1
|
Frey Y, Haj M, Ziv Y, Elkon R, Shiloh Y. Broad repression of DNA repair genes in senescent cells identified by integration of transcriptomic data. Nucleic Acids Res 2024:gkae1257. [PMID: 39739833 DOI: 10.1093/nar/gkae1257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 11/19/2024] [Accepted: 12/06/2024] [Indexed: 01/02/2025] Open
Abstract
Cellular senescence plays a significant role in tissue aging. Senescent cells, which resist apoptosis while remaining metabolically active, generate endogenous DNA-damaging agents, primarily reactive oxygen species. Efficient DNA repair is therefore crucial in these cells, especially when they undergo senescence escape, resuming DNA replication and cellular proliferation. To investigate whether senescent cell transcriptomes reflect adequate DNA repair capacity, we conducted a comprehensive meta-analysis of 60 transcriptomic datasets comparing senescent to proliferating cells. Our analysis revealed a striking downregulation of genes encoding essential components across DNA repair pathways in senescent cells. This includes pathways active in different cell cycle phases such as nucleotide excision repair, base excision repair, nonhomologous end joining and homologous recombination repair of double-strand breaks, mismatch repair and interstrand crosslink repair. The downregulation observed suggests a significant accumulation of DNA lesions. Experimental monitoring of DNA repair readouts in cells that underwent radiation-induced senescence supported this conclusion. This phenomenon was consistent across various senescence triggers and was also observed in primary cell lines from aging individuals. These findings highlight the potential of senescent cells as 'ticking bombs' in aging-related diseases and tumors recurring following therapy-induced senescence.
Collapse
Affiliation(s)
- Yann Frey
- The David and Inez Myers Laboratory for Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Human Molecular Genetics and Biochemistry, School of Medicine, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Majd Haj
- The David and Inez Myers Laboratory for Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Human Molecular Genetics and Biochemistry, School of Medicine, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yael Ziv
- The David and Inez Myers Laboratory for Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Human Molecular Genetics and Biochemistry, School of Medicine, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, School of Medicine, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yosef Shiloh
- The David and Inez Myers Laboratory for Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Human Molecular Genetics and Biochemistry, School of Medicine, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
2
|
Magkouta S, Veroutis D, Papaspyropoulos A, Georgiou M, Lougiakis N, Pippa N, Havaki S, Palaiologou A, Thanos DF, Kambas K, Lagopati N, Boukos N, Pouli N, Marakos P, Kotsinas A, Thanos D, Evangelou K, Sampaziotis F, Tamvakopoulos C, Pispas S, Petty R, Kotopoulos N, Gorgoulis VG. Generation of a selective senolytic platform using a micelle-encapsulated Sudan Black B conjugated analog. NATURE AGING 2024:10.1038/s43587-024-00747-4. [PMID: 39730824 DOI: 10.1038/s43587-024-00747-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/14/2024] [Indexed: 12/29/2024]
Abstract
The emerging field of senolytics is centered on eliminating senescent cells to block their contribution to the progression of age-related diseases, including cancer, and to facilitate healthy aging. Enhancing the selectivity of senolytic treatments toward senescent cells stands to reduce the adverse effects associated with existing senolytic interventions. Taking advantage of lipofuscin accumulation in senescent cells, we describe here the development of a highly efficient senolytic platform consisting of a lipofuscin-binding domain scaffold, which can be conjugated with a senolytic drug via an ester bond. As a proof of concept, we present the generation of GL392, a senolytic compound that carries a dasatinib senolytic moiety. Encapsulation of the GL392 compound in a micelle nanocarrier (termed mGL392) allows for both in vitro and in vivo (in mice) selective elimination of senescent cells via targeted release of the senolytic agent with minimal systemic toxicity. Our findings suggest that this platform could be used to enhance targeting of senotherapeutics toward senescent cells.
Collapse
Affiliation(s)
- Sophia Magkouta
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Marianthi Simou and G.P. Livanos Labs, 1st Department of Critical Care and Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens,'Evangelismos' Hospital, Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Dimitris Veroutis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Angelos Papaspyropoulos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Georgiou
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, Greece
| | - Nikolaos Lougiakis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, Athens, Greece
| | - Sophia Havaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Palaiologou
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dimitris-Foivos Thanos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Nefeli Lagopati
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Nikos Boukos
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research 'Demokritos', Agia Paraskevi, Greece
| | - Nicole Pouli
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, Greece
| | - Panagiotis Marakos
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, Greece
| | - Athanassios Kotsinas
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Thanos
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Fotios Sampaziotis
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Cambridge Liver Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Constantin Tamvakopoulos
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens, Greece
| | - Russell Petty
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Nicholas Kotopoulos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK.
