "hit-and-run" mechanism for HPV8 in human actinic keratosis as an expansion of KSCs, which lack melanosome protection and are thus susceptible to sun light-induced malignant transformation.
Collapse
Affiliation(s)
- Huw J Morgan
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Carlotta Olivero
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Boris Y Shorning
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Alex Gibbs
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Alexandra L Phillips
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Lokapriya Ananthan
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Annabelle Xiao Hui Lim
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Licia Martuscelli
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Cinzia Borgogna
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Marco De Andrea
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, University of Turin Medical School, Turin, Italy
- Intrinsic Immunity Unit, Translational Research Centre for Autoimmune and Allergic Diseases, University of Eastern Piedmont, Novara, Italy
| | - Martin Hufbauer
- Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
| | - Richard Goodwin
- Department of Dermatology, Aneurin Bevan University Health Board, Royal Gwent Hospital, Newport, United Kingdom
| | - Baki Akgül
- Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
| | - Marisa Gariglio
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Girish K Patel
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
4
|
Cozma EC, Banciu LM, Celarel AM, Soare E, Srichawla BS, Kipkorir V, Găman MA. Molecular mechanisms of human papilloma virus related skin cancers: A review. Medicine (Baltimore) 2024; 103:e38202. [PMID: 38787972 PMCID: PMC11124606 DOI: 10.1097/md.0000000000038202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
The human papillomavirus (HPV) belongs to the Papillomaviridae family of viruses which includes small, double-stranded DNA viral agents. Approximately 90% of HPV infections occur asymptomatically and resolve spontaneously. However, infection with high-risk viral strains can lead to the development of preneoplastic lesions, with an increased propensity to become cancerous. The location of these malignancies includes the oral cavity, cervix, vagina, anus, and vulva, among others. The role of HPV in carcinogenesis has already been demonstrated for the aforementioned neoplasia. However, regarding skin malignancies, the mechanisms that pinpoint the role played by HPV in their initiation and progression still elude our sight. Until now, the only fully understood mechanism of viral cutaneous oncogenesis is that of human herpes virus 8 infection in Kaposi sarcoma. In the case of HPV infection, however, most data focus on the role that beta strains exhibit in the oncogenesis of cutaneous squamous cell carcinoma (cSCC), along with ultraviolet radiation (UVR) and other environmental or genetic factors. However, recent epidemiological investigations have highlighted that HPV could also trigger the onset of other non-melanocytic, for example, basal cell carcinoma (BCC), and/or melanocytic skin cancers, for example, melanoma. Herein, we provide an overview of the role played by HPV in benign and malignant skin lesions with a particular focus on the main epidemiological, pathophysiological, and molecular aspects delineating the involvement of HPV in skin cancers.
Collapse
Affiliation(s)
- Elena-Codruta Cozma
- University of Medicine and Pharmacy of Craiova, Craiova, Romania
- Elias University Emergency Hospital, Bucharest, Romania
| | | | | | - Elena Soare
- Elias University Emergency Hospital, Bucharest, Romania
| | | | - Vincent Kipkorir
- Department of Human Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Mihnea-Alexandru Găman
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Department of Hematology, Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| |
Collapse
|
5
|
Qi SY, Yang MM, Li CY, Yu K, Deng SL. The HPV viral regulatory mechanism of TLRs and the related treatments for HPV-associated cancers. Front Immunol 2024; 15:1407649. [PMID: 38812510 PMCID: PMC11133576 DOI: 10.3389/fimmu.2024.1407649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Infection with human papillomavirus (HPV) typically leads to cervical cancer, skin related cancers and many other tumors. HPV is mainly responsible for evading immune tumor monitoring in HPV related cancers. Toll like receptors (TLRs) are particular pattern recognition molecules. When the body is facing immune danger, it can lead to innate and direct adaptive immunity. TLR plays an important role in initiating antiviral immune responses. HPV can affect the expression level of TLR and interfere with TLR related signaling pathways, resulting in sustained viral infection and even carcinogenesis. This paper introduces the HPV virus and HPV related cancers. We discussed the present comprehension of TLR, its expression and signaling, as well as its role in HPV infection. We also provided a detailed introduction to immunotherapy methods for HPV related diseases based on TLR agonists. This will provide insights into methods that support the therapeutic method of HPV related conditions with TLR agonists.
Collapse
Affiliation(s)
- Shi-Yu Qi
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Miao-Miao Yang
- College of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, China
| | - Chong-Yang Li
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shou-Long Deng
- National Center of Technology Innovation for animal model, National Health Commission of China (NHC) Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Kirk A, Graham SV. The human papillomavirus late life cycle and links to keratinocyte differentiation. J Med Virol 2024; 96:e29461. [PMID: 38345171 DOI: 10.1002/jmv.29461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 01/25/2024] [Indexed: 02/15/2024]
Abstract
Regulation of human papillomavirus (HPV) gene expression is tightly linked to differentiation of the keratinocytes the virus infects. HPV late gene expression is confined to the cells in the upper layers of the epithelium where the virus capsid proteins are synthesized. As these proteins are highly immunogenic, and the upper epithelium is an immune-privileged site, this spatial restriction aids immune evasion. Many decades of work have contributed to the current understanding of how this restriction occurs at a molecular level. This review will examine what is known about late gene expression in HPV-infected lesions and will dissect the intricacies of late gene regulation. Future directions for novel antiviral approaches will be highlighted.
Collapse
Affiliation(s)
- Anna Kirk
- Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Sheila V Graham
- Centre for Virus Research, University of Glasgow, Glasgow, UK
| |
Collapse
|
7
|
Skelin J, Tomaić V. Comparative Analysis of Alpha and Beta HPV E6 Oncoproteins: Insights into Functional Distinctions and Divergent Mechanisms of Pathogenesis. Viruses 2023; 15:2253. [PMID: 38005929 PMCID: PMC10674601 DOI: 10.3390/v15112253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Human papillomaviruses (HPVs) represent a diverse group of DNA viruses that infect epithelial cells of mucosal and cutaneous tissues, leading to a wide spectrum of clinical outcomes. Among various HPVs, alpha (α) and beta (β) types have garnered significant attention due to their associations with human health. α-HPVs are primarily linked to infections of the mucosa, with high-risk subtypes, such as HPV16 and HPV18, being the major etiological agents of cervical and oropharyngeal cancers. In contrast, β-HPVs are predominantly associated with cutaneous infections and are commonly found on healthy skin. However, certain β-types, notably HPV5 and HPV8, have been implicated in the development of non-melanoma skin cancers in immunocompromised individuals, highlighting their potential role in pathogenicity. In this review, we comprehensively analyze the similarities and differences between α- and β-HPV E6 oncoproteins, one of the major drivers of viral replication and cellular transformation, and how these impact viral fitness and the capacity to induce malignancy. In particular, we compare the mechanisms these oncoproteins use to modulate common cellular processes-apoptosis, DNA damage repair, cell differentiation, and the immune response-further shedding light on their shared and distinct features, which enable them to replicate at divergent locations of the human body and cause different types of cancer.
Collapse
Affiliation(s)
| | - Vjekoslav Tomaić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia;
| |
Collapse
|
8
|
Schäfer M, Schneider M, Müller T, Franz N, Braspenning-Wesch I, Stephan S, Schmidt G, Krijgsveld J, Helm D, Rösl F, Hasche D. Spatial tissue proteomics reveals distinct landscapes of heterogeneity in cutaneous papillomavirus-induced keratinocyte carcinomas. J Med Virol 2023; 95:e28850. [PMID: 37322807 DOI: 10.1002/jmv.28850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023]
Abstract
Infection with certain cutaneous human papillomaviruses (HPV), in conjunction with chronic ultraviolet (UV) exposure, are the major cofactors of non-melanoma skin cancer (NMSC), the most frequent cancer type worldwide. Cutaneous squamous cell carcinomas (SCCs) as well as tumors in general represent three-dimensional entities determined by both temporal and spatial constraints. Whole tissue proteomics is a straightforward approach to understand tumorigenesis in better detail, but studies focusing on different progression states toward a dedifferentiated SCC phenotype on a spatial level are rare. Here, we applied an innovative proteomic workflow on formalin-fixed, paraffin-embedded (FFPE) epithelial tumors derived from the preclinical animal model Mastomys coucha. This rodent is naturally infected with its genuine cutaneous papillomavirus and closely mimics skin carcinogenesis in the context of cutaneous HPV infections in humans. We deciphered cellular networks by comparing diverse epithelial tissues with respect to their differentiation level and infection status. Our study reveals novel regulatory proteins and pathways associated with virus-induced tumor initiation and progression of SCCs. This approach provides the basis to better comprehend the multistep process of skin carcinogenesis.
Collapse
Affiliation(s)
- Miriam Schäfer
- Division of Viral Transformation Mechanisms, Research Program "Infection, Inflammation and Cancer", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Schneider
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Torsten Müller
- Division Proteomics of Stem Cells and Cancer, Research Program "Functional and Structural Genomics", German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Natascha Franz
- Division of Viral Transformation Mechanisms, Research Program "Infection, Inflammation and Cancer", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ilona Braspenning-Wesch
- Division of Viral Transformation Mechanisms, Research Program "Infection, Inflammation and Cancer", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sonja Stephan
- Division of Viral Transformation Mechanisms, Research Program "Infection, Inflammation and Cancer", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gabriele Schmidt
- Core Facility Unit Light Microscopy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen Krijgsveld
- Division Proteomics of Stem Cells and Cancer, Research Program "Functional and Structural Genomics", German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Dominic Helm
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Rösl
- Division of Viral Transformation Mechanisms, Research Program "Infection, Inflammation and Cancer", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Hasche
- Division of Viral Transformation Mechanisms, Research Program "Infection, Inflammation and Cancer", German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
9
|
Transcription Properties of Beta-HPV8 and HPV38 Genomes in Human Keratinocytes. J Virol 2022; 96:e0149822. [PMID: 36394329 PMCID: PMC9749460 DOI: 10.1128/jvi.01498-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Persistent infections with high-risk human papillomaviruses (HR-HPV) from the genus alpha are established risk factors for the development of anogenital and oropharyngeal cancers. In contrast, HPV from the genus beta have been implicated in the development of cutaneous squamous cell cancer (cSCC) in epidermodysplasia verruciformis (EV) patients and organ transplant recipients. Keratinocytes are the in vivo target cells for HPV, but keratinocyte models to investigate the replication and oncogenic activities of beta-HPV genomes have not been established. A recent study revealed, that beta-HPV49 immortalizes normal human keratinocytes (NHK) only, when the viral E8^E2 repressor (E8-) is inactivated (T. M. Rehm, E. Straub, T. Iftner, and F. Stubenrauch, Proc Natl Acad Sci U S A 119:e2118930119, 2022, https://doi.org/10.1073/pnas.2118930119). We now demonstrate that beta-HPV8 and HPV38 wild-type or E8- genomes are unable to immortalize NHK. Nevertheless, HPV8 and HPV38 express E6 and E7 oncogenes and other transcripts in transfected NHK. Inactivation of the conserved E1 and E2 replication genes reduces viral transcription, whereas E8- genomes display enhanced viral transcription, suggesting that beta-HPV genomes replicate in NHK. Furthermore, growth of HPV8- or HPV38-transfected NHK in organotypic cultures, which are routinely used to analyze the productive replication cycle of HR-HPV, induces transcripts encoding the L1 capsid gene, suggesting that the productive cycle is initiated. In addition, transcription patterns in HPV8 organotypic cultures and in an HPV8-positive lesion from an EV patient show similarities. Taken together, these data indicate that NHK are a suitable system to analyze beta-HPV8 and HPV38 replication. IMPORTANCE High-risk HPV, from the genus alpha, can cause anogenital or oropharyngeal malignancies. The oncogenic properties of high-risk HPV are important for their differentiation-dependent replication in human keratinocytes, the natural target cell for HPV. HPV from the genus beta have been implicated in the development of cutaneous squamous cell cancer in epidermodysplasia verruciformis (EV) patients and organ transplant recipients. Currently, the replication cycle of beta-HPV has not been studied in human keratinocytes. We now provide evidence that beta-HPV8 and 38 are transcriptionally active in human keratinocytes. Inactivation of the viral E8^E2 repressor protein greatly increases genome replication and transcription of the E6 and E7 oncogenes, but surprisingly, this does not result in immortalization of keratinocytes. Differentiation of HPV8- or HPV38-transfected keratinocytes in organotypic cultures induces transcripts encoding the L1 capsid gene, suggesting that productive replication is initiated. This indicates that human keratinocytes are suited as a model to investigate beta-HPV replication.
