1
|
Lukoseviciute M, Need E, Birgersson M, Dalianis T, Kostopoulou ON. Enhancing targeted therapy by combining PI3K and AKT inhibitors with or without cisplatin or vincristine in medulloblastoma cell lines in vitro. Biomed Pharmacother 2024; 180:117500. [PMID: 39326108 DOI: 10.1016/j.biopha.2024.117500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024] Open
Abstract
AIM Despite current intensive therapy, survival rates of medulloblastoma (MB) greatly vary according to molecular subgroup, so new therapies are needed. Recently, we showed that combining phosphoinositide 3-kinase (PI3K), fibroblast growth factor receptor and cyclin-dependent-kinase-4/6 inhibitors (BYL719, JNJ-42756493 and PD-0332991, respectively) or poly (ADP-ribose) polymerase (PARP) and WEE-1 inhibitors (BMN673 and MK1775 respectively) had synergistic effects on MB. Here, in continuation, we investigated the effects of single and combined administrations of PI3K and AKT inhibitors, with/without cisplatin or vincristine on adherent or suspension cultures of different MB subgroups as well as in a spheroid culture of one MB line. MATERIAL AND METHODS MB cell lines DAOY, UW228-3, D425, Med8A, and D283 were treated with single and combined administrations of BYL719, AZD5363, cisplatin or vincristine and followed for viability, cell confluence, cytotoxicity, and cell migration. DAOY was also tested as a spheroid culture. KEY FINDINGS Single BYL719, AZD5363, cisplatin, or vincristine administrations gave dose-dependent responses with regard to inhibition of viability and cell confluence. Combining AZD5363 with BYL719, cisplatin or vincristine resulted in synergistic effects with regard to inhibition of viability in all cell lines, and confluence and migration in all tested cell lines. The administration of single and combined treatments to DAOY spheroids produced largely similar effects. SIGNIFICANCE This study provides pre-clinical evidence that AKT inhibitors combined with PI3K inhibitors, cisplatin, or vincristine exhibit additive/synergistic anti-MB activity, and lower doses could be used. The latter also applied to one MB line grown as spheroids, further supporting their future potential use.
Collapse
Affiliation(s)
- Monika Lukoseviciute
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 64, Sweden
| | - Emma Need
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 64, Sweden
| | - Madeleine Birgersson
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 64, Sweden
| | - Tina Dalianis
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 64, Sweden
| | - Ourania N Kostopoulou
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 64, Sweden.
| |
Collapse
|
2
|
Otth M, Weiser A, Lee SY, Rudolf von Rohr L, Heesen P, Guerreiro Stucklin AS, Scheinemann K. Treatment of Medulloblastoma in the Adolescent and Young Adult Population: A Systematic Review. J Adolesc Young Adult Oncol 2024. [PMID: 39178158 DOI: 10.1089/jayao.2024.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024] Open
Abstract
Medulloblastoma is the most frequent high-grade tumor of the central nervous system in children but accounts for less than 1% of these tumors in adults. Adolescent and young adult (AYA) patients are between both age groups, and different approaches are used to treat medulloblastoma in this population. We performed a systematic review of studies published between 2007 and 2023 that reported treatment approaches and survival data of AYA patients with medulloblastoma, defined as 15 to 39 years of age at diagnosis. Due to the heterogeneity of data, a meta-analysis was not possible. Except for the omission of chemotherapy after radiotherapy in a few adult studies, the treatment backbone is very similar between studies starting enrolment during childhood and older adolescence or adulthood. Despite indications for a higher rate of early treatment termination due to toxicity in adults, survival data remain comparable between studies starting enrolment earlier or later in life. However, molecular subtyping was missing in most studies, so the survival data must be interpreted cautiously. Nevertheless, pediatric-inspired strategies in the AYA population are feasible, but individual dose adjustments may be necessary during treatment and should be considered upfront. Collaborative studies investigating the best treatment approach for medulloblastoma in the AYA population are needed in the future.
Collapse
Affiliation(s)
- Maria Otth
- Division of Hematology/Oncology, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
- Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland
- Faculty of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland
| | - Annette Weiser
- Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Seok-Yun Lee
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Lukas Rudolf von Rohr
- Division of Hematology/Oncology, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
- Faculty of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland
| | - Philip Heesen
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Ana S Guerreiro Stucklin
- Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Katrin Scheinemann
- Division of Hematology/Oncology, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
- Faculty of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland
- Division of Pediatric Hematology/Oncology, McMaster Children's Hospital and McMaster University, Hamilton, Canada
| |
Collapse
|
3
|
Mushtaq N, Ul Ain R, Hamid SA, Bouffet E. Evolution of Systemic Therapy in Medulloblastoma Including Irradiation-Sparing Approaches. Diagnostics (Basel) 2023; 13:3680. [PMID: 38132264 PMCID: PMC10743079 DOI: 10.3390/diagnostics13243680] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
The management of medulloblastoma in children has dramatically changed over the past four decades, with the development of chemotherapy protocols aiming at improving survival and reducing long-term toxicities of high-dose craniospinal radiotherapy. While the staging and treatment of medulloblastoma were until recently based on the modified Chang's system, recent advances in the molecular biology of medulloblastoma have revolutionized approaches in the management of this increasingly complex disease. The evolution of systemic therapies is described in this review.
Collapse
Affiliation(s)
- Naureen Mushtaq
- Division of Pediatric Oncology, Department of Oncology, Aga Khan University, Karachi 74800, Pakistan;
| | - Rahat Ul Ain
- Department of Pediatric Hematology/Oncology & Bone Marrow Transplant, University of Child Health Sciences, Children’s Hospital, Lahore 54600, Pakistan;
| | - Syed Ahmer Hamid
- Department of Pediatric Hematology and Oncology, Indus Hospital & Health Network, Karachi 74800, Pakistan;
| | - Eric Bouffet
- Global Neuro-Oncology Program, Department of Global Pediatric Medicine, St. Jude Children’s Research Hospital, St. Jude Global, Memphis, TN 38105, USA
| |
Collapse
|
4
|
Thornton CP, Orgel E. Dose-limiting mucositis: friend or foe? Support Care Cancer 2023; 31:617. [PMID: 37804322 DOI: 10.1007/s00520-023-08101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
Dose-limiting toxicities are ubiquitous to cancer-directed therapy, presenting with severity to a degree that necessitates therapy de-escalation, pause, or discontinuation. To date, there is incredible limited understanding if these therapy de-escalations present risk for survival by limiting delivery of intensive therapy, or if they indicate physiologic susceptibility and are a favorable prognostic indicator. Mucositis is an excellent illustration of the current paradox of dose-limiting toxicities-it has existed alongside therapy for eight decades, but despite its presence, there is an incomplete understanding of how it develops, why it varies between oncologic populations, and if it relates to cancer survival. Rigorous methodologic approaches in symptom science holds potential to better understand mucositis, to determine if it is a marker of response or threat, and evaluate if it holds potential to guide therapy delivery.
