1
|
Paone P, Latousakis D, Terrasi R, Vertommen D, Jian C, Borlandelli V, Suriano F, Johansson MEV, Puel A, Bouzin C, Delzenne NM, Salonen A, Juge N, Florea BI, Muccioli GG, Overkleeft H, Van Hul M, Cani PD. Human milk oligosaccharide 2'-fucosyllactose protects against high-fat diet-induced obesity by changing intestinal mucus production, composition and degradation linked to changes in gut microbiota and faecal proteome profiles in mice. Gut 2024; 73:1632-1649. [PMID: 38740509 PMCID: PMC11420753 DOI: 10.1136/gutjnl-2023-330301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 04/27/2024] [Indexed: 05/16/2024]
Abstract
OBJECTIVE To decipher the mechanisms by which the major human milk oligosaccharide (HMO), 2'-fucosyllactose (2'FL), can affect body weight and fat mass gain on high-fat diet (HFD) feeding in mice. We wanted to elucidate whether 2'FL metabolic effects are linked with changes in intestinal mucus production and secretion, mucin glycosylation and degradation, as well as with the modulation of the gut microbiota, faecal proteome and endocannabinoid (eCB) system. RESULTS 2'FL supplementation reduced HFD-induced obesity and glucose intolerance. These effects were accompanied by several changes in the intestinal mucus layer, including mucus production and composition, and gene expression of secreted and transmembrane mucins, glycosyltransferases and genes involved in mucus secretion. In addition, 2'FL increased bacterial glycosyl hydrolases involved in mucin glycan degradation. These changes were linked to a significant increase and predominance of bacterial genera Akkermansia and Bacteroides, different faecal proteome profile (with an upregulation of proteins involved in carbon, amino acids and fat metabolism and a downregulation of proteins involved in protein digestion and absorption) and, finally, to changes in the eCB system. We also investigated faecal proteomes from lean and obese humans and found similar changes observed comparing lean and obese mice. CONCLUSION Our results show that the HMO 2'FL influences host metabolism by modulating the mucus layer, gut microbiota and eCB system and propose the mucus layer as a new potential target for the prevention of obesity and related disorders.
Collapse
Affiliation(s)
- Paola Paone
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Dimitris Latousakis
- The Gut Microbiome and Health and Food Safety Institute Strategic Programme, Norwich Research Park, Quadram Institute Bioscience, Norwich, UK
| | - Romano Terrasi
- Louvain Drug Research Institute (LDRI), Bioanalysis and Pharmacology of Bioactive Lipids Research Group (BPBL), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Didier Vertommen
- de Duve Institute, MASSPROT platform, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Ching Jian
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Valentina Borlandelli
- Department Bio-organic Synthesis, Leids Instituut voor Chemisch Onderzoek, Leiden University, Leiden, The Netherlands
| | - Francesco Suriano
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Malin E V Johansson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Anthony Puel
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Caroline Bouzin
- Institute of Experimental and Clinical Research (IREC), IREC Imaging Platform (2IP RRID:SCR_023378), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Nathalie M Delzenne
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nathalie Juge
- The Gut Microbiome and Health and Food Safety Institute Strategic Programme, Norwich Research Park, Quadram Institute Bioscience, Norwich, UK
| | - Bogdan I Florea
- Department Bio-organic Synthesis, Leids Instituut voor Chemisch Onderzoek, Leiden University, Leiden, The Netherlands
| | - Giulio G Muccioli
- Louvain Drug Research Institute (LDRI), Bioanalysis and Pharmacology of Bioactive Lipids Research Group (BPBL), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Herman Overkleeft
- Department Bio-organic Synthesis, Leids Instituut voor Chemisch Onderzoek, Leiden University, Leiden, The Netherlands
| | - Matthias Van Hul
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Patrice D Cani
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
2
|
Feliu J, Gámez-Pozo A, Martínez-Pérez D, Pérez-Wert P, Matamala-Luengo D, Viñal D, Kunz L, López-Vacas R, Dittmann A, Rodríguez-Salas N, Custodio A, Fresno Vara JÁ, Trilla-Fuertes L. Functional proteomics of colon cancer Consensus Molecular Subtypes. Br J Cancer 2024; 130:1670-1678. [PMID: 38486123 DOI: 10.1038/s41416-024-02650-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 05/15/2024] Open
Abstract
BACKGROUND The Colorectal Cancer Subtyping Consortium established four Consensus Molecular Subtypes (CMS) in colorectal cancer: CMS1 (microsatellite-instability [MSI], Immune), CMS2 (Canonical, epithelial), CMS3 (Metabolic), and CMS4 (Mesenchymal). However, only MSI tumour patients have seen a change in their disease management in clinical practice. This study aims to characterise the proteome of colon cancer CMS and broaden CMS's clinical utility. METHODS One-hundred fifty-eight paraffin samples from stage II-III colon cancer patients treated with adjuvant chemotherapy were analysed through DIA-based mass-spectrometry proteomics. RESULTS CMS1 exhibited overexpression of immune-related proteins, specifically related to neutrophils, phagocytosis, antimicrobial response, and a glycolytic profile. These findings suggested potential therapeutic strategies involving immunotherapy and glycolytic inhibitors. CMS3 showed overexpression of metabolic proteins. CMS2 displayed a heterogeneous protein profile. Notably, two proteomics subtypes within CMS2, with different protein characteristics and prognoses, were identified. CMS4 emerged as the most distinct group, featuring overexpression of proteins related to angiogenesis, extracellular matrix, focal adhesion, and complement activation. CMS4 showed a high metastatic profile and suggested possible chemoresistance that may explain its worse prognosis. CONCLUSIONS DIA proteomics revealed new features for each colon cancer CMS subtype. These findings provide valuable insights into potential therapeutic targets for colorectal cancer subtypes in the future.
Collapse
Affiliation(s)
- Jaime Feliu
- Medical Oncology Department, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain.
- Cátedra UAM-Amgen, Universidad Autónoma de Madrid, Madrid, Spain.
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain.
| | - Angelo Gámez-Pozo
- Molecular Oncology Lab, La Paz University Hospital-IdiPAZ, Madrid, Spain
| | - Daniel Martínez-Pérez
- Medical Oncology Department, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Pablo Pérez-Wert
- Medical Oncology Department, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain
| | | | - David Viñal
- Medical Oncology Department, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Laura Kunz
- Functional Genomics Center Zurich, Zurich, Switzerland
| | - Rocío López-Vacas
- Molecular Oncology Lab, La Paz University Hospital-IdiPAZ, Madrid, Spain
| | | | - Nuria Rodríguez-Salas
- Medical Oncology Department, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Ana Custodio
- Medical Oncology Department, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Juan Ángel Fresno Vara
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
- Molecular Oncology Lab, La Paz University Hospital-IdiPAZ, Madrid, Spain
| | | |
Collapse
|
3
|
Hoseini SH, Enayati P, Nazari M, Babakhanzadeh E, Rastgoo M, Sohrabi NB. Biomarker Profile of Colorectal Cancer: Current Findings and Future Perspective. J Gastrointest Cancer 2024; 55:497-510. [PMID: 38168859 DOI: 10.1007/s12029-023-00990-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVE Breakthroughs in omics technology have led to a deeper understanding of the fundamental molecular changes that play a critical role in the development and progression of cancer. This review delves into the hidden molecular drivers of colorectal cancer (CRC), offering potential for clinical translation through novel biomarkers and personalized therapies. METHODS We summarizes recent studies utilizing various omics approaches, including genomics, transcriptomics, proteomics, epigenomics, metabolomics and data integration with computational algorithms, to investigate CRC. RESULTS Integrating multi-omics data in colorectal cancer research unlocks hidden biological insights, revealing new pathways and mechanisms. This powerful approach not only identifies potential biomarkers for personalized prognosis, diagnosis, and treatment, but also predicts patient response to specific therapies, while computational tools illuminate the landscape by deciphering complex datasets. CONCLUSIONS Future research should prioritize validating promising biomarkers and seamlessly translating them into clinical practice, ultimately propelling personalized CRC management to new heights.
Collapse
Affiliation(s)
| | - Parisa Enayati
- Biological Sciences Department, Northern Illinois University, DeKalb, IL, USA
| | - Majid Nazari
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- , P.O. Box, Tehran, 64155-65117, Iran.
| | - Emad Babakhanzadeh
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rastgoo
- Department of Microbiology, Shiraz Islamic Azad University, Shiraz, Iran
| | | |
Collapse
|
4
|
McAuliffe T, Anderson JC, Larson RJ, Robertson DJ. Systematic scoping review: Use of the faecal immunochemical test residual buffer to enhance colorectal cancer screening. Aliment Pharmacol Ther 2024; 59:1033-1048. [PMID: 38534182 DOI: 10.1111/apt.17947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/07/2023] [Accepted: 03/03/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND The faecal immunochemical test (FIT) is an inexpensive and convenient modality to screen for colorectal cancer. However, its one-time sensitivity for detecting colorectal cancer and cancer precursors is limited. There is growing interest in using the non-haemoglobin contents of FIT residual buffer to enhance colonic neoplasia detection. AIM To establish from the literature a framework to catalogue candidate biomarkers within FIT residual buffer for non-invasive colorectal cancer screening. METHODS The search strategy evaluated PubMed, Scopus, Web of Science, Embase, and Google Scholar for publications through 25 October 2023, with search terms including FIT, buffer, OC-sensor, biomarkers, microbiome, microRNA (miR), colon, rectum, screening, neoplasm, and early detection. Studies employing home-based collection samples using quantitative FIT first processed for haemoglobin were included. One author reviewed all articles; a second author completed a 20% full-text audit to ensure adherence to eligibility criteria. RESULTS A broad search yielded 1669 studies and application of eligibility criteria identified 18 relevant studies. Multiple protein, DNA/RNA, and microbiome biomarkers (notably haptoglobin, miR-16, miR-27a-3p, miR-92a, miR-148a-3p, miR-223, miR-421, let-7b-5p, and Tyzzerella 4) were associated with colorectal neoplasia. Furthermore, studies highlighted the short-term stability of biomarkers for clinical use and long-term stability for research purposes. CONCLUSIONS This scoping review summarises the framework and progress of research on stability of biomarkers in FIT residual buffer and their associations with colorectal neoplasia to guide opportunities for further confirmatory studies to enhance colorectal cancer screening.