Collapse
|
10
|
Borgogna C, Martuscelli L, Olivero C, Lo Cigno I, De Andrea M, Caneparo V, Boldorini R, Patel G, Gariglio M. Enhanced Spontaneous Skin Tumorigenesis and Aberrant Inflammatory Response to UVB Exposure in Immunosuppressed Human Papillomavirus Type 8‒Transgenic Mice. J Invest Dermatol 2022; 143:740-750.e4. [PMID: 36481357 DOI: 10.1016/j.jid.2022.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 10/09/2022] [Accepted: 10/24/2022] [Indexed: 12/12/2022]
Abstract
Human papillomaviruses (HPVs) from the beta genus are commensal viruses of the skin usually associated with asymptomatic infection in the general population. However, in individuals with specific genetic backgrounds, such as patients with epidermodysplasia verruciformis, or those with immune defects, such as organ transplant recipients, they are functionally involved in sunlight-induced skin cancer development, mainly keratinocyte carcinoma. Despite their well-established protumorigenic role, the cooperation between β-HPV infection, impaired host immunosurveillance, and UVB exposure has never been formally shown in animal models. In this study, by crossing skin-specific HPV8-transgenic mice with Rag2-deficient mice, we have generated a preclinical mouse model, named Rag2‒/‒:K14-HPV8. These mice display an unhealthy skin phenotype and spontaneously develop papilloma-like lesions spreading to the entire skin much more rapidly compared with Rag2+/+:K14-HPV8 mice. Exposure to low doses of UVB radiation is sufficient to trigger severe skin inflammation in Rag2‒/‒:K14-HPV8 but not in Rag2+/+:K14-HPV8 mice. Their inflamed skin very much resembled that observed in cutaneous field cancerization in organ transplant recipients, showing high levels of UVB-damaged cells, enhanced production of proinflammatory cytokines, and mast cell recruitment to the dermis. Overall, this immunocompromised HPV8-transgenic mouse model shows that the coexistence of immune defects, β-HPV, and UVB exposure promotes skin cancer development.
Collapse
Affiliation(s)
- Cinzia Borgogna
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Licia Martuscelli
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Carlotta Olivero
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Irene Lo Cigno
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Marco De Andrea
- Virology Unit, Department of Public Health and Pediatric Sciences, Turin Medical School, Turin, Italy; Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Novara Medical School, Novara, Italy
| | - Valeria Caneparo
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy; Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Novara Medical School, Novara, Italy
| | - Renzo Boldorini
- Pathology Unit, Department of Health Sciences, Novara Medical School, Novara, Italy
| | - Girish Patel
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy; Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Novara Medical School, Novara, Italy.
| |
Collapse
|
11
|
Johnson LH, Son HG, Ha DT, Strickley JD, Joh J, Demehri S. Compromised T Cell Immunity Links Increased Cutaneous Papillomavirus Activity to Squamous Cell Carcinoma Risk. JID INNOVATIONS 2022; 3:100163. [PMID: 36714811 PMCID: PMC9879970 DOI: 10.1016/j.xjidi.2022.100163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 02/06/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common cancer, with increased incidence in immunosuppressed patients. β-Human papillomavirus has been proposed as a contributor to cSCC risk partly on the basis of increased β-human papillomavirus viral load and seropositivity observed among patients with cSCC. Experimental data in mice colonized with mouse papillomavirus type 1 suggest that T cell immunity against β-human papillomavirus suppresses skin cancer in immunocompetent hosts, and the loss of this immunity leads to the increased risk of cSCC. In this study, we show that CD8+ T cell depletion in mouse papillomavirus type 1‒colonized mice that underwent skin carcinogenesis protocol led to increased viral load in the skin and seropositivity for anti‒mouse papillomavirus type 1 antibodies. These findings provide evidence that compromised T cell immunity can be the link that connects increased β-human papillomavirus detection to cSCC risk.
Collapse
Affiliation(s)
- Luke H. Johnson
- University of Louisville School of Medicine, Louisville, Kentucky, USA,Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA,Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA,Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Heehwa G. Son
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA,Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Dat Thinh Ha
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA,Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA,Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - John D. Strickley
- University of Louisville School of Medicine, Louisville, Kentucky, USA,Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA,Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA,Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Joongho Joh
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Shadmehr Demehri
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA,Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA,Correspondence: Shadmehr Demehri, Department of Dermatology and Cancer Center, Massachusetts General Hospital, 149 13th Street, 3rd Floor, Boston, Massachusetts 02114-2621, USA.
| |
Collapse
|
12
|
Balaji D, Kalarani IB, Mohammed V, Veerabathiran R. Potential role of human papillomavirus proteins associated with the development of cancer. Virusdisease 2022; 33:322-333. [PMID: 36277412 PMCID: PMC9481806 DOI: 10.1007/s13337-022-00786-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/08/2022] [Indexed: 10/15/2022] Open
Abstract
Papillomaviruses are viruses with double-stranded DNA that are epitheliotropic and non-enveloped that infects cutaneous epithelial and mucosal cells in a species-specific way in several higher vertebrate species and cause cellular growth."There are around 100 different human papillomaviruses (HPVs)", as "more than 150 HPV types have been isolated and fully sequenced". We classify the probability of cancer development following viral infection with each HPV genotype into two types: "low-risk" and "high-risk." As a result, HPV diagnosis is a critical component of HPV genotype identification and characterization. Based on its activities, we may classify the HPV genome into three regions: the long control region (LCR) or the non-coding upstream regulatory region (URR), the late (L) region, and the early (E) region. Functional proteins are mostly static things that are not inflexible; they have undergone both local and global movements at various times and time ranges. The structural differences between HPV16 and 18 discovered by molecular modeling of the E6 oncoprotein were associated with their carcinogenic characteristics. Similarly, the E6 protein has two sets of C-X-X-C motifs that play significant roles in transformation, transcriptional activation, interactions, and immortalization with other proteins of cells in the host environment. Here, we review the literature regarding the protein mechanisms associated with HPV and how they cause cancer. Unless otherwise noted, it described all protein activities in terms of HPV proteins. The term "papillomaviruses" refers to groups of papillomavirus proteins that have a characteristic in common. HPV proteins can study the genetic influences on pathogenicity and the therapeutic applications of genomics. The future study provides a potential advancement in HPV infections and malignant illnesses to improve preventive and treatment strategies. Patients have been able to conquer this condition using a range of therapies and vaccines that were projected to be effective and robust enough to put an end to the ailment completely. In cancer prevention strategies, HPV vaccination is one of the most effective. It is safe, efficient, and long-lasting.
Collapse
Affiliation(s)
- Dhanvee Balaji
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103 India
| | - Iyshwarya Bhaskar Kalarani
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103 India
| | - Vajagathali Mohammed
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103 India
| | - Ramakrishnan Veerabathiran
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103 India
| |
Collapse
|
13
|
Al-Soneidar WA, Harper S, Madathil SA, Schlecht NF, Nicolau B. Do cutaneous human papillomavirus genotypes affect head and neck cancer? Evidence and bias-correction from a case-control study. Cancer Epidemiol 2022; 79:102205. [PMID: 35780522 DOI: 10.1016/j.canep.2022.102205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Three genera of human papillomavirus (HPV) infect the oral cavity and oropharynx- alpha (α), beta (β) and gamma (γ). While α-HPV infection is an established risk factor for head and neck cancers (HNC), the role of other genera remains unclear. We aimed to estimate the effect of α-, β-, γ-HPV on HNC using a hospital-based case-control study. METHODS We recruited incident HNC cases (396) and controls (439), frequency-matched by age and sex from four main referral hospitals in Montreal, Canada. We collected information on sociodemographic and behavior characteristics using in-person interviews, and tested rinse, brush and tumor specimens for HPV genotypes. We estimated adjusted odds ratios (aOR) and 95% confidence intervals (CI) for the effect of HPV on HNC using logistic regression, adjusting for confounding. We conducted probabilistic bias analysis to account for potential exposure misclassification, selection bias, and residual confounding. RESULTS α-HPV genus had a strong effect on HNC, particularly HPV16 (aOR=22.6; 95% CI: 10.8, 47.2). β-HPV was more common among controls (aOR=0.80; 95% 0.57, 1.11). After adjustment for HPV16, we found weaker evidence for γ-HPV (aOR= 1.29; 95% CI: 0.80, 2.08). Combined bias analyses for HPV16 increased the strength of the point estimate, but added imprecision (aOR=54.2, 95% CI: 10.7, 385.9). CONCLUSIONS α-HPV, especially HPV16, appears to increase the risk for HNC, while there is little evidence for an effect of β- or γ-HPV. β-HPV may have a preventive effect, while γ-HPV may increase the risk of HNC, although to a lesser extent than that of α-HPV. Results for cutaneous HPV were imprecise and less conclusive. Due to possible epidemiologic biases, the true relation between HPV and HNC could be underestimated in the literature. Further improvement in current methods and more studies of the biologic mechanisms of the three genera in HNC development are warranted.
Collapse
Affiliation(s)
- Walid A Al-Soneidar
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada.
| | - Sam Harper
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Sreenath A Madathil
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Nicolas F Schlecht
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Belinda Nicolau
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| |
Collapse
|
14
|
Restriction of viral gene expression and replication prevents immortalization of human keratinocytes by a beta-human papillomavirus. Proc Natl Acad Sci U S A 2022; 119:e2118930119. [PMID: 35254896 PMCID: PMC8931373 DOI: 10.1073/pnas.2118930119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
High-risk (HR) human papillomaviruses (HPV) from the genus alpha cause anogenital and oropharyngeal cancers, whereas the contribution of HPV from the genus beta to the development of cutaneous squamous cell cancer is still under debate. HR-HPV genomes display potent immortalizing activity in human keratinocytes, the natural target cell for HPV. This paper shows that immortalization of keratinocytes by the beta-HPV49 genome requires the inactivation of the viral E8^E2 repressor protein and the presence of the E6 and E7 oncoproteins but also of the E1 and E2 replication proteins. This reveals important differences in the carcinogenic properties of HR-HPV and beta-HPV but also warrants further investigations on the distribution and mutation frequencies of beta-HPV in human cancers. Beta-human papillomaviruses (HPV) have been implicated in the development of cutaneous squamous cell cancer (cSCC) in epidermodysplasia verruciformis (EV) patients and organ transplant recipients. In contrast to high-risk (HR) HPV, which cause anogenital and oropharyngeal cancers, immortalizing activity of complete beta-HPV genomes in normal human keratinocytes (NHK), the natural target cells for HPV, has not been reported. We now demonstrate that the beta-HPV49 wild-type genome is transcriptionally active in NHK but lacks immortalizing activity unless the E8 gene, which encodes the E8^E2 repressor, is inactivated. HPV49 E8− immortalized keratinocytes maintain high levels of viral gene expression and very high copy numbers of extrachromosomal viral genomes during long-term cultivation. Not only disruption of the viral E6 and E7 oncogenes but also of the E1 or E2 replication genes renders E8− genomes incapable of immortalization. E8−/E1− and E8−/E2− genomes display greatly reduced E6 and E7 RNA levels in short-term assays. This strongly suggests that high-level expression of E6 and E7 from extrachromosomal templates is necessary for immortalization. The requirement for an inactivation of E8 while maintaining E1 and E2 expression highlights important differences in the carcinogenic properties of HR-HPV and beta-HPV. These findings strengthen the notion that beta-HPV have carcinogenic potential that warrants further investigations into the distribution of beta-HPV in human cancers.