Collapse
Affiliation(s)
- Clifton P Thornton
- Center for Pediatric Nursing Research & Evidence-Based Practice, Nursing & Clinical Care Services, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Etan Orgel
- Cancer and Blood Disease Institute, Children's Hospital of Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Roy A, Sakthikumar S, Kozyrev SV, Nordin J, Pensch R, Mäkeläinen S, Pettersson M, Karlsson EK, Lindblad-Toh K, Forsberg-Nilsson K. Using evolutionary constraint to define novel candidate driver genes in medulloblastoma. Proc Natl Acad Sci U S A 2023; 120:e2300984120. [PMID: 37549291 PMCID: PMC10438395 DOI: 10.1073/pnas.2300984120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/07/2023] [Indexed: 08/09/2023] Open
Abstract
Current knowledge of cancer genomics remains biased against noncoding mutations. To systematically search for regulatory noncoding mutations, we assessed mutations in conserved positions in the genome under the assumption that these are more likely to be functional than mutations in positions with low conservation. To this end, we use whole-genome sequencing data from the International Cancer Genome Consortium and combined it with evolutionary constraint inferred from 240 mammals, to identify genes enriched in noncoding constraint mutations (NCCMs), mutations likely to be regulatory in nature. We compare medulloblastoma (MB), which is malignant, to pilocytic astrocytoma (PA), a primarily benign tumor, and find highly different NCCM frequencies between the two, in agreement with the fact that malignant cancers tend to have more mutations. In PA, a high NCCM frequency only affects the BRAF locus, which is the most commonly mutated gene in PA. In contrast, in MB, >500 genes have high levels of NCCMs. Intriguingly, several loci with NCCMs in MB are associated with different ages of onset, such as the HOXB cluster in young MB patients. In adult patients, NCCMs occurred in, e.g., the WASF-2/AHDC1/FGR locus. One of these NCCMs led to increased expression of the SRC kinase FGR and augmented responsiveness of MB cells to dasatinib, a SRC kinase inhibitor. Our analysis thus points to different molecular pathways in different patient groups. These newly identified putative candidate driver mutations may aid in patient stratification in MB and could be valuable for future selection of personalized treatment options.
Collapse
Affiliation(s)
- Ananya Roy
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85Uppsala, Sweden
| | - Sharadha Sakthikumar
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 23Uppsala, Sweden
- Broad Institute, Cambridge, MA02142
| | - Sergey V. Kozyrev
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 23Uppsala, Sweden
| | - Jessika Nordin
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 23Uppsala, Sweden
| | - Raphaela Pensch
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 23Uppsala, Sweden
| | - Suvi Mäkeläinen
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 23Uppsala, Sweden
| | - Mats Pettersson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 23Uppsala, Sweden
| | | | - Elinor K. Karlsson
- Broad Institute, Cambridge, MA02142
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA01605
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA01605
| | - Kerstin Lindblad-Toh
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 23Uppsala, Sweden
- Broad Institute, Cambridge, MA02142
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85Uppsala, Sweden
- Division of Cancer and Stem Cells, University of Nottingham Biodiscovery Institute, NottinghamNG72RD, United Kingdom
| |
Collapse
|
6
|
Osuna-Marco MP, Martín-López LI, Tejera ÁM, López-Ibor B. Questions and answers in the management of children with medulloblastoma over the time. How did we get here? A systematic review. Front Oncol 2023; 13:1229853. [PMID: 37456257 PMCID: PMC10340518 DOI: 10.3389/fonc.2023.1229853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Treatment of children with medulloblastoma (MB) includes surgery, radiation therapy (RT) and chemotherapy (CT). Several treatment protocols and clinical trials have been developed over the time to maximize survival and minimize side effects. Methods We performed a systematic literature search in May 2023 using PubMed. We selected all clinical trials articles and multicenter studies focusing on MB. We excluded studies focusing exclusively on infants, adults, supratentorial PNETs or refractory/relapsed tumors, studies involving different tumors or different types of PNETs without differentiating survival, studies including <10 cases of MB, solely retrospective studies and those without reference to outcome and/or side effects after a defined treatment. Results 1. The main poor-prognosis factors are: metastatic disease, anaplasia, MYC amplification, age younger than 36 months and some molecular subgroups. The postoperative residual tumor size is controversial.2. MB is a collection of diseases.3. MB is a curable disease at diagnosis, but survival is scarce upon relapse.4. Children should be treated by experienced neurosurgeons and in advanced centers.5. RT is an essential treatment for MB. It should be administered craniospinal, early and without interruptions.6. Craniospinal RT dose could be lowered in some low-risk patients, but these reductions should be done with caution to avoid relapses.7. Irradiation of the tumor area instead of the entire posterior fossa is safe enough.8. Hyperfractionated RT is not superior to conventional RT9. Both photon and proton RT are effective.10. CT increases survival, especially in high-risk patients.11. There are multiple drugs effective in MB. The combination of different drugs is appropriate management.12. CT should be administered after RT.13. The specific benefit of concomitant CT to RT is unknown.14. Intensified CT with stem cell rescue has no benefit compared to standard CT regimens.15. The efficacy of intraventricular/intrathecal CT is controversial.16. We should start to think about incorporating targeted therapies in front-line treatment.17. Survivors of MB still have significant side effects. Conclusion Survival rates of MB improved greatly from 1940-1970, but since then the improvement has been smaller. We should consider introducing targeted therapy as front-line therapy.
Collapse
Affiliation(s)
- Marta P. Osuna-Marco
- Pediatric Oncology Unit, Centro Integral Oncológico Clara Campal (CIOCC), Hospital Universitario HM Montepríncipe, HM Hospitales, Madrid, Spain
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Laura I. Martín-López
- Pediatric Oncology Unit, Centro Integral Oncológico Clara Campal (CIOCC), Hospital Universitario HM Montepríncipe, HM Hospitales, Madrid, Spain
| | - Águeda M. Tejera
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Blanca López-Ibor
- Pediatric Oncology Unit, Centro Integral Oncológico Clara Campal (CIOCC), Hospital Universitario HM Montepríncipe, HM Hospitales, Madrid, Spain
| |
Collapse
|
7
|
Alfonso-Triguero P, Lorenzo J, Candiota AP, Arús C, Ruiz-Molina D, Novio F. Platinum-Based Nanoformulations for Glioblastoma Treatment: The Resurgence of Platinum Drugs? NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1619. [PMID: 37242036 PMCID: PMC10223043 DOI: 10.3390/nano13101619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
Current therapies for treating Glioblastoma (GB), and brain tumours in general, are inefficient and represent numerous challenges. In addition to surgical resection, chemotherapy and radiotherapy are presently used as standards of care. However, treated patients still face a dismal prognosis with a median survival below 15-18 months. Temozolomide (TMZ) is the main chemotherapeutic agent administered; however, intrinsic or acquired resistance to TMZ contributes to the limited efficacy of this drug. To circumvent the current drawbacks in GB treatment, a large number of classical and non-classical platinum complexes have been prepared and tested for anticancer activity, especially platinum (IV)-based prodrugs. Platinum complexes, used as alkylating agents in the anticancer chemotherapy of some malignancies, are though often associated with severe systemic toxicity (i.e., neurotoxicity), especially after long-term treatments. The objective of the current developments is to produce novel nanoformulations with improved lipophilicity and passive diffusion, promoting intracellular accumulation, while reducing toxicity and optimizing the concomitant treatment of chemo-/radiotherapy. Moreover, the blood-brain barrier (BBB) prevents the access of the drugs to the brain and accumulation in tumour cells, so it represents a key challenge for GB management. The development of novel nanomedicines with the ability to (i) encapsulate Pt-based drugs and pro-drugs, (ii) cross the BBB, and (iii) specifically target cancer cells represents a promising approach to increase the therapeutic effect of the anticancer drugs and reduce undesired side effects. In this review, a critical discussion is presented concerning different families of nanoparticles able to encapsulate platinum anticancer drugs and their application for GB treatment, emphasizing their potential for increasing the effectiveness of platinum-based drugs.