Collapse
Affiliation(s)
| | - Joseph C Anderson
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- Department of Veterans Affairs Medical Center, White River Junction, Vermont, USA
| | - Robin J Larson
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- The Dartmouth Institute for Health Policy and Clinical Practice, Lebanon, New Hampshire, USA
| | - Douglas J Robertson
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- Department of Veterans Affairs Medical Center, White River Junction, Vermont, USA
| |
Collapse
|
5
|
Soares J, Eiras M, Ferreira D, Santos DAR, Relvas-Santos M, Santos B, Gonçalves M, Ferreira E, Vieira R, Afonso LP, Santos LL, Dinis-Ribeiro M, Lima L, Ferreira JA. Stool Glycoproteomics Signatures of Pre-Cancerous Lesions and Colorectal Cancer. Int J Mol Sci 2024; 25:3722. [PMID: 38612533 PMCID: PMC11012158 DOI: 10.3390/ijms25073722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Colorectal cancer (CRC) screening relies primarily on stool analysis to identify occult blood. However, its sensitivity for detecting precancerous lesions is limited, requiring the development of new tools to improve CRC screening. Carcinogenesis involves significant alterations in mucosal epithelium glycocalyx that decisively contribute to disease progression. Building on this knowledge, we examined patient series comprehending premalignant lesions, colorectal tumors, and healthy controls for the T-antigen-a short-chain O-glycosylation of proteins considered a surrogate marker of malignancy in multiple solid cancers. We found the T-antigen in the secretions of dysplastic lesions as well as in cancer. In CRC, T-antigen expression was associated with the presence of distant metastases. In parallel, we analyzed a broad number of stools from individuals who underwent colonoscopy, which showed high T expressions in high-grade dysplasia and carcinomas. Employing mass spectrometry-based lectin-affinity enrichment, we identified a total of 262 proteins, 67% of which potentially exhibited altered glycosylation patterns associated with cancer and advanced pre-cancerous lesions. Also, we found that the stool (glyco)proteome of pre-cancerous lesions is enriched for protein species involved in key biological processes linked to humoral and innate immune responses. This study offers a thorough analysis of the stool glycoproteome, laying the groundwork for harnessing glycosylation alterations to improve non-invasive cancer detection.
Collapse
Affiliation(s)
- Janine Soares
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- REQUIMTE-LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mariana Eiras
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
| | - Dylan Ferreira
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Center for Applied Medical Research, University of Navarra, 31008 Pamplona, Spain
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Daniela A. R. Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Faculty of Medicine (FMUP), University of Porto, 4200-072 Porto, Portugal;
| | - Marta Relvas-Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Beatriz Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
| | - Martina Gonçalves
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
| | - Eduardo Ferreira
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
| | - Renata Vieira
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal;
| | - Luís Pedro Afonso
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal;
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- FF-I3ID, University Fernando Pessoa, 4249-004 Porto, Portugal
- GlycoMatters Biotech, 4500-162 Espinho, Portugal
- Department of Surgical Oncology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Mário Dinis-Ribeiro
- Faculty of Medicine (FMUP), University of Porto, 4200-072 Porto, Portugal;
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP), Rise@CI-IPOP (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- Department of Gastroenterology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
| | - Luís Lima
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- GlycoMatters Biotech, 4500-162 Espinho, Portugal
| |
Collapse
|
6
|
Chen L, Yang G, Qu F. Advances of aptamer-based small-molecules sensors in body fluids detection. Talanta 2024; 268:125348. [PMID: 37925822 DOI: 10.1016/j.talanta.2023.125348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
The field of aptamer-based sensing has evolved considerably over the past three decades. The aptamer sensor-based detection of small-molecule targets in body fluids is designed for real-time or rapid, low-cost, non- or minimally invasive tracking and diagnosis of human health status. It can be achieved by specifically monitoring biomarkers or metabolites excreted from various body fluids, including blood, urine, cerebrospinal fluid, saliva, ect. This article reviews a comprehensive collection of aptamer-based sensors for detecting small-molecule in various body fluids. A comparative analysis of aptamer features, emerging chemistry, advanced sensing materials, transduction techniques, and detection performance is conducted, and the strengths and pitfalls of each approach are discussed. Finally, the development process and application challenges of aptamer-based sensors in the detection of small-molecule in body fluids are presented and discussed.
Collapse
Affiliation(s)
- Li Chen
- School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ge Yang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Feng Qu
- School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
7
|
Órdenes P, Carril Pardo C, Elizondo-Vega R, Oyarce K. Current Research on Molecular Biomarkers for Colorectal Cancer in Stool Samples. BIOLOGY 2023; 13:15. [PMID: 38248446 PMCID: PMC10813333 DOI: 10.3390/biology13010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 01/23/2024]
Abstract
Colorectal cancer (CRC) is one of the most diagnosed cancers worldwide, with a high incidence and mortality rate when diagnosed late. Currently, the methods used in healthcare to diagnose CRC are the fecal occult blood test, flexible sigmoidoscopy, and colonoscopy. However, the lack of sensitivity and specificity and low population adherence are driving the need to implement other technologies that can identify biomarkers that not only help with early CRC detection but allow for the selection of more personalized treatment options. In this regard, the implementation of omics technologies, which can screen large pools of biological molecules, coupled with molecular validation, stands out as a promising tool for the discovery of new biomarkers from biopsied tissues or body fluids. This review delves into the current state of the art in the identification of novel CRC biomarkers that can distinguish cancerous tissue, specifically from fecal samples, as this could be the least invasive approach.
Collapse
Affiliation(s)
- Patricio Órdenes
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Concepción, Concepción 4030000, Chile; (P.Ó.); (C.C.P.)
| | - Claudio Carril Pardo
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Concepción, Concepción 4030000, Chile; (P.Ó.); (C.C.P.)
| | - Roberto Elizondo-Vega
- Laboratorio de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070386, Chile;
| | - Karina Oyarce
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Concepción, Concepción 4030000, Chile; (P.Ó.); (C.C.P.)
| |
Collapse
|
8
|
李 静, 殷 丽, 张 敏, 夏 勇, 左 芦, 刘 牧, 胡 建. [Construction of a fecal protein Luminex liquid chip detection system for early diagnosis of colorectal tumors]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1874-1880. [PMID: 38081604 PMCID: PMC10713475 DOI: 10.12122/j.issn.1673-4254.2023.11.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Indexed: 12/18/2023]
Abstract
OBJECTIVE To construct a stool-based human protein diagnostic system using the Luminex liquid chip system for early diagnosis of colorectal tumors. METHODS From January, 2021 to January, 2023, 70 patients with colorectal cancer (CRC), 42 patients with colorectal adenoma (CRA), and 38 healthy individuals were recruited from our hospital for detecting fecal protein levels of matrix metalloproteinase-9 (MMP-9), retinol-binding protein 4 (RBP4), chitinase-3-like protein 1 (CHI3L1), and complement component 3a (C3a) using Luminex liquid chip technology and serum levels of carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9) using chemiluminescence assay. Receiver-operating characteristic (ROC) curve analysis was used for assessing the diagnostic efficacy of the combination of MMP-9, RBP4, CHI3L1 and C3a and the combination of CEA and CA19-9 for colorectal tumors. RESULTS The fecal contents of MMP-9, RBP4, CHI3L1, and C3a were significantly higher in CRC patients than in healthy individuals (P < 0.05). Fecal MMP-9 and CHI3L1 levels were significantly higher in CRC than in CRA patients (P < 0.05), but RBP4 and C3a levels did not differ significantly (P>0.05). CRC patients had significantly higher serum CEA and CA19-9 levels than healthy individuals and CRA patients (P < 0.05), but the differences were not significant between the latter two groups (P>0.05). ROC analysis showed that the sensitivity and specificity of the combination of MMP-9, RBP4, CHI3L1, and C3a was 91.4% and 100.0%, for diagnosing CRC, 81.0% and 89.5% for diagnosing CRA, and 83.9% and 97.4% for a combined diagnosis of CRC and CRA, respectively. Z-test analysis indicated that fecal MMP-9, RBP4, CHI3L1, and C3a contents had a greater diagnostic efficacy than serum tumor markers CEA and CA19-9 for a combined diagnosis of colorectal tumors (P < 0.05). CONCLUSION The Luminex liquid chip detection system for detecting decal RBP4, MMP-9, CHI3L1, and C3a provides an effective means for early diagnosis of colorectal tumors with a greater diagnostic efficacy than serum CEA and CA19-9 levels.