Collapse
|
15
|
Doorbar J, Zheng K, Aiyenuro A, Yin W, Walker CM, Chen Y, Egawa N, Griffin HM. Principles of epithelial homeostasis control during persistent human papillomavirus infection and its deregulation at the cervical transformation zone. Curr Opin Virol 2021; 51:96-105. [PMID: 34628359 DOI: 10.1016/j.coviro.2021.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/22/2022]
Abstract
Human papillomaviruses establish a reservoir of infection in the epithelial basal layer. To do this they limit their gene expression to avoid immune detection and modulate epithelial homeostasis pathways to inhibit the timing of basal cell delamination and differentiation to favour persistence. For low-risk Alpha papillomaviruses, which cause benign self-limiting disease in immunocompetent individuals, it appears that cell competition at the lesion edge restricts expansion. These lesions may be considered as self-regulating homeostatic structures, with epithelial cells of the hair follicles and sweat glands, which are proposed targets of the Beta and Mu papillomaviruses, showing similar restrictions to their expansion across the epithelium as a whole. In the absence of immune control, which facilitates deregulated viral gene expression, such lesions can expand, leading to problematic papillomatosis in afflicted individuals. By contrast, he high-risk Alpha HPV types can undergo deregulated viral gene expression in immunocompetent hosts at a number of body sites, including the cervical transformation zone (TZ) where they can drive the formation of neoplasia. Homeostasis at the TZ is poorly understood, but involves two adjacent epithelial cell population, one of which has the potential to stratify and to produce a multilayed squamous epithelium. This process of metaplasia involves a specialised cell type known as the reserve cell, which has for several decades been considered as the cell of origin of cervical cancer. It is becoming clear that during evolution, HPV gene products have acquired functions directly linked to their requirements to modify the normal processes of epithelial homestasis at their various sites of infection. These protein functions are beginning to provide new insight into homeostasis regulation at different body sites, and are likely to be central to our understanding of HPV epithelial tropisms.
Collapse
Affiliation(s)
- John Doorbar
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom.
| | - Ke Zheng
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom
| | - Ademola Aiyenuro
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom
| | - Wen Yin
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom
| | - Caroline M Walker
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom
| | - Yuwen Chen
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom
| | - Nagayasu Egawa
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom
| | - Heather M Griffin
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB8 9UP, United Kingdom
| |
Collapse
|
16
|
Human papillomaviruses: diversity, infection and host interactions. Nat Rev Microbiol 2021; 20:95-108. [PMID: 34522050 DOI: 10.1038/s41579-021-00617-5] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Human papillomaviruses (HPVs) are an ancient and highly successful group of viruses that have co-evolved with their host to replicate in specific anatomical niches of the stratified epithelia. They replicate persistently in dividing cells, hijack key host cellular processes to manipulate the cellular environment and escape immune detection, and produce virions in terminally differentiated cells that are shed from the host. Some HPVs cause benign, proliferative lesions on the skin and mucosa, and others are associated with the development of cancer. However, most HPVs cause infections that are asymptomatic and inapparent unless the immune system becomes compromised. To date, the genomes of almost 450 distinct HPV types have been isolated and sequenced. In this Review, I explore the diversity, evolution, infectious cycle, host interactions and disease association of HPVs.
Collapse
|
17
|
Molecular Characterization of Human Papillomavirus Type 159 (HPV159). Viruses 2021; 13:v13081668. [PMID: 34452532 PMCID: PMC8402796 DOI: 10.3390/v13081668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Human papillomavirus type 159 (HPV159) was identified in an anal swab sample and preliminarily genetically characterized by our group in 2012. Here we present a detailed molecular in silico analysis that showed that the HPV159 viral genome is 7443 bp in length and divided into five early and two late genes, with conserved functional domains and motifs, and a non-coding long control region (LCR) with significant regulatory sequences that allow the virus to complete its life cycle and infect novel host cells. HPV159, clustering into the cutaneotropic Betapapillomavirus (Beta-PV) genus, is phylogenetically most similar to HPV9, forming an individual phylogenetic group in the viral species Beta-2. After testing a large representative collection of clinical samples with HPV159 type-specific RT-PCR, in addition to the anal canal from which the first HPV159 isolate was obtained, HPV159 was further detected in other muco-cutaneous (4/181, 2.2%), mucosal (22/764, 2.9%), and cutaneous (14/554, 2.5%) clinical samples, suggesting its extensive tissue tropism. However, because very low HPV159 viral loads were estimated in the majority of positive samples, it seemed that HPV159 mainly caused clinically insignificant infections of the skin and mucosa. Using newly developed, highly sensitive HPV159-specific nested PCRs, two additional HPV159 LCR viral variants were identified. Nevertheless, all HPV159 mutations were demonstrated outside important functional domains of the LCR, suggesting that the HPV159 viral variants were most probably not pathogenically different. This complete molecular characterization of HPV159 enhances our knowledge of the genome characteristics, tissue tropism, and phylogenetic diversity of Beta-PVs that infect humans.
Collapse
|
18
|
ShengYang Lian B, Lee Krishnamoorthy T, Oh CC. Skin conditions in liver transplant recipients in a Singapore academic medical center: A retrospective cohort study. JAAD Int 2021; 4:70-78. [PMID: 34409397 PMCID: PMC8362318 DOI: 10.1016/j.jdin.2021.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 01/04/2023] Open
Abstract
Background Liver transplant recipients are at lifelong risk of immunosuppression-related cutaneous complications, such as malignancy and infection. Objective Our study aims to assess the epidemiology of dermatologic conditions among liver transplant recipients in an academic medical center in Singapore. Methods Medical records of liver transplant recipients on follow-up with gastroenterology and dermatology departments at the Singapore General Hospital between 2006 and 2021 were retrospectively reviewed. A literature review was subsequently performed on the keywords “liver transplant” and “dermatology.” Results A total of 99 liver transplant recipients were identified in this study. Sixty-nine patients (70%) had at least 1 dermatologic condition. Inflammatory skin conditions were the most common (53%), followed by cutaneous infection (36%) and benign cutaneous tumors (30%). Malignant and premalignant lesions were the least common skin conditions reported (10%). Our study results concurred with many other studies reported worldwide, demonstrating a low cutaneous malignancy burden after liver transplantation. Limitations The study included a small population size in a single center and did not have a pre-existing protocol for pretransplant dermatologic surveillance. Conclusion Although the incidence of skin cancer after liver transplant in Singapore is low, the patients will benefit from long-term dermatology surveillance, given the long-term risks of infection and malignant skin conditions.
Collapse
Affiliation(s)
| | - Thinesh Lee Krishnamoorthy
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore.,DUKE-NUS Medical School, Singapore
| | - Choon Chiat Oh
- Department of Dermatology, Singapore General Hospital, Singapore.,DUKE-NUS Medical School, Singapore
| |
Collapse
|
19
|
Hošnjak L, Kocjan BJ, Pirš B, Seme K, Poljak M. The genetic diversity of human papillomavirus types from the species Gammapapillomavirus 15: HPV135, HPV146, and HPV179. PLoS One 2021; 16:e0249829. [PMID: 33956809 PMCID: PMC8101917 DOI: 10.1371/journal.pone.0249829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/25/2021] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES To determine the prevalence, viral load, tissue tropism, and genetic variability of novel human papillomavirus (HPV) type 179, which is etiologically associated with sporadic cases of common warts in immunocompromised patients, and phylogenetically related HPV types 135 and 146. METHODS The representative collection of 850 HPV-associated clinical samples (oral/nasopharyngeal/anal, archival specimens of oral/oropharyngeal/conjunctival/cervical/skin cancer, benign lesions of the larynx/conjunctiva/skin, and eyebrows), obtained from immunocompetent individuals, was tested for the presence of HPV179, HPV135, and HPV146 using type-specific real-time PCRs. To assess the genetic diversity of the HPVs investigated in the non-coding long control region (LCR), several highly sensitive nested PCR protocols were developed for each HPV type. The genetic diversity of HPV179 was additionally determined in 12 HPV179 isolates from different anatomical sites of an only immunocompromised patient included in the study. RESULTS HPV179, HPV135, and HPV146 were detected in 1.4, 2.0, and 1.5% of the samples tested, respectively, with no preference for cutaneous or mucosal epithelial cells. One (with five single nucleotide polymorphisms; SNPs), four (with one to six SNPs), and four (with one to eight SNPs) genetic variants of HPV179, HPV135, and HPV146, respectively, were identified among eligible samples. HPV179 isolates from the immunocompromised patient exhibited the identical LCR nucleotide sequence, suggesting that HPV179 can cause generalized HPV infections. CONCLUSIONS HPV179, HPV135, and HPV146 have a mucocutaneous tissue tropism and are associated with sporadic infections in immunocompromised and immunocompetent individuals. Because the majority of mutations were found outside the major functional domains of the respective LCRs, we assume that HPV179, HPV135, and HPV146 genetic variants pathogenically do not differ from their prototypes. In addition, no association was found between specific HPV179, HPV135, and HPV146 genetic variants and anatomical sites of infection and/or specific neoplasms.
Collapse
Affiliation(s)
- Lea Hošnjak
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Ljubljana, Ljubljana, Slovenia
| | - Boštjan J. Kocjan
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Ljubljana, Ljubljana, Slovenia
| | | | - Katja Seme
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Ljubljana, Ljubljana, Slovenia
| | - Mario Poljak
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
20
|
The role of drugs and selected dietary factors in cutaneous squamous cell carcinogenesis. Postepy Dermatol Alergol 2021; 38:198-204. [PMID: 34408589 PMCID: PMC8362749 DOI: 10.5114/ada.2021.106196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/20/2020] [Indexed: 01/31/2023] Open
Abstract
Cutaneous squamous cell carcinoma represents the second most common non-melanoma skin cancer and its incidence increases worldwide. This review provides an overview of selected exogenous risk factors for cutaneous squamous cell carcinoma, which include drugs (azathioprine, calcineurin inhibitors, hydrochlorothiazide, angiotensin-converting-enzyme inhibitors) and few dietary factors (fat meet, whole milk products, arsenic) to better understand squamous skin cancer etiopathogenesis. Ingredients such as leafy vegetables, nuts, fish, caffeine, niacin are preventive factors for cutaneous squamous cell cancer. The heart transplant recipients have an increased risk of squamous cell carcinoma development than kidney or liver transplant ones and switching photosensitizing azathioprine to mycophenolate mofetil can reduce the incidence of cutaneous squamous cell carcinoma. The great attention should be paid to early change of cardiac photosensitizing antihypertensive drugs to non-photosensitizing ones among patients with a history of prior skin cancers and among organ transplant recipients. Based on current knowledge that ultra-violet radiation is the main risk factor for squamous cell carcinoma development, promotion of the skin self-examination, photoprotection, tanning bed avoidance and early skin cancer diagnosis is important for this tumour prevention.
Collapse
|
21
|
Dorfer S, Strasser K, Schröckenfuchs G, Bonelli M, Bauer W, Kittler H, Cataisson C, Fischer MB, Lichtenberger BM, Handisurya A. Mus musculus papillomavirus 1 is a key driver of skin cancer development upon immunosuppression. Am J Transplant 2021; 21:525-539. [PMID: 33063442 PMCID: PMC7894140 DOI: 10.1111/ajt.16358] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/16/2020] [Accepted: 10/06/2020] [Indexed: 01/25/2023]
Abstract
Epidemiological and experimental data implicate cutaneous human papillomavirus infection as co-factor in the development of cutaneous squamous cell carcinomas (cSCCs), particularly in immunocompromised organ transplant recipients (OTRs). Herein, we established and characterized a skin cancer model, in which Mus musculus papillomavirus 1 (MmuPV1) infection caused cSCCs in cyclosporine A (CsA)-treated mice, even in the absence of UV light. Development of cSCCs and their precursors were observed in 70% of MmuPV1-infected, CsA-treated mice on back as well as on tail skin. Immunosuppression by systemic CsA, but not UV-B irradiation, was a prerequisite, as immunocompetent or UV-B-irradiated mice did not develop skin malignancies after infection. In the virus-driven cSCCs the MmuPV1-E6/E7 oncogenes were abundantly expressed, and transcriptional activity and productive infection demonstrated. MmuPV1 infection induced the expression of phosphorylated H2AX, but not degradation of proapoptotic BAK in the cSCCs. Transfer of primary cells, established from a MmuPV1-induced cSCC from back skin, into athymic nude mice gave rise to secondary cSCCs, which lacked viral DNA, demonstrating that maintenance of the malignant phenotype was virus independent. This papillomavirus-induced skin cancer model opens future investigations into viral involvement, pathogenesis, and cancer surveillance, aiming at understanding and controlling the high incidence of skin cancer in OTRs.