Collapse
Affiliation(s)
- Paula Alfonso-Triguero
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (P.A.-T.); (J.L.); (A.P.C.); (C.A.)
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain;
| | - Julia Lorenzo
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (P.A.-T.); (J.L.); (A.P.C.); (C.A.)
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Ana Paula Candiota
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (P.A.-T.); (J.L.); (A.P.C.); (C.A.)
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| | - Carles Arús
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (P.A.-T.); (J.L.); (A.P.C.); (C.A.)
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| | - Daniel Ruiz-Molina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain;
| | - Fernando Novio
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain;
- Departament de Química, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
8
|
van Atteveld JE, de Winter DTC, Pluimakers VG, Fiocco M, Nievelstein RAJ, Hobbelink MGG, Kremer LCM, Grootenhuis MA, Maurice-Stam H, Tissing WJE, de Vries ACH, Loonen JJ, van Dulmen-den Broeder E, van der Pal HJH, Pluijm SMF, van der Heiden-van der Loo M, Versluijs AB, Louwerens M, Bresters D, van Santen HM, Hoefer I, van den Berg SAA, den Hartogh J, Hoeijmakers JHJ, Neggers SJCMM, van den Heuvel-Eibrink MM. Frailty and sarcopenia within the earliest national Dutch childhood cancer survivor cohort (DCCSS-LATER): a cross-sectional study. THE LANCET HEALTHY LONGEVITY 2023; 4:e155-e165. [PMID: 37003274 DOI: 10.1016/s2666-7568(23)00020-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 02/06/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND Childhood cancer survivors appear to be at increased risk of frailty and sarcopenia, but evidence on the occurrence of and high-risk groups for these aging phenotypes is scarce, especially in European survivors. The aim of this cross-sectional study was to assess the prevalence of and explore risk factors for pre-frailty, frailty, and sarcopenia in a national cohort of Dutch childhood cancer survivors diagnosed between 1963 and 2001. METHODS Eligible individuals (alive at the time of study, living in the Netherlands, age 18-45 years, and had not previously declined to participate in a late-effects study) from the Dutch Childhood Cancer Survivor Study (DCCSS-LATER) cohort were invited to take part in this cross-sectional study. We defined pre-frailty and frailty according to modified Fried criteria, and sarcopenia according to the European Working Group on Sarcopenia in Older People 2 definition. Associations between these conditions and demographic and treatment-related as well as endocrine and lifestyle-related factors were estimated with two separate multivariable logistic regression models in survivors with any frailty measurement or complete sarcopenia measurements. FINDINGS 3996 adult survivors of the DCCSS-LATER cohort were invited to participate in this cross-sectional study. 1993 non-participants were excluded due to lack of response or a decline to participate and 2003 (50·1%) childhood cancer survivors aged 18-45 years were included. 1114 (55·6%) participants had complete frailty measurements and 1472 (73·5%) participants had complete sarcopenia measurements. Mean age at participation was 33·1 years (SD 7·2). 1037 (51·8%) participants were male, 966 (48·2%) were female, and none were transgender. In survivors with complete frailty measurements or complete sarcopenia measurements, the percentage of pre-frailty was 20·3% (95% CI 18·0-22·7), frailty was 7·4% (6·0-9·0), and sarcopenia was 4·4% (3·5-5·6). In the models for pre-frailty, underweight (odds ratio [OR] 3·38 [95% CI 1·92-5·95]) and obesity (OR 1·67 [1·14-2·43]), cranial irradiation (OR 2·07 [1·47-2·93]), total body irradiation (OR 3·17 [1·77-5·70]), cisplatin dose of at least 600 mg/m2 (OR 3·75 [1·82-7·74]), growth hormone deficiency (OR 2·25 [1·23-4·09]), hyperthyroidism (OR 3·72 [1·63-8·47]), bone mineral density (Z score ≤-1 and >-2, OR 1·80 [95% CI 1·31-2·47]; Z score ≤-2, OR 3·37 [2·20-5·15]), and folic acid deficiency (OR 1·87 [1·31-2·68]) were considered significant. For frailty, associated factors included age at diagnosis between 10-18 years (OR 1·94 [95% CI 1·19-3·16]), underweight (OR 3·09 [1·42-6·69]), cranial irradiation (OR 2·65 [1·59-4·34]), total body irradiation (OR 3·28 [1·48-7·28]), cisplatin dose of at least 600 mg/m2 (OR 3·93 [1·45-10·67]), higher carboplatin doses (per g/m2; OR 1·15 [1·02-1·31]), cyclophosphamide equivalent dose of at least 20 g/m2 (OR 3·90 [1·65-9·24]), hyperthyroidism (OR 2·87 [1·06-7·76]), bone mineral density Z score ≤-2 (OR 2·85 [1·54-5·29]), and folic acid deficiency (OR 2·04 [1·20-3·46]). Male sex (OR 4·56 [95%CI 2·26-9·17]), lower BMI (continuous, OR 0·52 [0·45-0·60]), cranial irradiation (OR 3·87 [1·80-8·31]), total body irradiation (OR 4·52 [1·67-12·20]), hypogonadism (OR 3·96 [1·40-11·18]), growth hormone deficiency (OR 4·66 [1·44-15·15]), and vitamin B12 deficiency (OR 6·26 [2·17-1·81]) were significantly associated with sarcopenia. INTERPRETATION Our findings show that frailty and sarcopenia occur already at a mean age of 33 years in childhood cancer survivors. Early recognition and interventions for endocrine disorders and dietary deficiencies could be important in minimising the risk of pre-frailty, frailty, and sarcopenia in this population. FUNDING Children Cancer-free Foundation, KiKaRoW, Dutch Cancer Society, ODAS Foundation.
Collapse
Affiliation(s)
| | | | | | - Marta Fiocco
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; Medical Statistics Section, Department of Biomedical Data Science, Leiden University Medical Center, Leiden, Netherlands; Mathematical Institute, Leiden University, Leiden, Netherlands
| | - Rutger A J Nievelstein
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Monique G G Hobbelink
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Leontien C M Kremer
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands; Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | | | | | - Wim J E Tissing
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; Department of Pediatric Oncology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Andrica C H de Vries
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; Department of Pediatric Oncology, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, Netherlands
| | - Jacqueline J Loonen
- Department of Hematology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Eline van Dulmen-den Broeder
- Department of Pediatric Oncology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | | | | | | | | | - Marloes Louwerens
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Dorine Bresters
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; Department of Pediatrics, Willem Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Hanneke M van Santen
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; Department of Pediatric Endocrinology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Imo Hoefer
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht, Netherlands
| | - Sjoerd A A van den Berg
- Department of Clinical Chemistry, Erasmus Medical Center, Rotterdam, Netherlands; Department of Internal Medicine, Section Endocrinology, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Jan H J Hoeijmakers
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; Oncode Institute and Department of Molecular Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Sebastian J C M M Neggers
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; Department of Internal Medicine, Section Endocrinology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Marry M van den Heuvel-Eibrink
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
9
|
Lazow MA, Palmer JD, Fouladi M, Salloum R. Medulloblastoma in the Modern Era: Review of Contemporary Trials, Molecular Advances, and Updates in Management. Neurotherapeutics 2022; 19:1733-1751. [PMID: 35859223 PMCID: PMC9723091 DOI: 10.1007/s13311-022-01273-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2022] [Indexed: 12/13/2022] Open
Abstract
Critical discoveries over the past two decades have transformed our understanding of medulloblastoma from a single entity into a clinically and biologically heterogeneous disease composed of at least four molecularly distinct subgroups with prognostically and therapeutically relevant genomic signatures. Contemporary clinical trials also have provided valuable insight guiding appropriate treatment strategies. Despite therapeutic and biological advances, medulloblastoma patients across the age spectrum experience tumor- and treatment-related morbidity and mortality. Using an updated risk stratification approach integrating both clinical and molecular features, ongoing research seeks to (1) cautiously reduce therapy and mitigate toxicity in low-average risk patients, and (2) thoughtfully intensify treatment with incorporation of novel, biologically guided agents for patients with high-risk disease. Herein, we review important historical and contemporary studies, discuss management updates, and summarize current knowledge of the biological landscape across unique pediatric, infant, young adult, and relapsed medulloblastoma populations.
