1
|
Hosseini MS, Bejnordi BE, Trinh VQH, Chan L, Hasan D, Li X, Yang S, Kim T, Zhang H, Wu T, Chinniah K, Maghsoudlou S, Zhang R, Zhu J, Khaki S, Buin A, Chaji F, Salehi A, Nguyen BN, Samaras D, Plataniotis KN. Computational pathology: A survey review and the way forward. J Pathol Inform 2024; 15:100357. [PMID: 38420608 PMCID: PMC10900832 DOI: 10.1016/j.jpi.2023.100357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 03/02/2024] Open
Abstract
Computational Pathology (CPath) is an interdisciplinary science that augments developments of computational approaches to analyze and model medical histopathology images. The main objective for CPath is to develop infrastructure and workflows of digital diagnostics as an assistive CAD system for clinical pathology, facilitating transformational changes in the diagnosis and treatment of cancer that are mainly address by CPath tools. With evergrowing developments in deep learning and computer vision algorithms, and the ease of the data flow from digital pathology, currently CPath is witnessing a paradigm shift. Despite the sheer volume of engineering and scientific works being introduced for cancer image analysis, there is still a considerable gap of adopting and integrating these algorithms in clinical practice. This raises a significant question regarding the direction and trends that are undertaken in CPath. In this article we provide a comprehensive review of more than 800 papers to address the challenges faced in problem design all-the-way to the application and implementation viewpoints. We have catalogued each paper into a model-card by examining the key works and challenges faced to layout the current landscape in CPath. We hope this helps the community to locate relevant works and facilitate understanding of the field's future directions. In a nutshell, we oversee the CPath developments in cycle of stages which are required to be cohesively linked together to address the challenges associated with such multidisciplinary science. We overview this cycle from different perspectives of data-centric, model-centric, and application-centric problems. We finally sketch remaining challenges and provide directions for future technical developments and clinical integration of CPath. For updated information on this survey review paper and accessing to the original model cards repository, please refer to GitHub. Updated version of this draft can also be found from arXiv.
Collapse
Affiliation(s)
- Mahdi S. Hosseini
- Department of Computer Science and Software Engineering (CSSE), Concordia Univeristy, Montreal, QC H3H 2R9, Canada
| | | | - Vincent Quoc-Huy Trinh
- Institute for Research in Immunology and Cancer of the University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Lyndon Chan
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Danial Hasan
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Xingwen Li
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Stephen Yang
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Taehyo Kim
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Haochen Zhang
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Theodore Wu
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Kajanan Chinniah
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Sina Maghsoudlou
- Department of Computer Science and Software Engineering (CSSE), Concordia Univeristy, Montreal, QC H3H 2R9, Canada
| | - Ryan Zhang
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Jiadai Zhu
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Samir Khaki
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Andrei Buin
- Huron Digitial Pathology, St. Jacobs, ON N0B 2N0, Canada
| | - Fatemeh Chaji
- Department of Computer Science and Software Engineering (CSSE), Concordia Univeristy, Montreal, QC H3H 2R9, Canada
| | - Ala Salehi
- Department of Electrical and Computer Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Bich Ngoc Nguyen
- University of Montreal Hospital Center, Montreal, QC H2X 0C2, Canada
| | - Dimitris Samaras
- Department of Computer Science, Stony Brook University, Stony Brook, NY 11794, United States
| | - Konstantinos N. Plataniotis
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| |
Collapse
|
2
|
Li Y, Xiong X, Liu X, Wu Y, Li X, Liu B, Lin B, Li Y, Xu B. An interpretable deep learning model for detecting BRCA pathogenic variants of breast cancer from hematoxylin and eosin-stained pathological images. PeerJ 2024; 12:e18098. [PMID: 39484212 PMCID: PMC11526788 DOI: 10.7717/peerj.18098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/26/2024] [Indexed: 11/03/2024] Open
Abstract
Background Determining the status of breast cancer susceptibility genes (BRCA) is crucial for guiding breast cancer treatment. Nevertheless, the need for BRCA genetic testing among breast cancer patients remains unmet due to high costs and limited resources. This study aimed to develop a Bi-directional Self-Attention Multiple Instance Learning (BiAMIL) algorithm to detect BRCA status from hematoxylin and eosin (H&E) pathological images. Methods A total of 319 histopathological slides from 254 breast cancer patients were included, comprising two dependent cohorts. Following image pre-processing, 633,484 tumor tiles from the training dataset were employed to train the self-developed deep-learning model. The performance of the network was evaluated in the internal and external test sets. Results BiAMIL achieved AUC values of 0.819 (95% CI [0.673-0.965]) in the internal test set, and 0.817 (95% CI [0.712-0.923]) in the external test set. To explore the relationship between BRCA status and interpretable morphological features in pathological images, we utilized Class Activation Mapping (CAM) technique and cluster analysis to investigate the connections between BRCA gene mutation status and tissue and cell features. Significantly, we observed that tumor-infiltrating lymphocytes and the morphological characteristics of tumor cells appeared to be potential features associated with BRCA status. Conclusions An interpretable deep neural network model based on the attention mechanism was developed to predict the BRCA status in breast cancer. Keywords: Breast cancer, BRCA, deep learning, self-attention, interpretability.
Collapse
Affiliation(s)
- Yi Li
- School of Medicine, Chongqing University, Chongqing, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaomin Xiong
- School of Medicine, Chongqing University, Chongqing, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaohua Liu
- Bioengineering College of Chongqing University, Chongqing, China
| | - Yihan Wu
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaoju Li
- Department of Pathology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Bo Liu
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, Chongqing University Cancer Hospital, Chongqing, China
| | - Bo Lin
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, Chongqing University Cancer Hospital, Chongqing, China
| | - Yu Li
- Department of Pathology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Bo Xu
- School of Medicine, Chongqing University, Chongqing, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
3
|
Xiaojian Y, Zhanbo Q, Jian C, Zefeng W, Jian L, Jin L, Yuefen P, Shuwen H. Deep learning application in prediction of cancer molecular alterations based on pathological images: a bibliographic analysis via CiteSpace. J Cancer Res Clin Oncol 2024; 150:467. [PMID: 39422817 PMCID: PMC11489169 DOI: 10.1007/s00432-024-05992-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND The advancements in artificial intelligence (AI) technology for image recognition were propelling molecular pathology research into a new era. OBJECTIVE To summarize the hot spots and research trends in the field of molecular pathology image recognition. METHODS Relevant articles from January 1st, 2010, to August 25th, 2023, were retrieved from the Web of Science Core Collection. Subsequently, CiteSpace was employed for bibliometric and visual analysis, generating diverse network diagrams illustrating keywords, highly cited references, hot topics, and research trends. RESULTS A total of 110 relevant articles were extracted from a pool of 10,205 articles. The overall publication count exhibited a rising trend each year. The leading contributors in terms of institutions, countries, and authors were Maastricht University (11 articles), the United States (38 articles), and Kather Jacob Nicholas (9 articles), respectively. Half of the top ten research institutions, based on publication volume, were affiliated with Germany. The most frequently cited article was authored by Nicolas Coudray et al. accumulating 703 citations. The keyword "Deep learning" had the highest frequency in 2019. Notably, the highlighted keywords from 2022 to 2023 included "microsatellite instability", and there were 21 articles focusing on utilizing algorithms to recognize microsatellite instability (MSI) in colorectal cancer (CRC) pathological images. CONCLUSION The use of DL is expected to provide a new strategy to effectively solve the current problem of time-consuming and expensive molecular pathology detection. Therefore, further research is needed to address issues, such as data quality and standardization, model interpretability, and resource and infrastructure requirements.
Collapse
Affiliation(s)
- Yu Xiaojian
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, China
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
| | - Qu Zhanbo
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, China
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
| | - Chu Jian
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, China
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
| | - Wang Zefeng
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, China
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
| | - Liu Jian
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, China
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
| | - Liu Jin
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, China
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
| | - Pan Yuefen
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, China.
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China.
| | - Han Shuwen
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, China.
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China.
- ASIR(Institute - Association of intelligent systems and robotics), Rueil-Malmaison, France.
| |
Collapse
|
4
|
Nowak M, Jabbar F, Rodewald AK, Gneo L, Tomasevic T, Harkin A, Iveson T, Saunders M, Kerr R, Oein K, Maka N, Hay J, Edwards J, Tomlinson I, Sansom O, Kelly C, Pezzella F, Kerr D, Easton A, Domingo E, Koelzer VH, Church DN. Single-cell AI-based detection and prognostic and predictive value of DNA mismatch repair deficiency in colorectal cancer. Cell Rep Med 2024; 5:101727. [PMID: 39293403 PMCID: PMC11525017 DOI: 10.1016/j.xcrm.2024.101727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/16/2024] [Accepted: 08/15/2024] [Indexed: 09/20/2024]
Abstract
Testing for DNA mismatch repair deficiency (MMRd) is recommended for all colorectal cancers (CRCs). Automating this would enable precision medicine, particularly if providing information on etiology not captured by deep learning (DL) methods. We present AIMMeR, an AI-based method for determination of mismatch repair (MMR) protein expression at a single-cell level in routine pathology samples. AIMMeR shows an area under the receiver-operator curve (AUROC) of 0.98, and specificity of ≥75% at 98% sensitivity against pathologist ground truth in stage II/III in two trial cohorts, with positive predictive value of ≥98% for the commonest pattern of somatic MMRd. Lower agreement with microsatellite instability (MSI) testing (AUROC 0.86) reflects discordance between MMR and MSI PCR rather than AIMMeR misclassification. Analysis of the SCOT trial confirms MMRd prognostic value in oxaliplatin-treated patients; while MMRd does not predict differential benefit of chemotherapy duration, it correlates with difference in relapse by regimen (PInteraction = 0.04). AIMMeR may help reduce pathologist workload and streamline diagnostics in CRC.
Collapse
Affiliation(s)
- Marta Nowak
- Department of Pathology and Molecular Pathology, Zurich, Zurich, Switzerland
| | - Faiz Jabbar
- Cancer Genomics and Immunology Group, The Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Ann-Katrin Rodewald
- Department of Pathology and Molecular Pathology, Zurich, Zurich, Switzerland
| | - Luciana Gneo
- Cancer Genomics and Immunology Group, The Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Tijana Tomasevic
- Cancer Genomics and Immunology Group, The Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Andrea Harkin
- CRUK Glasgow Clinical Trials Unit, University of Glasgow, Glasgow, UK
| | - Tim Iveson
- University of Southampton, Southampton, UK
| | | | - Rachel Kerr
- Department of Oncology, University of Oxford, Oxford, UK
| | - Karin Oein
- Glasgow Tissue Research Facility, University of Glasgow, Queen Elizabeth University Hospital, Glasgow, UK
| | - Noori Maka
- Glasgow Tissue Research Facility, University of Glasgow, Queen Elizabeth University Hospital, Glasgow, UK
| | - Jennifer Hay
- Glasgow Tissue Research Facility, University of Glasgow, Queen Elizabeth University Hospital, Glasgow, UK
| | - Joanne Edwards
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ian Tomlinson
- Department of Oncology, University of Oxford, Oxford, UK
| | - Owen Sansom
- CRUK Beatson Institute of Cancer Research, Garscube Estate, Glasgow, UK
| | - Caroline Kelly
- CRUK Glasgow Clinical Trials Unit, University of Glasgow, Glasgow, UK
| | | | - David Kerr
- Nuffield Department of Clinical and Laboratory Sciences, University of Oxford, Oxford, UK
| | | | - Enric Domingo
- Department of Oncology, University of Oxford, Oxford, UK
| | - Viktor H Koelzer
- Department of Pathology and Molecular Pathology, Zurich, Zurich, Switzerland; Department of Oncology, University of Oxford, Oxford, UK; Nuffield Department of Medicine, University of Oxford, Oxford, UK; Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - David N Church
- Cancer Genomics and Immunology Group, The Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK; Oxford NIHR Comprehensive Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
5
|
Chen Z, Wong IHM, Dai W, Lo CTK, Wong TTW. Lung Cancer Diagnosis on Virtual Histologically Stained Tissue Using Weakly Supervised Learning. Mod Pathol 2024; 37:100487. [PMID: 38588884 DOI: 10.1016/j.modpat.2024.100487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/05/2024] [Accepted: 03/30/2024] [Indexed: 04/10/2024]
Abstract
Lung adenocarcinoma (LUAD) is the most common primary lung cancer and accounts for 40% of all lung cancer cases. The current gold standard for lung cancer analysis is based on the pathologists' interpretation of hematoxylin and eosin (H&E)-stained tissue slices viewed under a brightfield microscope or a digital slide scanner. Computational pathology using deep learning has been proposed to detect lung cancer on histology images. However, the histological staining workflow to acquire the H&E-stained images and the subsequent cancer diagnosis procedures are labor-intensive and time-consuming with tedious sample preparation steps and repetitive manual interpretation, respectively. In this work, we propose a weakly supervised learning method for LUAD classification on label-free tissue slices with virtual histological staining. The autofluorescence images of label-free tissue with histopathological information can be converted into virtual H&E-stained images by a weakly supervised deep generative model. For the downstream LUAD classification task, we trained the attention-based multiple-instance learning model with different settings on the open-source LUAD H&E-stained whole-slide images (WSIs) dataset from the Cancer Genome Atlas (TCGA). The model was validated on the 150 H&E-stained WSIs collected from patients in Queen Mary Hospital and Prince of Wales Hospital with an average area under the curve (AUC) of 0.961. The model also achieved an average AUC of 0.973 on 58 virtual H&E-stained WSIs, comparable to the results on 58 standard H&E-stained WSIs with an average AUC of 0.977. The attention heatmaps of virtual H&E-stained WSIs and ground-truth H&E-stained WSIs can indicate tumor regions of LUAD tissue slices. In conclusion, the proposed diagnostic workflow on virtual H&E-stained WSIs of label-free tissue is a rapid, cost effective, and interpretable approach to assist clinicians in postoperative pathological examinations. The method could serve as a blueprint for other label-free imaging modalities and disease contexts.