Collapse
Affiliation(s)
- 静 李
- 蚌埠医学院第一附属医院检验科,安徽 蚌埠 233000Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
- 蚌埠医学院第一附属医院炎症相关性疾病基础与转化研究安徽省重点实验室,安徽 蚌埠 233000Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - 丽霞 殷
- 蚌埠医学院第一附属医院检验科,安徽 蚌埠 233000Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - 敏 张
- 蚌埠医学院第一附属医院检验科,安徽 蚌埠 233000Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - 勇生 夏
- 蚌埠医学院第一附属医院胃肠外科,安徽 蚌埠 233000Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - 芦根 左
- 蚌埠医学院第一附属医院胃肠外科,安徽 蚌埠 233000Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
- 蚌埠医学院第一附属医院炎症相关性疾病基础与转化研究安徽省重点实验室,安徽 蚌埠 233000Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - 牧林 刘
- 蚌埠医学院第一附属医院胃肠外科,安徽 蚌埠 233000Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - 建国 胡
- 蚌埠医学院第一附属医院检验科,安徽 蚌埠 233000Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
- 蚌埠医学院第一附属医院炎症相关性疾病基础与转化研究安徽省重点实验室,安徽 蚌埠 233000Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| |
Collapse
|
9
|
Karra DA, Chadwick CC, Stavroulaki EM, Pitropaki MN, Flouraki E, Allenspach K, Lidbury JA, Steiner JM, Xenoulis PG. Fecal acute phase proteins in cats with chronic enteropathies. J Vet Intern Med 2023; 37:1750-1759. [PMID: 37401847 PMCID: PMC10473003 DOI: 10.1111/jvim.16802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/21/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Chronic enteropathies (CE) are common in cats and reliable biomarkers that can distinguish different causes and predict or monitor response to treatment are currently lacking. HYPOTHESIS To evaluate certain acute phase proteins in feces that could potentially be used as biomarkers in cats with CE. ANIMALS Twenty-eight cats with either inflammatory bowel disease (IBD; n = 13), food-responsive enteropathy (FRE; n = 3) or small cell gastrointestinal lymphoma (SCGL; n = 12) and 29 healthy control cats were prospectively enrolled. METHODS Fecal concentrations of haptoglobin, alpha-1-acid-glycoprotein (AGP), pancreatitis-associated protein-1 (PAP-1), ceruloplasmin, and C-reactive protein (CRP) were measured using Spatial Proximity Analyte Reagent Capture Luminescence (SPARCL) immunoassays before and after initiation of treatment. Cats were treated with diet and/or prednisolone (IBD cats), plus chlorambucil (SCGL cats). RESULTS Compared with controls, median fecal AGP concentrations were significantly lower (25.1 vs 1.8 μg/g; P = .003) and median fecal haptoglobin (0.17 vs 0.5 μg/g), PAP-1 (0.04 vs 0.4 μg/g) and ceruloplasmin (0.15 vs 4.2 μg/g) concentrations were significantly higher (P < .001) in cats with CE. Median fecal AGP concentrations were significantly lower (P = .01) in cats with IBD and FRE (0.6 μg/g) compared with cats with SCGL (10.75 μg/g). A significant reduction was found in CE cats after treatment for median fecal ceruloplasmin concentrations (6.36 vs 1.16 μg/g; P = .04). CONCLUSIONS Fecal AGP concentration shows promise to differentiate cats with SCGL from cats with IBD and FRE. Fecal ceruloplasmin concentrations may be useful to objectively monitor response to treatment in cats with CE.
Collapse
Affiliation(s)
| | | | | | | | | | - Karin Allenspach
- Iowa State UniversityCollege of Veterinary Medicine, Veterinary Clinical SciencesAmesIowaUSA
| | - Jonathan A. Lidbury
- Texas A&M University – Gastrointestinal LaboratoryCollege of Veterinary Medicine & Biomedical SciencesCollege StationTexasUSA
| | - Joerg M. Steiner
- Texas A&M UniversityGastrointestinal LaboratoryCollege StationTexasUSA
| | - Panagiotis G. Xenoulis
- University of ThessalySmall Animal ClinicKarditsaGreece
- Texas A&M UniversityGastrointestinal LaboratoryCollege StationTexasUSA
| |
Collapse
|
10
|
Jiang S, Wang T, Zhang KH. Data-driven decision-making for precision diagnosis of digestive diseases. Biomed Eng Online 2023; 22:87. [PMID: 37658345 PMCID: PMC10472739 DOI: 10.1186/s12938-023-01148-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023] Open
Abstract
Modern omics technologies can generate massive amounts of biomedical data, providing unprecedented opportunities for individualized precision medicine. However, traditional statistical methods cannot effectively process and utilize such big data. To meet this new challenge, machine learning algorithms have been developed and applied rapidly in recent years, which are capable of reducing dimensionality, extracting features, organizing data and forming automatable data-driven clinical decision systems. Data-driven clinical decision-making have promising applications in precision medicine and has been studied in digestive diseases, including early diagnosis and screening, molecular typing, staging and stratification of digestive malignancies, as well as precise diagnosis of Crohn's disease, auxiliary diagnosis of imaging and endoscopy, differential diagnosis of cystic lesions, etiology discrimination of acute abdominal pain, stratification of upper gastrointestinal bleeding (UGIB), and real-time diagnosis of esophageal motility function, showing good application prospects. Herein, we reviewed the recent progress of data-driven clinical decision making in precision diagnosis of digestive diseases and discussed the limitations of data-driven decision making after a brief introduction of methods for data-driven decision making.
Collapse
Affiliation(s)
- Song Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, 330006 China
- Jiangxi Institute of Gastroenterology and Hepatology, Nanchang, 330006 China
| | - Ting Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, 330006 China
- Jiangxi Institute of Gastroenterology and Hepatology, Nanchang, 330006 China
| | - Kun-He Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, 330006 China
- Jiangxi Institute of Gastroenterology and Hepatology, Nanchang, 330006 China
| |
Collapse
|
11
|
Cao J, Wan S, Chen S, Yang L. ANXA6: a key molecular player in cancer progression and drug resistance. Discov Oncol 2023; 14:53. [PMID: 37129645 PMCID: PMC10154440 DOI: 10.1007/s12672-023-00662-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023] Open
Abstract
Annexin-A6 (ANXA6), a Ca2+-dependent membrane binding protein, is the largest of all conserved annexin families and highly expressed in the plasma membrane and endosomal compartments. As a multifunctional scaffold protein, ANXA6 can interact with phospholipid membranes and various signaling proteins. These properties enable ANXA6 to participate in signal transduction, cholesterol homeostasis, intracellular/extracellular membrane transport, and repair of membrane domains, etc. Many studies have demonstrated that the expression of ANXA6 is consistently altered during tumor formation and progression. ANXA6 is currently known to mediate different patterns of tumor progression in different cancer types through multiple cancer-type specific mechanisms. ANXA6 is a potentially valuable marker in the diagnosis, progression, and treatment strategy of various cancers. This review mainly summarizes recent findings on the mechanism of tumor formation, development, and drug resistance of ANXA6. The contents reviewed herein may expand researchers' understanding of ANXA6 and contribute to developing ANXA6-based diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Jinlong Cao
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China
| | - Shun Wan
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China
| | - Siyu Chen
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China
| | - Li Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China.
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China.
| |
Collapse
|
12
|
Chen YN, Shih CY, Guo SL, Liu CY, Shen MH, Chang SC, Ku WC, Huang CC, Huang CJ. Potential prognostic and predictive value of UBE2N, IMPDH1, DYNC1LI1 and HRASLS2 in colorectal cancer stool specimens. Biomed Rep 2023; 18:22. [PMID: 36846616 PMCID: PMC9945078 DOI: 10.3892/br.2023.1604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/20/2022] [Indexed: 02/10/2023] Open
Abstract
Colorectal cancer (CRC) is the most common gastrointestinal malignancy worldwide. The poor specificity and sensitivity of the fecal occult blood test has prompted the development of CRC-related genetic markers for CRC screening and treatment. Gene expression profiles in stool specimens are effective, sensitive and clinically applicable. Herein, a novel advantage of using cells shed from the colon is presented for cost-effective CRC screening. Molecular panels were generated through a series of leave-one-out cross-validation and discriminant analyses. A logistic regression model following reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry was used to validate a specific panel for CRC prediction. The panel, consisting of ubiquitin-conjugating enzyme E2 N (UBE2N), inosine monophosphate dehydrogenase 1 (IMPDH1), dynein cytoplasmic 1 light intermediate chain 1 (DYNC1LI1) and phospholipase A and acyltransferase 2 (HRASLS2), accurately recognized patients with CRC and could thus be further investigated as a potential prognostic and predictive biomarker for CRC. UBE2N, IMPDH1 and DYNC1LI1 expression levels were upregulated and HRASLS2 expression was downregulated in CRC tissues. The predictive power of the panel was 96.6% [95% confidence interval (CI), 88.1-99.6%] sensitivity and 89.7% (95% CI, 72.6-97.8%) specificity at a predicted cut-off value at 0.540, suggesting that this four-gene panel testing of stool specimens can faithfully mirror the state of the colon. On the whole, the present study demonstrates that screening for CRC or cancer detection in stool specimens collected non-invasively does not require the inclusion of an excessive number of genes, and colonic defects can be identified via the detection of an aberrant protein in the mucosa or submucosa.