- Biomedical Research Foundation, Academy of Athens, Athens, Greece.
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK.
- Intelligencia, Inc., New York, NY, USA.
| |
Collapse
|
3
|
Fotopoulou A, Angelopoulou MT, Pratsinis H, Mavrogonatou E, Kletsas D. A subset of human dermal fibroblasts overexpressing Cockayne syndrome group B protein resist UVB radiation-mediated premature senescence. Aging Cell 2024:e14422. [PMID: 39698891 DOI: 10.1111/acel.14422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/23/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
Ultraviolet B (UVB) radiation is a major contributor to skin photoaging. Although mainly absorbed by the epidermis, UVB photons managing to penetrate the upper dermis affect human dermal fibroblasts (HDFs), leading, among others, to the accumulation of senescent cells. In vitro studies have shown that repeated exposures to subcytotoxic UVB radiation doses provoke HDFs' premature senescence shortly after the end of the treatment period. Here, we found that repetitive exposures to non-cytotoxic UVB radiation doses after several days lead to mixed cultures, containing both senescent cells and fibroblasts resisting senescence. "Resistant" fibroblasts were more resilient to a novel intense UVB radiation stimulus. RNA-seq analysis revealed that ERCC6, encoding Cockayne syndrome group B (CSB) protein, is up-regulated in resistant HDFs compared to young and senescent cells. CSB was found to be a key molecule conferring protection toward UVB-induced cytotoxicity and senescence, as siRNA-mediated CSB loss-of-expression rendered HDFs significantly more susceptible to a high UVB radiation dose, while cells from a CSB-deficient patient were found to be more sensitive to UVB-mediated toxicity, as well as senescence. UVB-resistant HDFs remained normal (able to undergo replicative senescence) and non-tumorigenic. Even though they formed a distinct population in-between young and senescent cells, resistant HDFs retained numerous tissue-impairing characteristics of the senescence-associated secretory phenotype, including increased matrix metalloprotease activity and promotion of epidermoid tumor xenografts in immunodeficient mice. Collectively, here we describe a novel subpopulation of HDFs showing increased resistance to UVB-mediated premature senescence while retaining undesirable traits that may negatively affect skin homeostasis.
Collapse
Affiliation(s)
- Asimina Fotopoulou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
- Department of Chemistry, University of Patras, Patras, Greece
| | - Maria T Angelopoulou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Harris Pratsinis
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Eleni Mavrogonatou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| |
Collapse
|
4
|
Magkouta S, Markaki E, Evangelou K, Petty R, Verginis P, Gorgoulis V. Decoding T cell senescence in cancer: Is revisiting required? Semin Cancer Biol 2024; 108:33-47. [PMID: 39615809 DOI: 10.1016/j.semcancer.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024]
Abstract
Senescence is an inherent cellular mechanism triggered as a response to stressful insults. It associates with several aspects of cancer progression and therapy. Senescent cells constitute a highly heterogeneous cellular population and their identification can be very challenging. In fact, the term "senescence" has been often misused. This is also true in the case of immune cells. While several studies indicate the presence of senescent-like features (mainly in T cells), senescent immune cells are poorly described. Under this prism, we herein review the current literature on what has been characterized as T cell senescence and provide insights on how to accurately discriminate senescent cells against exhausted or anergic ones. We also summarize the major metabolic and epigenetic modifications associated with T cell senescence and underline the role of senescent T cells in the tumor microenvironment (TME). Moreover, we discuss how these cells associate with standard clinical therapeutic interventions and how they impact their efficacy. Finally, we underline the importance of precise identification and thorough characterization of "truly" senescent T cells in order to design successful therapeutic manipulations that would delay cancer incidence and maximize efficacy of immunotherapy.
Collapse
Affiliation(s)
- Sophia Magkouta
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece; Marianthi Simou and G.P. Livanos Labs, 1st Department of Critical Care and Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens, "Evangelismos" Hospital, Athens 10676, Greece; Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| | - Efrosyni Markaki
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, University of Crete Medical School, Heraklion 70013, Greece
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Russell Petty
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| | - Panayotis Verginis
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, University of Crete Medical School, Heraklion 70013, Greece; Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion 70013, Greece
| | - Vassilis Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece; Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK; Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece; Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK.
| |
Collapse
|
5
|
Gorgoulis VG, Evangelou K, Klionsky DJ. The DNA damage response and autophagy during cancer development: an antagonistic pleiotropy entanglement. Autophagy 2024; 20:2571-2573. [PMID: 38825325 PMCID: PMC11572190 DOI: 10.1080/15548627.2024.2362121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 05/25/2024] [Indexed: 06/04/2024] Open
Abstract
The DNA damage response (DDR) pathway is a cardinal cellular stress response mechanism that during cancer development follows an antagonistic pleiotropy mode of action. Given that DDR activation is an energy demanding process, interplay with macroautophagy/autophagy, a stress response and energy providing mechanism, is likely to take place. While molecular connections between both mechanisms have been reported, an open question regards whether autophagy activation follows solely or is entangled with DDR in a similar antagonistic pleiotropy pattern during cancer development. Combing evidence on the spatiotemporal relationship of DDR and autophagy in the entire spectrum of carcinogenesis from our previous studies, we discuss these issues in the current addendum.Abbreviation: AMPK: AMP-dependent protein kinase; DDR: DNA damage response.