Collapse
Affiliation(s)
- Margot A Lazow
- Pediatric Brain Tumor Program, Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Joshua D Palmer
- The Ohio State University College of Medicine, Columbus, OH, USA
- The James Cancer Centre, Ohio State University, Columbus, OH, USA
| | - Maryam Fouladi
- Pediatric Brain Tumor Program, Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Ralph Salloum
- Pediatric Brain Tumor Program, Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.
- The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
10
|
Zhang M, Liu C, Zhou H, Wang W, Wang L, Shi B, Xue X. Meta of classical chemotherapy compared with high-dose chemotherapy and autologous stem cell rescue in newly diagnosed medulloblastoma after radiotherapy. Medicine (Baltimore) 2022; 101:e29372. [PMID: 35905255 PMCID: PMC9333539 DOI: 10.1097/md.0000000000029372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND High-dose chemotherapy combined with autologous stem cell rescue (HDCT + ASCR) has been used to treat newly diagnosed medulloblastoma, but there was no high-level evidence to support its efficacy. METHODS Databases were retrieved, and patients were divided into 2 groups: group A was radiotherapy combined with HCDT + ASCR, and group B was classical radiotherapy and chemotherapy. The clinical benefit rate, progression-free survival (PFS), overall survival (OS) and toxicities data were extracted. RESULTS 22 clinical trials met the inclusion criteria, 416 in group A and 2331 in group B. There was no difference in CBR between 2 groups (80.0% vs 71.5%, P.262). The 3-year PFS (3-y PFS) of group A was significantly better than group B (79.0% vs 69.5%, P = .004). The analysis found that there was no difference between the 2 groups of the standard risk group or the high-risk group. In the standard risk group, the 5-y PFS of group A was significantly better than group B (83.6% vs75.6%, P = .004). Comparison of 3-y OS and 5-y OS between 2 groups of all MB patients showed no difference (P = .086; P = .507), stratified analysis was the same result. The gastrointestinal toxicity in group A was significantly higher than that in group B (P = .016), and the level 3/4 ototoxicity in high-risk group A was higher than that in group B (P = .001). CONCLUSIONS HDCT + ASCR can prolong 3-year PFS significantly, and prolong 5-y PFS significantly in the standard risk group, but increase gastrointestinal toxicity significantly for newly diagnosed medulloblastoma.
Collapse
Affiliation(s)
- Mengting Zhang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Oncology, Handan Central Hospital, Handan, Hebei, China
| | - Chunmei Liu
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huandi Zhou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Center of Metabolic Diseases and Cancer Research (CMCR), Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wenyan Wang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lixin Wang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Baojun Shi
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoying Xue
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- *Correspondence: Xiaoying Xue, Department of Radiotherapy, The Second Hospital Of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang 050000, Hebei, China (e-mail: )
| |
Collapse
|
11
|
The Current State of Radiotherapy for Pediatric Brain Tumors: An Overview of Post-Radiotherapy Neurocognitive Decline and Outcomes. J Pers Med 2022; 12:jpm12071050. [PMID: 35887547 PMCID: PMC9315742 DOI: 10.3390/jpm12071050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Tumors of the central nervous system are the most common solid malignancies diagnosed in children. While common, they are also found to have some of the lowest survival rates of all malignancies. Treatment of childhood brain tumors often consists of operative gross total resection with adjuvant chemotherapy or radiotherapy. The current body of literature is largely inconclusive regarding the overall benefit of adjuvant chemo- or radiotherapy. However, it is known that both are associated with conditions that lower the quality of life in children who undergo those treatments. Chemotherapy is often associated with nausea, emesis, significant fatigue, immunosuppression, and alopecia. While radiotherapy can be effective for achieving local control, it is associated with late effects such as endocrine dysfunction, secondary malignancy, and neurocognitive decline. Advancements in radiotherapy grant both an increase in lifetime survival and an increased lifetime for survivors to contend with these late effects. In this review, the authors examined all the published literature, analyzing the results of clinical trials, case series, and technical notes on patients undergoing radiotherapy for the treatment of tumors of the central nervous system with a focus on neurocognitive decline and survival outcomes.
Collapse
|
12
|
Moon P, Theruvath J, Chang J, Song Y, Shpanskaya K, Maleki M, Cheng AG, Ahmad IN, Yeom KW. MRI Correlates of Ototoxicity in the Auditory Pathway in Children Treated for Medulloblastoma. Otol Neurotol 2022; 43:e97-e104. [PMID: 34739428 DOI: 10.1097/mao.0000000000003336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To assess diffusion and perfusion changes of the auditory pathway in pediatric medulloblastoma patients exposed to ototoxic therapies. STUDY DESIGN Retrospective cohort study. SETTING A single academic tertiary children's hospital. PATIENTS Twenty pediatric medulloblastoma patients (13 men; mean age 12.0 ± 4.8 yr) treated with platinum-based chemotherapy with or without radiation and 18 age-and-sex matched controls were included. Ototoxicity scores were determined using Chang Ototoxicity Grading Scale. INTERVENTIONS Three Tesla magnetic resonance was used for diffusion tensor and arterial spin labeling perfusion imaging. MAIN OUTCOME MEASURES Quantitative diffusion tensor metrics were extracted from the Heschl's gyrus, auditory radiation, and inferior colliculus. Arterial spin labeling perfusion of the Heschl's gyrus was also examined. RESULTS Nine patients had clinically significant hearing loss, or Chang grades more than or equal to 2a; 11 patients had mild/no hearing loss, or Chang grades less than 2a. The clinically significant hearing loss group showed reduced mean diffusivity in the Heschl's gyrus (p = 0.018) and auditory radiation (p = 0.037), and decreased perfusion in the Heschl's gyrus (p = 0.001). Mild/no hearing loss group showed reduced mean diffusivity (p = 0.036) in Heschl's gyrus only, with a decrease in perfusion (p = 0.008). There were no differences between groups in the inferior colliculus. There was no difference in fractional anisotropy between patients exposed to ototoxic therapies and controls. CONCLUSIONS Patients exposed to ototoxic therapies demonstrated microstructural and physiological alteration of the auditory pathway. The present study shows proof-of-concept use of diffusion tensor imaging to gauge ototoxicity along the auditory pathway. Future larger cohort studies are needed to assess significance of changes in diffusion tensor imaging longitudinally, and the relationship between these changes and hearing loss severity and longitudinal changes of the developing auditory white matter.