Collapse
Affiliation(s)
- Yu-Nung Chen
- Division of Colorectal Surgery, Department of Surgery, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Cheng-Yen Shih
- Division of Gastroenterology, Department of Internal Medicine, Sijhih Cathay General Hospital, New Taipei 22174, Taiwan, R.O.C
| | - Shu-Lin Guo
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C.,Department of Anesthesiology, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C,Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei 11490, Taiwan, R.O.C
| | - Chih-Yi Liu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C.,Division of Pathology, Sijhih Cathay General Hospital, New Taipei City 22174, Taiwan, R.O.C
| | - Ming-Hung Shen
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C.,Department of Surgery, Fu Jen Catholic University Hospital, New Taipei 24352, Taiwan, R.O.C.,PhD Program in Nutrition and Food Science, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C
| | - Shih-Chang Chang
- Division of Colorectal Surgery, Department of Surgery, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Wei-Chi Ku
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C
| | - Chi-Cheng Huang
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan, R.O.C.,Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 10090, Taiwan, R.O.C.,Correspondence to: Dr Chi-Cheng Huang, Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, No. 201, Section 2, Shipai Road, Taipei 11217, Taiwan, R.O.C.
| | - Chi-Jung Huang
- Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C.,Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan, R.O.C.,Correspondence to: Dr Chi-Cheng Huang, Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, No. 201, Section 2, Shipai Road, Taipei 11217, Taiwan, R.O.C.
| |
Collapse
|
13
|
Positive Expression of Retinol-Binding Protein 4 Is Related to the Malignant Clinical Features Leading to Poor Prognosis of Glioblastoma. Genet Res (Camb) 2022; 2022:5435523. [PMID: 36632438 PMCID: PMC9807312 DOI: 10.1155/2022/5435523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 12/27/2022] Open
Abstract
Backgrounds Retinol-binding protein 4 (RBP4) is a monomeric-binding protein belonging to the lipocalin protein family, which has been reported to be dysregulated in several malignancies such as breast cancer and lung cancer. However, the expression and function of RBP4 in glioblastoma (GBM) are completely unknown. Materials and Methods TCGA datasets were used for analyzing the mRNA level of RBP4 in GBM and its clinical relevance. A retrospective GBM cohort (n = 73) was enrolled from our hospital to test the protein expression profile of RBP4 in GBM tissues as well as its correlation with patients' prognoses. Two human GBM cell lines, LN229 and U251, were collected to conduct overexpression and knockdown experiments targeting RBP4. The tumor-related effects of RBP4 in GBM were finally evaluated by proliferation and invasion assays. Results Both the higher mRNA level and protein level of RBP4 in GBM tissues were significantly correlated with poorer patients' overall survival. Multivariate analysis identified RBP4 as a novel independent prognostic predictor in GBM patients. Overexpression of RBP4 resulted in enhanced GBM proliferation capacity, which was consistent with clinical findings on the positive correlation between RBP4 level and tumor size. Meanwhile, overexpressing RBP4 promoted GBM cell migration and invasion, while silencing RBP4 led to the opposite results. Conclusions RBP4 overexpression in tumor tissues is correlated with poorer prognosis of GBM patients, which functions by promoting GBM proliferation and invasion, thus, may serve as an invaluable predictive biomarker and therapeutic target.
Collapse
|
14
|
Bosch S, Acharjee A, Quraishi MN, Bijnsdorp IV, Rojas P, Bakkali A, Jansen EEW, Stokkers P, Kuijvenhoven J, Pham TV, Beggs AD, Jimenez CR, Struys EA, Gkoutos GV, de Meij TGJ, de Boer NKH. Integration of stool microbiota, proteome and amino acid profiles to discriminate patients with adenomas and colorectal cancer. Gut Microbes 2022; 14:2139979. [PMID: 36369736 PMCID: PMC9662191 DOI: 10.1080/19490976.2022.2139979] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Screening for colorectal cancer (CRC) reduces its mortality but has limited sensitivity and specificity. Aims We aimed to explore potential biomarker panels for CRC and adenoma detection and to gain insight into the interaction between gut microbiota and human metabolism in the presence of these lesions. METHODS This multicenter case-control cohort was performed between February 2016 and November 2019. Consecutive patients ≥18 years with a scheduled colonoscopy were asked to participate and divided into three age, gender, body-mass index and smoking status-matched subgroups: CRC (n = 12), adenomas (n = 21) and controls (n = 20). Participants collected fecal samples prior to bowel preparation on which proteome (LC-MS/MS), microbiota (16S rRNA profiling) and amino acid (HPLC) composition were assessed. Best predictive markers were combined to create diagnostic biomarker panels. Pearson correlation-based analysis on selected markers was performed to create networks of all platforms. RESULTS Combining omics platforms provided new panels which outperformed hemoglobin in this cohort, currently used for screening (AUC 0.98, 0.95 and 0.87 for CRC vs controls, adenoma vs controls and CRC vs adenoma, respectively). Integration of data sets revealed markers associated with increased blood excretion, stress- and inflammatory responses and pointed toward downregulation of epithelial integrity. CONCLUSIONS Integrating fecal microbiota, proteome and amino acids platforms provides for new biomarker panels that may improve noninvasive screening for adenomas and CRC, and may subsequently lead to lower incidence and mortality of colon cancer.
Collapse
Affiliation(s)
- Sofie Bosch
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Endocrinology Metabolism Institute, Amsterdam University Medical Centre, VU University Amsterdam, Amsterdam, The Netherlands,CONTACT Sofie Bosch Department of Gastroenterology and Hepatology, Amsterdam UMC, VU University Medical Center, De Boelelaan 1118, Amsterdam1081HZ, The Netherlands
| | - Animesh Acharjee
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Center for Computational Biology, University of Birmingham, Birmingham, UK,Institute of Translational Medicine, University Hospitals Birmingham NHS, Foundation Trust, UK,NIHR Surgical Reconstruction and Microbiology Research Center, University Hospital Birmingham, Birmingham, UK
| | - Mohammed Nabil Quraishi
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK,Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK,Microbiome Treatment Center, University of Birmingham Microbiome Treatment Center, University of Birmingham, UK,Center for Liver and Gastroenterology Research, NIHR Birmingham Biomedical Research Center, University of Birmingham, Birmingham, UK
| | - Irene V Bijnsdorp
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands,Department of Urology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Patricia Rojas
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Abdellatif Bakkali
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Erwin EW Jansen
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Pieter Stokkers
- Department of Gastroenterology and Hepatology, OLVG West, Amsterdam, The Netherlands
| | - Johan Kuijvenhoven
- Spaarne Gasthuis, Department of Gastroenterology and Hepatology, Hoofddorp and Haarlem, The Netherlands
| | - Thang V Pham
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - Andrew D Beggs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Connie R Jimenez
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - Eduard A Struys
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Georgios V Gkoutos
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Center for Computational Biology, University of Birmingham, Birmingham, UK,Institute of Translational Medicine, University Hospitals Birmingham NHS, Foundation Trust, UK,NIHR Surgical Reconstruction and Microbiology Research Center, University Hospital Birmingham, Birmingham, UK,Microbiome Treatment Center, MRC Health Data Research UK (HDR UK), Birmingham, UK,Microbiome Treatment Center, NIHR Experimental Cancer Medicine Center, Birmingham, UK,Microbiome Treatment Center, NIHR Biomedical Research Center, University Hospital Birmingham, Birmingham, UK
| | - Tim GJ de Meij
- Department of Paediatric Gastroenterology, AG&M Research Institute, Amsterdam UMC, VU University Amsterdam, Amsterdam, The Netherlands
| | - Nanne KH de Boer
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Endocrinology Metabolism Institute, Amsterdam University Medical Centre, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
He B, Huang Z, Huang C, Nice EC. Clinical applications of plasma proteomics and peptidomics: Towards precision medicine. Proteomics Clin Appl 2022; 16:e2100097. [PMID: 35490333 DOI: 10.1002/prca.202100097] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/16/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023]
Abstract
In the context of precision medicine, disease treatment requires individualized strategies based on the underlying molecular characteristics to overcome therapeutic challenges posed by heterogeneity. For this purpose, it is essential to develop new biomarkers to diagnose, stratify, or possibly prevent diseases. Plasma is an available source of biomarkers that greatly reflects the physiological and pathological conditions of the body. An increasing number of studies are focusing on proteins and peptides, including many involving the Human Proteome Project (HPP) of the Human Proteome Organization (HUPO), and proteomics and peptidomics techniques are emerging as critical tools for developing novel precision medicine preventative measures. Excitingly, the emerging plasma proteomics and peptidomics toolbox exhibits a huge potential for studying pathogenesis of diseases (e.g., COVID-19 and cancer), identifying valuable biomarkers and improving clinical management. However, the enormous complexity and wide dynamic range of plasma proteins makes plasma proteome profiling challenging. Herein, we summarize the recent advances in plasma proteomics and peptidomics with a focus on their emerging roles in COVID-19 and cancer research, aiming to emphasize the significance of plasma proteomics and peptidomics in clinical applications and precision medicine.
Collapse
Affiliation(s)
- Bo He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China.,Department of Pharmacology, and Provincial Key Laboratory of Pathophysiology in Ningbo University School of Medicine, Ningbo, Zhejiang, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
16
|
DeLouize AM, Eick G, Karam SD, Snodgrass JJ. Current and future applications of biomarkers in samples collected through minimally invasive methods for cancer medicine and population-based research. Am J Hum Biol 2022; 34:e23665. [PMID: 34374148 PMCID: PMC9894104 DOI: 10.1002/ajhb.23665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 02/04/2023] Open
Abstract
Despite advances in cancer medicine and research, invasive and potentially risky procedures such as biopsies, venous blood tests, imaging, colonoscopy, and pap smear tests are still primarily used for screening, staging, and assessing response to therapy. The development and interdisciplinary use of biomarkers from urine, feces, saliva, scent, and capillary blood collected with minimally invasive methods represents a potential opportunity for integration with biomarker analysis for cancers, both in clinical practice (e.g., in screening, treatment, and disease monitoring, and improved quality of life for patients) and population-based research (e.g., in epidemiology/public health, studies of social and environmental determinants, and evolutionary medicine). In this article, we review the scientific rationale, benefits, challenges, and potential opportunities for measuring cancer-related biomarkers in samples collected through minimally invasive methods.