Collapse
Affiliation(s)
- Vassilis G. Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Faculty of Health and Medical Sciences, University of Surrey, Surrey, UK
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
6
|
O'Sullivan EA, Wallis R, Mossa F, Bishop CL. The paradox of senescent-marker positive cancer cells: challenges and opportunities. NPJ AGING 2024; 10:41. [PMID: 39277623 PMCID: PMC11401916 DOI: 10.1038/s41514-024-00168-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/15/2024] [Indexed: 09/17/2024]
Abstract
Senescence is an anti-tumour mechanism and hallmark of cancer. Loss or mutation of key senescence effectors, such as p16INK4A, are frequently observed in cancer. Intriguingly, some human tumours are both proliferative and senescent-marker positive (Sen-Mark+). Here, we explore this paradox, focusing on the prognostic consequences and the current challenges in classifying these cells. We discuss future strategies for Sen-Mark+ cell detection together with emerging opportunities to exploit senescence for cancer.
Collapse
Affiliation(s)
- Emily A O'Sullivan
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ryan Wallis
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Federica Mossa
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Cleo L Bishop
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
7
|
Ogrodnik M, Carlos Acosta J, Adams PD, d'Adda di Fagagna F, Baker DJ, Bishop CL, Chandra T, Collado M, Gil J, Gorgoulis V, Gruber F, Hara E, Jansen-Dürr P, Jurk D, Khosla S, Kirkland JL, Krizhanovsky V, Minamino T, Niedernhofer LJ, Passos JF, Ring NAR, Redl H, Robbins PD, Rodier F, Scharffetter-Kochanek K, Sedivy JM, Sikora E, Witwer K, von Zglinicki T, Yun MH, Grillari J, Demaria M. Guidelines for minimal information on cellular senescence experimentation in vivo. Cell 2024; 187:4150-4175. [PMID: 39121846 DOI: 10.1016/j.cell.2024.05.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 08/12/2024]
Abstract
Cellular senescence is a cell fate triggered in response to stress and is characterized by stable cell-cycle arrest and a hypersecretory state. It has diverse biological roles, ranging from tissue repair to chronic disease. The development of new tools to study senescence in vivo has paved the way for uncovering its physiological and pathological roles and testing senescent cells as a therapeutic target. However, the lack of specific and broadly applicable markers makes it difficult to identify and characterize senescent cells in tissues and living organisms. To address this, we provide practical guidelines called "minimum information for cellular senescence experimentation in vivo" (MICSE). It presents an overview of senescence markers in rodent tissues, transgenic models, non-mammalian systems, human tissues, and tumors and their use in the identification and specification of senescent cells. These guidelines provide a uniform, state-of-the-art, and accessible toolset to improve our understanding of cellular senescence in vivo.
Collapse
Affiliation(s)
- Mikolaj Ogrodnik
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, 1200 Vienna, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| | - Juan Carlos Acosta
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK; Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), C/ Albert Einstein 22, 39011 Santander, Spain
| | - Peter D Adams
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Fabrizio d'Adda di Fagagna
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy; Institute of Molecular Genetics IGM-CNR "Luigi Luca Cavalli-Sforza," Pavia, Italy
| | - Darren J Baker
- Department of Biochemistry and Molecular Biology, Department of Pediatric and Adolescent Medicine, Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Steet SW, Rochester, MN 55905, USA
| | - Cleo L Bishop
- Blizard Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Tamir Chandra
- MRC Human Generics Unit, University of Edinburgh, Edinburgh, UK
| | - Manuel Collado
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Department of Immunology and Oncology (DIO), Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Jesus Gil
- MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Vassilis Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK; Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK; Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7YH, UK
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence - SKINMAGINE, Vienna, Austria
| | - Eiji Hara
- Research Institute for Microbial Diseases (RIMD), Osaka University, Suita 565-0871, Japan; Immunology Frontier Research Center (IFReC), Osaka University, Suita 565-0871, Japan
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, University of Innsbruck, and Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
| | - Diana Jurk
- Mayo Clinic, Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Sundeep Khosla
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Valery Krizhanovsky
- Department of Molecular Cell Biology, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN 55455, USA
| | - João F Passos
- Mayo Clinic, Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Nadja A R Ring
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, 1200 Vienna, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, 1200 Vienna, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN 55455, USA
| | - Francis Rodier
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Institut du cancer de Montréal, Montreal, QC, Canada; Université de Montréal, Département de radiologie, radio-oncologie et médicine nucléaire, Montreal, QC, Canada
| | - Karin Scharffetter-Kochanek
- Department f Dermatology and Allergic Diseases, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - John M Sedivy
- Department of Molecular, Cellular Biology and Biochemistry, Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Ewa Sikora
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Kenneth Witwer
- The Johns Hopkins University School of Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, MD, USA; The Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, USA
| | - Thomas von Zglinicki
- Newcastle University Biosciences Institute, Ageing Biology Laboratories, Newcastle upon Tyne, UK
| | - Maximina H Yun
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, Dresden, Germany; Max Planck Institute of Molecular Cellular Biology and Genetics, Dresden, Germany; Physics of Life Excellence Cluster, Dresden, Germany
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria; Institute of Molecular Biotechnology, BOKU University, Vienna, Austria.