Collapse
Affiliation(s)
| | | | | | - Yohan Song
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts
| | - Katie Shpanskaya
- Department of Radiology, Duke University School of Medicine, Durham, North Carolina
| | - Maryam Maleki
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Alan G Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine
| | - Iram N Ahmad
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine
| | - Kristen W Yeom
- Department of Radiology, Lucile Packard Children's Hospital, Stanford, California
| |
Collapse
|
13
|
Wadhwa A, Adams KM, Dai C, Richman JS, McDonald AM, Williams GR, Bhatia S. Association between body composition and chemotherapy-related toxicity in children with lymphoma and rhabdomyosarcoma. Cancer 2021; 128:1302-1311. [PMID: 34847257 DOI: 10.1002/cncr.34043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/22/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Body composition is associated with chemotherapy toxicity (chemotoxicity) in adults with cancer; this association remains unexplored in children with cancer. METHODS Using baseline computed tomography scans of 107 children with Hodgkin lymphoma (n = 45), non-Hodgkin lymphoma (n = 42), or rhabdomyosarcoma (n = 20), this study examined body composition (skeletal muscle index [SMI], skeletal muscle density [SMD], and height-adjusted total adipose tissue [hTAT]) to determine its association with chemotoxicity. Clinical characteristics and chemotoxicities were abstracted from medical records. Primary outcomes included grade 4 or higher hematologic toxicities and grade 3 or higher nonhematologic toxicities within 6 months of the diagnosis. Logistic regression models accounting for repeated measures were constructed to examine the association between body composition indices and chemotoxicities; adjustments were made for age at diagnosis, sex, race/ethnicity, cancer type, risk group, body mass index (measured as a percentile), or body surface area. RESULTS The median SMI was 41.0 cm2 /m2 (range, 25.8-68.6 cm2 /m2 ), the median SMD was 54.1 HU (range, 35-69.4 HU), and the median hTAT was 19.5 cm2 /m2 (range, 0-226.7 cm2 /m2 ). Grade 4 or higher hematologic toxicities and grade 3 or higher nonhematologic toxicities were observed in 74.7% and 66.3% of the chemotherapy cycles, respectively. A higher SMD at diagnosis was associated with lower odds of grade 4 or higher hematologic toxicity (odds ratio [OR], 0.90; 95% confidence interval [CI], 0.85-0.97; P = .004). SMI (OR, 0.99; 95% CI, 0.95-1.04; P = .7) and hTAT (OR, 1.00; 95% CI, 0.99-1.01; P = .9) were not associated with hematologic toxicities. Nonhematologic toxicities did not show any association with body composition. CONCLUSIONS The association between low SMD and hematologic toxicities in children with lymphoma or rhabdomyosarcoma could be due to body composition-based biodistribution of chemotherapeutic agents and needs further investigation. LAY SUMMARY Body composition at cancer diagnosis in children with lymphoma and rhabdomyosarcoma may provide information that could identify those at risk for serious side effects from chemotherapy. Routinely used measures such as body mass index and body surface area show poor correlations with body composition assessed via computed tomography scans.
Collapse
Affiliation(s)
- Aman Wadhwa
- Division of Pediatric Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama.,Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kandice M Adams
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chen Dai
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama
| | - Joshua S Richman
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama
| | - Andrew M McDonald
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama.,Division of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Grant R Williams
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama.,Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Smita Bhatia
- Division of Pediatric Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama.,Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
14
|
Minturn JE, Mochizuki AY, Partap S, Belasco JB, Lange BJ, Li Y, Phillips PC, Gibbs IC, Fisher PG, Fisher MJ, Janss AJ. A Pilot Study of Low-Dose Craniospinal Irradiation in Patients With Newly Diagnosed Average-Risk Medulloblastoma. Front Oncol 2021; 11:744739. [PMID: 34540703 PMCID: PMC8443797 DOI: 10.3389/fonc.2021.744739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/17/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose Medulloblastoma is one of the most common malignant brain tumors in children. To date, the treatment of average-risk (non-metastatic, completely resected) medulloblastoma includes craniospinal radiation therapy and adjuvant chemotherapy. Modern treatment modalities and now risk stratification of subgroups have extended the survival of these patients, exposing the long-term morbidities associated with radiation therapy. Prior to advances in molecular subgrouping, we sought to reduce the late effects of radiation in patients with average-risk medulloblastoma. Methods We performed a single-arm, multi-institution study, reducing the dose of craniospinal irradiation by 25% to 18 Gray (Gy) with the goal of maintaining the therapeutic efficacy as described in CCG 9892 with maintenance chemotherapy. Results Twenty-eight (28) patients aged 3-30 years were enrolled across three institutions between April 2001 and December 2010. Median age at enrollment was 9 years with a median follow-up time of 11.7 years. The 3-year relapse-free (RFS) and overall survival (OS) were 79% (95% confidence interval [CI] 58% to 90%) and 93% (95% CI 74% to 98%), respectively. The 5-year RFS and OS were 71% (95% CI 50% to 85%) and 86% (95% CI 66% to 94%), respectively. Toxicities were similar to those seen in other studies; there were no grade 5 toxicities. Conclusions Given the known neurocognitive adverse effects associated with cranial radiation therapy, studies to evaluate the feasibility of dose reduction are needed. In this study, we demonstrate that select patients with average-risk medulloblastoma may benefit from a reduced craniospinal radiation dose of 18 Gy without impacting relapse-free or overall survival. Clinical Trial Registration ClinicalTrials.gov identifier: NCT00031590
Collapse
Affiliation(s)
- Jane E Minturn
- Department of Pediatrics, Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Aaron Y Mochizuki
- Department of Pediatrics, Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Neurology and Neurological Sciences, Division of Child Neurology, Lucile Packard Children's Hospital at Stanford University, Palo Alto, CA, United States
| | - Sonia Partap
- Department of Neurology and Neurological Sciences, Division of Child Neurology, Lucile Packard Children's Hospital at Stanford University, Palo Alto, CA, United States
| | - Jean B Belasco
- Department of Pediatrics, Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Beverly J Lange
- Department of Pediatrics, Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Yimei Li
- Department of Pediatrics, Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Peter C Phillips
- Department of Pediatrics, Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Iris C Gibbs
- Department of Neurology and Neurological Sciences, Division of Child Neurology, Lucile Packard Children's Hospital at Stanford University, Palo Alto, CA, United States.,Department of Radiation Oncology, Stanford University Cancer Center, Palo Alto, CA, United States
| | - Paul G Fisher
- Department of Neurology and Neurological Sciences, Division of Child Neurology, Lucile Packard Children's Hospital at Stanford University, Palo Alto, CA, United States
| | - Michael J Fisher
- Department of Pediatrics, Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Anna J Janss
- Department of Pediatrics, Division of Hematology/Oncology, Children's Healthcare of Atlanta, Atlanta, GA, United States
| |
Collapse
|
15
|
Das A, Achari RB, Zameer L, Sen S, Krishnan S, Bhattacharyya A. Treatment Refusal and Abandonment Remain Major Concerns Despite Good Outcomes with Multi-Modality Management in Pediatric Medulloblastoma: Experience from a Cancer Center in Eastern India. Indian J Med Paediatr Oncol 2021. [DOI: 10.4103/ijmpo.ijmpo_213_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Abstract
Context: Survival in medulloblastoma, the most common pediatric brain tumor, has lagged behind in developing countries in comparison to the West. Aim: The aim of this study was to analyze the clinical profile and outcome in a cancer center in Eastern India. Methods: Twenty-nine children were retrospectively analyzed over 6 years. Results: Vomiting (79%), headache (69%), and unsteadiness (55%) were the presenting complaints. The majority (67%) had classical histology. High-risk (HR) disease (61.6%) exceeded average-risk (AR) (38.4%) disease in numbers. Treatment-refusal (27.6%) and abandonment (6.9%) were major concerns. Four-year EFS was 81% and 52%, excluding and including refusal/abandonment, respectively. There was no relapse/progression among AR patients. Four-year EFS in HR was 63%. Posterior fossa syndrome (37.5%), febrile neutropenia (29%), and ototoxicity (16.7%) were the main treatment-related morbidities. Implications: Following this audit, patient tracking to reduce abandonment, coordination to limit delay in postsurgical referral, developing strategies for molecular subgrouping, and reducing cumulative cisplatin exposure were measures adopted to improve outcome in the unit.