Collapse
Affiliation(s)
| | - Geeta Eick
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - J. Josh Snodgrass
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
- Center for Global Health, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
17
|
Kobayashi S, Sugasaki A, Yamamoto Y, Shigenoi Y, Udaka A, Yamamoto A, Tanaka M. Enrichment of Cancer Cells Based on Antibody-Free Selective Cell Adhesion. ACS Biomater Sci Eng 2022; 8:4547-4556. [PMID: 36153975 DOI: 10.1021/acsbiomaterials.2c00662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Blood-compatible and cell-adhering polymer materials are extremely useful for regenerative medicine and disease diagnosis. (Meth)acryl polymers with high hydrophilicity have been widely used in industries, and attempts to apply these polymers in the medical field are frequently reported. We focused on crosslinked polymer films prepared using bifunctional monomers, which are widely used as coating materials, and attempted to alter the cell adhesion behavior while maintaining blood compatibility by changing the chemical structure of the crosslinker. Four bifunctional monomers were studied, three of which were found to be blood-compatible polymers and to suppress platelet adhesion. The adhesion behavior of cancer cells to polymer films varied; moreover, the cancer model cells MCF-7 [EpCAM(+)] and MDA-MB-231 [EpCAM (-)], with different expression levels of epithelial cell adhesion molecule (EpCAM), showed distinct adhesion behavior for each material. We suggest that a combination of these materials has the potential to selectively capture and enrich highly metastatic cancer cells.
Collapse
Affiliation(s)
- Shingo Kobayashi
- Institute for Materials Chemistry and Engineering, Kyushu University, CE41 744 Motooka, Nishi-ku, Fukuoka819-0395, Japan
| | - Atsushi Sugasaki
- Synthetic Organic Chemistry Laboratories, FUJIFILM Corporation, 4000 Kawashiri, Yoshida-cho, Haibara-gun, Shizuoka421-0396, Japan
| | - Yosuke Yamamoto
- Synthetic Organic Chemistry Laboratories, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa258-0022, Japan
| | - Yuta Shigenoi
- Electronic Materials Research Laboratories, FUJIFILM Corporation, 4000 Kawashiri, Yoshida-cho, Haibara-gun, Shizuoka421-0396, Japan
| | - Airi Udaka
- Institute for Materials Chemistry and Engineering, Kyushu University, CE41 744 Motooka, Nishi-ku, Fukuoka819-0395, Japan
| | - Aki Yamamoto
- Institute for Materials Chemistry and Engineering, Kyushu University, CE41 744 Motooka, Nishi-ku, Fukuoka819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, CE41 744 Motooka, Nishi-ku, Fukuoka819-0395, Japan
| |
Collapse
|
18
|
Flores-Cortez YA, Barragán-Bonilla MI, Mendoza-Bello JM, GonzÁlez-Calixto C, Flores-Alfaro E, Espinoza-Rojo M. Interplay of retinol binding protein 4 with obesity and associated chronic alterations (Review). Mol Med Rep 2022; 26:244. [PMID: 35656886 PMCID: PMC9185696 DOI: 10.3892/mmr.2022.12760] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Obesity is a multifactorial disease, defined as excessive fat deposition in adipose tissue. Adipose tissue is responsible for the production and secretion of numerous adipokines that induce metabolic disorders. Retinol‑binding protein 4 (RBP4) is an adipokine that transports vitamin A or retinol in the blood. High levels of RBP4 are associated with development of metabolic disease, including obesity, insulin resistance (IR), metabolic syndrome, and type 2 diabetes (T2D). The present review summarizes the role of RBP4 in obesity and associated chronic alterations. Excessive synthesis of RBP4 contributes to inflammatory characteristic of obesity by activation of immune cells and release of proinflammatory cytokines, such as TNFα and ILs, via the Toll‑like receptor/JNK pathway. The retinol‑RBP4 complex inhibits insulin signaling directly in adipocytes by activating Janus kinase 2 (JAK2)/STAT5/suppressor of cytokine signaling 3 signaling. This mechanism is retinol‑dependent and requires vitamin A receptor stimulation by retinoic acid 6 (STRA6). In muscle, RBP4 is associated with increased serine 307 phosphorylation of insulin receptor substrate‑1, which decreases its affinity to PI3K and promotes IR. In the liver, RBP4 increases hepatic expression of phosphoenolpyruvate carboxykinase, which increases production of glucose. Elevated serum RBP4 levels are associated with β‑cell dysfunction in T2D via the STRA6/JAK2/STAT1/insulin gene enhancer protein 1 pathway. By contrast, RBP4 induces endothelial inflammation via the NF‑κB/nicotinamide adenine dinucleotide phosphate oxidase pathway independently of retinol and STRA6, which stimulates expression of proinflammatory molecules, such as vascular cell adhesion molecule 1, E‑selectin, intercellular adhesion molecule 1, monocyte chemoattractant protein 1 and TNFα. RBP4 promotes oxidative stress by decreasing endothelial mitochondrial function; overall, it may serve as a useful biomarker in the diagnosis of obesity and prognosis of associated disease, as well as a potential therapeutic target for treatment of these diseases.
Collapse
Affiliation(s)
- Yaccil Adilene Flores-Cortez
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39087, Mexico
| | - Martha I. Barragán-Bonilla
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39087, Mexico
| | - Juan M. Mendoza-Bello
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39087, Mexico
| | | | - Eugenia Flores-Alfaro
- Laboratory of Clinical and Molecular Epidemiology, Faculty of Biological and Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39087, Mexico
| | - Mónica Espinoza-Rojo
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39087, Mexico
| |
Collapse
|
19
|
Yu L, Zhao G, Wang L, Zhou X, Sun J, Li X, Zhu Y, He Y, Kofonikolas K, Bogaert D, Dunlop M, Zhu Y, Theodoratou E, Li X. A systematic review of microbial markers for risk prediction of colorectal neoplasia. Br J Cancer 2022; 126:1318-1328. [PMID: 35292756 PMCID: PMC9042911 DOI: 10.1038/s41416-022-01740-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/23/2021] [Accepted: 02/03/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Substantial evidence indicates that dysbiosis of the gut microbial community is associated with colorectal neoplasia. This review aims to systematically summarise the microbial markers associated with colorectal neoplasia and to assess their predictive performance. METHODS A comprehensive literature search of MEDLINE and EMBASE databases was performed to identify eligible studies. Observational studies exploring the associations between microbial biomarkers and colorectal neoplasia were included. We also included prediction studies that constructed models using microbial markers to predict CRC and adenomas. Risk of bias for included observational and prediction studies was assessed. RESULTS Forty-five studies were included to assess the associations between microbial markers and colorectal neoplasia. Nine faecal microbiotas (i.e., Fusobacterium, Enterococcus, Porphyromonas, Salmonella, Pseudomonas, Peptostreptococcus, Actinomyces, Bifidobacterium and Roseburia), two oral pathogens (i.e., Treponema denticola and Prevotella intermedia) and serum antibody levels response to Streptococcus gallolyticus subspecies gallolyticus were found to be consistently associated with colorectal neoplasia. Thirty studies reported prediction models using microbial markers, and 83.3% of these models had acceptable-to-good discrimination (AUROC > 0.75). The results of predictive performance were promising, but most of the studies were limited to small number of cases (range: 9-485 cases) and lack of independent external validation (76.7%). CONCLUSIONS This review provides insight into the evidence supporting the association between different types of microbial species and their predictive value for colorectal neoplasia. Prediction models developed from case-control studies require further external validation in high-quality prospective studies. Further studies should assess the feasibility and impact of incorporating microbial biomarkers in CRC screening programme.
Collapse
Affiliation(s)
- Lili Yu
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gang Zhao
- Center for Disease Control and Prevention of Hangzhou, Hangzhou, China
| | - Lijuan Wang
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuan Zhou
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Sun
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinxuan Li
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingshuang Zhu
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yazhou He
- Department of Oncology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, China
| | | | - Debby Bogaert
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Malcolm Dunlop
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Yimin Zhu
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Evropi Theodoratou
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Xue Li
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
20
|
Fitzgerald RC, Antoniou AC, Fruk L, Rosenfeld N. The future of early cancer detection. Nat Med 2022; 28:666-677. [PMID: 35440720 DOI: 10.1038/s41591-022-01746-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/15/2022] [Indexed: 12/22/2022]
Abstract
A proactive approach to detecting cancer at an early stage can make treatments more effective, with fewer side effects and improved long-term survival. However, as detection methods become increasingly sensitive, it can be difficult to distinguish inconsequential changes from lesions that will lead to life-threatening cancer. Progress relies on a detailed understanding of individualized risk, clear delineation of cancer development stages, a range of testing methods with optimal performance characteristics, and robust evaluation of the implications for individuals and society. In the future, advances in sensors, contrast agents, molecular methods, and artificial intelligence will help detect cancer-specific signals in real time. To reduce the burden of cancer on society, risk-based detection and prevention needs to be cost effective and widely accessible.
Collapse
Affiliation(s)
- Rebecca C Fitzgerald
- Early Detection Programme, Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK.