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, the Netherlands.
| |
Collapse
|
8
|
Pacifico F, Magni F, Leonardi A, Crescenzi E. Therapy-Induced Senescence: Novel Approaches for Markers Identification. Int J Mol Sci 2024; 25:8448. [PMID: 39126015 PMCID: PMC11313450 DOI: 10.3390/ijms25158448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Therapy-induced senescence (TIS) represents a major cellular response to anticancer treatments. Both malignant and non-malignant cells in the tumor microenvironment undergo TIS and may be harmful for cancer patients since TIS cells develop a senescence-associated secretory phenotype (SASP) that can sustain tumor growth. The SASP also modulates anti-tumor immunity, although the immune populations involved and the final results appear to be context-dependent. In addition, senescent cancer cells are able to evade senescence growth arrest and to resume proliferation, likely contributing to relapse. So, research data suggest that TIS induction negatively affects therapy outcomes in cancer patients. In line with this, new interventions aimed at the removal of senescent cells or the reprogramming of their SASP, called senotherapy, have become attractive therapeutic options. To date, the lack of reliable, cost-effective, and easy-to-use TIS biomarkers hinders the application of recent anti-senescence therapeutic approaches in the clinic. Hence, the identification of biomarkers for the detection of TIS tumor cells and TIS non-neoplastic cells is a high priority in cancer research. In this review article, we describe the current knowledge about TIS, outline critical gaps in our knowledge, and address recent advances and novel approaches for the discovery of TIS biomarkers.
Collapse
Affiliation(s)
- Francesco Pacifico
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, CNR, Via S. Pansini 5, 80131 Naples, Italy;
| | - Fulvio Magni
- Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy;
| | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy;
| | - Elvira Crescenzi
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, CNR, Via S. Pansini 5, 80131 Naples, Italy;
| |
Collapse
|
9
|
Jha SK, De Rubis G, Devkota SR, Zhang Y, Adhikari R, Jha LA, Bhattacharya K, Mehndiratta S, Gupta G, Singh SK, Panth N, Dua K, Hansbro PM, Paudel KR. Cellular senescence in lung cancer: Molecular mechanisms and therapeutic interventions. Ageing Res Rev 2024; 97:102315. [PMID: 38679394 DOI: 10.1016/j.arr.2024.102315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/03/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Lung cancer stands as the primary contributor to cancer-related fatalities worldwide, affecting both genders. Two primary types exist where non-small cell lung cancer (NSCLC), accounts for 80-85% and SCLC accounts for 10-15% of cases. NSCLC subtypes include adenocarcinoma, squamous cell carcinoma, and large cell carcinoma. Smoking, second-hand smoke, radon gas, asbestos, and other pollutants, genetic predisposition, and COPD are lung cancer risk factors. On the other hand, stresses such as DNA damage, telomere shortening, and oncogene activation cause a prolonged cell cycle halt, known as senescence. Despite its initial role as a tumor-suppressing mechanism that slows cell growth, excessive or improper control of this process can cause age-related diseases, including cancer. Cellular senescence has two purposes in lung cancer. Researchers report that senescence slows tumor growth by constraining multiplication of impaired cells. However, senescent cells also demonstrate the pro-inflammatory senescence-associated secretory phenotype (SASP), which is widely reported to promote cancer. This review will look at the role of cellular senescence in lung cancer, describe its diagnostic markers, ask about current treatments to control it, look at case studies and clinical trials that show how senescence-targeting therapies can be used in lung cancer, and talk about problems currently being faced, and possible solutions for the same in the future.