Collapse
Affiliation(s)
- Zhenghui Chen
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ivy H M Wong
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Weixing Dai
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Claudia T K Lo
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Terence T W Wong
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
6
|
Gustav M, Reitsam NG, Carrero ZI, Loeffler CML, van Treeck M, Yuan T, West NP, Quirke P, Brinker TJ, Brenner H, Favre L, Märkl B, Stenzinger A, Brobeil A, Hoffmeister M, Calderaro J, Pujals A, Kather JN. Deep learning for dual detection of microsatellite instability and POLE mutations in colorectal cancer histopathology. NPJ Precis Oncol 2024; 8:115. [PMID: 38783059 PMCID: PMC11116442 DOI: 10.1038/s41698-024-00592-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/14/2024] [Indexed: 05/25/2024] Open
Abstract
In the spectrum of colorectal tumors, microsatellite-stable (MSS) tumors with DNA polymerase ε (POLE) mutations exhibit a hypermutated profile, holding the potential to respond to immunotherapy similarly to their microsatellite-instable (MSI) counterparts. Yet, due to their rarity and the associated testing costs, systematic screening for these mutations is not commonly pursued. Notably, the histopathological phenotype resulting from POLE mutations is theorized to resemble that of MSI. This resemblance not only could facilitate their detection by a transformer-based Deep Learning (DL) system trained on MSI pathology slides, but also indicates the possibility for MSS patients with POLE mutations to access enhanced treatment options, which might otherwise be overlooked. To harness this potential, we trained a Deep Learning classifier on a large dataset with the ground truth for microsatellite status and subsequently validated its capabilities for MSI and POLE detection across three external cohorts. Our model accurately identified MSI status in both the internal and external resection cohorts using pathology images alone. Notably, with a classification threshold of 0.5, over 75% of POLE driver mutant patients in the external resection cohorts were flagged as "positive" by a DL system trained on MSI status. In a clinical setting, deploying this DL model as a preliminary screening tool could facilitate the efficient identification of clinically relevant MSI and POLE mutations in colorectal tumors, in one go.
Collapse
Affiliation(s)
- Marco Gustav
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | | | - Zunamys I Carrero
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Chiara M L Loeffler
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- Department of Medicine I, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Marko van Treeck
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Tanwei Yuan
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nicholas P West
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Philip Quirke
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Titus J Brinker
- Digital Biomarkers for Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Loëtitia Favre
- Université Paris Est Créteil, INSERM, IMRB, Créteil, France
- Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, Department of Pathology, Créteil, France
- INSERM, U955, Team Oncogenèse des lymphomes et tumeurs de la Neurofibromatose 1, Créteil, France
| | - Bruno Märkl
- Pathology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | | | - Alexander Brobeil
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Tissue Bank of the National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julien Calderaro
- Université Paris Est Créteil, INSERM, IMRB, Créteil, France
- Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, Department of Pathology, Créteil, France
- INSERM, U955, Team Oncogenèse des lymphomes et tumeurs de la Neurofibromatose 1, Créteil, France
| | - Anaïs Pujals
- Université Paris Est Créteil, INSERM, IMRB, Créteil, France
- Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, Department of Pathology, Créteil, France
- INSERM, U955, Team Oncogenèse des lymphomes et tumeurs de la Neurofibromatose 1, Créteil, France
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany.
- Department of Medicine I, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom.
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
7
|
McGenity C, Clarke EL, Jennings C, Matthews G, Cartlidge C, Freduah-Agyemang H, Stocken DD, Treanor D. Artificial intelligence in digital pathology: a systematic review and meta-analysis of diagnostic test accuracy. NPJ Digit Med 2024; 7:114. [PMID: 38704465 PMCID: PMC11069583 DOI: 10.1038/s41746-024-01106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 04/12/2024] [Indexed: 05/06/2024] Open
Abstract
Ensuring diagnostic performance of artificial intelligence (AI) before introduction into clinical practice is essential. Growing numbers of studies using AI for digital pathology have been reported over recent years. The aim of this work is to examine the diagnostic accuracy of AI in digital pathology images for any disease. This systematic review and meta-analysis included diagnostic accuracy studies using any type of AI applied to whole slide images (WSIs) for any disease. The reference standard was diagnosis by histopathological assessment and/or immunohistochemistry. Searches were conducted in PubMed, EMBASE and CENTRAL in June 2022. Risk of bias and concerns of applicability were assessed using the QUADAS-2 tool. Data extraction was conducted by two investigators and meta-analysis was performed using a bivariate random effects model, with additional subgroup analyses also performed. Of 2976 identified studies, 100 were included in the review and 48 in the meta-analysis. Studies were from a range of countries, including over 152,000 whole slide images (WSIs), representing many diseases. These studies reported a mean sensitivity of 96.3% (CI 94.1-97.7) and mean specificity of 93.3% (CI 90.5-95.4). There was heterogeneity in study design and 99% of studies identified for inclusion had at least one area at high or unclear risk of bias or applicability concerns. Details on selection of cases, division of model development and validation data and raw performance data were frequently ambiguous or missing. AI is reported as having high diagnostic accuracy in the reported areas but requires more rigorous evaluation of its performance.
Collapse
Affiliation(s)
- Clare McGenity
- University of Leeds, Leeds, UK.
- Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| | - Emily L Clarke
- University of Leeds, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Charlotte Jennings
- University of Leeds, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | | | | | | | - Darren Treanor
- University of Leeds, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Department of Clinical Pathology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| |
Collapse
|
8
|
Angeloni M, van Doeveren T, Lindner S, Volland P, Schmelmer J, Foersch S, Matek C, Stoehr R, Geppert CI, Heers H, Wach S, Taubert H, Sikic D, Wullich B, van Leenders GJLH, Zaburdaev V, Eckstein M, Hartmann A, Boormans JL, Ferrazzi F, Bahlinger V. A deep-learning workflow to predict upper tract urothelial carcinoma protein-based subtypes from H&E slides supporting the prioritization of patients for molecular testing. J Pathol Clin Res 2024; 10:e12369. [PMID: 38504364 PMCID: PMC10951050 DOI: 10.1002/2056-4538.12369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/08/2024] [Accepted: 02/26/2024] [Indexed: 03/21/2024]
Abstract
Upper tract urothelial carcinoma (UTUC) is a rare and aggressive, yet understudied, urothelial carcinoma (UC). The more frequent UC of the bladder comprises several molecular subtypes, associated with different targeted therapies and overlapping with protein-based subtypes. However, if and how these findings extend to UTUC remains unclear. Artificial intelligence-based approaches could help elucidate UTUC's biology and extend access to targeted treatments to a wider patient audience. Here, UTUC protein-based subtypes were identified, and a deep-learning (DL) workflow was developed to predict them directly from routine histopathological H&E slides. Protein-based subtypes in a retrospective cohort of 163 invasive tumors were assigned by hierarchical clustering of the immunohistochemical expression of three luminal (FOXA1, GATA3, and CK20) and three basal (CD44, CK5, and CK14) markers. Cluster analysis identified distinctive luminal (N = 80) and basal (N = 42) subtypes. The luminal subtype mostly included pushing, papillary tumors, whereas the basal subtype diffusely infiltrating, non-papillary tumors. DL model building relied on a transfer-learning approach by fine-tuning a pre-trained ResNet50. Classification performance was measured via three-fold repeated cross-validation. A mean area under the receiver operating characteristic curve of 0.83 (95% CI: 0.67-0.99), 0.8 (95% CI: 0.62-0.99), and 0.81 (95% CI: 0.65-0.96) was reached in the three repetitions. High-confidence DL-based predicted subtypes showed significant associations (p < 0.001) with morphological features, i.e. tumor type, histological subtypes, and infiltration type. Furthermore, a significant association was found with programmed cell death ligand 1 (PD-L1) combined positive score (p < 0.001) and FGFR3 mutational status (p = 0.002), with high-confidence basal predictions containing a higher proportion of PD-L1 positive samples and high-confidence luminal predictions a higher proportion of FGFR3-mutated samples. Testing of the DL model on an independent cohort highlighted the importance to accommodate histological subtypes. Taken together, our DL workflow can predict protein-based UTUC subtypes, associated with the presence of targetable alterations, directly from H&E slides.
Collapse
Affiliation(s)
- Miriam Angeloni
- Institute of Pathology, University Hospital Erlangen‐Nürnberg, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
- Comprehensive Cancer Center Erlangen‐EMN (CCC ER‐EMN)ErlangenGermany
- Bavarian Cancer Research Center (BZKF)ErlangenGermany
| | - Thomas van Doeveren
- Department of UrologyErasmus MC Urothelial Cancer Research GroupRotterdamThe Netherlands
| | - Sebastian Lindner
- Institute of Pathology, University Hospital Erlangen‐Nürnberg, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
- Comprehensive Cancer Center Erlangen‐EMN (CCC ER‐EMN)ErlangenGermany
- Bavarian Cancer Research Center (BZKF)ErlangenGermany
| | - Patrick Volland
- Institute of Pathology, University Hospital Erlangen‐Nürnberg, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
- Comprehensive Cancer Center Erlangen‐EMN (CCC ER‐EMN)ErlangenGermany
- Bavarian Cancer Research Center (BZKF)ErlangenGermany
| | - Jorina Schmelmer
- Institute of Pathology, University Hospital Erlangen‐Nürnberg, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
- Comprehensive Cancer Center Erlangen‐EMN (CCC ER‐EMN)ErlangenGermany
- Bavarian Cancer Research Center (BZKF)ErlangenGermany
| | | | - Christian Matek
- Institute of Pathology, University Hospital Erlangen‐Nürnberg, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
- Comprehensive Cancer Center Erlangen‐EMN (CCC ER‐EMN)ErlangenGermany
- Bavarian Cancer Research Center (BZKF)ErlangenGermany
| | - Robert Stoehr
- Institute of Pathology, University Hospital Erlangen‐Nürnberg, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
- Comprehensive Cancer Center Erlangen‐EMN (CCC ER‐EMN)ErlangenGermany
- Bavarian Cancer Research Center (BZKF)ErlangenGermany
| | - Carol I Geppert
- Institute of Pathology, University Hospital Erlangen‐Nürnberg, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
- Comprehensive Cancer Center Erlangen‐EMN (CCC ER‐EMN)ErlangenGermany
- Bavarian Cancer Research Center (BZKF)ErlangenGermany
| | - Hendrik Heers
- Department of UrologyPhilipps‐Universität MarburgMarburgGermany
| | - Sven Wach
- Comprehensive Cancer Center Erlangen‐EMN (CCC ER‐EMN)ErlangenGermany
- Bavarian Cancer Research Center (BZKF)ErlangenGermany
- Department of Urology and Pediatric UrologyUniversity Hospital Erlangen, Friedrich‐Alexander Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Helge Taubert
- Comprehensive Cancer Center Erlangen‐EMN (CCC ER‐EMN)ErlangenGermany
- Bavarian Cancer Research Center (BZKF)ErlangenGermany
- Department of Urology and Pediatric UrologyUniversity Hospital Erlangen, Friedrich‐Alexander Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Danijel Sikic
- Comprehensive Cancer Center Erlangen‐EMN (CCC ER‐EMN)ErlangenGermany
- Bavarian Cancer Research Center (BZKF)ErlangenGermany
- Department of Urology and Pediatric UrologyUniversity Hospital Erlangen, Friedrich‐Alexander Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Bernd Wullich
- Comprehensive Cancer Center Erlangen‐EMN (CCC ER‐EMN)ErlangenGermany
- Bavarian Cancer Research Center (BZKF)ErlangenGermany
- Department of Urology and Pediatric UrologyUniversity Hospital Erlangen, Friedrich‐Alexander Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Geert JLH van Leenders
- Department of PathologyErasmus MC Cancer Institute, University Medical CentreRotterdamthe Netherlands
| | - Vasily Zaburdaev
- Department of BiologyFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
- Max‐Planck‐Zentrum für Physik und MedizinErlangenGermany
| | - Markus Eckstein
- Institute of Pathology, University Hospital Erlangen‐Nürnberg, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
- Comprehensive Cancer Center Erlangen‐EMN (CCC ER‐EMN)ErlangenGermany
- Bavarian Cancer Research Center (BZKF)ErlangenGermany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen‐Nürnberg, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
- Comprehensive Cancer Center Erlangen‐EMN (CCC ER‐EMN)ErlangenGermany
- Bavarian Cancer Research Center (BZKF)ErlangenGermany
| | - Joost L Boormans
- Department of UrologyErasmus MC Urothelial Cancer Research GroupRotterdamThe Netherlands
| | - Fulvia Ferrazzi
- Institute of Pathology, University Hospital Erlangen‐Nürnberg, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
- Comprehensive Cancer Center Erlangen‐EMN (CCC ER‐EMN)ErlangenGermany
- Bavarian Cancer Research Center (BZKF)ErlangenGermany
- Department of NephropathologyInstitute of Pathology, University Hospital Erlangen‐Nürnberg, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Veronika Bahlinger
- Institute of Pathology, University Hospital Erlangen‐Nürnberg, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
- Comprehensive Cancer Center Erlangen‐EMN (CCC ER‐EMN)ErlangenGermany
- Bavarian Cancer Research Center (BZKF)ErlangenGermany
- Department of Pathology and NeuropathologyUniversity Hospital and Comprehensive Cancer Center TübingenTübingenGermany
| |
Collapse
|
9
|
Ligero M, Serna G, El Nahhas OS, Sansano I, Mauchanski S, Viaplana C, Calderaro J, Toledo RA, Dienstmann R, Vanguri RS, Sauter JL, Sanchez-Vega F, Shah SP, Ramón y Cajal S, Garralda E, Nuciforo P, Perez-Lopez R, Kather JN. Weakly Supervised Deep Learning Predicts Immunotherapy Response in Solid Tumors Based on PD-L1 Expression. CANCER RESEARCH COMMUNICATIONS 2024; 4:92-102. [PMID: 38126740 PMCID: PMC10782919 DOI: 10.1158/2767-9764.crc-23-0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/11/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Programmed death-ligand 1 (PD-L1) IHC is the most commonly used biomarker for immunotherapy response. However, quantification of PD-L1 status in pathology slides is challenging. Neither manual quantification nor a computer-based mimicking of manual readouts is perfectly reproducible, and the predictive performance of both approaches regarding immunotherapy response is limited. In this study, we developed a deep learning (DL) method to predict PD-L1 status directly from raw IHC image data, without explicit intermediary steps such as cell detection or pigment quantification. We trained the weakly supervised model on PD-L1-stained slides from the non-small cell lung cancer (NSCLC)-Memorial Sloan Kettering (MSK) cohort (N = 233) and validated it on the pan-cancer-Vall d'Hebron Institute of Oncology (VHIO) cohort (N = 108). We also investigated the performance of the model to predict response to immune checkpoint inhibitors (ICI) in terms of progression-free survival. In the pan-cancer-VHIO cohort, the performance was compared with tumor proportion score (TPS) and combined positive score (CPS). The DL model showed good performance in predicting PD-L1 expression (TPS ≥ 1%) in both NSCLC-MSK and pan-cancer-VHIO cohort (AUC 0.88 ± 0.06 and 0.80 ± 0.03, respectively). The predicted PD-L1 status showed an improved association with response to ICIs [HR: 1.5 (95% confidence interval: 1-2.3), P = 0.049] compared with TPS [HR: 1.4 (0.96-2.2), P = 0.082] and CPS [HR: 1.2 (0.79-1.9), P = 0.386]. Notably, our explainability analysis showed that the model does not just look at the amount of brown pigment in the IHC slides, but also considers morphologic factors such as lymphocyte conglomerates. Overall, end-to-end weakly supervised DL shows potential for improving patient stratification for cancer immunotherapy by analyzing PD-L1 IHC, holistically integrating morphology and PD-L1 staining intensity. SIGNIFICANCE The weakly supervised DL model to predict PD-L1 status from raw IHC data, integrating tumor staining intensity and morphology, enables enhanced patient stratification in cancer immunotherapy compared with traditional pathologist assessment.