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health & Primary Care, University of Cambridge, Cambridge, UK
| | - Ljiljana Fruk
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Nitzan Rosenfeld
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| |
Collapse
|
21
|
Ding Z, Wang N, Ji N, Chen ZS. Proteomics technologies for cancer liquid biopsies. Mol Cancer 2022; 21:53. [PMID: 35168611 PMCID: PMC8845389 DOI: 10.1186/s12943-022-01526-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/31/2022] [Indexed: 02/07/2023] Open
Abstract
Alterations in DNAs could not reveal what happened in proteins. The accumulated alterations of DNAs would change the manifestation of proteins. Therefore, as is the case in cancer liquid biopsies, deep proteome profiling will likely provide invaluable and clinically relevant information in real-time throughout all stages of cancer progression. However, due to the great complexity of proteomes in liquid biopsy samples and the limitations of proteomic technologies compared to high-plex sequencing technologies, proteomic discoveries have yet lagged behind their counterpart, genomic technologies. Therefore, novel protein technologies are in urgent demand to fulfill the goals set out for biomarker discovery in cancer liquid biopsies.Notably, conventional and innovative technologies are being rapidly developed for proteomic analysis in cancer liquid biopsies. These advances have greatly facilitated early detection, diagnosis, prognosis, and monitoring of cancer evolution, adapted or adopted in response to therapeutic interventions. In this paper, we review the high-plex proteomics technologies that are capable of measuring at least hundreds of proteins simultaneously from liquid biopsy samples, ranging from traditional technologies based on mass spectrometry (MS) and antibody/antigen arrays to innovative technologies based on aptamer, proximity extension assay (PEA), and reverse phase protein arrays (RPPA).
Collapse
Affiliation(s)
- Zhiyong Ding
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd., Gangxing 3rd Rd, High-Tech and Innovation Zone, Bldg. 2, Rm. 2201, Jinan City, Shandong Province 250101 P. R. China
| | - Nan Wang
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd., Gangxing 3rd Rd, High-Tech and Innovation Zone, Bldg. 2, Rm. 2201, Jinan City, Shandong Province 250101 P. R. China
| | - Ning Ji
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Institute for Biotechnology, St. John’s University, 8000 Utopia Parkway, Queens, New York, 11439 USA
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060 China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Institute for Biotechnology, St. John’s University, 8000 Utopia Parkway, Queens, New York, 11439 USA
| |
Collapse
|
22
|
Alorda-Clara M, Torrens-Mas M, Morla-Barcelo PM, Martinez-Bernabe T, Sastre-Serra J, Roca P, Pons DG, Oliver J, Reyes J. Use of Omics Technologies for the Detection of Colorectal Cancer Biomarkers. Cancers (Basel) 2022; 14:817. [PMID: 35159084 PMCID: PMC8834235 DOI: 10.3390/cancers14030817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed cancers with high mortality rates, especially when detected at later stages. Early detection of CRC can substantially raise the 5-year survival rate of patients, and different efforts are being put into developing enhanced CRC screening programs. Currently, the faecal immunochemical test with a follow-up colonoscopy is being implemented for CRC screening. However, there is still a medical need to describe biomarkers that help with CRC detection and monitor CRC patients. The use of omics techniques holds promise to detect new biomarkers for CRC. In this review, we discuss the use of omics in different types of samples, including breath, urine, stool, blood, bowel lavage fluid, or tumour tissue, and highlight some of the biomarkers that have been recently described with omics data. Finally, we also review the use of extracellular vesicles as an improved and promising instrument for biomarker detection.
Collapse
Affiliation(s)
- Marina Alorda-Clara
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (T.M.-B.); (J.S.-S.); (P.R.); (D.G.P.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
| | - Margalida Torrens-Mas
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (T.M.-B.); (J.S.-S.); (P.R.); (D.G.P.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
- Translational Research in Aging and Longevity (TRIAL) Group, Instituto de Investigación Sanitaria Illes Balears (IdISBa), E-07120 Palma de Mallorca, Illes Balears, Spain
| | - Pere Miquel Morla-Barcelo
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (T.M.-B.); (J.S.-S.); (P.R.); (D.G.P.)
| | - Toni Martinez-Bernabe
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (T.M.-B.); (J.S.-S.); (P.R.); (D.G.P.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
| | - Jorge Sastre-Serra
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (T.M.-B.); (J.S.-S.); (P.R.); (D.G.P.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03) Instituto Salud Carlos III, E-28029 Madrid, Madrid, Spain
| | - Pilar Roca
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (T.M.-B.); (J.S.-S.); (P.R.); (D.G.P.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03) Instituto Salud Carlos III, E-28029 Madrid, Madrid, Spain
| | - Daniel Gabriel Pons
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (T.M.-B.); (J.S.-S.); (P.R.); (D.G.P.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
| | - Jordi Oliver
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (T.M.-B.); (J.S.-S.); (P.R.); (D.G.P.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03) Instituto Salud Carlos III, E-28029 Madrid, Madrid, Spain
| | - Jose Reyes
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (T.M.-B.); (J.S.-S.); (P.R.); (D.G.P.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
- Servicio Aparato Digestivo, Hospital Comarcal de Inca, E-07300 Inca, Illes Balears, Spain
| |
Collapse
|
23
|
Zou Y, Xu Y, Chen X, Wu Y, Fu L, Lv Y. Research Progress on Leucine-Rich Alpha-2 Glycoprotein 1: A Review. Front Pharmacol 2022; 12:809225. [PMID: 35095520 PMCID: PMC8797156 DOI: 10.3389/fphar.2021.809225] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
Leucine-rich alpha⁃2 glycoprotein 1 (LRG1) is an important member of the leucine-rich repetitive sequence protein family. LRG1 was mainly involved in normal physiological activities of the nervous system, such as synapse formation, synapse growth, the development of nerve processes, neurotransmitter transfer and release, and cell adhesion molecules or ligand-binding proteins. Also, LRG1 affected the development of respiratory diseases, hematological diseases, endocrine diseases, tumor diseases, eye diseases, cardiovascular diseases, rheumatic immune diseases, infectious diseases, etc. LRG1 was a newly discovered important upstream signaling molecule of transforming growth factor⁃β (TGF⁃β) that affected various pathological processes through the TGF⁃β signaling pathway. However, research on LRG1 and its involvement in the occurrence and development of diseases was still in its infancy and the current studies were mainly focused on proteomic detection and basic animal experimental reports. We could reasonably predict that LRG1 might act as a new direction and strategy for the treatment of many diseases.
Collapse
Affiliation(s)
- Yonghui Zou
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yi Xu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Xiaofeng Chen
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yaoqi Wu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,College of Pharmacy, Nanchang University, Nanchang, China
| | - Longsheng Fu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanni Lv
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
24
|
Camilli C, Hoeh AE, De Rossi G, Moss SE, Greenwood J. LRG1: an emerging player in disease pathogenesis. J Biomed Sci 2022; 29:6. [PMID: 35062948 PMCID: PMC8781713 DOI: 10.1186/s12929-022-00790-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
The secreted glycoprotein leucine-rich α-2 glycoprotein 1 (LRG1) was first described as a key player in pathogenic ocular neovascularization almost a decade ago. Since then, an increasing number of publications have reported the involvement of LRG1 in multiple human conditions including cancer, diabetes, cardiovascular disease, neurological disease, and inflammatory disorders. The purpose of this review is to provide, for the first time, a comprehensive overview of the LRG1 literature considering its role in health and disease. Although LRG1 is constitutively expressed by hepatocytes and neutrophils, Lrg1-/- mice show no overt phenotypic abnormality suggesting that LRG1 is essentially redundant in development and homeostasis. However, emerging data are challenging this view by suggesting a novel role for LRG1 in innate immunity and preservation of tissue integrity. While our understanding of beneficial LRG1 functions in physiology remains limited, a consistent body of evidence shows that, in response to various inflammatory stimuli, LRG1 expression is induced and directly contributes to disease pathogenesis. Its potential role as a biomarker for the diagnosis, prognosis and monitoring of multiple conditions is widely discussed while dissecting the mechanisms underlying LRG1 pathogenic functions. Emphasis is given to the role that LRG1 plays as a vasculopathic factor where it disrupts the cellular interactions normally required for the formation and maintenance of mature vessels, thereby indirectly contributing to the establishment of a highly hypoxic and immunosuppressive microenvironment. In addition, LRG1 has also been reported to affect other cell types (including epithelial, immune, mesenchymal and cancer cells) mostly by modulating the TGFβ signalling pathway in a context-dependent manner. Crucially, animal studies have shown that LRG1 inhibition, through gene deletion or a function-blocking antibody, is sufficient to attenuate disease progression. In view of this, and taking into consideration its role as an upstream modifier of TGFβ signalling, LRG1 is suggested as a potentially important therapeutic target. While further investigations are needed to fill gaps in our current understanding of LRG1 function, the studies reviewed here confirm LRG1 as a pleiotropic and pathogenic signalling molecule providing a strong rationale for its use in the clinic as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Carlotta Camilli
- Institute of Ophthalmology, University College London, London, UK.