Collapse
Affiliation(s)
- Anirban Das
- Departments of Paediatric Haematology-Oncology, Tata Medical Centre, Kolkata, West Bengal, India
| | - Rimpa Basu Achari
- Departments of Radiation Oncology, Tata Medical Centre, Kolkata, West Bengal, India
| | - Lateef Zameer
- Departments of Histopathology, Tata Medical Centre, Kolkata, West Bengal, India
| | - Saugata Sen
- Departments of Radiology, Tata Medical Centre, Kolkata, West Bengal, India
| | - Shekhar Krishnan
- Departments of Paediatric Haematology-Oncology, Tata Medical Centre, Kolkata, West Bengal, India
| | - Arpita Bhattacharyya
- Departments of Paediatric Haematology-Oncology, Tata Medical Centre, Kolkata, West Bengal, India
| |
Collapse
|
16
|
Mahajan A. How I Treat Medulloblastoma in Children. Indian J Med Paediatr Oncol 2020. [DOI: 10.4103/ijmpo.ijmpo_136_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
AbstractMedulloblastoma (MB) is the most common malignant tumor of the central nervous system in children with up to a third of these tumors presenting in children under 3 years of age. Its exquisite radio and chemosensitivity renders high cure rates in children in whom optimal resection has been achieved. Optimal surgery followed by radiation alone can cure about half of these children. The addition of chemotherapy has improved the outcomes dramatically and over 70% of children over 3 years of age with optimal resection and no metastasis can expect to be cured. Increasingly, the focus is on limiting the long-term sequelae of treatment. Precise molecular characterization can enable us to identify patients who can achieve optimal outcomes even in the absence of radiation. Insights into disease biology and molecular characterization have led to dramatic changes in our understanding, risk stratification, prognostication, and treatment approach in these children. In India, there is limited access to molecular profiling, making it challenging to apply biology driven approach to treatment in each child with MB. The Indian Society of Neuro-Oncology guidelines and the SIOP PODC adapted treatment recommendations for standard-risk MB based on the current evidence and logistic realities of low-middle income countries are a useful adjunct to guide clinical practice on a day-to-day basis in our setting.
Collapse
Affiliation(s)
- Amita Mahajan
- Department of Pediatric Hematology and Oncology, Indraprastha Apollo Hospital, New Delhi, India
| |
Collapse
|
17
|
Franceschi E, Frappaz D, Rudà R, Hau P, Preusser M, Houillier C, Lombardi G, Asioli S, Dehais C, Bielle F, Di Nunno V, van den Bent M, Brandes AA, Idbaih A. Rare Primary Central Nervous System Tumors in Adults: An Overview. Front Oncol 2020; 10:996. [PMID: 32676456 PMCID: PMC7333775 DOI: 10.3389/fonc.2020.00996] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Overall, tumors of primary central nervous system (CNS) are quite common in adults with an incidence rate close to 30 new cases/100,000 inhabitants per year. Significant clinical and biological advances have been accomplished in the most common adult primary CNS tumors (i.e., diffuse gliomas). However, most CNS tumor subtypes are rare with an incidence rate below the threshold defining rare disease of 6.0 new cases/100,000 inhabitants per year. Close to 150 entities of primary CNS tumors have now been identified by the novel integrated histomolecular classification published by the World Health Organization (WHO) and its updates by the c-IMPACT NOW consortium (the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy). While these entities can be better classified into smaller groups either by their histomolecular features and/or by their location, assessing their treatment by clinical trials and improving the survival of patients remain challenging. Despite these tumors are rare, research, and advances remain slower compared to diffuse gliomas for instance. In some cases (i.e., ependymoma, medulloblastoma) the understanding is high because single or few driver mutations have been defined. The European Union has launched European Reference Networks (ERNs) dedicated to support advances on the clinical side of rare diseases including rare cancers. The ERN for rare solid adult tumors is termed EURACAN. Within EURACAN, Domain 10 brings together the European patient advocacy groups (ePAGs) and physicians dedicated to improving outcomes in rare primary CNS tumors and also aims at supporting research, care and teaching in the field. In this review, we discuss the relevant biological and clinical characteristics, clinical management of patients, and research directions for the following types of rare primary CNS tumors: medulloblastoma, pineal region tumors, glioneuronal and rare glial tumors, ependymal tumors, grade III meningioma and mesenchymal tumors, primary central nervous system lymphoma, germ cell tumors, spinal cord tumors and rare pituitary tumors.
Collapse
Affiliation(s)
- Enrico Franceschi
- Department of Medical Oncology, Azienda USL/IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Didier Frappaz
- Department of Neuro-Oncology and Institut d'Hématologie et d'Oncologie Pédiatrique, Centre Léon Bérard, Lyon, France
| | - Roberta Rudà
- Department of Neuro-Oncology, City of Health and Science and University of Turin, Turin, Italy
| | - Peter Hau
- Wilhelm Sander NeuroOncology-Unit, Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Caroline Houillier
- Sorbonne Université, IHU, ICM, Service de Neurologie 2-Mazarin, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Giuseppe Lombardi
- Department of Oncology, Veneto Institute of Oncology-IRCCS, Padua, Italy
| | - Sofia Asioli
- Section of Anatomic Pathology "M. Malpighi", Department of Biomedical and Neuromotor Sciences, Bellaria Hospital, Bologna, Italy
| | - Caroline Dehais
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Franck Bielle
- Department of Neuropathology, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, AP-HP, Sorbonne Université, SIRIC Curamus, Paris, France
| | - Vincenzo Di Nunno
- Department of Medical Oncology, Azienda USL/IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Martin van den Bent
- The Brain Tumor Center at Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Alba A Brandes
- Department of Medical Oncology, Azienda USL/IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Ahmed Idbaih
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | | |
Collapse
|
18
|
Modern Radiotherapy for Pediatric Brain Tumors. Cancers (Basel) 2020; 12:cancers12061533. [PMID: 32545204 PMCID: PMC7352417 DOI: 10.3390/cancers12061533] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer is a leading cause of death in children with tumors of the central nervous system, the most commonly encountered solid malignancies in this population. Radiotherapy (RT) is an integral part of managing brain tumors, with excellent long-term survival overall. The tumor histology will dictate the volume of tissue requiring treatment and the dose. However, radiation in developing children can yield functional deficits and/or cosmetic defects and carries a risk of second tumors. In particular, children receiving RT are at risk for neurocognitive effects, neuroendocrine dysfunction, hearing loss, vascular anomalies and events, and psychosocial dysfunction. The risk of these late effects is directly correlated with the volume of tissue irradiated and dose delivered and is inversely correlated with age. To limit the risk of developing these late effects, improved conformity of radiation to the target volume has come from adopting a volumetric planning process. Radiation beam characteristics have also evolved to achieve this end, as exemplified through development of intensity modulated photons and the use of protons. Understanding dose limits of critical at-risk structures for different RT modalities is evolving. In this review, we discuss the physical basis of the most common RT modalities used to treat pediatric brain tumors (intensity modulated radiation therapy and proton therapy), the RT planning process, survival outcomes for several common pediatric malignant brain tumor histologies, RT-associated toxicities, and steps taken to mitigate the risk of acute and late effects from treatment.