Collapse
Affiliation(s)
- Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Shankar Raj Devkota
- Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Yali Zhang
- School of Chemical Engineering, University of Adelaide, Adelaide 5005, Australia
| | - Radhika Adhikari
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Laxmi Akhileshwar Jha
- Naraina Vidya Peeth Group of Institutions, Faculty of Pharmacy, Dr. A. P. J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh 0208020, India
| | - Kunal Bhattacharya
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam 781026, India; Royal School of Pharmacy, The Assam Royal Global University, Guwahati, Assam 781035, India
| | - Samir Mehndiratta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Nisha Panth
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia.
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia.
| |
Collapse
|
10
|
Elshazly AM, Shahin U, Al Shboul S, Gewirtz DA, Saleh T. A Conversation with ChatGPT on Contentious Issues in Senescence and Cancer Research. Mol Pharmacol 2024; 105:313-327. [PMID: 38458774 PMCID: PMC11026153 DOI: 10.1124/molpharm.124.000871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024] Open
Abstract
Artificial intelligence (AI) platforms, such as Generative Pretrained Transformer (ChatGPT), have achieved a high degree of popularity within the scientific community due to their utility in providing evidence-based reviews of the literature. However, the accuracy and reliability of the information output and the ability to provide critical analysis of the literature, especially with respect to highly controversial issues, has generally not been evaluated. In this work, we arranged a question/answer session with ChatGPT regarding several unresolved questions in the field of cancer research relating to therapy-induced senescence (TIS), including the topics of senescence reversibility, its connection to tumor dormancy, and the pharmacology of the newly emerging drug class of senolytics. ChatGPT generally provided responses consistent with the available literature, although occasionally overlooking essential components of the current understanding of the role of TIS in cancer biology and treatment. Although ChatGPT, and similar AI platforms, have utility in providing an accurate evidence-based review of the literature, their outputs should still be considered carefully, especially with respect to unresolved issues in tumor biology. SIGNIFICANCE STATEMENT: Artificial Intelligence platforms have provided great utility for researchers to investigate biomedical literature in a prompt manner. However, several issues arise when it comes to certain unresolved biological questions, especially in the cancer field. This work provided a discussion with ChatGPT regarding some of the yet-to-be-fully-elucidated conundrums of the role of therapy-induced senescence in cancer treatment and highlights the strengths and weaknesses in utilizing such platforms for analyzing the scientific literature on this topic.
Collapse
Affiliation(s)
- Ahmed M Elshazly
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (A.M.E., D.A.G.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt (A.M.E.); and Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan (U.S., S.A.S., T.S.)
| | - Uruk Shahin
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (A.M.E., D.A.G.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt (A.M.E.); and Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan (U.S., S.A.S., T.S.)
| | - Sofian Al Shboul
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (A.M.E., D.A.G.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt (A.M.E.); and Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan (U.S., S.A.S., T.S.)
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (A.M.E., D.A.G.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt (A.M.E.); and Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan (U.S., S.A.S., T.S.)
| | - Tareq Saleh
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (A.M.E., D.A.G.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt (A.M.E.); and Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan (U.S., S.A.S., T.S.)
| |
Collapse
|
11
|
Chen P, Wang Y, Zhou B. Insights into targeting cellular senescence with senolytic therapy: The journey from preclinical trials to clinical practice. Mech Ageing Dev 2024; 218:111918. [PMID: 38401690 DOI: 10.1016/j.mad.2024.111918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Interconnected, fundamental aging processes are central to many illnesses and diseases. Cellular senescence is a mechanism that halts the cell cycle in response to harmful stimuli. Senescent cells (SnCs) can emerge at any point in life, and their persistence, along with the numerous proteins they secrete, can negatively affect tissue function. Interventions aimed at combating persistent SnCs, which can destroy tissues, have been used in preclinical models to delay, halt, or even reverse various diseases. Consequently, the development of small-molecule senolytic medicines designed to specifically eliminate SnCs has opened potential avenues for the prevention or treatment of multiple diseases and age-related issues in humans. In this review, we explore the most promising approaches for translating small-molecule senolytics and other interventions targeting senescence in clinical practice. This discussion highlights the rationale for considering SnCs as therapeutic targets for diseases affecting individuals of all ages.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China.