Collapse
Affiliation(s)
- Sonja Dorfer
- Department of DermatologyMedical University of ViennaViennaAustria
| | | | | | - Michael Bonelli
- Department of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Wolfgang Bauer
- Department of DermatologyMedical University of ViennaViennaAustria
| | - Harald Kittler
- Department of DermatologyMedical University of ViennaViennaAustria
| | - Christophe Cataisson
- Laboratory of Cancer Biology and GeneticsNational Institutes of HealthNational Cancer InstituteBethesdaMDUSA
| | - Michael B. Fischer
- Department of Transfusion MedicineMedical University of ViennaViennaAustria
| | | | | |
Collapse
|
22
|
Altamura G, Tommasino M, Borzacchiello G. Cutaneous vs. Mucosal Tropism: The Papillomavirus Paradigm Comes to an " and". Front Microbiol 2020; 11:588663. [PMID: 33162966 PMCID: PMC7591498 DOI: 10.3389/fmicb.2020.588663] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Gennaro Altamura
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Massimo Tommasino
- Infections and Cancer Biology Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Giuseppe Borzacchiello
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| |
Collapse
|
23
|
Galati L, Brancaccio RN, Robitaille A, Cuenin C, Luzi F, Fiorucci G, Chiantore MV, Marascio N, Matera G, Liberto MC, Donà MG, Di Bonito P, Gheit T, Tommasino M. Detection of human papillomaviruses in paired healthy skin and actinic keratosis by next generation sequencing. PAPILLOMAVIRUS RESEARCH (AMSTERDAM, NETHERLANDS) 2020; 9:100196. [PMID: 32222599 PMCID: PMC7118314 DOI: 10.1016/j.pvr.2020.100196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 01/20/2023]
Abstract
Actinic keratosis (AK) arises on photo-damaged skin and is considered to be the precursor lesion of cutaneous squamous cell carcinoma (cSCC). Many findings support the involvement of β human papillomaviruses (HPVs) in cSCC, while very little is known on γ HPV types. The objective of this study was to characterize the spectrum of PV types in healthy skin (HS) and AK samples of the same immunocompetent individuals using next generation sequencing (NGS). Viral DNA of 244 AK and 242 HS specimens were amplified by PCR using two different sets of primers (FAP59/64 and FAPM1). Purified amplicons were pooled and sequenced using NGS. The study resulted in the identification of a large number of known β and γ PV types. In addition, 27 putative novel β and 16 γ and 4 unclassified PVs were isolated. HPV types of species γ-1 (e.g. HPV4) appeared to be strongly enriched in AK versus HS. The NGS analysis revealed that a large spectrum of known and novel PVs is present in HS and AK. The evidence that species γ-1 HPV types appears to be enriched in AK in comparison to HS warrants further studies to evaluate their role in development of skin (pre)cancerous lesions.
Collapse
Affiliation(s)
- Luisa Galati
- International Agency for Research on Cancer-World Health Organization, Lyon, France; "Magna Graecia" University, Catanzaro, Italy
| | | | - Alexis Robitaille
- International Agency for Research on Cancer-World Health Organization, Lyon, France
| | - Cyrille Cuenin
- International Agency for Research on Cancer-World Health Organization, Lyon, France
| | - Fabiola Luzi
- Plastic and Reconstructive Surgery, San Gallicano Dermatologic Institute IRCCS, Rome, Italy
| | - Gianna Fiorucci
- Department of Infectious Diseases, EVOR Unit, Istituto Superiore di Sanità, Rome, Italy; Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, Rome, Italy
| | | | | | | | | | | | - Paola Di Bonito
- Department of Infectious Diseases, EVOR Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Tarik Gheit
- International Agency for Research on Cancer-World Health Organization, Lyon, France
| | - Massimo Tommasino
- International Agency for Research on Cancer-World Health Organization, Lyon, France.
| |
Collapse
|
24
|
Subversion of Host Innate Immunity by Human Papillomavirus Oncoproteins. Pathogens 2020; 9:pathogens9040292. [PMID: 32316236 PMCID: PMC7238203 DOI: 10.3390/pathogens9040292] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/19/2022] Open
Abstract
The growth of human papillomavirus (HPV)-transformed cells depends on the ability of the viral oncoproteins E6 and E7, especially those from high-risk HPV16/18, to manipulate the signaling pathways involved in cell proliferation, cell death, and innate immunity. Emerging evidence indicates that E6/E7 inhibition reactivates the host innate immune response, reversing what until then was an unresponsive cellular state suitable for viral persistence and tumorigenesis. Given that the disruption of distinct mechanisms of immune evasion is an attractive strategy for cancer therapy, the race is on to gain a better understanding of E6/E7-induced immune escape and cancer progression. Here, we review recent literature on the interplay between E6/E7 and the innate immune signaling pathways cGAS/STING/TBK1, RIG-I/MAVS/TBK1, and Toll-like receptors (TLRs). The overall emerging picture is that E6 and E7 have evolved broad-spectrum mechanisms allowing for the simultaneous depletion of multiple rather than single innate immunity effectors. The cGAS/STING/TBK1 pathway appears to be the most heavily impacted, whereas the RIG-I/MAVS/TBK1, still partially functional in HPV-transformed cells, can be activated by the powerful RIG-I agonist M8, triggering the massive production of type I and III interferons (IFNs), which potentiates chemotherapy-mediated cell killing. Overall, the identification of novel therapeutic targets to restore the innate immune response in HPV-transformed cells could transform the way HPV-associated cancers are treated.
Collapse
|
25
|
Bolatti EM, Hošnjak L, Chouhy D, Casal PE, Re-Louhau MF, Bottai H, Komloš KF, Poljak M, Giri AA. Assessing Gammapapillomavirus infections of mucosal epithelia with two broad-spectrum PCR protocols. BMC Infect Dis 2020; 20:274. [PMID: 32264841 PMCID: PMC7140492 DOI: 10.1186/s12879-020-4893-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 02/17/2020] [Indexed: 12/14/2022] Open
Abstract
Background Human papillomaviruses (HPVs) have been divided into mucosal and cutaneous types according to their primary epithelial tissue tropism. However, recent studies showed the presence of several cutaneous types in mucosal lesions and healthy mucosa from different anatomical sites. Methods Here, the HPV prevalence and type-specific distribution were assessed in a variety of mucosal samples from 435 individuals using a combination of two established broad-spectrum primer systems: Gamma-PV PCR and CUT PCR. Results Overall HPV prevalence in anal canal swabs, cervical cancer biopsies, genital warts and oral swabs was 85, 47, 62 and 4%, respectively. In anal canal swabs, Alpha-PVs were most frequently found (59%), followed by Gamma- (37%) and Beta-PVs (4%). The prevalence and persistence of HPV infection in the anal canal of 226 individuals were further explored. Overall HPV, Gamma-PVs and multiple HPV infections were significantly higher in men vs. women (p = 0.034, p = 0.027 and p = 0.003, respectively); multiple HPV infections were more common in individuals ≤40 years (p = 0.05), and significantly higher prevalence of Gamma-PVs and multiple HPV infections was observed in HIV-1-positive vs. HIV-1-negative individuals (p = 0.003 and p = 0.04, respectively). Out of 21 patients with follow-up anal swabs, only one persistent infection with the same type (HPV58) was detected. Conclusions Our findings suggest that Gamma-PVs (except species Gamma-6) are ubiquitous viruses with dual muco-cutaneous tissue tropism. Anal canal Gamma-PV infections may be associated with sexual behavior and the host immune status. This study expands the knowledge on Gamma-PVs’ tissue tropism, providing valuable data on the characteristics of HPV infection in the anal canal.
Collapse
Affiliation(s)
- Elisa M Bolatti
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, 2000, Rosario, Argentina.,Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Lea Hošnjak
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
| | - Diego Chouhy
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, 2000, Rosario, Argentina.,Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Pablo E Casal
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - María F Re-Louhau
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, 2000, Rosario, Argentina
| | - Hebe Bottai
- Área Estadística y Procesamiento de Datos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Kristina Fujs Komloš
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
| | - Mario Poljak
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia.
| | - Adriana A Giri
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, 2000, Rosario, Argentina. .,Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| |
Collapse
|
26
|
Đukić A, Lulić L, Thomas M, Skelin J, Bennett Saidu NE, Grce M, Banks L, Tomaić V. HPV Oncoproteins and the Ubiquitin Proteasome System: A Signature of Malignancy? Pathogens 2020; 9:pathogens9020133. [PMID: 32085533 PMCID: PMC7168213 DOI: 10.3390/pathogens9020133] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/22/2022] Open
Abstract
Human papillomavirus (HPV) E6 and E7 oncoproteins are critical for development and maintenance of the malignant phenotype in HPV-induced cancers. These two viral oncoproteins interfere with a plethora of cellular pathways, including the regulation of cell cycle and the control of apoptosis, which are critical in maintaining normal cellular functions. E6 and E7 bind directly with certain components of the Ubiquitin Proteasome System (UPS), enabling them to manipulate a number of important cellular pathways. These activities are the means by which HPV establishes an environment supporting the normal viral life cycle, however in some instances they can also lead to the development of malignancy. In this review, we have discussed how E6 and E7 oncoproteins from alpha and beta HPV types interact with the components of the UPS, and how this interplay contributes to the development of cancer.
Collapse
Affiliation(s)
- Anamaria Đukić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Lucija Lulić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Miranda Thomas
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149 Trieste, Italy; (M.T.); (L.B.)
| | - Josipa Skelin
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Nathaniel Edward Bennett Saidu
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Magdalena Grce
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149 Trieste, Italy; (M.T.); (L.B.)
| | - Vjekoslav Tomaić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (A.Đ.); (L.L.); (J.S.); (N.E.B.S.); (M.G.)
- Correspondence: ; Tel.: +385-1-4561110; Fax: +385-1-4561010
| |
Collapse
|
27
|
Kricker A, Weber MF, Brenner N, Banks E, Pawlita M, Sitas F, Hodgkinson VS, Rahman B, van Kemenade CH, Armstrong BK, Waterboer T. High Ambient Solar UV Correlates with Greater Beta HPV Seropositivity in New South Wales, Australia. Cancer Epidemiol Biomarkers Prev 2019; 29:49-56. [PMID: 31597664 DOI: 10.1158/1055-9965.epi-19-0400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/28/2019] [Accepted: 10/01/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Human papillomavirus (HPV) infection is highly prevalent worldwide and may have a role, with sun exposure, in causing cutaneous squamous cell carcinoma. Little is known about the relationship of UV exposure and seroprevalence of cutaneous HPVs in the general population. METHODS Using multiplex serology, we estimated the seroprevalence of 23 beta and 7 gamma HPVs and 7 other antigens (mu HPV1, HPV63, nu HPV41, alpha HPV16; polyomaviruses HPyV7 and MCV; p53) in a population-based sample of 1,161 Australian 45 and Up Study participants with valid data from blood specimens collected from 2010 to 2012. We calculated prevalence ratios (PR) for the association of each antigen with residential ambient solar UV and other UV-related variables. RESULTS Seropositivity for at least one beta or gamma HPV was high at 88% (beta HPVs 74%, gamma HPVs 70%), and less in women than men [e.g., PR beta-2 HPV38 = 0.70; 95% confidence interval (CI), 0.56-0.87; any gamma = 0.90; 95% CI, 0.84-0.97]. A high ambient UV level in the 10 years before study enrollment was associated with elevated seroprevalence for genus beta (PRtertile3vs1 any beta = 1.17; 95% CI, 1.07-1.28), and beta-1 to beta-3 species, but not for gamma HPVs. Other UV-related measures had less or no evidence of an association. CONCLUSIONS Seroprevalence of cutaneous beta HPVs is higher with higher ambient UV exposure in the past 10 years. IMPACT The observed association between ambient UV in the past 10 years and cutaneous HPVs supports further study of the possible joint role of solar UV and HPV in causing skin cancer.