Collapse
Affiliation(s)
- Marta Ligero
- Radiomics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Garazi Serna
- Molecular Oncology Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Omar S.M. El Nahhas
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
| | - Irene Sansano
- Pathology Department, Vall d'Hebron University Hospital (VHUH), Barcelona, Spain
| | - Siarhei Mauchanski
- Molecular Oncology Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Cristina Viaplana
- Oncology Data Science (ODysSey) Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Julien Calderaro
- Assistance Publique-Hôpitaux de Paris, Département de Pathologie, CHU Henri Mondor, Créteil, France
- Université Paris-Est Créteil, Faculté de Médecine, Créteil, France
| | - Rodrigo A. Toledo
- Biomakers and Clonal Dynamics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Rodrigo Dienstmann
- Oncology Data Science (ODysSey) Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Rami S. Vanguri
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jennifer L. Sauter
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Sohrab P. Shah
- Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Elena Garralda
- Department of Medical Oncology, Vall d'Hebron University Hospital and Institute of Oncology (VHIO), Barcelona, Spain
| | - Paolo Nuciforo
- Molecular Oncology Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Raquel Perez-Lopez
- Radiomics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
- Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
- Department of Medicine I, University Hospital Dresden, Dresden, Germany
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
10
|
Guitton T, Allaume P, Rabilloud N, Rioux-Leclercq N, Henno S, Turlin B, Galibert-Anne MD, Lièvre A, Lespagnol A, Pécot T, Kammerer-Jacquet SF. Artificial Intelligence in Predicting Microsatellite Instability and KRAS, BRAF Mutations from Whole-Slide Images in Colorectal Cancer: A Systematic Review. Diagnostics (Basel) 2023; 14:99. [PMID: 38201408 PMCID: PMC10795725 DOI: 10.3390/diagnostics14010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Mismatch repair deficiency (d-MMR)/microsatellite instability (MSI), KRAS, and BRAF mutational status are crucial for treating advanced colorectal cancer patients. Traditional methods like immunohistochemistry or polymerase chain reaction (PCR) can be challenged by artificial intelligence (AI) based on whole slide images (WSI) to predict tumor status. In this systematic review, we evaluated the role of AI in predicting MSI status, KRAS, and BRAF mutations in colorectal cancer. Studies published in PubMed up to June 2023 were included (n = 17), and we reported the risk of bias and the performance for each study. Some studies were impacted by the reduced number of slides included in the data set and the lack of external validation cohorts. Deep learning models for the d-MMR/MSI status showed a good performance in training cohorts (mean AUC = 0.89, [0.74-0.97]) but slightly less than expected in the validation cohort when available (mean AUC = 0.82, [0.63-0.98]). Contrary to the MSI status, the prediction of KRAS and BRAF mutations was less explored with a less robust methodology. The performance was lower, with a maximum of 0.77 in the training cohort, 0.58 in the validation cohort for KRAS, and 0.82 AUC in the training cohort for BRAF.
Collapse
Affiliation(s)
- Theo Guitton
- Department of Pathology CHU de Rennes, Rennes 1 University, Pontchaillou Hospital, 2 Rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France; (P.A.); (N.R.-L.); (S.-F.K.-J.)
| | - Pierre Allaume
- Department of Pathology CHU de Rennes, Rennes 1 University, Pontchaillou Hospital, 2 Rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France; (P.A.); (N.R.-L.); (S.-F.K.-J.)
| | - Noémie Rabilloud
- Impact TEAM, Laboratoire Traitement du Signal et de l’Image (LTSI) INSERM, Rennes 1 University, Pontchaillou Hospital, CEDEX 09, 35033 Rennes, France
| | - Nathalie Rioux-Leclercq
- Department of Pathology CHU de Rennes, Rennes 1 University, Pontchaillou Hospital, 2 Rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France; (P.A.); (N.R.-L.); (S.-F.K.-J.)
| | - Sébastien Henno
- Department of Pathology CHU de Rennes, Rennes 1 University, Pontchaillou Hospital, 2 Rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France; (P.A.); (N.R.-L.); (S.-F.K.-J.)
| | - Bruno Turlin
- Department of Pathology CHU de Rennes, Rennes 1 University, Pontchaillou Hospital, 2 Rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France; (P.A.); (N.R.-L.); (S.-F.K.-J.)
| | - Marie-Dominique Galibert-Anne
- Department of Molecular Genetics and Medical Genomics CHU de Rennes, Rennes 1 University, Pontchaillou Hospital, 2 Rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France; (M.-D.G.-A.); (A.L.)
| | - Astrid Lièvre
- Department of Gastro-Entrology CHU de Rennes, Rennes 1 University, Pontchaillou Hospital, 2 Rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France;
| | - Alexandra Lespagnol
- Department of Molecular Genetics and Medical Genomics CHU de Rennes, Rennes 1 University, Pontchaillou Hospital, 2 Rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France; (M.-D.G.-A.); (A.L.)
| | - Thierry Pécot
- Facility for Artificial Intelligence and Image Analysis (FAIIA), Biosit UAR 3480 CNRS-US18 INSERM, Rennes University, 2 Avenue du Professeur Léon Bernard, 35042 Rennes, France
| | - Solène-Florence Kammerer-Jacquet
- Department of Pathology CHU de Rennes, Rennes 1 University, Pontchaillou Hospital, 2 Rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France; (P.A.); (N.R.-L.); (S.-F.K.-J.)
- Impact TEAM, Laboratoire Traitement du Signal et de l’Image (LTSI) INSERM, Rennes 1 University, Pontchaillou Hospital, CEDEX 09, 35033 Rennes, France
| |
Collapse
|
11
|
Tavolara TE, Su Z, Gurcan MN, Niazi MKK. One label is all you need: Interpretable AI-enhanced histopathology for oncology. Semin Cancer Biol 2023; 97:70-85. [PMID: 37832751 DOI: 10.1016/j.semcancer.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
Artificial Intelligence (AI)-enhanced histopathology presents unprecedented opportunities to benefit oncology through interpretable methods that require only one overall label per hematoxylin and eosin (H&E) slide with no tissue-level annotations. We present a structured review of these methods organized by their degree of verifiability and by commonly recurring application areas in oncological characterization. First, we discuss morphological markers (tumor presence/absence, metastases, subtypes, grades) in which AI-identified regions of interest (ROIs) within whole slide images (WSIs) verifiably overlap with pathologist-identified ROIs. Second, we discuss molecular markers (gene expression, molecular subtyping) that are not verified via H&E but rather based on overlap with positive regions on adjacent tissue. Third, we discuss genetic markers (mutations, mutational burden, microsatellite instability, chromosomal instability) that current technologies cannot verify if AI methods spatially resolve specific genetic alterations. Fourth, we discuss the direct prediction of survival to which AI-identified histopathological features quantitatively correlate but are nonetheless not mechanistically verifiable. Finally, we discuss in detail several opportunities and challenges for these one-label-per-slide methods within oncology. Opportunities include reducing the cost of research and clinical care, reducing the workload of clinicians, personalized medicine, and unlocking the full potential of histopathology through new imaging-based biomarkers. Current challenges include explainability and interpretability, validation via adjacent tissue sections, reproducibility, data availability, computational needs, data requirements, domain adaptability, external validation, dataset imbalances, and finally commercialization and clinical potential. Ultimately, the relative ease and minimum upfront cost with which relevant data can be collected in addition to the plethora of available AI methods for outcome-driven analysis will surmount these current limitations and achieve the innumerable opportunities associated with AI-driven histopathology for the benefit of oncology.
Collapse
Affiliation(s)
- Thomas E Tavolara
- Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Ziyu Su
- Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Metin N Gurcan
- Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - M Khalid Khan Niazi
- Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
12
|
Bilal M, Tsang YW, Ali M, Graham S, Hero E, Wahab N, Dodd K, Sahota H, Wu S, Lu W, Jahanifar M, Robinson A, Azam A, Benes K, Nimir M, Hewitt K, Bhalerao A, Eldaly H, Raza SEA, Gopalakrishnan K, Minhas F, Snead D, Rajpoot N. Development and validation of artificial intelligence-based prescreening of large-bowel biopsies taken in the UK and Portugal: a retrospective cohort study. Lancet Digit Health 2023; 5:e786-e797. [PMID: 37890902 DOI: 10.1016/s2589-7500(23)00148-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/10/2023] [Accepted: 07/25/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Histopathological examination is a crucial step in the diagnosis and treatment of many major diseases. Aiming to facilitate diagnostic decision making and improve the workload of pathologists, we developed an artificial intelligence (AI)-based prescreening tool that analyses whole-slide images (WSIs) of large-bowel biopsies to identify typical, non-neoplastic, and neoplastic biopsies. METHODS This retrospective cohort study was conducted with an internal development cohort of slides acquired from a hospital in the UK and three external validation cohorts of WSIs acquired from two hospitals in the UK and one clinical laboratory in Portugal. To learn the differential histological patterns from digitised WSIs of large-bowel biopsy slides, our proposed weakly supervised deep-learning model (Colorectal AI Model for Abnormality Detection [CAIMAN]) used slide-level diagnostic labels and no detailed cell or region-level annotations. The method was developed with an internal development cohort of 5054 biopsy slides from 2080 patients that were labelled with corresponding diagnostic categories assigned by pathologists. The three external validation cohorts, with a total of 1536 slides, were used for independent validation of CAIMAN. Each WSI was classified into one of three classes (ie, typical, atypical non-neoplastic, and atypical neoplastic). Prediction scores of image tiles were aggregated into three prediction scores for the whole slide, one for its likelihood of being typical, one for its likelihood of being non-neoplastic, and one for its likelihood of being neoplastic. The assessment of the external validation cohorts was conducted by the trained and frozen CAIMAN model. To evaluate model performance, we calculated area under the convex hull of the receiver operating characteristic curve (AUROC), area under the precision-recall curve, and specificity compared with our previously published iterative draw and rank sampling (IDaRS) algorithm. We also generated heat maps and saliency maps to analyse and visualise the relationship between the WSI diagnostic labels and spatial features of the tissue microenvironment. The main outcome of this study was the ability of CAIMAN to accurately identify typical and atypical WSIs of colon biopsies, which could potentially facilitate automatic removing of typical biopsies from the diagnostic workload in clinics. FINDINGS A randomly selected subset of all large bowel biopsies was obtained between Jan 1, 2012, and Dec 31, 2017. The AI training, validation, and assessments were done between Jan 1, 2021, and Sept 30, 2022. WSIs with diagnostic labels were collected between Jan 1 and Sept 30, 2022. Our analysis showed no statistically significant differences across prediction scores from CAIMAN for typical and atypical classes based on anatomical sites of the biopsy. At 0·99 sensitivity, CAIMAN (specificity 0·5592) was more accurate than an IDaRS-based weakly supervised WSI-classification pipeline (0·4629) in identifying typical and atypical biopsies on cross-validation in the internal development cohort (p<0·0001). At 0·99 sensitivity, CAIMAN was also more accurate than IDaRS for two external validation cohorts (p<0·0001), but not for a third external validation cohort (p=0·10). CAIMAN provided higher specificity than IDaRS at some high-sensitivity thresholds (0·7763 vs 0·6222 for 0·95 sensitivity, 0·7126 vs 0·5407 for 0·97 sensitivity, and 0·5615 vs 0·3970 for 0·99 sensitivity on one of the external validation cohorts) and showed high classification performance in distinguishing between neoplastic biopsies (AUROC 0·9928, 95% CI 0·9927-0·9929), inflammatory biopsies (0·9658, 0·9655-0·9661), and atypical biopsies (0·9789, 0·9786-0·9792). On the three external validation cohorts, CAIMAN had AUROC values of 0·9431 (95% CI 0·9165-0·9697), 0·9576 (0·9568-0·9584), and 0·9636 (0·9615-0·9657) for the detection of atypical biopsies. Saliency maps supported the representation of disease heterogeneity in model predictions and its association with relevant histological features. INTERPRETATION CAIMAN, with its high sensitivity in detecting atypical large-bowel biopsies, might be a promising improvement in clinical workflow efficiency and diagnostic decision making in prescreening of typical colorectal biopsies. FUNDING The Pathology Image Data Lake for Analytics, Knowledge and Education Centre of Excellence; the UK Government's Industrial Strategy Challenge Fund; and Innovate UK on behalf of UK Research and Innovation.