Collapse
|
19
|
Alharbi M, Mobark N, Bashawri Y, Abu Safieh L, Alowayn A, Aljelaify R, AlSaeed M, Almutairi A, Alqubaishi F, AlSolme E, Ahmad M, Al-Banyan A, Alotabi FE, Serrano J, Snuderl M, Al-Rashed M, Abedalthagafi M. Methylation Profiling of Medulloblastoma in a Clinical Setting Permits Sub-classification and Reveals New Outcome Predictions. Front Neurol 2020; 11:167. [PMID: 32265819 PMCID: PMC7100767 DOI: 10.3389/fneur.2020.00167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Medulloblastoma (MB) is the most common childhood malignant brain tumor and is a leading cause of cancer-related death in children. DNA methylation profiling has rapidly advanced our understanding of MB pathogenesis at the molecular level, but assessments in Saudi Arabian (SA)-MB cases are sparse. MBs can be sub-grouped according to methylation patterns from FPPE samples into Wingless (WNT-MB), Sonic Hedgehog (SHH-MB), Group 3 (G3), and Group 4 (G4) tumors. The WNT-MB and SHH-MB subgroups are characterized by gain-of function mutations that activate oncogenic cell signaling, whilst G3/G4 tumors show recurrent chromosomal alterations. Given that each subgroup has distinct clinical outcomes, the ability to subgroup SA-FPPE samples holds significant prognostic and therapeutic value. Here, we performed the first assessment of MB-DNA methylation patterns in an SA cohort using archival biopsy material (FPPE n = 49). Of the 41 materials available for methylation assessments, 39 could be classified into the major DNA methylation subgroups (SHH, WNT, G3, and G4). Furthermore, methylation analysis was able to reclassify tumors that could not be sub-grouped through next-generation sequencing, highlighting its superior accuracy for MB molecular classifications. Independent assessments demonstrated known clinical relationships of the subgroups, exemplified by the high survival rates observed for WNT tumors. Surprisingly, the G4 subgroup did not conform to previously identified phenotypes, with a high prevalence in females, high metastatic rates, and a large number of tumor-associated deaths. Taking our results together, we demonstrate that DNA methylation profiling enables the robust sub-classification of four disease sub-groups in archival FFPE biopsy material from SA-MB patients. Moreover, we show that the incorporation of DNA methylation biomarkers can significantly improve current disease-risk stratification schemes, particularly concerning the identification of aggressive G4 tumors. These findings have important implications for future clinical disease management in MB cases across the Arab world.
Collapse
Affiliation(s)
- Musa Alharbi
- Department of Paediatric Oncology Comprehensive Cancer Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Nahla Mobark
- Department of Paediatric Oncology Comprehensive Cancer Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Yara Bashawri
- Department of Biostatistics, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Leen Abu Safieh
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Albandary Alowayn
- Department of Biostatistics, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Rasha Aljelaify
- Department of Biostatistics, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Mariam AlSaeed
- Department of Biostatistics, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Amal Almutairi
- Department of Biostatistics, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Fatimah Alqubaishi
- Department of Biostatistics, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ebtehal AlSolme
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Maqsood Ahmad
- Department of Neuroscience, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ayman Al-Banyan
- Department of Neuroscience, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Fahad E Alotabi
- Department of Neuroscience, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Jonathan Serrano
- Department of Pathology, NYU Langone Medical Center, New York, NY, United States
| | - Matija Snuderl
- Department of Pathology, NYU Langone Medical Center, New York, NY, United States
| | - May Al-Rashed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Malak Abedalthagafi
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Greenberger BA, Yock TI. The role of proton therapy in pediatric malignancies: Recent advances and future directions. Semin Oncol 2020; 47:8-22. [PMID: 32139101 DOI: 10.1053/j.seminoncol.2020.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 11/11/2022]
Abstract
Proton radiotherapy has promised an advantage in safely treating pediatric malignancies with an increased capability to spare normal tissues, reducing the risk of both acute and late toxicity. The past decade has seen the proliferation of more than 30 proton facilities in the United States, with increased capacity to provide access to approximately 3,000 children per year who will require radiotherapy for their disease. We provide a review of the initial efforts to describe outcomes after proton therapy across the common pediatric disease sites. We discuss the main attempts to assess comparative efficacy between proton and photon radiotherapy concerning toxicity. We also discuss recent efforts of multi-institutional registries aimed at accelerating research to better define the optimal treatment paradigm for children requiring radiotherapy for cure.
Collapse
Affiliation(s)
- Benjamin A Greenberger
- Department of Radiation Oncology, Sidney Kimmel Medical College & Cancer Center at Thomas Jefferson University, Philadelphia, PA
| | - Torunn I Yock
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Francis H. Burr Proton Therapy Center, Boston, MA.
| |
Collapse
|
21
|
Li BK, Al-Karmi S, Huang A, Bouffet E. Pediatric embryonal brain tumors in the molecular era. Expert Rev Mol Diagn 2020; 20:293-303. [PMID: 31917601 DOI: 10.1080/14737159.2020.1714439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Embryonal brain tumors (EBTs) are highly aggressive malignancies predominantly affecting children. They include medulloblastoma (MB), atypical rhabdoid/teratoid tumors (ATRT), pineoblastoma (PB), embryonal tumor multiple rosettes (ETMR)/C19MC-altered tumors, and newly recognized embryonal tumors with FOXR2 activation or BCOR alteration.Areas covered: This review will provide a comprehensive overview and updated of the literature on each of these EBTs. The evolution from location- and histopathology-based diagnosis to more specific and robust molecular-based classification schemes, as well as treatment modalities, will be discussed.Expert commentary: The subgrouping of EBTs with multi-omic profiling has had important implications for risk stratification and discovery of targetable driver pathways. However, these innovations are unlikely to significantly improve survival among high-risk patients until robust preclinical studies are conducted, followed by validation in biology-informed clinical trials.
Collapse
Affiliation(s)
- Bryan K Li
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON, Canada.,Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Salma Al-Karmi
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON, Canada
| | - Annie Huang
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON, Canada.,Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Eric Bouffet
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
22
|
Enríquez Pérez J, Fritzell S, Kopecky J, Visse E, Darabi A, Siesjö P. The effect of locally delivered cisplatin is dependent on an intact immune function in an experimental glioma model. Sci Rep 2019; 9:5632. [PMID: 30948731 PMCID: PMC6449367 DOI: 10.1038/s41598-019-42001-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
Several chemotherapeutic drugs are now considered to exert anti-tumour effects, by inducing an immune-promoting inflammatory response. Cisplatin is a potent chemotherapeutic agent used in standard medulloblastoma but not glioblastoma protocols. There is no clear explanation for the differences in clinical efficacy of cisplatin between medulloblastomas and glioblastomas, despite the fact that cisplatin is effective in vitro against the latter. Systemic toxicity is often dose limiting but could tentatively be reduced by intratumoral administration. We found that intratumoral cisplatin can cure GL261 glioma-bearing C57BL/6 mice and this effect was abolished in GL261-bearing NOD-scid IL2rγnull (NSG) mice. Contrary to previous results with intratumoral temozolomide cisplatin had no additive or synergistic effect with whole cell either GL261 wild-type or GM-CSF-transfected GL261 cells whole cell vaccine-based immunotherapy. While whole tumour cell immunizations increased CD8+ T-cells and decreased F4/80+ macrophages intratumorally, cisplatin had no effect on these cell populations. Taken together, our results demonstrate that intratumoral cisplatin treatment was effective with a narrow therapeutic window and may be an efficient approach for glioma or other brain tumour treatment.