| | - Alexandra E Hoeh
- Institute of Ophthalmology, University College London, London, UK
| | - Giulia De Rossi
- Institute of Ophthalmology, University College London, London, UK
| | - Stephen E Moss
- Institute of Ophthalmology, University College London, London, UK
| | - John Greenwood
- Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
25
|
Zou J, Xiao Z, Wu Y, Yang J, Cui N. Noninvasive fecal testing for colorectal cancer. Clin Chim Acta 2021; 524:123-131. [PMID: 34756863 DOI: 10.1016/j.cca.2021.10.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Colorectal cancer (CRC) is the third most common malignancy worldwide, with the second highest mortality rate among all malignancies. In this review, we describe the current utility of stool diagnostic biomarkers for CRC. METHODS We reviewed stool-related tests and biomarker candidates for the diagnosis of CRC. The guaiac-based fecal occult blood test (gFOBT), fecal immunochemical test (FIT), and multitarget stool DNA test (MT-sDNA) have been used as clinical CRC screening tools. Although microRNAs, protein biomarkers, and microbiota have not yet been used in clinical CRC screening, there is growing evidence that they have the potential to function as CRC screening tools. RESULTS According to the literature, the sensitivity of MT-sDNA for detecting CRC was 87.0-100%, 32.7-82.0% for advanced adenomas, and the specificity was 86.1-95.2%. The sensitivity of individual biomarkers of fecal microRNAs for detecting CRC was 34.2-88.2%, 73.0% for advanced adenomas, and the specificity was 68-100%. The sensitivity of fecal protein markers for detecting CRC was 63.6-93.0%, 47.7-69.4% for advanced adenomas, and the specificity was 38.3-97.5%. The sensitivity of fecal microbiota for detecting CRC was 54.0-100.0%, 32.0-48.3% for advanced adenomas, and the specificity was 61.3-90.0%. CONCLUSION MT-sDNA is the most sensitive CRC screening test, and its sensitivity is the highest for advanced adenomas; however, its detection cost is high. MT-sDNA was more sensitive to CRC and advanced precancerous lesions than FIT, but compared to three years of MT-sDNA, annual FIT as the first non-invasive screening test for CRC seemed to be more effective.
Collapse
Affiliation(s)
- Jianhua Zou
- China Academy of Chinese Medical Sciences Xiyuan Hospital, Beijing, China
| | - Zhanshuo Xiao
- China Academy of Chinese Medical Sciences Guanganmen Hospital, Beijing, China
| | - Yu Wu
- China Academy of Chinese Medical Sciences Xiyuan Hospital, Beijing, China.
| | - Jingyan Yang
- China Academy of Chinese Medical Sciences Xiyuan Hospital, Beijing, China
| | - Ning Cui
- China Academy of Chinese Medical Sciences Xiyuan Hospital, Beijing, China
| |
Collapse
|
26
|
de Klaver W, Wisse PHA, van Wifferen F, Bosch LJW, Jimenez CR, van der Hulst RWM, Fijneman RJA, Kuipers EJ, Greuter MJE, Carvalho B, Spaander MCW, Dekker E, Coupé VMH, de Wit M, Meijer GA. Clinical Validation of a Multitarget Fecal Immunochemical Test for Colorectal Cancer Screening : A Diagnostic Test Accuracy Study. Ann Intern Med 2021; 174:1224-1231. [PMID: 34280333 DOI: 10.7326/m20-8270] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND The fecal immunochemical test (FIT) is used in colorectal cancer (CRC) screening, yet it leaves room for improvement. OBJECTIVE To develop a multitarget FIT (mtFIT) with better diagnostic performance than FIT. DESIGN Diagnostic test accuracy study. SETTING Colonoscopy-controlled series. PARTICIPANTS Persons (n = 1284) from a screening (n = 1038) and referral (n = 246) population were classified by their most advanced lesion (CRC [n = 47], advanced adenoma [n = 135], advanced serrated polyp [n = 30], nonadvanced adenoma [n = 250], and nonadvanced serrated polyp [n = 53]), along with control participants (n = 769). MEASUREMENTS Antibody-based assays were developed and applied to leftover FIT material. Classification and regression tree (CART) analysis was applied to biomarker concentrations to identify the optimal combination for detecting advanced neoplasia. Performance of this combination, the mtFIT, was cross-validated using a leave-one-out approach and compared with FIT at equal specificity. RESULTS The CART analysis showed a combination of hemoglobin, calprotectin, and serpin family F member 2-the mtFIT-to have a cross-validated sensitivity for advanced neoplasia of 42.9% (95% CI, 36.2% to 49.9%) versus 37.3% (CI, 30.7% to 44.2%) for FIT (P = 0.025), with equal specificity of 96.6%. In particular, cross-validated sensitivity for advanced adenomas increased from 28.1% (CI, 20.8% to 36.5%) to 37.8% (CI, 29.6% to 46.5%) (P = 0.006). On the basis of these results, early health technology assessment indicated that mtFIT-based screening could be cost-effective compared with FIT. LIMITATION Study population is enriched with persons from a referral population. CONCLUSION Compared with FIT, the mtFIT showed better diagnostic accuracy in detecting advanced neoplasia because of an increased detection of advanced adenomas. Moreover, early health technology assessment indicated that these results provide a sound basis to pursue further development of mtFIT as a future test for population-based CRC screening. A prospective screening trial is in preparation. PRIMARY FUNDING SOURCE Stand Up to Cancer/Dutch Cancer Society, Dutch Digestive Foundation, and HealthHolland.
Collapse
Affiliation(s)
- Willemijn de Klaver
- Netherlands Cancer Institute and Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, the Netherlands (W.d.K.)
| | - Pieter H A Wisse
- Netherlands Cancer Institute, Amsterdam, and Erasmus MC University Medical Center, Rotterdam, the Netherlands (P.H.W.)
| | - Francine van Wifferen
- Amsterdam University Medical Centers, location VU University Medical Center, Amsterdam, the Netherlands (F.V., C.R.J., M.J.G., V.M.H.C.)
| | - Linda J W Bosch
- Netherlands Cancer Institute, Amsterdam, the Netherlands (L.J.B., R.J.F., B.C., M.d.W., G.A.M.)
| | - Connie R Jimenez
- Amsterdam University Medical Centers, location VU University Medical Center, Amsterdam, the Netherlands (F.V., C.R.J., M.J.G., V.M.H.C.)
| | | | - Remond J A Fijneman
- Netherlands Cancer Institute, Amsterdam, the Netherlands (L.J.B., R.J.F., B.C., M.d.W., G.A.M.)
| | - Ernst J Kuipers
- Erasmus MC University Medical Center, Rotterdam, the Netherlands (E.J.K., M.C.S.)
| | - Marjolein J E Greuter
- Amsterdam University Medical Centers, location VU University Medical Center, Amsterdam, the Netherlands (F.V., C.R.J., M.J.G., V.M.H.C.)
| | - Beatriz Carvalho
- Netherlands Cancer Institute, Amsterdam, the Netherlands (L.J.B., R.J.F., B.C., M.d.W., G.A.M.)
| | - Manon C W Spaander
- Erasmus MC University Medical Center, Rotterdam, the Netherlands (E.J.K., M.C.S.)
| | - Evelien Dekker
- Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, the Netherlands (E.D.)
| | - Veerle M H Coupé
- Amsterdam University Medical Centers, location VU University Medical Center, Amsterdam, the Netherlands (F.V., C.R.J., M.J.G., V.M.H.C.)
| | - Meike de Wit
- Netherlands Cancer Institute, Amsterdam, the Netherlands (L.J.B., R.J.F., B.C., M.d.W., G.A.M.)
| | - Gerrit A Meijer
- Netherlands Cancer Institute, Amsterdam, the Netherlands (L.J.B., R.J.F., B.C., M.d.W., G.A.M.)
| |
Collapse
|
27
|
Li H, Vanarsa K, Zhang T, Soomro S, Cicalese PA, Duran V, Dasari S, Lee KH, Pedroza C, Kisiel JB, Qin H, Bresalier RS, Chia N, Mohan C. Comprehensive aptamer-based screen of 1317 proteins uncovers improved stool protein markers of colorectal cancer. J Gastroenterol 2021; 56:659-672. [PMID: 34117903 DOI: 10.1007/s00535-021-01795-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND To screen and validate novel stool protein biomarkers of colorectal cancer (CRC). METHODS A novel aptamer-based screen of 1317 proteins was used to uncover elevated proteins in the stool of patients with CRC, as compared to healthy controls (HCs) in a discovery cohort. Selected biomarker candidates from the discovery cohort were ELISA validated in three independent cross-sectional cohorts comprises 76 CRC patients, 15 adenoma patients, and 63 healthy controls, from two different ethnicities. The expression of the potential stool biomarkers within CRC tissue was evaluated using single-cell RNA-seq datasets. RESULTS A total of 92 proteins were significantly elevated in CRC samples as compared to HCs in the discovery cohort. Among Caucasians, the 5 most discriminatory proteins among the 16 selected proteins, ordered by their ability to distinguish CRC from adenoma and healthy controls, were MMP9, haptoglobin, myeloperoxidase, fibrinogen, and adiponectin. Except myeloperoxidase, the others were significantly associated with depth of tumor invasion. The 8 stool proteins with the highest AUC values were also discriminatory in a second cohort of Indian CRC patients. Several of the stool biomarkers elevated in CRC were also expressed within CRC tissue, based on the single-cell RNA-seq analysis. CONCLUSIONS Stool MMP9, fibrinogen, myeloperoxidase, and haptoglobin emerged as promising CRC stool biomarkers, outperforming stool Hemoglobin. Longitudinal studies are warranted to assess the clinical utility of these novel biomarkers in early diagnosis of CRC.