Collapse
Affiliation(s)
- Mohsin Bilal
- Tissue Image Analytics Centre, Department of Computer Science, University of Warwick, Coventry, UK; Department of Artificial Intelligence and Data Science, National University of Computer and Emerging Sciences, Islamabad, Pakistan
| | - Yee Wah Tsang
- Department of Pathology, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK
| | - Mahmoud Ali
- Department of Pathology, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK
| | - Simon Graham
- Tissue Image Analytics Centre, Department of Computer Science, University of Warwick, Coventry, UK; Histofy, Birmingham, UK
| | - Emily Hero
- Department of Pathology, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK; Department of Pathology, University Hospitals of Leicester National Health Service Trust, Leicester, UK
| | - Noorul Wahab
- Tissue Image Analytics Centre, Department of Computer Science, University of Warwick, Coventry, UK
| | - Katherine Dodd
- Department of Pathology, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK
| | - Harvir Sahota
- Department of Pathology, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK
| | - Shaobin Wu
- Department of Pathology, East Suffolk and North Essex National Health Service Foundation Trust, Colchester, UK
| | - Wenqi Lu
- Tissue Image Analytics Centre, Department of Computer Science, University of Warwick, Coventry, UK
| | - Mostafa Jahanifar
- Tissue Image Analytics Centre, Department of Computer Science, University of Warwick, Coventry, UK
| | - Andrew Robinson
- Department of Pathology, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK
| | - Ayesha Azam
- Department of Pathology, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK
| | - Ksenija Benes
- Department of Pathology, The Royal Wolverhampton National Health Service Trust, Wolverhampton, UK
| | - Mohammed Nimir
- Department of Pathology, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK
| | - Katherine Hewitt
- Department of Pathology, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK
| | - Abhir Bhalerao
- Tissue Image Analytics Centre, Department of Computer Science, University of Warwick, Coventry, UK
| | - Hesham Eldaly
- Department of Pathology, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK
| | - Shan E Ahmed Raza
- Tissue Image Analytics Centre, Department of Computer Science, University of Warwick, Coventry, UK
| | - Kishore Gopalakrishnan
- Department of Pathology, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK
| | - Fayyaz Minhas
- Tissue Image Analytics Centre, Department of Computer Science, University of Warwick, Coventry, UK
| | - David Snead
- Warwick Medical School, University of Warwick, Coventry, UK; Department of Pathology, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK; Histofy, Birmingham, UK
| | - Nasir Rajpoot
- Tissue Image Analytics Centre, Department of Computer Science, University of Warwick, Coventry, UK; Department of Pathology, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK; Histofy, Birmingham, UK; The Alan Turing Institute, London, UK.
| |
Collapse
|
13
|
Sehring J, Dohmen H, Selignow C, Schmid K, Grau S, Stein M, Uhl E, Mukhopadhyay A, Németh A, Amsel D, Acker T. Leveraging Attention-Based Convolutional Neural Networks for Meningioma Classification in Computational Histopathology. Cancers (Basel) 2023; 15:5190. [PMID: 37958364 PMCID: PMC10647687 DOI: 10.3390/cancers15215190] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Convolutional neural networks (CNNs) are becoming increasingly valuable tools for advanced computational histopathology, promoting precision medicine through exceptional visual decoding abilities. Meningiomas, the most prevalent primary intracranial tumors, necessitate accurate grading and classification for informed clinical decision-making. Recently, DNA methylation-based molecular classification of meningiomas has proven to be more effective in predicting tumor recurrence than traditional histopathological methods. However, DNA methylation profiling is expensive, labor-intensive, and not widely accessible. Consequently, a digital histology-based prediction of DNA methylation classes would be advantageous, complementing molecular classification. In this study, we developed and rigorously assessed an attention-based multiple-instance deep neural network for predicting meningioma methylation classes using tumor methylome data from 142 (+51) patients and corresponding hematoxylin-eosin-stained histological sections. Pairwise analysis of sample cohorts from three meningioma methylation classes demonstrated high accuracy in two combinations. The performance of our approach was validated using an independent set of 51 meningioma patient samples. Importantly, attention map visualization revealed that the algorithm primarily focuses on tumor regions deemed significant by neuropathologists, offering insights into the decision-making process of the CNN. Our findings highlight the capacity of CNNs to effectively harness phenotypic information from histological sections through computerized images for precision medicine. Notably, this study is the first demonstration of predicting clinically relevant DNA methylome information using computer vision applied to standard histopathology. The introduced AI framework holds great potential in supporting, augmenting, and expediting meningioma classification in the future.
Collapse
Affiliation(s)
- Jannik Sehring
- Institute of Neuropathology, Justus Liebig University Giessen, Arndtstr. 16, D-35392 Giessen, Germany; (J.S.)
| | - Hildegard Dohmen
- Institute of Neuropathology, Justus Liebig University Giessen, Arndtstr. 16, D-35392 Giessen, Germany; (J.S.)
| | - Carmen Selignow
- Institute of Neuropathology, Justus Liebig University Giessen, Arndtstr. 16, D-35392 Giessen, Germany; (J.S.)
| | - Kai Schmid
- Institute of Neuropathology, Justus Liebig University Giessen, Arndtstr. 16, D-35392 Giessen, Germany; (J.S.)
| | - Stefan Grau
- Department of Neurosurgery, Hospital Fulda, Pacelliallee 4, D-36043 Fulda, Germany
| | - Marco Stein
- Department of Neurosurgery, University Hospital Gießen, Klinikstr. 33, D-35392 Giessen, Germany
| | - Eberhard Uhl
- Department of Neurosurgery, University Hospital Gießen, Klinikstr. 33, D-35392 Giessen, Germany
| | - Anirban Mukhopadhyay
- Department of Computer Science, Technical University of Darmstadt, Fraunhoferstraße 5, D-64283 Darmstadt, Germany
| | - Attila Németh
- Institute of Neuropathology, Justus Liebig University Giessen, Arndtstr. 16, D-35392 Giessen, Germany; (J.S.)
| | - Daniel Amsel
- Institute of Neuropathology, Justus Liebig University Giessen, Arndtstr. 16, D-35392 Giessen, Germany; (J.S.)
| | - Till Acker
- Institute of Neuropathology, Justus Liebig University Giessen, Arndtstr. 16, D-35392 Giessen, Germany; (J.S.)
| |
Collapse
|
14
|
Wang W, Zhao Y, Teng L, Yan J, Guo Y, Qiu Y, Ji Y, Yu B, Pei D, Duan W, Wang M, Wang L, Duan J, Sun Q, Wang S, Duan H, Sun C, Guo Y, Luo L, Guo Z, Guan F, Wang Z, Xing A, Liu Z, Zhang H, Cui L, Zhang L, Jiang G, Yan D, Liu X, Zheng H, Liang D, Li W, Li ZC, Zhang Z. Neuropathologist-level integrated classification of adult-type diffuse gliomas using deep learning from whole-slide pathological images. Nat Commun 2023; 14:6359. [PMID: 37821431 PMCID: PMC10567721 DOI: 10.1038/s41467-023-41195-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/16/2023] [Indexed: 10/13/2023] Open
Abstract
Current diagnosis of glioma types requires combining both histological features and molecular characteristics, which is an expensive and time-consuming procedure. Determining the tumor types directly from whole-slide images (WSIs) is of great value for glioma diagnosis. This study presents an integrated diagnosis model for automatic classification of diffuse gliomas from annotation-free standard WSIs. Our model is developed on a training cohort (n = 1362) and a validation cohort (n = 340), and tested on an internal testing cohort (n = 289) and two external cohorts (n = 305 and 328, respectively). The model can learn imaging features containing both pathological morphology and underlying biological clues to achieve the integrated diagnosis. Our model achieves high performance with area under receiver operator curve all above 0.90 in classifying major tumor types, in identifying tumor grades within type, and especially in distinguishing tumor genotypes with shared histological features. This integrated diagnosis model has the potential to be used in clinical scenarios for automated and unbiased classification of adult-type diffuse gliomas.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanshen Zhao
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lianghong Teng
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Guo
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yuning Qiu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuchen Ji
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bin Yu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dongling Pei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenchao Duan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Minkai Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingxian Duan
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiuchang Sun
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shengnan Wang
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Huanli Duan
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chen Sun
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lin Luo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhixuan Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fangzhan Guan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zilong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Aoqi Xing
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhongyi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongyan Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li Cui
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lan Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guozhong Jiang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hairong Zheng
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| | - Dong Liang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| | - Wencai Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Zhi-Cheng Li
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, China.
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China.
- National Innovation Center for Advanced Medical Devices, Shenzhen, China.
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
15
|
Khader F, Müller-Franzes G, Wang T, Han T, Tayebi Arasteh S, Haarburger C, Stegmaier J, Bressem K, Kuhl C, Nebelung S, Kather JN, Truhn D. Multimodal Deep Learning for Integrating Chest Radiographs and Clinical Parameters: A Case for Transformers. Radiology 2023; 309:e230806. [PMID: 37787671 DOI: 10.1148/radiol.230806] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Background Clinicians consider both imaging and nonimaging data when diagnosing diseases; however, current machine learning approaches primarily consider data from a single modality. Purpose To develop a neural network architecture capable of integrating multimodal patient data and compare its performance to models incorporating a single modality for diagnosing up to 25 pathologic conditions. Materials and Methods In this retrospective study, imaging and nonimaging patient data were extracted from the Medical Information Mart for Intensive Care (MIMIC) database and an internal database comprised of chest radiographs and clinical parameters inpatients in the intensive care unit (ICU) (January 2008 to December 2020). The MIMIC and internal data sets were each split into training (n = 33 893, n = 28 809), validation (n = 740, n = 7203), and test (n = 1909, n = 9004) sets. A novel transformer-based neural network architecture was trained to diagnose up to 25 conditions using nonimaging data alone, imaging data alone, or multimodal data. Diagnostic performance was assessed using area under the receiver operating characteristic curve (AUC) analysis. Results The MIMIC and internal data sets included 36 542 patients (mean age, 63 years ± 17 [SD]; 20 567 male patients) and 45 016 patients (mean age, 66 years ± 16; 27 577 male patients), respectively. The multimodal model showed improved diagnostic performance for all pathologic conditions. For the MIMIC data set, the mean AUC was 0.77 (95% CI: 0.77, 0.78) when both chest radiographs and clinical parameters were used, compared with 0.70 (95% CI: 0.69, 0.71; P < .001) for only chest radiographs and 0.72 (95% CI: 0.72, 0.73; P < .001) for only clinical parameters. These findings were confirmed on the internal data set. Conclusion A model trained on imaging and nonimaging data outperformed models trained on only one type of data for diagnosing multiple diseases in patients in an ICU setting. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Kitamura and Topol in this issue.
Collapse
Affiliation(s)
- Firas Khader
- From the Department of Diagnostic and Interventional Radiology (F.K., G.M.F., T.W., S.T.A., C.K., S.N., D.T.) and Department of Medicine III (J.N.K.), University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; Physics of Molecular Imaging Systems, Institute of Experimental Molecular Imaging (T.H.), and Institute of Imaging and Computer Vision (J.S.), RWTH Aachen University, Aachen, Germany; Ocumeda, Munich, Germany (C.H.); Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (K.B.); Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany (J.N.K.); Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK (J.N.K.); and Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany (J.N.K.)
| | - Gustav Müller-Franzes
- From the Department of Diagnostic and Interventional Radiology (F.K., G.M.F., T.W., S.T.A., C.K., S.N., D.T.) and Department of Medicine III (J.N.K.), University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; Physics of Molecular Imaging Systems, Institute of Experimental Molecular Imaging (T.H.), and Institute of Imaging and Computer Vision (J.S.), RWTH Aachen University, Aachen, Germany; Ocumeda, Munich, Germany (C.H.); Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (K.B.); Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany (J.N.K.); Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK (J.N.K.); and Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany (J.N.K.)
| | - Tianci Wang
- From the Department of Diagnostic and Interventional Radiology (F.K., G.M.F., T.W., S.T.A., C.K., S.N., D.T.) and Department of Medicine III (J.N.K.), University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; Physics of Molecular Imaging Systems, Institute of Experimental Molecular Imaging (T.H.), and Institute of Imaging and Computer Vision (J.S.), RWTH Aachen University, Aachen, Germany; Ocumeda, Munich, Germany (C.H.); Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (K.B.); Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany (J.N.K.); Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK (J.N.K.); and Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany (J.N.K.)
| | - Tianyu Han
- From the Department of Diagnostic and Interventional Radiology (F.K., G.M.F., T.W., S.T.A., C.K., S.N., D.T.) and Department of Medicine III (J.N.K.), University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; Physics of Molecular Imaging Systems, Institute of Experimental Molecular Imaging (T.H.), and Institute of Imaging and Computer Vision (J.S.), RWTH Aachen University, Aachen, Germany; Ocumeda, Munich, Germany (C.H.); Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (K.B.); Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany (J.N.K.); Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK (J.N.K.); and Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany (J.N.K.)
| | - Soroosh Tayebi Arasteh
- From the Department of Diagnostic and Interventional Radiology (F.K., G.M.F., T.W., S.T.A., C.K., S.N., D.T.) and Department of Medicine III (J.N.K.), University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; Physics of Molecular Imaging Systems, Institute of Experimental Molecular Imaging (T.H.), and Institute of Imaging and Computer Vision (J.S.), RWTH Aachen University, Aachen, Germany; Ocumeda, Munich, Germany (C.H.); Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (K.B.); Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany (J.N.K.); Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK (J.N.K.); and Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany (J.N.K.)
| | - Christoph Haarburger
- From the Department of Diagnostic and Interventional Radiology (F.K., G.M.F., T.W., S.T.A., C.K., S.N., D.T.) and Department of Medicine III (J.N.K.), University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; Physics of Molecular Imaging Systems, Institute of Experimental Molecular Imaging (T.H.), and Institute of Imaging and Computer Vision (J.S.), RWTH Aachen University, Aachen, Germany; Ocumeda, Munich, Germany (C.H.); Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (K.B.); Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany (J.N.K.); Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK (J.N.K.); and Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany (J.N.K.)
| | - Johannes Stegmaier
- From the Department of Diagnostic and Interventional Radiology (F.K., G.M.F., T.W., S.T.A., C.K., S.N., D.T.) and Department of Medicine III (J.N.K.), University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; Physics of Molecular Imaging Systems, Institute of Experimental Molecular Imaging (T.H.), and Institute of Imaging and Computer Vision (J.S.), RWTH Aachen University, Aachen, Germany; Ocumeda, Munich, Germany (C.H.); Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (K.B.); Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany (J.N.K.); Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK (J.N.K.); and Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany (J.N.K.)
| | - Keno Bressem
- From the Department of Diagnostic and Interventional Radiology (F.K., G.M.F., T.W., S.T.A., C.K., S.N., D.T.) and Department of Medicine III (J.N.K.), University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; Physics of Molecular Imaging Systems, Institute of Experimental Molecular Imaging (T.H.), and Institute of Imaging and Computer Vision (J.S.), RWTH Aachen University, Aachen, Germany; Ocumeda, Munich, Germany (C.H.); Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (K.B.); Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany (J.N.K.); Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK (J.N.K.); and Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany (J.N.K.)
| | - Christiane Kuhl
- From the Department of Diagnostic and Interventional Radiology (F.K., G.M.F., T.W., S.T.A., C.K., S.N., D.T.) and Department of Medicine III (J.N.K.), University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; Physics of Molecular Imaging Systems, Institute of Experimental Molecular Imaging (T.H.), and Institute of Imaging and Computer Vision (J.S.), RWTH Aachen University, Aachen, Germany; Ocumeda, Munich, Germany (C.H.); Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (K.B.); Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany (J.N.K.); Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK (J.N.K.); and Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany (J.N.K.)