Collapse
Affiliation(s)
- Anne Kricker
- Sydney School of Public Health, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.
| | - Marianne F Weber
- Cancer Research Division, Cancer Council New South Wales, Sydney, New South Wales, Australia
| | - Nicole Brenner
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Emily Banks
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra, Australia.,Sax Institute, Sydney, New South Wales, Australia
| | - Michael Pawlita
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Freddy Sitas
- Sydney School of Public Health, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,School of Public Health and Community Medicine, University of New South Wales, New South Wales, Australia
| | | | - Bayzid Rahman
- School of Public Health and Community Medicine, University of New South Wales, New South Wales, Australia
| | - Cathelijne H van Kemenade
- Sydney School of Public Health, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Bruce K Armstrong
- Sydney School of Public Health, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,School of Population and Global Health, University of Western Australia, Perth, Western Australia, Australia
| | - Tim Waterboer
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
28
|
Oswald E, Kirschberg M, Aubin F, Alonso A, Hufbauer M, Akgül B, Auvinen E. BetaHPV E6 and E7 colocalize with NuMa in dividing keratinocytes. Virus Genes 2019; 55:600-609. [PMID: 31290065 DOI: 10.1007/s11262-019-01685-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/02/2019] [Indexed: 01/01/2023]
Abstract
Human papillomaviruses (HPVs) of genus betapapillomavirus (betaHPV) are implicated in skin carcinogenesis, but their exact role in keratinocyte transformation is poorly understood. We show an interaction of HPV5 and HPV8 oncoproteins E6 and E7 with the nuclear mitotic apparatus protein 1 (NuMA). Binding of E6 or E7 to NuMA induces little aneuploidy, cell cycle alterations, or aberrant centrosomes. Intracellular localization of NuMA is not altered by E6 and E7 expression in 2D cultures. However, the localization profile is predominantly cytoplasmic in 3D organotypic skin models. Both viral proteins colocalize with NuMA in interphase cells, while only E7 colocalizes with NuMA in mitotic cells. Intriguingly, a small subset of cells shows E7 at only one spindle pole, whereas NuMA is present at both poles. This dissimilar distribution of E7 at the spindle poles may alter cell differentiation, which may in turn be relevant for betaHPV-induced skin carcinogenesis.
Collapse
Affiliation(s)
| | - Matthias Kirschberg
- Institute of Virology, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Fürst-Pückler-Str.56, 50935, Cologne, Germany
| | - François Aubin
- Department of Dermatology, Université de Franche-Comté, Besançon, France
| | - Angel Alonso
- German Cancer Research Center, Heidelberg, Germany
| | - Martin Hufbauer
- Institute of Virology, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Fürst-Pückler-Str.56, 50935, Cologne, Germany
| | - Baki Akgül
- Institute of Virology, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Fürst-Pückler-Str.56, 50935, Cologne, Germany.
| | - Eeva Auvinen
- University of Helsinki and Helsinki University Hospital Laboratory, Helsinki, Finland
| |
Collapse
|
29
|
High-Risk Human Papillomavirus E6/E7 mRNA Is Rarely Detected in Nonanogenital Cutaneous Squamous Cell Carcinoma: An RNA In Situ Hybridization-Based Tissue Microarray Study. Am J Dermatopathol 2019; 41:205-210. [PMID: 30640756 DOI: 10.1097/dad.0000000000001289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
High-risk human papillomavirus (HR-HPV) is known to play an oncogenic role in squamous cell carcinoma (SCC) at certain anatomical sites, namely the uterine cervix, oropharynx, and anogenital skin. However, the association between HR-HPV and nonanogenital cutaneous SCC (CSCC) remains controversial. In this study, we addressed this controversy by performing HR-HPV E6/E7 mRNA in situ hybridization (ISH) on 243 CSCC samples. A cocktail of E6/E7 mRNA ISH probes, recognizing 18 HR-HPV genotypes, was applied to a tissue microarray of paraffin-embedded sections of 154 invasive and 89 in situ CSCC specimens. The anatomical sites of CSCC included the head and neck (n = 100), extremities (n = 100), trunk (n = 25), and anogenitalia (n = 18). We also investigated the correlation between the p16 expression and HR-HPV status by immunohistochemistry. The results of HR-HPV E6/E7 mRNA ISH showed that 5.8% (14/243) of all CSCC samples were positive for HR-HPV, including 66.7% (12/18) of the anogenital and only 0.9% (2/225) of the nonanogenital CSCC samples (P < 0.01). For the detection of diffuse p16 expression by immunohistochemistry, the sensitivity was 100% (14/14 HR-HPV-positive CSCC samples), and the specificity was 72.1% (165/229 HR-HPV-negative specimens). Thus, HR-HPV E6/E7 mRNA was rarely detected in nonanogenital CSCC, making it unlikely that the virus contributes to the pathogenesis of this malignancy. In addition, p16 immunoreactivity has a limited value as a surrogate marker for transcriptionally active HR-HPV in nonanogenital CSCC.
Collapse
|
30
|
Bottomley MJ, Thomson J, Harwood C, Leigh I. The Role of the Immune System in Cutaneous Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:E2009. [PMID: 31022866 PMCID: PMC6515307 DOI: 10.3390/ijms20082009] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 02/06/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer. In immunosuppressed populations it is a source of considerable morbidity and mortality due to its enhanced recurrence and metastatic potential. In common with many malignancies, leucocyte populations are both protective against cancer development and also play a role in 'sculpting' the nascent tumor, leading to loss of immunogenicity and tumor progression. UV radiation and chronic viral carriage may represent unique risk factors for cSCC development, and the immune system plays a key role in modulating the response to both. In this review, we discuss the lessons learned from animal and ex vivo human studies of the role of individual leucocyte subpopulations in the development of cutaneous SCC. We then discuss the insights into cSCC immunity gleaned from studies in humans, particularly in populations receiving pharmacological immunosuppression such as transplant recipients. Similar insights in other malignancies have led to exciting and novel immune therapies, which are beginning to emerge into the cSCC clinical arena.
Collapse
Affiliation(s)
- Matthew J Bottomley
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK.
| | - Jason Thomson
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| | - Catherine Harwood
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| | - Irene Leigh
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| |
Collapse
|
31
|
Bushara O, Miller D, Giubellino A, Schomaker M, Thyagarajan B, Nelson AC. Diagnosis of epidermodysplasia verruciformis: Two cases highlighting the role of direct HPV L1 gene sequencing. J Cutan Pathol 2019; 46:436-441. [PMID: 30773702 DOI: 10.1111/cup.13444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/28/2019] [Accepted: 02/12/2019] [Indexed: 01/21/2023]
Abstract
Epidermodysplasia verruciformis (EV) is a rare skin disease characterized by the development of multiple flat warts with the potential for malignant transformation. Patients are susceptible to human papillomavirus (HPV) infection that develops in a background of either a genetic or acquired immunodeficiency predisposing patients to infection with specific HPV types that are ubiquitous but generally non-pathogenic in healthy individuals. There is no standard clinical methodology for determining the causative HPV from patients with suspected EV. Here, we report the diagnostic workup of two EV cases and describe the use of L1 gene Sanger sequencing as a specific method to accurately identify the causative HPV genotype and confirm the diagnosis of EV.
Collapse
Affiliation(s)
- Omar Bushara
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Daniel Miller
- Department of Dermatology, University of Minnesota, Minneapolis, Minnesota
| | - Alessio Giubellino
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Matthew Schomaker
- Molecular Diagnostics Laboratory, MHealth University of Minnesota Medical Center-Fairview, Minneapolis, Minnesota
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Andrew C Nelson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
32
|
Genders RE, Weijns ME, Dekkers OM, Plasmeijer EI. Metastasis of cutaneous squamous cell carcinoma in organ transplant recipients and the immunocompetent population: is there a difference? a systematic review and meta-analysis. J Eur Acad Dermatol Venereol 2019; 33:828-841. [PMID: 30793804 DOI: 10.1111/jdv.15396] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/14/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Organ transplant recipients (OTR) have a higher risk of developing cutaneous squamous cell carcinoma (cSCC) compared to the immunocompetent population. Immunosuppression is often stated as a risk factor for metastasis. However, evidence for this is scarce. OBJECTIVES To investigate the cSCC metastasis risk in OTR and the immunocompetent population by systematically reviewing the literature. METHODS A systematic review of the literature was performed up to January 2018 using: Medline; Embase; Web of Science and ISI Science Citation Index. Studies assessing cSCC metastasis risk in ORT or immunocompetent cohorts were considered. A pooled risk estimate for metastasis was calculated for the immunocompetent population and OTR separately. RESULTS The pooled metastasis risk estimate for OTR was, respectively, 7.3% (95% CI 6.2-8.4) for cSCC on total body, and 11.0% (95% CI 7.7-14.8) for cSCC of the head neck area. For the immunocompetent population reported risk estimate analysis showed a pooled metastatic risk of 3.1% (95% CI 2.8-3.4) in total body cSCC and of 8.5% (95% CI 7.3-9.8) in cSCC of the head and neck area. Pooled risk estimate per single cSCC in OTR was 1.3% (95% CI 1.0-1.7) in total body cSCC and 4.0% (95% CI 2.7-5.5) in cSCC of the head and neck area. In the immunocompetent population, these pooled risk estimates were, respectively, 2.4% (95% CI 2.1-2.6) and 6.7% (95% CI 5.7-7.8). CONCLUSIONS Organ transplant recipients show a higher overall risk of cSCC metastasis compared to the immunocompetent population. Metastasis risks per single cSCC were substantially lower in both groups. However, due to heterogeneity and differences between studies, comparisons are difficult. Comprehensive follow-up studies with defined cohorts are necessary to adequately asses the risk for cSCC metastasis.
Collapse
Affiliation(s)
- R E Genders
- Department of dermatology, Leiden University Medical Centre, Leiden, the Netherlands.,Department of Dermatology, Roosevelt Clinics, Leiden, the Netherlands
| | - M E Weijns
- Department of dermatology, Leiden University Medical Centre, Leiden, the Netherlands
| | - O M Dekkers
- Department of clinical epidemiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - E I Plasmeijer
- Department of dermatology, Leiden University Medical Centre, Leiden, the Netherlands
| |
Collapse
|
33
|
Ballinger TJ, Bouwman BAM, Mirzazadeh R, Garnerone S, Crosetto N, Semple CA. Modeling double strand break susceptibility to interrogate structural variation in cancer. Genome Biol 2019; 20:28. [PMID: 30736820 PMCID: PMC6368699 DOI: 10.1186/s13059-019-1635-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/17/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Structural variants (SVs) are known to play important roles in a variety of cancers, but their origins and functional consequences are still poorly understood. Many SVs are thought to emerge from errors in the repair processes following DNA double strand breaks (DSBs). RESULTS We used experimentally quantified DSB frequencies in cell lines with matched chromatin and sequence features to derive the first quantitative genome-wide models of DSB susceptibility. These models are accurate and provide novel insights into the mutational mechanisms generating DSBs. Models trained in one cell type can be successfully applied to others, but a substantial proportion of DSBs appear to reflect cell type-specific processes. Using model predictions as a proxy for susceptibility to DSBs in tumors, many SV-enriched regions appear to be poorly explained by selectively neutral mutational bias alone. A substantial number of these regions show unexpectedly high SV breakpoint frequencies given their predicted susceptibility to mutation and are therefore credible targets of positive selection in tumors. These putatively positively selected SV hotspots are enriched for genes previously shown to be oncogenic. In contrast, several hundred regions across the genome show unexpectedly low levels of SVs, given their relatively high susceptibility to mutation. These novel coldspot regions appear to be subject to purifying selection in tumors and are enriched for active promoters and enhancers. CONCLUSIONS We conclude that models of DSB susceptibility offer a rigorous approach to the inference of SVs putatively subject to selection in tumors.