Collapse
Affiliation(s)
- Hao Li
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Biomedical Engineering, University of Houston, Houston, USA
| | - Kamala Vanarsa
- Department of Biomedical Engineering, University of Houston, Houston, USA
| | - Ting Zhang
- Department of Biomedical Engineering, University of Houston, Houston, USA
| | - Sanam Soomro
- Department of Biomedical Engineering, University of Houston, Houston, USA
| | | | - Valeria Duran
- Department of Biomedical Engineering, University of Houston, Houston, USA
| | - Shobha Dasari
- Department of Biomedical Engineering, University of Houston, Houston, USA
| | - Kyung Hyun Lee
- Center for Clinical Research and Evidence-Based Medicine, McGovern Medical School, UT Health Science Center At Houston, Houston, USA
| | - Claudia Pedroza
- Center for Clinical Research and Evidence-Based Medicine, McGovern Medical School, UT Health Science Center At Houston, Houston, USA
| | - John B Kisiel
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, USA
| | - Huanlong Qin
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Robert S Bresalier
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Nicholas Chia
- Department of Surgical Research, Mayo Clinic, Rochester, USA
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, USA.
| |
Collapse
|
28
|
Lam KK, Thean LF, Cheah PY. Advances in colorectal cancer genomics and transcriptomics drive early detection and prevention. Int J Biochem Cell Biol 2021; 137:106032. [PMID: 34182137 DOI: 10.1016/j.biocel.2021.106032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022]
Abstract
Colorectal carcinoma (CRC) is a high incidence cancer and leading cause of cancer mortality worldwide. The advances in genomics and transcriptomics in the past decades have improved the detection and prevention of CRC in familial CRC syndromes. Nevertheless, the ultimate goal of personalized medicine for sporadic CRC is still not within reach due no less to the difficulty in integrating population disparity and clinical data to combat what essentially is a very heterogenous disease. This minireview highlights the achievement of the past decades and present possible direction in the hope of early detection and metastasis prevention for reducing CRC-associated morbidity and mortality.
Collapse
Affiliation(s)
- Kuen Kuen Lam
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Lai Fun Thean
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore
| | - Peh Yean Cheah
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore.
| |
Collapse
|
29
|
Down-regulation of RBP4 indicates a poor prognosis and correlates with immune cell infiltration in hepatocellular carcinoma. Biosci Rep 2021; 41:228242. [PMID: 33834191 PMCID: PMC8055798 DOI: 10.1042/bsr20210328] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Recent research has indicated that metabolically related genes play crucial roles in the pathogenesis of hepatocellular carcinoma (HCC). We evaluated the associations between novel biomarkers and retinol-binding protein 4 (RBP4) for predicting clinical HCC outcomes, hub-related genes, pathway regulation, and immune cells infiltration. Bioinformatic analyses based on data from The Cancer Genome Atlas were performed using online analysis tools. RBP4 expression was low in HCC and was also down-regulated in pan-cancers compared with normal tissues. RBP4 expression was also significantly different based on age (41–60 years old versus 61–80 years old), and low RBP4 expression levels were associated with advanced tumor stages and grades. Higher RBP4 expression was associated with better overall survival time in HCC patients, and we identified a deletion-mutation rate of 1.4% in RBP4. We also identified ten co-expressed genes most related to RBP4 and explored the relationships between six hub genes (APOB, FGA, FGG, SERPINC1, APOA1, and F2) involved in RBP4 regulation. A pathway enrichment analysis for RBP4 indicated complement and coagulation cascades, metabolic pathways, antibiotic biosynthesis pathways, peroxisome proliferator-activated receptor signaling pathways, and pyruvate metabolism pathways. These results suggest that RBP4 may be a novel biomarker for HCC prognosis, and an indicator of low immune response to the disease.
Collapse
|
30
|
Rademakers G, Massen M, Koch A, Draht MX, Buekers N, Wouters KAD, Vaes N, De Meyer T, Carvalho B, Meijer GA, Herman JG, Smits KM, van Engeland M, Melotte V. Identification of DNA methylation markers for early detection of CRC indicates a role for nervous system-related genes in CRC. Clin Epigenetics 2021; 13:80. [PMID: 33858496 PMCID: PMC8048074 DOI: 10.1186/s13148-021-01067-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/04/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose Colonoscopy and the fecal immunochemical test (FIT) are currently the most widely used screening modalities for colorectal cancer (CRC), however, both with their own limitations. Here we aim to identify and validate stool-based DNA methylation markers for the early detection of CRC and investigate the biological pathways prone to DNA methylation. Methods DNA methylation marker discovery was performed using The Cancer Genome Atlas (TCGA) colon adenocarcinoma data set consisting of normal and primary colon adenocarcinoma tissue. The performance of the five best candidate markers and a previously identified marker, NDRG4, was evaluated on tissues and whole stool samples of healthy subjects and CRC patients using quantitative MSP assays. The results were compared and combined with FIT data. Finally, pathway and gene ontology enrichment analyses were performed using ToppFun, GOrilla and clusterProfiler. Results GDNF, HAND2, SLC35F3, SNAP91 and SORCS1 were ranked as the best performing markers. Gene combinations of all five markers, NDRG4 and FIT were evaluated to establish the biomarker panel with the highest diagnostic potential, resulting in the identification of GDNF/SNAP91/NDRG4/FIT as the best performing marker panel. Pathway and gene ontology enrichment analyses revealed that genes associated with the nervous system were enriched in the set of best performing CRC-specific biomarkers. Conclusion In silico discovery analysis using TCGA-derived data yielded a novel DNA-methylation-based assay for the early detection of CRC, potentially improving current screening modalities. Additionally, nervous system-related pathways were enriched in the identified genes, indicating an epigenetic regulation of neuronal genes in CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01067-9.
Collapse
Affiliation(s)
- Glenn Rademakers
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Maartje Massen
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Alexander Koch
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Muriel X Draht
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Nikkie Buekers
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Kim A D Wouters
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Nathalie Vaes
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Tim De Meyer
- Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Beatriz Carvalho
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Gerrit A Meijer
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - James G Herman
- The Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Kim M Smits
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Manon van Engeland
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Veerle Melotte
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands. .,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
31
|
Ferlizza E, Solmi R, Sgarzi M, Ricciardiello L, Lauriola M. The Roadmap of Colorectal Cancer Screening. Cancers (Basel) 2021; 13:1101. [PMID: 33806465 PMCID: PMC7961708 DOI: 10.3390/cancers13051101] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common form of cancer in terms of incidence and the second in terms of mortality worldwide. CRC develops over several years, thus highlighting the importance of early diagnosis. National screening programs based on fecal occult blood tests and subsequent colonoscopy have reduced the incidence and mortality, however improvements are needed since the participation rate remains low and the tests present a high number of false positive results. This review provides an overview of the CRC screening globally and the state of the art in approaches aimed at improving accuracy and participation in CRC screening, also considering the need for gender and age differentiation. New fecal tests and biomarkers such as DNA methylation, mutation or integrity, proteins and microRNAs are explored, including recent investigations into fecal microbiota. Liquid biopsy approaches, involving novel biomarkers and panels, such as circulating mRNA, micro- and long-non-coding RNA, DNA, proteins and extracellular vesicles are discussed. The approaches reported are based on quantitative PCR methods that could be easily applied to routine screening, or arrays and sequencing assays that should be better exploited to describe and identify candidate biomarkers in blood samples.
Collapse
Affiliation(s)
- Enea Ferlizza
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (R.S.); (M.S); (M.L.)
| | - Rossella Solmi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (R.S.); (M.S); (M.L.)
| | - Michela Sgarzi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (R.S.); (M.S); (M.L.)
| | - Luigi Ricciardiello
- Gastroenterology Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy;
| | - Mattia Lauriola
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (R.S.); (M.S); (M.L.)
| |
Collapse
|
32
|
Li L, Wang A, Cai M, Tong M, Chen F, Huang L. Identification of stool miR-135b-5p as a non-invasive diaognostic biomarker in later tumor stage of colorectal cancer. Life Sci 2020; 260:118417. [DOI: 10.1016/j.lfs.2020.118417] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/30/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022]
|
33
|
Macklin A, Khan S, Kislinger T. Recent advances in mass spectrometry based clinical proteomics: applications to cancer research. Clin Proteomics 2020; 17:17. [PMID: 32489335 PMCID: PMC7247207 DOI: 10.1186/s12014-020-09283-w] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer biomarkers have transformed current practices in the oncology clinic. Continued discovery and validation are crucial for improving early diagnosis, risk stratification, and monitoring patient response to treatment. Profiling of the tumour genome and transcriptome are now established tools for the discovery of novel biomarkers, but alterations in proteome expression are more likely to reflect changes in tumour pathophysiology. In the past, clinical diagnostics have strongly relied on antibody-based detection strategies, but these methods carry certain limitations. Mass spectrometry (MS) is a powerful method that enables increasingly comprehensive insights into changes of the proteome to advance personalized medicine. In this review, recent improvements in MS-based clinical proteomics are highlighted with a focus on oncology. We will provide a detailed overview of clinically relevant samples types, as well as, consideration for sample preparation methods, protein quantitation strategies, MS configurations, and data analysis pipelines currently available to researchers. Critical consideration of each step is necessary to address the pressing clinical questions that advance cancer patient diagnosis and prognosis. While the majority of studies focus on the discovery of clinically-relevant biomarkers, there is a growing demand for rigorous biomarker validation. These studies focus on high-throughput targeted MS assays and multi-centre studies with standardized protocols. Additionally, improvements in MS sensitivity are opening the door to new classes of tumour-specific proteoforms including post-translational modifications and variants originating from genomic aberrations. Overlaying proteomic data to complement genomic and transcriptomic datasets forges the growing field of proteogenomics, which shows great potential to improve our understanding of cancer biology. Overall, these advancements not only solidify MS-based clinical proteomics' integral position in cancer research, but also accelerate the shift towards becoming a regular component of routine analysis and clinical practice.
Collapse
Affiliation(s)
- Andrew Macklin
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Shahbaz Khan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|