| | - Sven Nebelung
- From the Department of Diagnostic and Interventional Radiology (F.K., G.M.F., T.W., S.T.A., C.K., S.N., D.T.) and Department of Medicine III (J.N.K.), University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; Physics of Molecular Imaging Systems, Institute of Experimental Molecular Imaging (T.H.), and Institute of Imaging and Computer Vision (J.S.), RWTH Aachen University, Aachen, Germany; Ocumeda, Munich, Germany (C.H.); Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (K.B.); Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany (J.N.K.); Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK (J.N.K.); and Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany (J.N.K.)
| | - Jakob Nikolas Kather
- From the Department of Diagnostic and Interventional Radiology (F.K., G.M.F., T.W., S.T.A., C.K., S.N., D.T.) and Department of Medicine III (J.N.K.), University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; Physics of Molecular Imaging Systems, Institute of Experimental Molecular Imaging (T.H.), and Institute of Imaging and Computer Vision (J.S.), RWTH Aachen University, Aachen, Germany; Ocumeda, Munich, Germany (C.H.); Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (K.B.); Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany (J.N.K.); Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK (J.N.K.); and Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany (J.N.K.)
| | - Daniel Truhn
- From the Department of Diagnostic and Interventional Radiology (F.K., G.M.F., T.W., S.T.A., C.K., S.N., D.T.) and Department of Medicine III (J.N.K.), University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; Physics of Molecular Imaging Systems, Institute of Experimental Molecular Imaging (T.H.), and Institute of Imaging and Computer Vision (J.S.), RWTH Aachen University, Aachen, Germany; Ocumeda, Munich, Germany (C.H.); Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (K.B.); Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany (J.N.K.); Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK (J.N.K.); and Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany (J.N.K.)
| |
Collapse
|
16
|
Jing Y, Li C, Du T, Jiang T, Sun H, Yang J, Shi L, Gao M, Grzegorzek M, Li X. A comprehensive survey of intestine histopathological image analysis using machine vision approaches. Comput Biol Med 2023; 165:107388. [PMID: 37696178 DOI: 10.1016/j.compbiomed.2023.107388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/06/2023] [Accepted: 08/25/2023] [Indexed: 09/13/2023]
Abstract
Colorectal Cancer (CRC) is currently one of the most common and deadly cancers. CRC is the third most common malignancy and the fourth leading cause of cancer death worldwide. It ranks as the second most frequent cause of cancer-related deaths in the United States and other developed countries. Histopathological images contain sufficient phenotypic information, they play an indispensable role in the diagnosis and treatment of CRC. In order to improve the objectivity and diagnostic efficiency for image analysis of intestinal histopathology, Computer-aided Diagnosis (CAD) methods based on machine learning (ML) are widely applied in image analysis of intestinal histopathology. In this investigation, we conduct a comprehensive study on recent ML-based methods for image analysis of intestinal histopathology. First, we discuss commonly used datasets from basic research studies with knowledge of intestinal histopathology relevant to medicine. Second, we introduce traditional ML methods commonly used in intestinal histopathology, as well as deep learning (DL) methods. Then, we provide a comprehensive review of the recent developments in ML methods for segmentation, classification, detection, and recognition, among others, for histopathological images of the intestine. Finally, the existing methods have been studied, and the application prospects of these methods in this field are given.
Collapse
Affiliation(s)
- Yujie Jing
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, Liaoning, China
| | - Chen Li
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, Liaoning, China.
| | - Tianming Du
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, Liaoning, China
| | - Tao Jiang
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; International Joint Institute of Robotics and Intelligent Systems, Chengdu University of Information Technology, Chengdu, China
| | - Hongzan Sun
- Shengjing Hospital of China Medical University, Shenyang, China
| | - Jinzhu Yang
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, Liaoning, China
| | - Liyu Shi
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, Liaoning, China
| | - Minghe Gao
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, Liaoning, China
| | - Marcin Grzegorzek
- Institute for Medical Informatics, University of Luebeck, Luebeck, Germany; Department of Knowledge Engineering, University of Economics in Katowice, Katowice, Poland
| | - Xiaoyan Li
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China.
| |
Collapse
|
17
|
Wagner SJ, Reisenbüchler D, West NP, Niehues JM, Zhu J, Foersch S, Veldhuizen GP, Quirke P, Grabsch HI, van den Brandt PA, Hutchins GGA, Richman SD, Yuan T, Langer R, Jenniskens JCA, Offermans K, Mueller W, Gray R, Gruber SB, Greenson JK, Rennert G, Bonner JD, Schmolze D, Jonnagaddala J, Hawkins NJ, Ward RL, Morton D, Seymour M, Magill L, Nowak M, Hay J, Koelzer VH, Church DN, Matek C, Geppert C, Peng C, Zhi C, Ouyang X, James JA, Loughrey MB, Salto-Tellez M, Brenner H, Hoffmeister M, Truhn D, Schnabel JA, Boxberg M, Peng T, Kather JN. Transformer-based biomarker prediction from colorectal cancer histology: A large-scale multicentric study. Cancer Cell 2023; 41:1650-1661.e4. [PMID: 37652006 PMCID: PMC10507381 DOI: 10.1016/j.ccell.2023.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/18/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023]
Abstract
Deep learning (DL) can accelerate the prediction of prognostic biomarkers from routine pathology slides in colorectal cancer (CRC). However, current approaches rely on convolutional neural networks (CNNs) and have mostly been validated on small patient cohorts. Here, we develop a new transformer-based pipeline for end-to-end biomarker prediction from pathology slides by combining a pre-trained transformer encoder with a transformer network for patch aggregation. Our transformer-based approach substantially improves the performance, generalizability, data efficiency, and interpretability as compared with current state-of-the-art algorithms. After training and evaluating on a large multicenter cohort of over 13,000 patients from 16 colorectal cancer cohorts, we achieve a sensitivity of 0.99 with a negative predictive value of over 0.99 for prediction of microsatellite instability (MSI) on surgical resection specimens. We demonstrate that resection specimen-only training reaches clinical-grade performance on endoscopic biopsy tissue, solving a long-standing diagnostic problem.
Collapse
Affiliation(s)
- Sophia J Wagner
- Helmholtz Munich - German Research Center for Environment and Health, Munich, Germany; School of Computation, Information and Technology, Technical University of Munich, Munich, Germany; Else Kroener Fresenius Center for Digital Health (EFFZ), Technical University Dresden, Dresden, Germany
| | - Daniel Reisenbüchler
- Helmholtz Munich - German Research Center for Environment and Health, Munich, Germany
| | - Nicholas P West
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany
| | - Jan Moritz Niehues
- Else Kroener Fresenius Center for Digital Health (EFFZ), Technical University Dresden, Dresden, Germany
| | - Jiefu Zhu
- Else Kroener Fresenius Center for Digital Health (EFFZ), Technical University Dresden, Dresden, Germany
| | - Sebastian Foersch
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany
| | | | - Philip Quirke
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Heike I Grabsch
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK; Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Piet A van den Brandt
- Department of Epidemiology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Gordon G A Hutchins
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Susan D Richman
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Tanwei Yuan
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rupert Langer
- Institute of Pathology und Molecular Pathology, Johannes Kepler University Hospital Linz, Linz, Österreich
| | - Josien C A Jenniskens
- Department of Epidemiology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Kelly Offermans
- Department of Epidemiology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | | | - Richard Gray
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Stephen B Gruber
- Center for Precision Medicine and Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Joel K Greenson
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Gad Rennert
- Department of Community Medicine & Epidemiology, Lady Davis Carmel Medical Center, Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; Steve and Cindy Rasmussen Institute for Genomic Medicine, Lady Davis Carmel Medical Center and Technion Faculty of Medicine, Clalit National Cancer Control Center, Haifa, Israel
| | - Joseph D Bonner
- Department of Community Medicine & Epidemiology, Lady Davis Carmel Medical Center, Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Daniel Schmolze
- Center for Precision Medicine and Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Jitendra Jonnagaddala
- School of Population Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Nicholas J Hawkins
- School of Medical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Robyn L Ward
- School of Medical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Dion Morton
- University Hospital Birmingham, Birmingham, UK
| | | | - Laura Magill
- University of Birmingham Clinical Trials Unit, Birmingham, UK
| | - Marta Nowak
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jennifer Hay
- Glasgow Tissue Research Facility, University of Glasgow, Queen Elizabeth University Hospital, Glasgow, UK
| | - Viktor H Koelzer
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Oncology, University of Oxford, Oxford, UK; Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, UK
| | - David N Church
- Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, UK; Oxford NIHR Comprehensive Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Christian Matek
- Helmholtz Munich - German Research Center for Environment and Health, Munich, Germany; Institute of Pathology, University Hospital Erlangen, FAU Erlangen-Nuremberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC), University Hospital Erlangen, FAU Erlangen-Nuremberg, Erlangen, Germany
| | - Carol Geppert
- Institute of Pathology, University Hospital Erlangen, FAU Erlangen-Nuremberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC), University Hospital Erlangen, FAU Erlangen-Nuremberg, Erlangen, Germany
| | - Chaolong Peng
- Medical School, Jianggang Shan University, Jiangxi, China
| | - Cheng Zhi
- Department of Pathology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoming Ouyang
- Department of Pathology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jacqueline A James
- Precision Medicine Centre of Excellence, Health Sciences Building, The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK; Regional Molecular Diagnostic Service, Belfast Health and Social Care Trust, Belfast, UK; The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Maurice B Loughrey
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK; Department of Cellular Pathology, Belfast Health and Social Care Trust, Belfast, UK; Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Manuel Salto-Tellez
- Precision Medicine Centre of Excellence, Health Sciences Building, The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK; Regional Molecular Diagnostic Service, Belfast Health and Social Care Trust, Belfast, UK; Integrated Pathology Unit, Institute for Cancer Research and Royal Marsden Hospital, London, UK
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Julia A Schnabel
- Helmholtz Munich - German Research Center for Environment and Health, Munich, Germany; School of Computation, Information and Technology, Technical University of Munich, Munich, Germany; School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Melanie Boxberg
- Institute of Pathology, Technical University Munich, Munich, Germany; Institute of Pathology Munich-North, Munich, Germany
| | - Tingying Peng
- Helmholtz Munich - German Research Center for Environment and Health, Munich, Germany.
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health (EFFZ), Technical University Dresden, Dresden, Germany; Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK; Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg.
| |
Collapse
|
18
|
Brunel B, Prada P, Slimano F, Boulagnon-Rombi C, Bouché O, Piot O. Deep learning for the prediction of the chemotherapy response of metastatic colorectal cancer: comparing and combining H&E staining histopathology and infrared spectral histopathology. Analyst 2023; 148:3909-3917. [PMID: 37466305 DOI: 10.1039/d3an00627a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Colorectal cancer is a global public health problem with one of the highest death rates. It is the second most deadly type of cancer and the third most frequently diagnosed in the world. The present study focused on metastatic colorectal cancer (mCRC) patients who had been treated with chemotherapy-based regimen for which it remains uncertainty about the efficacy for all eligible patients. This is a major problem, as it is not yet possible to test different therapies in view of the consequences on the health of the patients and the risk of progression. Here, we propose a method to predict the efficacy of an anticancer treatment in an individualized way, using a deep learning model constructed on the retrospective analysis of the primary tumor of several patients. Histological sections from tumors were imaged by standard hematoxylin and eosin (HE) staining and infrared spectroscopy (IR). Images obtained were then processed by a convolutional neural network (CNN) to extract features and correlate them with the subsequent progression-free survival (PFS) of each patient. Separately, HE and IR imaging resulted in a PFS prediction with an error of 6.6 and 6.3 months respectively (28% and 26% of the average PFS). Combining both modalities allowed to decrease the error to 5.0 months (21%). The inflammatory state of the stroma seemed to be one of the main features detected by the CNN. Our pilot study suggests that multimodal imaging analyzed with deep learning methods allow to give an indication of the effectiveness of a treatment when choosing.
Collapse
Affiliation(s)
- Benjamin Brunel
- Université de Reims Champagne-Ardenne, EA7506-BioSpectroscopie Translationnelle (BioSpecT), Reims, France
- Université de Franche-Comté, CNRS, institut FEMTO-ST, F-25000 Besançon, France
| | - Pierre Prada
- Université de Reims Champagne-Ardenne, EA7506-BioSpectroscopie Translationnelle (BioSpecT), Reims, France
| | - Florian Slimano
- Université de Reims Champagne-Ardenne, EA7506-BioSpectroscopie Translationnelle (BioSpecT), Reims, France
| | | | - Olivier Bouché
- Université de Reims Champagne-Ardenne, EA7506-BioSpectroscopie Translationnelle (BioSpecT), Reims, France
- Service d'Oncologie Digestive, CHU Reims, 51100 Reims, France
| | - Olivier Piot
- Université de Reims Champagne-Ardenne, EA7506-BioSpectroscopie Translationnelle (BioSpecT), Reims, France
| |
Collapse
|
19
|
Asif A, Rajpoot K, Graham S, Snead D, Minhas F, Rajpoot N. Unleashing the potential of AI for pathology: challenges and recommendations. J Pathol 2023; 260:564-577. [PMID: 37550878 PMCID: PMC10952719 DOI: 10.1002/path.6168] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 08/09/2023]
Abstract
Computational pathology is currently witnessing a surge in the development of AI techniques, offering promise for achieving breakthroughs and significantly impacting the practices of pathology and oncology. These AI methods bring with them the potential to revolutionize diagnostic pipelines as well as treatment planning and overall patient care. Numerous peer-reviewed studies reporting remarkable performance across diverse tasks serve as a testimony to the potential of AI in the field. However, widespread adoption of these methods in clinical and pre-clinical settings still remains a challenge. In this review article, we present a detailed analysis of the major obstacles encountered during the development of effective models and their deployment in practice. We aim to provide readers with an overview of the latest developments, assist them with insights into identifying some specific challenges that may require resolution, and suggest recommendations and potential future research directions. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Amina Asif
- Tissue Image Analytics Centre, Department of Computer ScienceUniversity of WarwickCoventryUK
| | - Kashif Rajpoot
- School of Computer ScienceUniversity of BirminghamBirminghamUK
| | - Simon Graham
- Histofy Ltd, Birmingham Business ParkBirminghamUK
| | - David Snead
- Histofy Ltd, Birmingham Business ParkBirminghamUK
- Department of PathologyUniversity Hospitals Coventry & Warwickshire NHS TrustCoventryUK
| | - Fayyaz Minhas
- Tissue Image Analytics Centre, Department of Computer ScienceUniversity of WarwickCoventryUK
- Cancer Research CentreUniversity of WarwickCoventryUK
| | - Nasir Rajpoot
- Tissue Image Analytics Centre, Department of Computer ScienceUniversity of WarwickCoventryUK
- Histofy Ltd, Birmingham Business ParkBirminghamUK
- Cancer Research CentreUniversity of WarwickCoventryUK
- The Alan Turing InstituteLondonUK
| |
Collapse
|
20
|
Mondol RK, Millar EKA, Graham PH, Browne L, Sowmya A, Meijering E. hist2RNA: An Efficient Deep Learning Architecture to Predict Gene Expression from Breast Cancer Histopathology Images. Cancers (Basel) 2023; 15:2569. [PMID: 37174035 PMCID: PMC10177559 DOI: 10.3390/cancers15092569] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Gene expression can be used to subtype breast cancer with improved prediction of risk of recurrence and treatment responsiveness over that obtained using routine immunohistochemistry (IHC). However, in the clinic, molecular profiling is primarily used for ER+ breast cancer, which is costly, tissue destructive, requires specialised platforms, and takes several weeks to obtain a result. Deep learning algorithms can effectively extract morphological patterns in digital histopathology images to predict molecular phenotypes quickly and cost-effectively. We propose a new, computationally efficient approach called hist2RNA inspired by bulk RNA sequencing techniques to predict the expression of 138 genes (incorporated from 6 commercially available molecular profiling tests), including luminal PAM50 subtype, from hematoxylin and eosin (H&E)-stained whole slide images (WSIs). The training phase involves the aggregation of extracted features for each patient from a pretrained model to predict gene expression at the patient level using annotated H&E images from The Cancer Genome Atlas (TCGA, n = 335). We demonstrate successful gene prediction on a held-out test set (n = 160, corr = 0.82 across patients, corr = 0.29 across genes) and perform exploratory analysis on an external tissue microarray (TMA) dataset (n = 498) with known IHC and survival information. Our model is able to predict gene expression and luminal PAM50 subtype (Luminal A versus Luminal B) on the TMA dataset with prognostic significance for overall survival in univariate analysis (c-index = 0.56, hazard ratio = 2.16 (95% CI 1.12-3.06), p < 5 × 10-3), and independent significance in multivariate analysis incorporating standard clinicopathological variables (c-index = 0.65, hazard ratio = 1.87 (95% CI 1.30-2.68), p < 5 × 10-3). The proposed strategy achieves superior performance while requiring less training time, resulting in less energy consumption and computational cost compared to patch-based models. Additionally, hist2RNA predicts gene expression that has potential to determine luminal molecular subtypes which correlates with overall survival, without the need for expensive molecular testing.