Collapse
Affiliation(s)
- Tracy J. Ballinger
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU UK
| | - Britta A. M. Bouwman
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Reza Mirzazadeh
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Silvano Garnerone
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nicola Crosetto
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Colin A. Semple
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU UK
| |
Collapse
|
34
|
Abstract
Although some members of the viral family Papillomaviridae cause benign skin warts (papillomas), many human papillomavirus (HPV) infections are not associated with visible symptoms. For example, most healthy adults chronically shed Gammapapillomavirus (Gamma) virions from apparently healthy skin surfaces. To further explore the diversity of papillomaviruses, we performed viromic surveys on immunodeficient individuals suffering from florid skin warts. Our results nearly double the number of known Gamma HPV types and suggest that WHIM syndrome patients are uniquely susceptible to Gamma HPV-associated skin warts. Preliminary results suggest that treatment with the drug plerixafor may promote resolution of the unusual Gamma HPV skin warts observed in WHIM patients. Several immunodeficiencies are associated with high susceptibility to persistent and progressive human papillomavirus (HPV) infection leading to a wide range of cutaneous and mucosal lesions. However, the HPV types most commonly associated with such clinical manifestations in these patients have not been systematically defined. Here, we used virion enrichment, rolling circle amplification, and deep sequencing to identify circular DNA viruses present in skin swabs and/or wart biopsy samples from 48 patients with rare genetic immunodeficiencies, including patients with warts, hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome, or epidermodysplasia verruciformis (EV). Their profiles were compared with the profiles of swabs from 14 healthy adults and warts from 6 immunologically normal children. Individual patients were typically infected with multiple HPV types; up to 26 different types were isolated from a single patient (multiple anatomical sites, one time point). Among these, we identified the complete genomes of 83 previously unknown HPV types and 35 incomplete genomes representing possible additional new types. HPV types in the genus Gammapapillomavirus were common in WHIM patients, whereas EV patients mainly shed HPVs from the genus Betapapillomavirus. Preliminary evidence based on three WHIM patients treated with plerixafor, a leukocyte mobilizing agent, suggest that longer-term therapy may correlate with decreased HPV diversity and increased predominance of HPV types associated with childhood skin warts. IMPORTANCE Although some members of the viral family Papillomaviridae cause benign skin warts (papillomas), many human papillomavirus (HPV) infections are not associated with visible symptoms. For example, most healthy adults chronically shed Gammapapillomavirus (Gamma) virions from apparently healthy skin surfaces. To further explore the diversity of papillomaviruses, we performed viromic surveys on immunodeficient individuals suffering from florid skin warts. Our results nearly double the number of known Gamma HPV types and suggest that WHIM syndrome patients are uniquely susceptible to Gamma HPV-associated skin warts. Preliminary results suggest that treatment with the drug plerixafor may promote resolution of the unusual Gamma HPV skin warts observed in WHIM patients.
Collapse
|
35
|
Pfister HJ, Gariglio M, Smola S. Editorial: Human Papillomaviruses and Polyomaviruses in Skin Cancer. Front Microbiol 2018; 9:2778. [PMID: 30498488 PMCID: PMC6250093 DOI: 10.3389/fmicb.2018.02778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/30/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Marisa Gariglio
- Scuola di Medicina, Università degli Studi del Piemonte Orientale, Novara, Italy
| | - Sigrun Smola
- Institute of Virology, Saarland University, Saarbrücken, Germany
| |
Collapse
|
36
|
Oliveira WRP, Tirico MCCP, Souza AAV, Codarin FR, Silva LLC, Festa Neto C. Skin lesions in organ transplant recipients: a study of 177 consecutive Brazilian patients. Int J Dermatol 2018; 58:440-448. [PMID: 30565651 DOI: 10.1111/ijd.14285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/21/2018] [Accepted: 10/08/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND Skin lesions are very common among organ transplant recipients (OTR), particularly infections and tumors, because of the immunosuppressive state these patients are put in. METHODS 177 OTR were examined. Skin lesions were categorized into neoplastic, infectious, and inflammatory diseases. RESULTS The mean age of OTR was 52 years, the mean age at transplantation was 42.7 years, and kidney was the most common organ transplanted (72%). Skin lesions were found in 147 patients (83%). Cutaneous infections were seen in 106 patients (60%). Warts (30%) had the larger incidence and were associated with azathioprine (P = 0.026), cyclosporine (P = 0.006), and tacrolimus (P = 0.009). Superficial mycoses occurred in 16% of OTR, mostly onychomycosis, which was associated with tacrolimus (P = 0.040). Actinic keratosis (AK) occurred in 31% of patients and cutaneous tumors in 56%. Squamous cell carcinoma (SCC) was the most common tumor type affecting 36% of OTR (n = 64), with invasive SCC predominating over in situ SCC, whereas basal cell carcinoma (BCC) accounted for 17%. Both SCC and BCC were more numerous in patients' skin type I (P < 0.05). SCC was more frequent (36%) in combined kidney and liver recipients (P = 0.004), and BCC was associated with cyclosporine (P = 0.047). Inflammatory complications (acne, alopecia, hypertrichosis, and gingival overgrowth) were observed in 17.5% of patients. CONCLUSIONS Organ transplant recipients must be regularly evaluated by dermatologists, who should be alert to the onset of infections and skin (pre)malignant diseases in these patients.
Collapse
Affiliation(s)
- Walmar R P Oliveira
- Department of Dermatology, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Sao Paulo, Brazil
| | - Maria C C P Tirico
- Department of Dermatology, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Sao Paulo, Brazil
| | - Anaisa A V Souza
- Department of Dermatology, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Sao Paulo, Brazil
| | - Felipe R Codarin
- Department of Dermatology, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Sao Paulo, Brazil
| | - Lana L C Silva
- Department of Dermatology, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Sao Paulo, Brazil
| | - Cyro Festa Neto
- Department of Dermatology, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
37
|
Bolatti EM, Hošnjak L, Chouhy D, Re-Louhau MF, Casal PE, Bottai H, Kocjan BJ, Stella EJ, Gorosito MD, Sanchez A, Bussy RF, Poljak M, Giri AA. High prevalence of Gammapapillomaviruses (Gamma-PVs) in pre-malignant cutaneous lesions of immunocompetent individuals using a new broad-spectrum primer system, and identification of HPV210, a novel Gamma-PV type. Virology 2018; 525:182-191. [PMID: 30292127 DOI: 10.1016/j.virol.2018.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022]
Abstract
Genus Gammapapillomavirus (Gamma-PV) is the most diverse and largest clade within the Papillomaviridae family. A novel set of degenerate primers targeting the E1 gene was designed and further used in combination with the well-known CUT PCR assay to assess HPV prevalence and genus distribution in a variety of cutaneous samples from 448 immunocompetent individuals. General HPV, Gamma-PV and mixed infections prevalence were significantly higher in actinic keratosis with respect to benign and malignant neoplasms, respectively (p = 0.0047, p = 0.0172, p = 0.00001). Gamma-PVs were significantly more common in actinic keratosis biopsies than Beta- and Alpha-PVs (p = 0.002). The full-length genome sequence of a novel putative Gamma-PV type was amplified by 'hanging droplet' long-range PCR and cloned. The novel virus, designated HPV210, clustered within species Gamma-12. This study provides an additional tool enabling detection of HPV infections in skin and adds new insights about possible early roles of Gamma-PVs in the development of cutaneous malignant lesions.
Collapse
Affiliation(s)
- Elisa M Bolatti
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, 2000 Rosario, Argentina; Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lea Hošnjak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| | - Diego Chouhy
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, 2000 Rosario, Argentina; Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Maria F Re-Louhau
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, 2000 Rosario, Argentina
| | - Pablo E Casal
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Hebe Bottai
- Área Estadística y Procesamiento de Datos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Boštjan J Kocjan
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| | - Emma J Stella
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, 2000 Rosario, Argentina
| | - Mario D Gorosito
- División de Anatomía Patológica, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Santa Fe 3100, 2000 Rosario, Argentina
| | - Adriana Sanchez
- División de Dermatología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Santa Fe 3100, 2000 Rosario, Argentina
| | - Ramón Fernandez Bussy
- División de Dermatología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Santa Fe 3100, 2000 Rosario, Argentina
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia.
| | - Adriana A Giri
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, 2000 Rosario, Argentina; Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.
| |
Collapse
|
38
|
Hošnjak L, Poljak M. A systematic literature review of studies reporting human papillomavirus (HPV) prevalence in esophageal carcinoma over 36 years (1982–2017). ACTA DERMATOVENEROLOGICA ALPINA PANNONICA ET ADRIATICA 2018. [DOI: 10.15570/actaapa.2018.26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Purdie KJ, Proby CM, Rizvi H, Griffin H, Doorbar J, Sommerlad M, Feltkamp MC, der Meijden EV, Inman GJ, South AP, Leigh IM, Harwood CA. The Role of Human Papillomaviruses and Polyomaviruses in BRAF-Inhibitor Induced Cutaneous Squamous Cell Carcinoma and Benign Squamoproliferative Lesions. Front Microbiol 2018; 9:1806. [PMID: 30154763 PMCID: PMC6102365 DOI: 10.3389/fmicb.2018.01806] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022] Open
Abstract
Background: Human papillomavirus (HPV) has long been proposed as a cofactor in the pathogenesis of cutaneous squamous cell carcinoma (cSCC). More recently, the striking clinico-pathological features of cSCCs that complicate treatment of metastatic melanoma with inhibitors targeting BRAF mutations (BRAFi) has prompted speculation concerning a pathogenic role for oncogenic viruses. Here, we investigate HPV and human polyomaviruses (HPyV) and correlate with clinical, histologic, and genetic features in BRAFi-associated cSCC. Materials and Methods: Patients receiving BRAFi treatment were recruited at Barts Health NHS Trust. HPV DNA was detected in microdissected frozen samples using reverse line probe technology and degenerate and nested PCR. HPV immunohistochemistry was performed in a subset of samples. Quantitative PCR was performed to determine the presence and viral load of HPyVs with affinity for the skin (HPyV6, HPyV7, HPyV9, MCPyV, and TSPyV). These data were correlated with previous genetic mutational analysis of H, K and NRAS, NOTCH1/2, TP53, CDKN2A, CARD11, CREBBP, TGFBR1/2. Chromosomal aberrations were profiled using single nucleotide polymorphism (SNP) arrays. Results: Forty-five skin lesions from seven patients treated with single agent vemurafenib in 2012–2013 were analyzed: 12 cSCC, 19 viral warts (VW), 2 actinic keratosis (AK), 5 verrucous keratosis/other squamoproliferative (VK/SP) lesions, one melanocytic lesion and 6 normal skin samples. Significant histologic features of viral infection were seen in 10/12 (83%) cSCC. HPV DNA was detected in 18/19 (95%) VW/SP, 9/12 (75%) cSCC, 4/5 (80%) SP, and 3/6 (50%) normal skin samples and in 1/12 cases assessed by immunohistochemistry. HPyV was co-detected in 22/30 (73%) of samples, usually at low viral load, with MCPyV and HPyV7 the most common. SNP arrays confirmed low levels of chromosomal abnormality and there was no significant correlation between HPV or HPyV detection and individual gene mutations or overall mutational burden. Conclusion: Despite supportive clinicopathologic evidence, the role for HPV and HPyV infection in the pathogenesis of BRAFi-induced squamoproliferative lesions remains uncertain. Synergistic oncogenic mechanisms are plausible although speculative. Nonetheless, with the prospect of a significant increase in the adjuvant use of these drugs, further research is justified and may provide insight into the pathogenesis of other BRAFi-associated malignancies.
Collapse
Affiliation(s)
- Karin J Purdie
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Charlotte M Proby
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Hasan Rizvi
- Department of Pathology, Barts Health NHS Trust, London, United Kingdom
| | - Heather Griffin
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - John Doorbar
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Mary Sommerlad
- Department of Dermatology, Barts Health NHS Trust, London, United Kingdom
| | - Mariet C Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Els Van der Meijden
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Gareth J Inman
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Andrew P South
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Irene M Leigh
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Catherine A Harwood
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Department of Dermatology, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
40
|
Bouwes Bavinck JN, Feltkamp MCW, Green AC, Fiocco M, Euvrard S, Harwood CA, Nasir S, Thomson J, Proby CM, Naldi L, Diphoorn JCD, Venturuzzo A, Tessari G, Nindl I, Sampogna F, Abeni D, Neale RE, Goeman JJ, Quint KD, Halk AB, Sneek C, Genders RE, de Koning MNC, Quint WGV, Wieland U, Weissenborn S, Waterboer T, Pawlita M, Pfister H. Human papillomavirus and posttransplantation cutaneous squamous cell carcinoma: A multicenter, prospective cohort study. Am J Transplant 2018; 18:1220-1230. [PMID: 29024374 PMCID: PMC5947129 DOI: 10.1111/ajt.14537] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/20/2017] [Accepted: 10/03/2017] [Indexed: 01/25/2023]
Abstract
Organ transplant recipients (OTRs) have a 100-fold increased risk of cutaneous squamous cell carcinoma (cSCC). We prospectively evaluated the association between β genus human papillomaviruses (βPV) and keratinocyte carcinoma in OTRs. Two OTR cohorts without cSCC were assembled: cohort 1 was transplanted in 2003-2006 (n = 274) and cohort 2 was transplanted in 1986-2002 (n = 352). Participants were followed until death or cessation of follow-up in 2016. βPV infection was assessed in eyebrow hair by using polymerase chain reaction-based methods. βPV IgG seroresponses were determined with multiplex serology. A competing risk model with delayed entry was used to estimate cumulative incidence of histologically proven cSCC and the effect of βPV by using a multivariable Cox regression model. Results are reported as adjusted hazard ratios (HRs). OTRs with 5 or more different βPV types in eyebrow hair had 1.7 times the risk of cSCC vs OTRs with 0 to 4 different types (HR 1.7, 95% confidence interval 1.1-2.6). A similar risk was seen with high βPV loads (HR 1.8, 95% confidence interval 1.2-2.8). No significant associations were seen between serum antibodies and cSCC or between βPV and basal cell carcinoma. The diversity and load of βPV types in eyebrow hair are associated with cSCC risk in OTRs, providing evidence that βPV is associated with cSCC carcinogenesis and may present a target for future preventive strategies.