| | - Yulai Wang
- Department of Pharmacy, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, P.R. China
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| |
Collapse
|
12
|
McGrath MK, Abolhassani A, Guy L, Elshazly AM, Barrett JT, Mivechi NF, Gewirtz DA, Schoenlein PV. Autophagy and senescence facilitate the development of antiestrogen resistance in ER positive breast cancer. Front Endocrinol (Lausanne) 2024; 15:1298423. [PMID: 38567308 PMCID: PMC10986181 DOI: 10.3389/fendo.2024.1298423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Estrogen receptor positive (ER+) breast cancer is the most common breast cancer diagnosed annually in the US with endocrine-based therapy as standard-of-care for this breast cancer subtype. Endocrine therapy includes treatment with antiestrogens, such as selective estrogen receptor modulators (SERMs), selective estrogen receptor downregulators (SERDs), and aromatase inhibitors (AIs). Despite the appreciable remission achievable with these treatments, a substantial cohort of women will experience primary tumor recurrence, subsequent metastasis, and eventual death due to their disease. In these cases, the breast cancer cells have become resistant to endocrine therapy, with endocrine resistance identified as the major obstacle to the medical oncologist and patient. To combat the development of endocrine resistance, the treatment options for ER+, HER2 negative breast cancer now include CDK4/6 inhibitors used as adjuvants to antiestrogen treatment. In addition to the dysregulated activity of CDK4/6, a plethora of genetic and biochemical mechanisms have been identified that contribute to endocrine resistance. These mechanisms, which have been identified by lab-based studies utilizing appropriate cell and animal models of breast cancer, and by clinical studies in which gene expression profiles identify candidate endocrine resistance genes, are the subject of this review. In addition, we will discuss molecular targeting strategies now utilized in conjunction with endocrine therapy to combat the development of resistance or target resistant breast cancer cells. Of approaches currently being explored to improve endocrine treatment efficacy and patient outcome, two adaptive cell survival mechanisms, autophagy, and "reversible" senescence, are considered molecular targets. Autophagy and/or senescence induction have been identified in response to most antiestrogen treatments currently being used for the treatment of ER+ breast cancer and are often induced in response to CDK4/6 inhibitors. Unfortunately, effective strategies to target these cell survival pathways have not yet been successfully developed. Thus, there is an urgent need for the continued interrogation of autophagy and "reversible" senescence in clinically relevant breast cancer models with the long-term goal of identifying new molecular targets for improved treatment of ER+ breast cancer.
Collapse
Affiliation(s)
- Michael K. McGrath
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
- Department of Cellular Biology & Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Ali Abolhassani
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
- Department of Cellular Biology & Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Luke Guy
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
- Department of Cellular Biology & Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Ahmed M. Elshazly
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - John T. Barrett
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
- Department of Radiation Oncology, Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Nahid F. Mivechi
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
- Department of Radiation Oncology, Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - David A. Gewirtz
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Patricia V. Schoenlein
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
- Department of Cellular Biology & Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
13
|
Tatanis V, Veroutis D, Pantelis P, Theocharous G, Sarlanis H, Georgiou A, Peteinaris A, Natsos A, Moulavasilis N, Kavantzas N, Kotsinas A, Adamakis I. Cellular senescence in testicular cancer. Is there a correlation with the preoperative markers and the extent of the tumor? An experimental study. Arch Ital Urol Androl 2024; 96:12246. [PMID: 38441175 DOI: 10.4081/aiua.2024.12246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 01/13/2024] [Indexed: 04/05/2024] Open
Abstract
PURPOSE The aim of this experimental study is to investigate the correlation between the presence of senescent cells and the tumor size, the lymphovascular invasion (LVI), the invasion of rete testis (RTI), the preoperative tumor markers or pathological stage in patients who underwent orchiectomy for malignant purposes. METHODS This experimental study included patients with a history of radical orchiectomy performed from January 2011 to January 2019. The testicular tissue specimens underwent an immunohistopathological process for the detection of the presence of cellular senescence. Besides, the tumor size, the histopathological type, the pathological stage of the tumor and the presence of Lymphovascular (LVI) or rete testis (RTI) invasions were also recorded. Additionally, the preoperative serum levels of alpha-fetoprotein, beta-human chorionic gonadotropin and lactate dehydrogenase were recorded. After the completion of immunohistochemical analysis, the rate of senescent cells in each specimen was also recorded. RESULTS The mean senescent cell rate was estimated to be 14.11±11.32% and 15.46±10.58% in patients with presence of LVI or absence of LVI, respectively (p=0.46). The mean senescent cell rate was calculated at 18.13±12.26% and 12.56±9.38% (p=0.096) in patients with presence of RTI or absence of RTI, respectively. The mean senescent cell rate in the pT1 group was calculated at 14.58 ± 9.82%, while in T2 and T3 groups the mean senescent cell rate was estimated to be 15.22 ± 12.03% and 15.35 ± 14.21%, respectively (p=0.98). A statistically significant correlation was detected between the senescence rate and the tumor size (Pearson score 0.40, p=0.027) and between the rate of senescent cells and the preoperative level of lactate dehydrogenase (LDH) (Pearson score -0.53, p=0.002). CONCLUSIONS The presence of cellular senescence was correlated with the extent of the testicular tumor in terms of tumor size as well as the preoperative level of the LDH serum marker.