Collapse
Affiliation(s)
- Raktim Kumar Mondol
- School of Computer Science and Engineering, UNSW Sydney, Kensington, NSW 2052, Australia; (R.K.M.); (A.S.)
| | - Ewan K. A. Millar
- Department of Anatomical Pathology, NSW Health Pathology, St. George Hospital, Kogarah, NSW 2217, Australia;
- St. George and Sutherland Clinical School, UNSW Sydney, Kensington, NSW 2052, Australia;
- Faculty of Medicine and Health Sciences, Sydney Western University, Campbelltown, NSW 2560, Australia
- University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Peter H. Graham
- St. George and Sutherland Clinical School, UNSW Sydney, Kensington, NSW 2052, Australia;
- Cancer Care Centre, St George Hospital, Sydney, NSW 2217, Australia;
| | - Lois Browne
- Cancer Care Centre, St George Hospital, Sydney, NSW 2217, Australia;
| | - Arcot Sowmya
- School of Computer Science and Engineering, UNSW Sydney, Kensington, NSW 2052, Australia; (R.K.M.); (A.S.)
| | - Erik Meijering
- School of Computer Science and Engineering, UNSW Sydney, Kensington, NSW 2052, Australia; (R.K.M.); (A.S.)
| |
Collapse
|
21
|
Morel LO, Derangère V, Arnould L, Ladoire S, Vinçon N. Preliminary evaluation of deep learning for first-line diagnostic prediction of tumor mutational status. Sci Rep 2023; 13:6927. [PMID: 37117277 PMCID: PMC10147624 DOI: 10.1038/s41598-023-34016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 04/22/2023] [Indexed: 04/30/2023] Open
Abstract
The detection of tumour gene mutations by DNA or RNA sequencing is crucial for the prescription of effective targeted therapies. Recent developments showed promising results for tumoral mutational status prediction using new deep learning based methods on histopathological images. However, it is still unknown whether these methods can be useful aside from sequencing methods for efficient population diagnosis. In this retrospective study, we use a standard prediction pipeline based on a convolutional neural network for the detection of cancer driver genomic alterations in The Cancer Genome Atlas (TCGA) breast (BRCA, n = 719), lung (LUAD, n = 541) and colon (COAD, n = 459) cancer datasets. We propose 3 diagnostic strategies using deep learning methods as first-line diagnostic tools. Focusing on cancer driver genes such as KRAS, EGFR or TP53, we show that these methods help reduce DNA sequencing by up to 49.9% with a high sensitivity (95%). In a context of limited resources, these methods increase sensitivity up to 69.8% at a 30% capacity of DNA sequencing tests, up to 85.1% at a 50% capacity, and up to 91.8% at a 70% capacity. These methods can also be used to prioritize patients with a positive predictive value up to 90.6% in the 10% patient most at risk of being mutated. Limitations of this study include the lack of external validation on non-TCGA data, dependence on prevalence of mutations in datasets, and use of a standard DL method on a limited dataset. Future studies using state-of-the-art methods and larger datasets are needed for better evaluation and clinical implementation.
Collapse
|
22
|
Niehues JM, Quirke P, West NP, Grabsch HI, van Treeck M, Schirris Y, Veldhuizen GP, Hutchins GGA, Richman SD, Foersch S, Brinker TJ, Fukuoka J, Bychkov A, Uegami W, Truhn D, Brenner H, Brobeil A, Hoffmeister M, Kather JN. Generalizable biomarker prediction from cancer pathology slides with self-supervised deep learning: A retrospective multi-centric study. Cell Rep Med 2023; 4:100980. [PMID: 36958327 PMCID: PMC10140458 DOI: 10.1016/j.xcrm.2023.100980] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/28/2022] [Accepted: 02/24/2023] [Indexed: 03/25/2023]
Abstract
Deep learning (DL) can predict microsatellite instability (MSI) from routine histopathology slides of colorectal cancer (CRC). However, it is unclear whether DL can also predict other biomarkers with high performance and whether DL predictions generalize to external patient populations. Here, we acquire CRC tissue samples from two large multi-centric studies. We systematically compare six different state-of-the-art DL architectures to predict biomarkers from pathology slides, including MSI and mutations in BRAF, KRAS, NRAS, and PIK3CA. Using a large external validation cohort to provide a realistic evaluation setting, we show that models using self-supervised, attention-based multiple-instance learning consistently outperform previous approaches while offering explainable visualizations of the indicative regions and morphologies. While the prediction of MSI and BRAF mutations reaches a clinical-grade performance, mutation prediction of PIK3CA, KRAS, and NRAS was clinically insufficient.
Collapse
Affiliation(s)
- Jan Moritz Niehues
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, 01307 Dresden, Germany; Department of Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Philip Quirke
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds LS9 7TF, UK
| | - Nicholas P West
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds LS9 7TF, UK
| | - Heike I Grabsch
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds LS9 7TF, UK; Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, the Netherlands
| | - Marko van Treeck
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, 01307 Dresden, Germany; Department of Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Yoni Schirris
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, 01307 Dresden, Germany; Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; University of Amsterdam, 1012 WP Amsterdam, the Netherlands
| | - Gregory P Veldhuizen
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, 01307 Dresden, Germany; Department of Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Gordon G A Hutchins
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds LS9 7TF, UK
| | - Susan D Richman
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds LS9 7TF, UK
| | - Sebastian Foersch
- Institute of Pathology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Titus J Brinker
- Digital Biomarkers for Oncology Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Junya Fukuoka
- Department of Pathology Informatics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan; Department of Pathology, Kameda Medical Center, Kamogawa 296-8602, Chiba, Japan
| | - Andrey Bychkov
- Department of Pathology, Kameda Medical Center, Kamogawa 296-8602, Chiba, Japan
| | - Wataru Uegami
- Department of Pathology, Kameda Medical Center, Kamogawa 296-8602, Chiba, Japan
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Alexander Brobeil
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany; Tissue Bank, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, 01307 Dresden, Germany; Department of Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany; Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds LS9 7TF, UK; Department of Medicine I, University Hospital Dresden, 01307 Dresden, Germany; Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
23
|
Tayebi Arasteh S, Isfort P, Saehn M, Mueller-Franzes G, Khader F, Kather JN, Kuhl C, Nebelung S, Truhn D. Collaborative training of medical artificial intelligence models with non-uniform labels. Sci Rep 2023; 13:6046. [PMID: 37055456 PMCID: PMC10102221 DOI: 10.1038/s41598-023-33303-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023] Open
Abstract
Due to the rapid advancements in recent years, medical image analysis is largely dominated by deep learning (DL). However, building powerful and robust DL models requires training with large multi-party datasets. While multiple stakeholders have provided publicly available datasets, the ways in which these data are labeled vary widely. For Instance, an institution might provide a dataset of chest radiographs containing labels denoting the presence of pneumonia, while another institution might have a focus on determining the presence of metastases in the lung. Training a single AI model utilizing all these data is not feasible with conventional federated learning (FL). This prompts us to propose an extension to the widespread FL process, namely flexible federated learning (FFL) for collaborative training on such data. Using 695,000 chest radiographs from five institutions from across the globe-each with differing labels-we demonstrate that having heterogeneously labeled datasets, FFL-based training leads to significant performance increase compared to conventional FL training, where only the uniformly annotated images are utilized. We believe that our proposed algorithm could accelerate the process of bringing collaborative training methods from research and simulation phase to the real-world applications in healthcare.
Collapse
Affiliation(s)
- Soroosh Tayebi Arasteh
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Peter Isfort
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Marwin Saehn
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Gustav Mueller-Franzes
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Firas Khader
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Jakob Nikolas Kather
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- Medical Faculty Carl Gustav Carus, Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Christiane Kuhl
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Sven Nebelung
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.
| |
Collapse
|
24
|
Guo B, Li X, Yang M, Zhang H, Xu XS. A robust and lightweight deep attention multiple instance learning algorithm for predicting genetic alterations. Comput Med Imaging Graph 2023; 105:102189. [PMID: 36739752 DOI: 10.1016/j.compmedimag.2023.102189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/21/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
Self-attention mechanism-based algorithms are attractive in digital pathology due to their interpretability, but suffer from computation complexity. This paper presents a novel, lightweight Attention-based Multiple Instance Mutation Learning (AMIML) model to allow small-scale attention operations for predicting gene mutations. Compared to the standard self-attention model, AMIML reduces the number of model parameters by approximately 70%. Using data for 24 clinically relevant genes from four cancer cohorts in TCGA studies (UCEC, BRCA, GBM, and KIRC), we compare AMIML with a standard self-attention model, five other deep learning models, and four traditional machine learning models. The results show that AMIML has excellent robustness and outperforms all the baseline algorithms in the vast majority of the tested genes. Conversely, the performance of the reference deep learning and machine learning models vary across different genes, and produce suboptimal prediction for certain genes. Furthermore, with the flexible and interpretable attention-based pooling mechanism, AMIML can further zero in and detect predictive image patches.
Collapse
Affiliation(s)
- Bangwei Guo
- School of Data Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Xingyu Li
- Department of Statistics and Finance, School of Management, University of Science and Technology of China, Hefei, Anhui, China
| | - Miaomiao Yang
- Clinical Pathology Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hong Zhang
- Department of Statistics and Finance, School of Management, University of Science and Technology of China, Hefei, Anhui, China.
| | - Xu Steven Xu
- Clinical Pharmacology and Quantitative Science, Genmab Inc., Princeton, NJ, USA.
| |
Collapse
|
25
|
Jiang Z, Yan L, Deng S, Gu J, Qin L, Mao F, Xue Y, Cai W, Nie X, Liu H, Shang F, Tao K, Wang J, Wu K, Cao Y, Cai K. Development and Interpretation of a Clinicopathological-Based Model for the Identification of Microsatellite Instability in Colorectal Cancer. DISEASE MARKERS 2023; 2023:5178750. [PMID: 36860582 PMCID: PMC9969972 DOI: 10.1155/2023/5178750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/05/2023] [Accepted: 01/28/2023] [Indexed: 02/20/2023]
Abstract
Chemotherapy is not recommended for patients with deficient mismatch repair (dMMR) in colorectal cancer (CRC); therefore, assessing the status of MMR is crucial for the selection of subsequent treatment. This study is aimed at building predictive models to accurately and rapidly identify dMMR. A retrospective analysis was performed at Wuhan Union Hospital between May 2017 and December 2019 based on the clinicopathological data of patients with CRC. The variables were subjected to collinearity, least absolute shrinkage and selection operator (LASSO) regression, and random forest (RF) feature screening analyses. Four sets of machine learning models (extreme gradient boosting (XGBoost), support vector machine (SVM), naive Bayes (NB), and RF) and a conventional logistic regression (LR) model were built for model training and testing. Receiver operating characteristic (ROC) curves were plotted to evaluate the predictive performance of the developed models. In total, 2279 patients were included in the study and were randomly divided into either the training or test group. Twelve clinicopathological features were incorporated into the development of the predictive models. The area under curve (AUC) values of the five predictive models were 0.8055 for XGBoost, 0.8174 for SVM, 0.7424 for NB, 8584 for RF, and 0.7835 for LR (Delong test, P value < 0.05). The results showed that the RF model exhibited the best recognition ability and outperformed the conventional LR method in identifying dMMR and proficient MMR (pMMR). Our predictive models based on routine clinicopathological data can significantly improve the diagnostic performance of dMMR and pMMR. The four machine learning models outperformed the conventional LR model.