Collapse
Affiliation(s)
| | - Mariet C. W. Feltkamp
- Department of Medical MicrobiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Adele C. Green
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Marta Fiocco
- Department of Medical Statistics and BioinformaticsLeiden University Medical CenterLeidenThe Netherlands,Institute of MathematicsLeiden UniversityLeidenThe Netherlands
| | - Sylvie Euvrard
- Department of DermatologyEdouard Herriot HospitalHospices Civils de LyonLyonFrance
| | - Catherine A. Harwood
- Centre for Cell Biology and Cutaneous ResearchBlizard Institute, Barts and The London School of Medicine and DentistryQueen Mary University of LondonUK
| | - Shaaira Nasir
- Centre for Cell Biology and Cutaneous ResearchBlizard Institute, Barts and The London School of Medicine and DentistryQueen Mary University of LondonUK
| | - Jason Thomson
- Centre for Cell Biology and Cutaneous ResearchBlizard Institute, Barts and The London School of Medicine and DentistryQueen Mary University of LondonUK
| | - Charlotte M. Proby
- Division of Cancer ResearchUniversity of DundeeNinewells Hospital and Medical SchoolDundeeUK
| | - Luigi Naldi
- Department of DermatologyAzienda Ospedaliera papa Giovanni XXIII, and GISED Study CenterBergamoItaly
| | - Janouk C. D. Diphoorn
- Department of DermatologyAzienda Ospedaliera papa Giovanni XXIII, and GISED Study CenterBergamoItaly
| | - Anna Venturuzzo
- Department of DermatologyAzienda Ospedaliera papa Giovanni XXIII, and GISED Study CenterBergamoItaly
| | - Gianpaolo Tessari
- Department of MedicineSection of DermatologyUniversity of Veronac/o Ospedale Civile MaggioreVeronaItaly
| | - Ingo Nindl
- Department of DermatologyUniversity Hospital CharitéSkin Cancer Center CharitéBerlinGermany
| | | | | | | | - Jelle J. Goeman
- Department of Medical Statistics and BioinformaticsLeiden University Medical CenterLeidenThe Netherlands
| | - Koen D. Quint
- Department of DermatologyLeiden University Medical CenterLeidenThe Netherlands
| | - Anne B. Halk
- Department of DermatologyLeiden University Medical CenterLeidenThe Netherlands
| | - Carmen Sneek
- Department of DermatologyLeiden University Medical CenterLeidenThe Netherlands
| | - Roel E. Genders
- Department of DermatologyLeiden University Medical CenterLeidenThe Netherlands
| | | | | | - Ulrike Wieland
- Institute of VirologyUniversity of CologneCologneGermany
| | | | - Tim Waterboer
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | | | | | | |
Collapse
|
41
|
Abstract
Human papillomaviruses (HPVs) are an ancient group of viruses with small, double-stranded DNA circular genomes. They are species-specific and have a strict tropism for mucosal and cutaneous stratified squamous epithelial surfaces of the host. A subset of these viruses has been demonstrated to be the causative agent of several human cancers. Here, we review the biology, natural history, evolution and cancer association of the oncogenic HPVs.This article is part of the themed issue 'Human oncogenic viruses'.
Collapse
Affiliation(s)
- Alison A McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
42
|
Olivero C, Lanfredini S, Borgogna C, Gariglio M, Patel GK. HPV-Induced Field Cancerisation: Transformation of Adult Tissue Stem Cell Into Cancer Stem Cell. Front Microbiol 2018; 9:546. [PMID: 29632522 PMCID: PMC5879094 DOI: 10.3389/fmicb.2018.00546] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/09/2018] [Indexed: 11/24/2022] Open
Abstract
Field cancerisation was originally described as a basis for multiple head and neck squamous cell carcinoma (HNSCC) and is a pre-malignant phenomenon that is frequently attributable to oncogenic human papillomavirus (HPV) infection. Our work on β-HPV-induced cutaneous squamous cell carcinomas identified a novel Lrig1+ hair follicle junctional zone keratinocyte stem cell population as the basis for field cancerisation. Herein, we describe the ability for HPV to infect adult tissue stem cells in order to establish persistent infection and induce their proliferation and displacement resulting in field cancerisation. By review of the HPV literature, we reveal how this mechanism is conserved as the basis of field cancerisation across many tissues. New insights have identified the capacity for HPV early region genes to dysregulate adult tissue stem cell self-renewal pathways ensuring that the expanded population preserve its stem cell characteristics beyond the stem cell niche. HPV-infected cells acquire additional transforming mutations that can give rise to intraepithelial neoplasia (IEN), from environmental factors such as sunlight or tobacco induced mutations in skin and oral cavity, respectively. With establishment of IEN, HPV viral replication is sacrificed with loss of the episome, and the tissue is predisposed to multiple cancer stem cell-driven carcinomas.
Collapse
Affiliation(s)
- Carlotta Olivero
- Virology Unit, Department of Translational Medicine, Novara Medical School, University of Eastern Piedmont, Novara, Italy.,European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Simone Lanfredini
- European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Cinzia Borgogna
- Virology Unit, Department of Translational Medicine, Novara Medical School, University of Eastern Piedmont, Novara, Italy
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, Novara Medical School, University of Eastern Piedmont, Novara, Italy
| | - Girish K Patel
- European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
43
|
Meyers JM, Grace M, Uberoi A, Lambert PF, Munger K. Inhibition of TGF-β and NOTCH Signaling by Cutaneous Papillomaviruses. Front Microbiol 2018; 9:389. [PMID: 29568286 PMCID: PMC5852067 DOI: 10.3389/fmicb.2018.00389] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 02/20/2018] [Indexed: 12/12/2022] Open
Abstract
Infections with cutaneous papillomaviruses have been linked to cutaneous squamous cell carcinomas that arise in patients who suffer from a rare genetic disorder, epidermodysplasia verruciformis, or those who have experienced long-term, systemic immunosuppression following organ transplantation. The E6 proteins of the prototypical cutaneous human papillomavirus (HPV) 5 and HPV8 inhibit TGF-β and NOTCH signaling. The Mus musculus papillomavirus 1, MmuPV1, infects laboratory mouse strains and causes cutaneous skin warts that can progress to squamous cell carcinomas. MmuPV1 E6 shares biological and biochemical activities with HPV8 E6 including the ability to inhibit TGF-β and NOTCH signaling by binding the SMAD2/SMAD3 and MAML1 transcription factors, respectively. Inhibition of TGF-β and NOTCH signaling is linked to delayed differentiation and sustained proliferation of differentiating keratinocytes. Furthermore, the ability of MmuPV1 E6 to bind MAML1 is necessary for wart and cancer formation in experimentally infected mice. Hence, experimental MmuPV1 infection in mice will be a robust and valuable experimental system to dissect key aspects of cutaneous HPV infection, pathogenesis, and carcinogenesis.
Collapse
Affiliation(s)
- Jordan M Meyers
- Program in Virology, Harvard Medical School, Boston, MA, United States.,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| | - Miranda Grace
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| | - Aayushi Uberoi
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Karl Munger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
44
|
Deletion of epidermal Rac1 inhibits HPV-8 induced skin papilloma formation and facilitates HPV-8- and UV-light induced skin carcinogenesis. Oncotarget 2018; 7:57841-57850. [PMID: 27506937 PMCID: PMC5295394 DOI: 10.18632/oncotarget.11069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/19/2016] [Indexed: 02/05/2023] Open
Abstract
Overexpression and increased activity of the small Rho GTPase Rac1 has been linked to squamous cell carcinoma of the epidermis and mucosa in humans. Targeted deletion of Rac1 or inhibition of Rac1 activity in epidermal keratinocytes reduced papilloma formation in a chemical skin carcinogenesis mouse model. However, a potential role of Rac1 in HPV- and UV-light induced skin carcinogenesis has not been investigated so far, solar UV radiation being an important carcinogen to the skin.To investigate this, we deleted Rac1 or modulated its activity in mice with transgenic expression of Human papilloma virus type-8 (HPV-8) in epidermal keratinocytes. Our data show that inhibition or deletion of Rac1 results in reduced papilloma formation upon UV-irradiation with a single dose, whereas constitutive activation of Rac1 strongly increases papilloma frequency in these mice. Surprisingly, we observed that, upon chronic UV-irradiation, the majority of mice with transgenic expression of HPV-8 and epidermis specific Rac1 deletion developed squamous cell carcinomas. Taken together, our data show that Rac1 exerts a dual role in skin carcinogenesis: its activation is, on one hand, required for HPV-8- and UV-light induced papilloma formation but, on the other, suppresses the development of squamous cell carcinomas.
Collapse
|
45
|
Geßner AL, Borkowetz A, Baier M, Göhlert A, Wilhelm TJ, Thumbs A, Borgstein E, Jansen L, Beer K, Mothes H, Dürst M. Detection of HPV16 in Esophageal Cancer in a High-Incidence Region of Malawi. Int J Mol Sci 2018; 19:E557. [PMID: 29439548 PMCID: PMC5855779 DOI: 10.3390/ijms19020557] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/19/2018] [Accepted: 01/23/2018] [Indexed: 12/15/2022] Open
Abstract
This study was designed to explore the role of human papillomavirus (HPV) in esophageal squamous cell carcinoma (ESCC). Fifty-five patients receiving diagnostic upper gastrointestinal endoscopy at Zomba Central Hospital or Queen Elizabeth Hospital in Blantyre (Malawi) in 2010, were included in our study. Formalin-fixed paraffin-embedded biopsies were collected for histopathological diagnosis. HPV DNA was detected using multiplex Quantitative PCR (qPCR) and in situ hybridization (ISH). p16INK4a staining served as a surrogate marker for HPV oncogene activity. Cell proliferation was determined by Ki-67 staining. Human immunodeficiency virus (HIV) status was evaluated by serology. Data on the consumption of alcohol and tobacco, and history of tuberculosis (TBC), oral thrush, and Herpes zoster, were obtained by questionnaire. Forty patients displayed ESCC, three displayed dysplastic epithelium, and 12 displayed normal epithelium. HPV16 was detected in six ESCC specimens and in one dysplastic lesion. Among HPV-positive patients, viral load varied from 0.001 to 2.5 copies per tumor cell. HPV DNA presence could not be confirmed by ISH. p16INK4a positivity correlated with the presence of HPV DNA (p = 0.03). Of particular note is that the Ki-67 proliferation index, in areas with diffuse nuclear or cytoplasmatic p16INK4a staining ≥50%, was significantly higher in HPV-positive tumors compared to the corresponding p16INK4a stained areas of HPV-negative tumors (p = 0.004). HPV infection in ESCC was not associated with the consumption of tobacco or alcohol, but there were significantly more patients drinking locally brewed alcohol among HPV-positive tumor patients compared to non-tumor patients (p = 0.02) and compared to HPV-negative tumor patients (p = 0.047). There was no association between HIV infection, history of TBC, Herpes zoster, oral thrush, or HPV infection, in ESCC patients. Our indirect evidence for viral oncogene activity is restricted to single tumor cell areas, indicative of the role of HPV16 in the development of ESCC. The inhomogeneous presence of the virus within the tumor is reminiscent of the "hit and run" mechanism discussed for β-HPV types, such as HPV38.