Collapse
Affiliation(s)
| | - Dimitris Veroutis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), Athens.
| | - Pavlos Pantelis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), Athens.
| | - George Theocharous
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), Athens.
| | - Helen Sarlanis
- Department of Pathology, Medical School, National and Kapodistrian University, Athens.
| | - Alexandros Georgiou
- Department of Pathology, Medical School, National and Kapodistrian University, Athens.
| | | | | | | | - Nikolaos Kavantzas
- Department of Pathology, Medical School, National and Kapodistrian University, Athens.
| | - Athanassios Kotsinas
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), Athens.
| | - Ioannis Adamakis
- 1st Department of Urology, National and Kapodistrian University of Athens.
| |
Collapse
|
14
|
Saleh T. Therapy-induced senescence is finally escapable, what is next? Cell Cycle 2024; 23:713-721. [PMID: 38879812 PMCID: PMC11229739 DOI: 10.1080/15384101.2024.2364579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/17/2024] [Indexed: 07/06/2024] Open
Abstract
Several breakthrough articles have recently confirmed the ability of tumor cells to escape the stable cell cycle arrest imposed by Therapy-Induced Senescence (TIS). Subsequently, accepting the hypothesis that TIS is escapable should encourage serious reassessments of the fundamental roles of senescence in cancer treatment. The potential for escape from TIS undermines the well-established tumor suppressor function of senescence, proposes it as a mechanism of tumor dormancy leading to disease recurrence and invites for further investigation of its unfavorable contribution to cancer therapy outcomes. Moreover, escaping TIS strongly indicates that the elimination of senescent tumor cells, primarily through pharmacological means, is a suitable approach for increasing the efficacy of cancer treatment, one that still requires further exploration. This commentary provides an overview of the recent evidence that unequivocally demonstrated the ability of therapy-induced senescent tumor cells in overcoming the terminal growth arrest fate and provides future perspectives on the roles of TIS in tumor biology.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| |
Collapse
|
15
|
Palamidas DA, Chatzis L, Papadaki M, Gissis I, Kambas K, Andreakos E, Goules AV, Tzioufas AG. Current Insights into Tissue Injury of Giant Cell Arteritis: From Acute Inflammatory Responses towards Inappropriate Tissue Remodeling. Cells 2024; 13:430. [PMID: 38474394 DOI: 10.3390/cells13050430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Giant cell arteritis (GCA) is an autoimmune disease affecting large vessels in patients over 50 years old. It is an exemplary model of a classic inflammatory disorder with IL-6 playing the leading role. The main comorbidities that may appear acutely or chronically are vascular occlusion leading to blindness and thoracic aorta aneurysm formation, respectively. The tissue inflammatory bulk is expressed as acute or chronic delayed-type hypersensitivity reactions, the latter being apparent by giant cell formation. The activated monocytes/macrophages are associated with pronounced Th1 and Th17 responses. B-cells and neutrophils also participate in the inflammatory lesion. However, the exact order of appearance and mechanistic interactions between cells are hindered by the lack of cellular and molecular information from early disease stages and accurate experimental models. Recently, senescent cells and neutrophil extracellular traps have been described in tissue lesions. These structures can remain in tissues for a prolonged period, potentially favoring inflammatory responses and tissue remodeling. In this review, current advances in GCA pathogenesis are discussed in different inflammatory phases. Through the description of these-often overlapping-phases, cells, molecules, and small lipid mediators with pathogenetic potential are described.