Collapse
Affiliation(s)
- Zhenxing Jiang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Lizhao Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shenghe Deng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Junnan Gu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Le Qin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, China
| | - Fuwei Mao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Yifan Xue
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Wentai Cai
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Hongli Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fumei Shang
- Department of Medical Oncology, Nanyang Central Hospital, Nanyang, Henan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jiliang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Ke Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Yinghao Cao
- Department of Digestive Surgical Oncology, Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
26
|
Brummel K, Eerkens AL, de Bruyn M, Nijman HW. Tumour-infiltrating lymphocytes: from prognosis to treatment selection. Br J Cancer 2023; 128:451-458. [PMID: 36564565 PMCID: PMC9938191 DOI: 10.1038/s41416-022-02119-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Tumour-infiltrating lymphocytes (TILs) are considered crucial in anti-tumour immunity. Accordingly, the presence of TILs contains prognostic and predictive value. In 2011, we performed a systematic review and meta-analysis on the prognostic value of TILs across cancer types. Since then, the advent of immune checkpoint blockade (ICB) has renewed interest in the analysis of TILs. In this review, we first describe how our understanding of the prognostic value of TIL has changed over the last decade. New insights on novel TIL subsets are discussed and give a broader view on the prognostic effect of TILs in cancer. Apart from prognostic value, evidence on the predictive significance of TILs in the immune therapy era are discussed, as well as new techniques, such as machine learning that strive to incorporate these predictive capacities within clinical trials.
Collapse
Affiliation(s)
- Koen Brummel
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, Groningen, The Netherlands
| | - Anneke L Eerkens
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, Groningen, The Netherlands
| | - Marco de Bruyn
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, Groningen, The Netherlands
| | - Hans W Nijman
- University of Groningen, University Medical Center Groningen, Department of Obstetrics and Gynecology, Groningen, The Netherlands.
| |
Collapse
|
27
|
Ghaffari Laleh N, Ligero M, Perez-Lopez R, Kather JN. Facts and Hopes on the Use of Artificial Intelligence for Predictive Immunotherapy Biomarkers in Cancer. Clin Cancer Res 2023; 29:316-323. [PMID: 36083132 DOI: 10.1158/1078-0432.ccr-22-0390] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/26/2022] [Accepted: 08/29/2022] [Indexed: 01/19/2023]
Abstract
Immunotherapy by immune checkpoint inhibitors has become a standard treatment strategy for many types of solid tumors. However, the majority of patients with cancer will not respond, and predicting response to this therapy is still a challenge. Artificial intelligence (AI) methods can extract meaningful information from complex data, such as image data. In clinical routine, radiology or histopathology images are ubiquitously available. AI has been used to predict the response to immunotherapy from radiology or histopathology images, either directly or indirectly via surrogate markers. While none of these methods are currently used in clinical routine, academic and commercial developments are pointing toward potential clinical adoption in the near future. Here, we summarize the state of the art in AI-based image biomarkers for immunotherapy response based on radiology and histopathology images. We point out limitations, caveats, and pitfalls, including biases, generalizability, and explainability, which are relevant for researchers and health care providers alike, and outline key clinical use cases of this new class of predictive biomarkers.
Collapse
Affiliation(s)
| | - Marta Ligero
- Radiomics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Raquel Perez-Lopez
- Radiomics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Department of Radiology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Jakob Nikolas Kather
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.,Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom.,Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany.,Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| |
Collapse
|
28
|
Role of AI and digital pathology for colorectal immuno-oncology. Br J Cancer 2023; 128:3-11. [PMID: 36183010 DOI: 10.1038/s41416-022-01986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 01/27/2023] Open
Abstract
Immunotherapy deals with therapeutic interventions to arrest the progression of tumours using the immune system. These include checkpoint inhibitors, T-cell manipulation, cytokines, oncolytic viruses and tumour vaccines. In this paper, we present a survey of the latest developments on immunotherapy in colorectal cancer (CRC) and the role of artificial intelligence (AI) in this context. Among these, microsatellite instability (MSI) is perhaps the most popular IO biomarker globally. We first discuss the MSI status of tumours, its implications for patient management, and its relationship to immune response. In recent years, several aspiring studies have used AI to predict the MSI status of patients from digital whole-slide images (WSIs) of routine diagnostic slides. We present a survey of AI literature on the prediction of MSI and tumour mutation burden from digitised WSIs of haematoxylin and eosin-stained diagnostic slides. We discuss AI approaches in detail and elaborate their contributions, limitations and key takeaways to drive future research. We further expand this survey to other IO-related biomarkers like immune cell infiltrates and alternate data modalities like immunohistochemistry and gene expression. Finally, we underline possible future directions in immunotherapy for CRC and promise of AI to accelerate this exploration for patient benefits.
Collapse
|
29
|
Li Z, Cong Y, Chen X, Qi J, Sun J, Yan T, Yang H, Liu J, Lu E, Wang L, Li J, Hu H, Zhang C, Yang Q, Yao J, Yao P, Jiang Q, Liu W, Song J, Carin L, Chen Y, Zhao S, Gao X. Vision transformer-based weakly supervised histopathological image analysis of primary brain tumors. iScience 2022; 26:105872. [PMID: 36647383 PMCID: PMC9839963 DOI: 10.1016/j.isci.2022.105872] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/03/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
Diagnosis of primary brain tumors relies heavily on histopathology. Although various computational pathology methods have been developed for automated diagnosis of primary brain tumors, they usually require neuropathologists' annotation of region of interests or selection of image patches on whole-slide images (WSI). We developed an end-to-end Vision Transformer (ViT) - based deep learning architecture for brain tumor WSI analysis, yielding a highly interpretable deep-learning model, ViT-WSI. Based on the principle of weakly supervised machine learning, ViT-WSI accomplishes the task of major primary brain tumor type and subtype classification. Using a systematic gradient-based attribution analysis procedure, ViT-WSI can discover diagnostic histopathological features for primary brain tumors. Furthermore, we demonstrated that ViT-WSI has high predictive power of inferring the status of three diagnostic glioma molecular markers, IDH1 mutation, p53 mutation, and MGMT methylation, directly from H&E-stained histopathological images, with patient level AUC scores of 0.960, 0.874, and 0.845, respectively.
Collapse
Affiliation(s)
- Zhongxiao Li
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia,KAUST Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yuwei Cong
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People’s Republic of China
| | - Xin Chen
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Jiping Qi
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People’s Republic of China,Corresponding author
| | - Jingxian Sun
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Tao Yan
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - He Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Junsi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Enzhou Lu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Lixiang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Jiafeng Li
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Hong Hu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | | | - Quan Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Jiawei Yao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Penglei Yao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Qiuyi Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Wenwu Liu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia,Monash Data Futures Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Lawrence Carin
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia,Corresponding author
| | - Yupeng Chen
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, PR China,Corresponding author
| | - Shiguang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China,Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, Guangdong Province 518100, China,Corresponding author
| | - Xin Gao
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia,KAUST Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia,Corresponding author
| |
Collapse
|
30
|
Couture HD. Deep Learning-Based Prediction of Molecular Tumor Biomarkers from H&E: A Practical Review. J Pers Med 2022; 12:2022. [PMID: 36556243 PMCID: PMC9784641 DOI: 10.3390/jpm12122022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Molecular and genomic properties are critical in selecting cancer treatments to target individual tumors, particularly for immunotherapy. However, the methods to assess such properties are expensive, time-consuming, and often not routinely performed. Applying machine learning to H&E images can provide a more cost-effective screening method. Dozens of studies over the last few years have demonstrated that a variety of molecular biomarkers can be predicted from H&E alone using the advancements of deep learning: molecular alterations, genomic subtypes, protein biomarkers, and even the presence of viruses. This article reviews the diverse applications across cancer types and the methodology to train and validate these models on whole slide images. From bottom-up to pathologist-driven to hybrid approaches, the leading trends include a variety of weakly supervised deep learning-based approaches, as well as mechanisms for training strongly supervised models in select situations. While results of these algorithms look promising, some challenges still persist, including small training sets, rigorous validation, and model explainability. Biomarker prediction models may yield a screening method to determine when to run molecular tests or an alternative when molecular tests are not possible. They also create new opportunities in quantifying intratumoral heterogeneity and predicting patient outcomes.
Collapse
|
31
|
Tavolara TE, Gurcan MN, Niazi MKK. Contrastive Multiple Instance Learning: An Unsupervised Framework for Learning Slide-Level Representations of Whole Slide Histopathology Images without Labels. Cancers (Basel) 2022; 14:5778. [PMID: 36497258 PMCID: PMC9738801 DOI: 10.3390/cancers14235778] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
Recent methods in computational pathology have trended towards semi- and weakly-supervised methods requiring only slide-level labels. Yet, even slide-level labels may be absent or irrelevant to the application of interest, such as in clinical trials. Hence, we present a fully unsupervised method to learn meaningful, compact representations of WSIs. Our method initially trains a tile-wise encoder using SimCLR, from which subsets of tile-wise embeddings are extracted and fused via an attention-based multiple-instance learning framework to yield slide-level representations. The resulting set of intra-slide-level and inter-slide-level embeddings are attracted and repelled via contrastive loss, respectively. This resulted in slide-level representations with self-supervision. We applied our method to two tasks- (1) non-small cell lung cancer subtyping (NSCLC) as a classification prototype and (2) breast cancer proliferation scoring (TUPAC16) as a regression prototype-and achieved an AUC of 0.8641 ± 0.0115 and correlation (R2) of 0.5740 ± 0.0970, respectively. Ablation experiments demonstrate that the resulting unsupervised slide-level feature space can be fine-tuned with small datasets for both tasks. Overall, our method approaches computational pathology in a novel manner, where meaningful features can be learned from whole-slide images without the need for annotations of slide-level labels. The proposed method stands to benefit computational pathology, as it theoretically enables researchers to benefit from completely unlabeled whole-slide images.
Collapse
Affiliation(s)
- Thomas E. Tavolara
- Center for Biomedical Informatics, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | | | | |
Collapse
|
32
|
Deep learning model to predict Epstein-Barr virus associated gastric cancer in histology. Sci Rep 2022; 12:18466. [PMID: 36323712 PMCID: PMC9630260 DOI: 10.1038/s41598-022-22731-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/18/2022] [Indexed: 11/20/2022] Open
Abstract
The detection of Epstein-Barr virus (EBV) in gastric cancer patients is crucial for clinical decision making, as it is related with specific treatment responses and prognoses. Despite its importance, the limited medical resources preclude universal EBV testing. Herein, we propose a deep learning-based EBV prediction method from H&E-stained whole-slide images (WSI). Our model was developed using 319 H&E stained WSI (26 EBV positive; TCGA dataset) from the Cancer Genome Atlas, and 108 WSI (8 EBV positive; ISH dataset) from an independent institution. Our deep learning model, EBVNet consists of two sequential components: a tumor classifier and an EBV classifier. We visualized the learned representation by the classifiers using UMAP. We externally validated the model using 60 additional WSI (7 being EBV positive; HGH dataset). We compared the model's performance with those of four pathologists. EBVNet achieved an AUPRC of 0.65, whereas the four pathologists yielded a mean AUPRC of 0.41. Moreover, EBVNet achieved an negative predictive value, sensitivity, specificity, precision, and F1-score of 0.98, 0.86, 0.92, 0.60, and 0.71, respectively. Our proposed model is expected to contribute to prescreen patients for confirmatory testing, potentially to save test-related cost and labor.
Collapse
|
33
|
Ghaffari Laleh N, Truhn D, Veldhuizen GP, Han T, van Treeck M, Buelow RD, Langer R, Dislich B, Boor P, Schulz V, Kather JN. Adversarial attacks and adversarial robustness in computational pathology. Nat Commun 2022; 13:5711. [PMID: 36175413 PMCID: PMC9522657 DOI: 10.1038/s41467-022-33266-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/09/2022] [Indexed: 11/09/2022] Open
Abstract
Artificial Intelligence (AI) can support diagnostic workflows in oncology by aiding diagnosis and providing biomarkers directly from routine pathology slides. However, AI applications are vulnerable to adversarial attacks. Hence, it is essential to quantify and mitigate this risk before widespread clinical use. Here, we show that convolutional neural networks (CNNs) are highly susceptible to white- and black-box adversarial attacks in clinically relevant weakly-supervised classification tasks. Adversarially robust training and dual batch normalization (DBN) are possible mitigation strategies but require precise knowledge of the type of attack used in the inference. We demonstrate that vision transformers (ViTs) perform equally well compared to CNNs at baseline, but are orders of magnitude more robust to white- and black-box attacks. At a mechanistic level, we show that this is associated with a more robust latent representation of clinically relevant categories in ViTs compared to CNNs. Our results are in line with previous theoretical studies and provide empirical evidence that ViTs are robust learners in computational pathology. This implies that large-scale rollout of AI models in computational pathology should rely on ViTs rather than CNN-based classifiers to provide inherent protection against perturbation of the input data, especially adversarial attacks. Artificial Intelligence can support diagnostic workflows in oncology, but they are vulnerable to adversarial attacks. Here, the authors show that convolutional neural networks are highly susceptible to white- and black-box adversarial attacks in clinically relevant classification tasks.
Collapse
Affiliation(s)
- Narmin Ghaffari Laleh
- Department of Medicine III, University Hospital RWTH Aachen, RWTH Aachen university, Aachen, Germany
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, University Hospital Aachen, Aachen, Germany
| | - Gregory Patrick Veldhuizen
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Tianyu Han
- Department of Physics of Molecular Imaging Systems, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Marko van Treeck
- Department of Medicine III, University Hospital RWTH Aachen, RWTH Aachen university, Aachen, Germany
| | - Roman D Buelow
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Rupert Langer
- Institute of Pathology, University of Bern, Bern, Switzerland.,Institute of Pathology and Molecular Pathology, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - Bastian Dislich
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Peter Boor
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Volkmar Schulz
- Department of Physics of Molecular Imaging Systems, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany.,Physics Institute III B, RWTH Aachen University, Aachen, Germany.,Fraunhofer Institute for Digital Medicine MEVIS, Aachen, Germany.,Hyperion Hybrid Imaging Systems GmbH, Aachen, Germany
| | - Jakob Nikolas Kather
- Department of Medicine III, University Hospital RWTH Aachen, RWTH Aachen university, Aachen, Germany. .,Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany. .,Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany. .,Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK. .,Department of Medicine 1, University Hospital and Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany.
| |
Collapse
|
34
|
Qiao Y, Zhao L, Luo C, Luo Y, Wu Y, Li S, Bu D, Zhao Y. Multi-modality artificial intelligence in digital pathology. Brief Bioinform 2022; 23:6702380. [PMID: 36124675 PMCID: PMC9677480 DOI: 10.1093/bib/bbac367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022] Open
Abstract
In common medical procedures, the time-consuming and expensive nature of obtaining test results plagues doctors and patients. Digital pathology research allows using computational technologies to manage data, presenting an opportunity to improve the efficiency of diagnosis and treatment. Artificial intelligence (AI) has a great advantage in the data analytics phase. Extensive research has shown that AI algorithms can produce more up-to-date and standardized conclusions for whole slide images. In conjunction with the development of high-throughput sequencing technologies, algorithms can integrate and analyze data from multiple modalities to explore the correspondence between morphological features and gene expression. This review investigates using the most popular image data, hematoxylin-eosin stained tissue slide images, to find a strategic solution for the imbalance of healthcare resources. The article focuses on the role that the development of deep learning technology has in assisting doctors' work and discusses the opportunities and challenges of AI.