Collapse
Affiliation(s)
- Anja Lidwina Geßner
- Department of General, Visceral and Vascular Surgery, Jena University Hospital-Friedrich-Schiller-University; 07747 Jena, Germany.
- Department of Gynecology, Jena University Hospital-Friedrich-Schiller-University, 07747 Jena, Germany.
| | - Angelika Borkowetz
- Department of Urology, Technische Universität Dresden; 01307 Dresden, Germany.
| | - Michael Baier
- Institute for Medical Microbiology, Jena University Hospital-Friedrich-Schiller-University, 07747 Jena, Germany.
| | - Angela Göhlert
- Institute for Pathology, Jena University Hospital-Friedrich-Schiller-University, 07743 Jena, Germany.
| | - Torsten J Wilhelm
- Department of Surgery, University Medical Centre Mannheim, 68167 Mannheim, Germany.
| | - Alexander Thumbs
- Department of Surgery, Queen Elizabeth Central Hospital-College of Medicine, Blantyre 3, Malawi.
| | - Eric Borgstein
- Department of Surgery, Queen Elizabeth Central Hospital-College of Medicine, Blantyre 3, Malawi.
| | - Lars Jansen
- Department of Gynecology, Jena University Hospital-Friedrich-Schiller-University, 07747 Jena, Germany.
| | - Katrin Beer
- Department of Gynecology, Jena University Hospital-Friedrich-Schiller-University, 07747 Jena, Germany.
| | - Henning Mothes
- Department of General, Visceral and Vascular Surgery, Jena University Hospital-Friedrich-Schiller-University; 07747 Jena, Germany.
| | - Matthias Dürst
- Department of Gynecology, Jena University Hospital-Friedrich-Schiller-University, 07747 Jena, Germany.
| |
Collapse
|
46
|
Borgogna C, Olivero C, Lanfredini S, Calati F, De Andrea M, Zavattaro E, Savoia P, Trisolini E, Boldorini R, Patel GK, Gariglio M. β-HPV Infection Correlates with Early Stages of Carcinogenesis in Skin Tumors and Patient-Derived Xenografts from a Kidney Transplant Recipient Cohort. Front Microbiol 2018; 9:117. [PMID: 29459852 PMCID: PMC5807414 DOI: 10.3389/fmicb.2018.00117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/18/2018] [Indexed: 11/15/2022] Open
Abstract
Many malignancies that occur in high excess in kidney transplant recipients (KTRs) are due to viruses that thrive in the setting of immunosuppression. Keratinocyte carcinoma (KC), the most frequently occurring cancer type in KTR, has been associated with skin infection by human papillomavirus (HPV) from the beta genus. In this report, we extend our previous investigation aimed at identifying the presence of active β-HPV infection in skin tumors from KTRs through detection of viral protein expression. Using a combination of antibodies raised against the E4 and L1 proteins of the β-genotypes, we were able to visualize infection in five tumors [one keratoacanthoma (KA), three actinic keratoses (AKs), and one seborrheic keratoses (SKs)] that were all removed from two patients who had been both transplanted twice, had developed multiple KCs, and presented with a long history of immunosuppression (>30 years). These infected tissues displayed intraepidermal hyperplasia and increased expression of the ΔNp63 protein, which extended into the upper epithelial layers. In addition, using a xenograft model system in nude mice displaying a humanized stromal bed in the site of grafting, we successfully engrafted three AKs, two of which were derived from the aforementioned KTRs and displayed β-HPV infection in the original tumor. Of note, one AK-derived xenograft, along with its ensuing lymph node metastasis, was diagnosed as squamous cell carcinoma (SCC). In the latter, both β-HPV infection and ΔNp63 expression were no longer detectable. Although the overall success rate of engrafting was very low, the results of this study show for the first time that β-HPV+ and ΔNp63+ intraepidermal hyperplasia can indeed progress to an aggressive SCC able to metastasize. Consistent with a series of reports attributing a causative role of β-HPV at early stages of skin carcinogenesis through ΔNp63 induction and increased keratinocytes stemness, here we provide in vivo evidence that these events are also occurring in the affected skin of KTRs. Due to these β-HPV-driven molecular pathways, the nascent tumor cell is able to acquire a high enough number of carcinogenic insults that its proliferation and survival will eventually become independent of viral gene expression.
Collapse
Affiliation(s)
- Cinzia Borgogna
- Virology Unit, Department of Translational Medicine, Novara Medical School, University of Eastern Piedmont, Novara, Italy
| | - Carlotta Olivero
- Virology Unit, Department of Translational Medicine, Novara Medical School, University of Eastern Piedmont, Novara, Italy.,School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Simone Lanfredini
- School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Federica Calati
- Virology Unit, Department of Translational Medicine, Novara Medical School, University of Eastern Piedmont, Novara, Italy
| | - Marco De Andrea
- Virology Unit, Department of Translational Medicine, Novara Medical School, University of Eastern Piedmont, Novara, Italy.,Virology Unit, Department of Public Health and Pediatric Sciences, Turin Medical School, University of Turin, Turin, Italy
| | - Elisa Zavattaro
- Dermatology Unit, Department of Health Sciences, Novara Medical School, Novara, Italy
| | - Paola Savoia
- Dermatology Unit, Department of Health Sciences, Novara Medical School, Novara, Italy
| | - Elena Trisolini
- Pathology Unit, Department of Health Sciences, Novara Medical School, Novara, Italy
| | - Renzo Boldorini
- Pathology Unit, Department of Health Sciences, Novara Medical School, Novara, Italy
| | - Girish K Patel
- School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, Novara Medical School, University of Eastern Piedmont, Novara, Italy
| |
Collapse
|
47
|
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a malignant neoplasm of the skin characterized by an aberrant proliferation of keratinocytes. Cutaneous SCC is the second most common malignancy globally, and usually arises in the chronically sun-damaged skin of elderly white individuals. From a pathologist's perspective, it is important to differentiate cSCC from the benign and reactive squamoproliferative lesions and identify the high-risk features associated with aggressive tumor behavior. In this article, we provide an up-to-date overview of cSCC along with its precursor lesions and important histologic variants, with a particular emphasis on the histopathologic features and molecular pathogenesis.
Collapse
|
48
|
Harwood CA, Toland AE, Proby CM, Euvrard S, Hofbauer GFL, Tommasino M, Bouwes Bavinck JN. The pathogenesis of cutaneous squamous cell carcinoma in organ transplant recipients. Br J Dermatol 2017; 177:1217-1224. [PMID: 29086420 DOI: 10.1111/bjd.15956] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2017] [Indexed: 12/14/2022]
Abstract
The pathogenesis of keratinocyte carcinoma following organ transplantation is multifactorial, and recent evidence suggests a complex and often synergistic interplay between the carcinogenic effects of ultraviolet radiation, compromised immune surveillance, direct pro- and anticarcinogenic effects of drugs, oncogenic viruses (in particular, beta-genus human papillomaviruses) and host genetic susceptibility factors. We present an overview of those factors for which there is currently the most convincing evidence and highlight important gaps in our knowledge. In particular, a clear understanding of the interdependence and relative contributions of these co-factors is currently lacking, yet has important implications for rational development of clinically relevant biomarkers and targeted strategies for treatment and prevention of post-transplant keratinocyte cancers.
Collapse
Affiliation(s)
- C A Harwood
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, U.K
| | - A E Toland
- Cancer Biology and Genetics, The Ohio State University, Columbus, OH, U.S.A
| | - C M Proby
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, U.K
| | - S Euvrard
- Hospices Civils de Lyon, Department of Dermatology, Edouard Herriot Hospital, Lyon, France
| | - G F L Hofbauer
- Department of Dermatology, University of Zurich, Zurich, Switzerland
| | - M Tommasino
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| | - J N Bouwes Bavinck
- Department of Dermatology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
49
|
Hasche D, Stephan S, Braspenning-Wesch I, Mikulec J, Niebler M, Gröne HJ, Flechtenmacher C, Akgül B, Rösl F, Vinzón SE. The interplay of UV and cutaneous papillomavirus infection in skin cancer development. PLoS Pathog 2017; 13:e1006723. [PMID: 29190285 PMCID: PMC5708609 DOI: 10.1371/journal.ppat.1006723] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/30/2017] [Indexed: 12/11/2022] Open
Abstract
Cutaneous human papillomaviruses (HPVs) are considered as cofactors for non-melanoma skin cancer (NMSC) development, especially in association with UVB. Extensively studied transgenic mouse models failed to mimic all aspects of virus-host interactions starting from primary infection to the appearance of a tumor. Using the natural model Mastomys coucha, which reflects the human situation in many aspects, we provide the first evidence that only UVB and Mastomys natalensis papillomavirus (MnPV) infection strongly promote NMSC formation. Using UVB exposures that correspond to UV indices of different geographical regions, irradiated animals developed either well-differentiated keratinizing squamous cell carcinomas (SCCs), still supporting productive infections with high viral loads and transcriptional activity, or poorly differentiated non-keratinizing SCCs almost lacking MnPV DNA and in turn, early and late viral transcription. Intriguingly, animals with the latter phenotype, however, still showed strong seropositivity, clearly verifying a preceding MnPV infection. Of note, the mere presence of MnPV could induce γH2AX foci, indicating that viral infection without prior UVB exposure can already perturb genome stability of the host cell. Moreover, as shown both under in vitro and in vivo conditions, MnPV E6/E7 expression also attenuates the excision repair of cyclobutane pyrimidine dimers upon UVB irradiation, suggesting a viral impact on the DNA damage response. While mutations of Ras family members (e.g. Hras, Kras, and Nras) were absent, the majority of SCCs harbored-like in humans-Trp53 mutations especially at two hot-spots in the DNA-binding domain, resulting in a loss of function that favored tumor dedifferentiation, counter-selective for viral maintenance. Such a constellation provides a reasonable explanation for making continuous viral presence dispensable during skin carcinogenesis as observed in patients with NMSC.
Collapse
Affiliation(s)
- Daniel Hasche
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sonja Stephan
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ilona Braspenning-Wesch
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julita Mikulec
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Virus-associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Niebler
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann-Josef Gröne
- Division of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Baki Akgül
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Frank Rösl
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sabrina E. Vinzón
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
50
|
Alizon S, Murall CL, Bravo IG. Why Human Papillomavirus Acute Infections Matter. Viruses 2017; 9:v9100293. [PMID: 28994707 PMCID: PMC5691644 DOI: 10.3390/v9100293] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/25/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023] Open
Abstract
Most infections by human papillomaviruses (HPVs) are `acute', that is non-persistent. Yet, for HPVs, as for many other oncoviruses, there is a striking gap between our detailed understanding of chronic infections and our limited data on the early stages of infection. Here we argue that studying HPV acute infections is necessary and timely. Focusing on early interactions will help explain why certain infections are cleared while others become chronic or latent. From a molecular perspective, descriptions of immune effectors and pro-inflammatory pathways during the initial stages of infections have the potential to lead to novel treatments or to improved handling algorithms. From a dynamical perspective, adopting concepts from spatial ecology, such as meta-populations or meta-communities, can help explain why HPV acute infections sometimes last for years. Furthermore, cervical cancer screening and vaccines impose novel iatrogenic pressures on HPVs, implying that anticipating any viral evolutionary response remains essential. Finally, hints at the associations between HPV acute infections and fertility deserve further investigation given their high, worldwide prevalence. Overall, understanding asymptomatic and benign infections may be instrumental in reducing HPV virulence.
Collapse
Affiliation(s)
- Samuel Alizon
- MIVEGEC (UMR CNRS 5290, UR IRD 224, UM), 911 avenue Agropolis, 34394 Montpellier CEDEX 5, France.
| | - Carmen Lía Murall
- MIVEGEC (UMR CNRS 5290, UR IRD 224, UM), 911 avenue Agropolis, 34394 Montpellier CEDEX 5, France.
| | - Ignacio G Bravo
- MIVEGEC (UMR CNRS 5290, UR IRD 224, UM), 911 avenue Agropolis, 34394 Montpellier CEDEX 5, France.
| |
Collapse
|