Collapse
Affiliation(s)
- Dimitris Anastasios Palamidas
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Loukas Chatzis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Maria Papadaki
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Ilias Gissis
- Department of Thoracic and Cardiovascular Surgery, Evangelismos General Hospital, 11473 Athens, Greece
| | - Konstantinos Kambas
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Andreas V Goules
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Athanasios G Tzioufas
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Research Institute for Systemic Autoimmune Diseases, 11527 Athens, Greece
| |
Collapse
|
16
|
Veroutis D, Argyropoulou OD, Goules AV, Kambas K, Palamidas DA, Evangelou K, Havaki S, Polyzou A, Valakos D, Xingi E, Karatza E, Boki KA, Cavazza A, Kittas C, Thanos D, Ricordi C, Marvisi C, Muratore F, Galli E, Croci S, Salvarani C, Gorgoulis VG, Tzioufas AG. Senescent cells in giant cell arteritis display an inflammatory phenotype participating in tissue injury via IL-6-dependent pathways. Ann Rheum Dis 2024; 83:342-350. [PMID: 38050005 DOI: 10.1136/ard-2023-224467] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/08/2023] [Indexed: 12/06/2023]
Abstract
OBJECTIVES Age is the strongest risk factor of giant cell arteritis (GCA), implying a possible pathogenetic role of cellular senescence. To address this question, we applied an established senescence specific multimarker algorithm in temporal artery biopsies (TABs) of GCA patients. METHODS 75(+) TABs from GCA patients, 22(-) TABs from polymyalgia rheumatica (PMR) patients and 10(-) TABs from non-GCA/non-PMR patients were retrospectively retrieved and analysed. Synovial tissue specimens from patients with inflammatory arthritis and aorta tissue were used as disease control samples. Senescent cells and their histological origin were identified with specific cellular markers; IL-6 and MMP-9 were investigated as components of the senescent associated secretory phenotype by triple costaining. GCA or PMR artery culture supernatants were applied to fibroblasts, HUVECs and monocytes with or without IL-6R blocking agent to explore the induction of IL-6-associated cellular senescence. RESULTS Senescent cells were present in GCA arteries at higher proportion compared with PMR (9.50% vs 2.66%, respectively, p<0.0001) and were mainly originated from fibroblasts, macrophages and endothelial cells. IL-6 was expressed by senescent fibroblasts, and macrophages while MMP-9 by senescent fibroblasts only. IL-6(+) senescent cells were associated with the extension of vascular inflammation (transmural inflammation vs adventitia limited disease: 10.02% vs 4.37%, respectively, p<0.0001). GCA but not PMR artery culture supernatant could induce IL-6-associated senescence that was partially inhibited by IL-6R blockade. CONCLUSIONS Senescent cells with inflammatory phenotype are present in GCA arteries and are associated with the tissue inflammatory bulk, suggesting a potential implication in disease pathogenesis.
Collapse
Affiliation(s)
- Dimitris Veroutis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ourania D Argyropoulou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas V Goules
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Research Institute for Systemic Autoimmune Diseases, Athens, Greece
- Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Kambas
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Dimitris Anastasios Palamidas
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Research Institute for Systemic Autoimmune Diseases, Athens, Greece
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sophia Havaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Polyzou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Valakos
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Evangelia Xingi
- Light Microscopy Unit, Hellenic Pasteur Institute, Athens, Greece
| | - Elli Karatza
- Second Propaedeutic Department of Surgery, Laikon General Hospital, Athens, Greece
| | - Kyriaki A Boki
- Rheumatology Unit, Sismanoglion Hospital, Athens, Greece
| | - Alberto Cavazza
- Unit of Pathology, Azienda Unità Sanitaria Locale-IRCCS, Reggio Emilia, Italy
| | - Christos Kittas
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Thanos
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Caterina Ricordi
- Unit of Rheumatology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, and University of Modena, Reggio Emilia, Italy
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Chiara Marvisi
- Unit of Rheumatology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, and University of Modena, Reggio Emilia, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Muratore
- Unit of Rheumatology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, and University of Modena, Reggio Emilia, Italy
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Galli
- Unit of Rheumatology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, and University of Modena, Reggio Emilia, Italy
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefania Croci
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Carlo Salvarani
- Unit of Rheumatology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, and University of Modena, Reggio Emilia, Italy
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Athanasios G Tzioufas
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Research Institute for Systemic Autoimmune Diseases, Athens, Greece
- Joint Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Center of stratified medicine in autoimmune and rheumatic diseases, Biomedical Research Foundation Academy of Athens, Athens, Greece
| |
Collapse
|
17
|
Jones JL, Poulsom R, Coates PJ. Recent Advances in Pathology: the 2023 Annual Review Issue of The Journal of Pathology. J Pathol 2023; 260:495-497. [PMID: 37580852 DOI: 10.1002/path.6192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/16/2023]
Abstract
The 2023 Annual Review Issue of The Journal of Pathology, Recent Advances in Pathology, contains 12 invited reviews on topics of current interest in pathology. This year, our subjects include immuno-oncology and computational pathology approaches for diagnostic and research applications in human disease. Reviews on the tissue microenvironment include the effects of apoptotic cell-derived exosomes, how understanding the tumour microenvironment predicts prognosis, and the growing appreciation of the diverse functions of fibroblast subtypes in health and disease. We also include up-to-date reviews of modern aspects of the molecular basis of malignancies, and our final review covers new knowledge of vascular and lymphatic regeneration in cardiac disease. All of the reviews contained in this issue are written by expert groups of authors selected to discuss the recent progress in their particular fields and all articles are freely available online (https://pathsocjournals.onlinelibrary.wiley.com/journal/10969896). © 2023 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- J Louise Jones
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Richard Poulsom
- The Pathological Society of Great Britain and Ireland, London, UK
| | - Philip J Coates
- Research Center for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| |
Collapse
|