Collapse
Affiliation(s)
- Yixuan Qiao
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianhe Zhao
- Corresponding authors: Yi Zhao, Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences; Shandong First Medical University & Shandong Academy of Medical Sciences. Tel.: +86 10 6260 0822; Fax: +86 10 6260 1356; E-mail: ; Lianhe Zhao, Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences. Tel.: +86 18513983324; E-mail:
| | - Chunlong Luo
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yufan Luo
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wu
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Shengtong Li
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dechao Bu
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Yi Zhao
- Corresponding authors: Yi Zhao, Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences; Shandong First Medical University & Shandong Academy of Medical Sciences. Tel.: +86 10 6260 0822; Fax: +86 10 6260 1356; E-mail: ; Lianhe Zhao, Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences. Tel.: +86 18513983324; E-mail:
| |
Collapse
|
35
|
Shmatko A, Ghaffari Laleh N, Gerstung M, Kather JN. Artificial intelligence in histopathology: enhancing cancer research and clinical oncology. NATURE CANCER 2022; 3:1026-1038. [PMID: 36138135 DOI: 10.1038/s43018-022-00436-4] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
Artificial intelligence (AI) methods have multiplied our capabilities to extract quantitative information from digital histopathology images. AI is expected to reduce workload for human experts, improve the objectivity and consistency of pathology reports, and have a clinical impact by extracting hidden information from routinely available data. Here, we describe how AI can be used to predict cancer outcome, treatment response, genetic alterations and gene expression from digitized histopathology slides. We summarize the underlying technologies and emerging approaches, noting limitations, including the need for data sharing and standards. Finally, we discuss the broader implications of AI in cancer research and oncology.
Collapse
Affiliation(s)
- Artem Shmatko
- Division of AI in Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | | | - Moritz Gerstung
- Division of AI in Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK.
| | - Jakob Nikolas Kather
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.
- Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.
- Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK.
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany.
| |
Collapse
|
36
|
Fremond S, Koelzer VH, Horeweg N, Bosse T. The evolving role of morphology in endometrial cancer diagnostics: From histopathology and molecular testing towards integrative data analysis by deep learning. Front Oncol 2022; 12:928977. [PMID: 36059702 PMCID: PMC9433878 DOI: 10.3389/fonc.2022.928977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Endometrial cancer (EC) diagnostics is evolving into a system in which molecular aspects are increasingly important. The traditional histological subtype-driven classification has shifted to a molecular-based classification that stratifies EC into DNA polymerase epsilon mutated (POLEmut), mismatch repair deficient (MMRd), and p53 abnormal (p53abn), and the remaining EC as no specific molecular profile (NSMP). The molecular EC classification has been implemented in the World Health Organization 2020 classification and the 2021 European treatment guidelines, as it serves as a better basis for patient management. As a result, the integration of the molecular class with histopathological variables has become a critical focus of recent EC research. Pathologists have observed and described several morphological characteristics in association with specific genomic alterations, but these appear insufficient to accurately classify patients according to molecular subgroups. This requires pathologists to rely on molecular ancillary tests in routine workup. In this new era, it has become increasingly challenging to assign clinically relevant weights to histological and molecular features on an individual patient basis. Deep learning (DL) technology opens new options for the integrative analysis of multi-modal image and molecular datasets with clinical outcomes. Proof-of-concept studies in other cancers showed promising accuracy in predicting molecular alterations from H&E-stained tumor slide images. This suggests that some morphological characteristics that are associated with molecular alterations could be identified in EC, too, expanding the current understanding of the molecular-driven EC classification. Here in this review, we report the morphological characteristics of the molecular EC classification currently identified in the literature. Given the new challenges in EC diagnostics, this review discusses, therefore, the potential supportive role that DL could have, by providing an outlook on all relevant studies using DL on histopathology images in various cancer types with a focus on EC. Finally, we touch upon how DL might shape the management of future EC patients.
Collapse
Affiliation(s)
- Sarah Fremond
- Department of Pathology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Viktor Hendrik Koelzer
- Department of Pathology and Molecular Pathology, University Hospital and University of Zürich, Zürich, Switzerland
| | - Nanda Horeweg
- Department of Radiotherapy, Leiden University Medical Center, Leiden, Netherlands
| | - Tjalling Bosse
- Department of Pathology, Leiden University Medical Center (LUMC), Leiden, Netherlands
- *Correspondence: Tjalling Bosse,
| |
Collapse
|
37
|
Orsulic S, John J, Walts AE, Gertych A. Computational pathology in ovarian cancer. Front Oncol 2022; 12:924945. [PMID: 35965569 PMCID: PMC9372445 DOI: 10.3389/fonc.2022.924945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Histopathologic evaluations of tissue sections are key to diagnosing and managing ovarian cancer. Pathologists empirically assess and integrate visual information, such as cellular density, nuclear atypia, mitotic figures, architectural growth patterns, and higher-order patterns, to determine the tumor type and grade, which guides oncologists in selecting appropriate treatment options. Latent data embedded in pathology slides can be extracted using computational imaging. Computers can analyze digital slide images to simultaneously quantify thousands of features, some of which are visible with a manual microscope, such as nuclear size and shape, while others, such as entropy, eccentricity, and fractal dimensions, are quantitatively beyond the grasp of the human mind. Applications of artificial intelligence and machine learning tools to interpret digital image data provide new opportunities to explore and quantify the spatial organization of tissues, cells, and subcellular structures. In comparison to genomic, epigenomic, transcriptomic, and proteomic patterns, morphologic and spatial patterns are expected to be more informative as quantitative biomarkers of complex and dynamic tumor biology. As computational pathology is not limited to visual data, nuanced subvisual alterations that occur in the seemingly “normal” pre-cancer microenvironment could facilitate research in early cancer detection and prevention. Currently, efforts to maximize the utility of computational pathology are focused on integrating image data with other -omics platforms that lack spatial information, thereby providing a new way to relate the molecular, spatial, and microenvironmental characteristics of cancer. Despite a dire need for improvements in ovarian cancer prevention, early detection, and treatment, the ovarian cancer field has lagged behind other cancers in the application of computational pathology. The intent of this review is to encourage ovarian cancer research teams to apply existing and/or develop additional tools in computational pathology for ovarian cancer and actively contribute to advancing this important field.
Collapse
Affiliation(s)
- Sandra Orsulic
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, United States
- *Correspondence: Sandra Orsulic,
| | - Joshi John
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Department of Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Ann E. Walts
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Arkadiusz Gertych
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
| |
Collapse
|
38
|
Swarm learning for decentralized artificial intelligence in cancer histopathology. Nat Med 2022; 28:1232-1239. [PMID: 35469069 PMCID: PMC9205774 DOI: 10.1038/s41591-022-01768-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/02/2022] [Indexed: 02/07/2023]
Abstract
Artificial intelligence (AI) can predict the presence of molecular alterations directly from routine histopathology slides. However, training robust AI systems requires large datasets for which data collection faces practical, ethical and legal obstacles. These obstacles could be overcome with swarm learning (SL), in which partners jointly train AI models while avoiding data transfer and monopolistic data governance. Here, we demonstrate the successful use of SL in large, multicentric datasets of gigapixel histopathology images from over 5,000 patients. We show that AI models trained using SL can predict BRAF mutational status and microsatellite instability directly from hematoxylin and eosin (H&E)-stained pathology slides of colorectal cancer. We trained AI models on three patient cohorts from Northern Ireland, Germany and the United States, and validated the prediction performance in two independent datasets from the United Kingdom. Our data show that SL-trained AI models outperform most locally trained models, and perform on par with models that are trained on the merged datasets. In addition, we show that SL-based AI models are data efficient. In the future, SL can be used to train distributed AI models for any histopathology image analysis task, eliminating the need for data transfer. A decentralized, privacy-preserving machine learning framework used to train a clinically relevant AI system identifies actionable molecular alterations in patients with colorectal cancer by use of routine histopathology slides collected in real-world settings.
Collapse
|
39
|
Dent A, Diamandis P. Integrating computational pathology and proteomics to address tumor heterogeneity. J Pathol 2022; 257:445-453. [DOI: 10.1002/path.5905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/20/2022] [Accepted: 03/30/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Anglin Dent
- Department of Laboratory Medicine and Pathobiology University of Toronto Toronto Ontario M5S 1A8 Canada
- Princess Margaret Cancer Center University Health Network, Toronto, Ontario, 610 University Avenue, M5G 2C1 Canada
| | - Phedias Diamandis
- Department of Laboratory Medicine and Pathobiology University of Toronto Toronto Ontario M5S 1A8 Canada
- Princess Margaret Cancer Center University Health Network, Toronto, Ontario, 610 University Avenue, M5G 2C1 Canada
- Laboratory Medicine Program University Health Network, 200 Elizabeth Street, Toronto, ON Toronto Ontario M5G 2C4 Canada
- Department of Medical Biophysics University of Toronto Toronto Ontario M5S 1A8 Canada
| |
Collapse
|
40
|
Deep Learning on Histopathological Images for Colorectal Cancer Diagnosis: A Systematic Review. Diagnostics (Basel) 2022; 12:diagnostics12040837. [PMID: 35453885 PMCID: PMC9028395 DOI: 10.3390/diagnostics12040837] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancer (CRC) is the second most common cancer in women and the third most common in men, with an increasing incidence. Pathology diagnosis complemented with prognostic and predictive biomarker information is the first step for personalized treatment. The increased diagnostic load in the pathology laboratory, combined with the reported intra- and inter-variability in the assessment of biomarkers, has prompted the quest for reliable machine-based methods to be incorporated into the routine practice. Recently, Artificial Intelligence (AI) has made significant progress in the medical field, showing potential for clinical applications. Herein, we aim to systematically review the current research on AI in CRC image analysis. In histopathology, algorithms based on Deep Learning (DL) have the potential to assist in diagnosis, predict clinically relevant molecular phenotypes and microsatellite instability, identify histological features related to prognosis and correlated to metastasis, and assess the specific components of the tumor microenvironment.
Collapse
|
41
|
Cifci D, Foersch S, Kather JN. Artificial intelligence to identify genetic alterations in conventional histopathology. J Pathol 2022; 257:430-444. [PMID: 35342954 DOI: 10.1002/path.5898] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 11/10/2022]
Abstract
Precision oncology relies on the identification of targetable molecular alterations in tumor tissues. In many tumor types, a limited set of molecular tests is currently part of standard diagnostic workflows. However, universal testing for all targetable alterations, especially rare ones, is limited by the cost and availability of molecular assays. From 2017 to 2021, multiple studies have shown that artificial intelligence (AI) methods can predict the probability of specific genetic alterations directly from conventional hematoxylin and eosin (H&E) tissue slides. Although these methods are currently less accurate than gold-standard testing (e.g. immunohistochemistry, polymerase chain reaction or next-generation sequencing), they could be used as pre-screening tools to reduce the workload of genetic analyses. In this systematic literature review, we summarize the state of the art in predicting molecular alterations from H&E using AI. We found that AI methods perform reasonably well across multiple tumor types, although few algorithms have been broadly validated. In addition, we found that genetic alterations in FGFR, IDH, PIK3CA, BRAF, TP53 and DNA repair pathways are predictable from H&E in multiple tumor types, while many other genetic alterations have rarely been investigated or were only poorly predictable. Finally, we discuss the next steps for the implementation of AI-based surrogate tests in diagnostic workflows. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Didem Cifci
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Sebastian Foersch
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Jakob Nikolas Kather
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.,Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK.,Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
42
|
Brockmoeller S, Echle A, Ghaffari Laleh N, Eiholm S, Malmstrøm ML, Plato Kuhlmann T, Levic K, Grabsch HI, West NP, Saldanha OL, Kouvidi K, Bono A, Heij LR, Brinker TJ, Gögenür I, Quirke P, Kather JN. Deep Learning identifies inflamed fat as a risk factor for lymph node metastasis in early colorectal cancer. J Pathol 2021; 256:269-281. [PMID: 34738636 DOI: 10.1002/path.5831] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/18/2021] [Accepted: 11/01/2021] [Indexed: 11/07/2022]
Abstract
The spread of early-stage (T1 and T2) adenocarcinomas to loco-regional lymph nodes is a key event in disease progression of colorectal cancer (CRC). The cellular mechanisms behind this event are not completely understood and existing predictive biomarkers are imperfect. Here, we used an end-to-end Deep Learning algorithm to identify risk factors for lymph node metastasis (LNM) status in digitized histopathology slides of the primary CRC and its surrounding tissue. In two large population-based cohorts, we show that this system can predict the presence of more than one LNM in pT2 CRC patients with an area under the receiver operating curve (AUROC) of 0.733 (0.67-0.758) and patients with any LNM with an AUROC of 0.711 (0.597-0.797). Similarly, in pT1 CRC patients, the presence of more than one LNM or any LNM was predictable with an AUROC of 0.733 (0.644-0.778) and 0.567 (0.542-0.597), respectively. Based on these findings, we used the Deep Learning system to guide human pathology experts towards highly predictive regions for LNM in the whole slide images. This hybrid human observer and Deep Learning approach identified inflamed adipose tissue as the highest predictive feature for LNM presence. Our study is a first proof of concept that artificial intelligence (AI) systems may be able to discover potentially new biological mechanisms in cancer progression. Our Deep Learning algorithm is publicly available and can be used for biomarker discovery in any disease setting. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Scarlet Brockmoeller
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Amelie Echle
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | | | - Susanne Eiholm
- Department of Pathology, Zealand University Hospital, University of Copenhagen, Roskilde, Denmark
| | | | | | - Katarina Levic
- Department of Surgery, Herlev University Hospital, Copenhagen, Denmark
| | - Heike Irmgard Grabsch
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Nicholas P West
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | | | - Katerina Kouvidi
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Aurora Bono
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Lara R Heij
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Aachen, Germany
| | - Titus J Brinker
- Digital Biomarkers for Oncology Group, National Center for Tumour Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ismayil Gögenür
- Department of Surgery, Zealand University Hospital, University of Copenhagen, Køge, Denmark
- Gastrounit - Surgical Division, Center for Surgical Research, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark
| | - Philip Quirke
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Jakob Nikolas Kather
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- Medical Oncology, National Center of Tumour Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|