Collapse
Affiliation(s)
- Julio Enríquez Pérez
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Sara Fritzell
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jan Kopecky
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Edward Visse
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Anna Darabi
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Peter Siesjö
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
- Division of Neurosurgery, Department of Clinical Sciences, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW The advent of proton beam therapy (PBT) has initiated a paradigm shift in the field of pediatric radiation oncology, with increasing promise to alleviate both short-term and long-term toxicities. Given the dramatic rise in proton therapy centers in the United States, a discussion of the quality of evidence supporting its use in pediatric cancers is warranted. RECENT FINDINGS Proton radiotherapy appears to decrease the incidence and severity of late effects with the strongest evidence in pediatric brain tumor cohorts that shows benefits in neurocognitive, hearing, and endocrine outcomes. However, emerging data has shown that more conservative brainstem dose limits with protons compared with photons are required to limit brainstem toxicity; these modified recommendations have been incorporated into national cooperative group studies. Decreased toxicity in tumors outside of the CNS for PBT have also been reported in sarcomas, Hodgkin disease and neuroblastoma. Similarly, QoL outcomes are improved in brain tumor and other cohorts of patients treated with PBT. SUMMARY The collective findings demonstrate improved understanding and refinement of PBT in pediatric cancers. Data on QOL, toxicity and disease outcomes with PBT should continue to be collected and reported in order to understand the full extent of the risks and benefits associated with PBT.
Collapse
|
24
|
Beier D, Proescholdt M, Reinert C, Pietsch T, Jones DTW, Pfister SM, Hattingen E, Seidel C, Dirven L, Luerding R, Reijneveld J, Warmuth-Metz M, Bonsanto M, Bremer M, Combs SE, Rieken S, Herrlinger U, Kuntze H, Mayer-Steinacker R, Moskopp D, Schneider T, Beringer A, Schlegel U, Stummer W, Welker H, Weyerbrock A, Paulsen F, Rutkowski S, Weller M, Wick W, Kortmann RD, Bogdahn U, Hau P. Multicenter pilot study of radiochemotherapy as first-line treatment for adults with medulloblastoma (NOA-07). Neuro Oncol 2019; 20:400-410. [PMID: 29016837 DOI: 10.1093/neuonc/nox155] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Medulloblastoma in adult patients is rare, with 0.6 cases per million. Prognosis depends on clinical factors and medulloblastoma entity. No prospective data on the feasibility of radiochemotherapy exist. The German Neuro-Oncology Working Group (NOA) performed a prospective descriptive multicenter single-arm phase II trial to evaluate feasibility and toxicity of radio-polychemotherapy. Methods The NOA-07 trial combined craniospinal irradiation with vincristine, followed by 8 cycles of cisplatin, lomustine, and vincristine. Adverse events, imaging and progression patterns, histological and genetic markers, health-related quality of life (HRQoL), and cognition were evaluated. Primary endpoint was the rate of toxicity-related treatment terminations after 4 chemotherapy cycles, and the toxicity profile. The feasibility goal was reached if at least 45% of patients received at least 4 cycles of maintenance chemotherapy. Results Thirty patients were evaluable. Each 50% showed classic and desmoplastic/nodular histology. Sixty-seven percent were classified into the sonic hedgehog (SHH) subgroup without TP53 alterations, 13% in wingless (WNT), and 17% in non-WNT/non-SHH. Four cycles of chemotherapy were feasible in the majority (n = 21; 70.0%). Hematological side effects and polyneuropathy were prevalent toxicities. During the active treatment period, HRQoL and verbal fluency improved significantly. The 3-year event-free survival rate was 66.6% at the time of databank lock. Conclusions Radio-polychemotherapy did lead to considerable toxicity and a high amount of dose reductions throughout the first 4 chemotherapy cycles that may affect efficacy. Thus, we propose frequent patient surveillance using this regimen. Modifications of the regimen may increase feasibility of radio-polychemotherapy of adult patients with medulloblastoma.
Collapse
Affiliation(s)
- Dagmar Beier
- Department of Neurology, University Hospital Odense and Clinical Institute, University of Southern Denmark, Odense, Denmark.,Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Martin Proescholdt
- Department of Neurosurgery, University Hospital Regensburg, Regensburg, Germany
| | - Christiane Reinert
- Wilhelm Sander Neuro-Oncology Unit and Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Torsten Pietsch
- Institute of Neuropathology, Brain Tumor Reference Center of the Society for Neuropathology and Neuroanatomy, University of Bonn Medical Center, Bonn, Germany
| | - David T W Jones
- Division of Pediatric Neuro-oncology, German Cancer Research Center, Heidelberg, Germany
| | - Stefan M Pfister
- Division of Pediatric Neuro-oncology, German Cancer Research Center, Heidelberg, Germany.,Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Elke Hattingen
- Department of Radiology, Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Clemens Seidel
- Department of Radiotherapy and Radio-oncology, University Hospital Leipzig, Leipzig, Germany
| | - Linda Dirven
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ralf Luerding
- Wilhelm Sander Neuro-Oncology Unit and Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Jaap Reijneveld
- Brain Tumor Center Amsterdam and Department of Neurology, VU University Medical Center and Academic Medical Center, Amsterdam, the Netherlands
| | - Monika Warmuth-Metz
- Department of Neuroradiology, University Hospital Würzburg, Würzburg, Germany
| | - Matteo Bonsanto
- Department of Neurosurgery, University Hospital, Lübeck, Germany.,Department of Radiation Oncology, Medical School Hannover, Hannover, Germany
| | | | - Stephanie E Combs
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany.,Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München (TUM), Munich, Germany
| | - Stefan Rieken
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ulrich Herrlinger
- Division of Neuro-oncology, University of Bonn Medical Center, Bonn, Germany
| | - Holger Kuntze
- Department of Neurology, University Hospital Mainz, Mainz, Germany
| | | | - Dag Moskopp
- Department of Neurosurgery, Vivantes Klinikum am Friedrichshain, Berlin, Germany
| | - Thomas Schneider
- Department of Neurosurgery, University Hospital Magdeburg, Magdeburg, Germany
| | - Andreas Beringer
- Department of Neurosurgery, University Hospital Freiburg, Freiburg, Germany
| | - Uwe Schlegel
- Department of Neurology, Knappschaftskrankenhaus, University of Bochum, Bochum, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| | - Helmut Welker
- Department of Radiation Oncology, Klinikum Stuttgart, Stuttgart, Germany
| | - Astrid Weyerbrock
- Department of Neurosurgery, University Hospital Freiburg, Freiburg, Germany
| | - Frank Paulsen
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Weller
- Department of Neurology, Universitätsspital Zurich, Zurich, Switzerland, and Department of Neurology, University Hospital Tübingen, Tübingen, Germany
| | - Wolfgang Wick
- Department of Neurology, University Hospital Heidelberg, and Neuro-oncology Program at the National Center for Tumor Diseases, Heidelberg, Germany
| | - Rolf-Dieter Kortmann
- Department of Radiotherapy and Radio-oncology, University Hospital Leipzig, Leipzig, Germany
| | - Ulrich Bogdahn
- Wilhelm Sander Neuro-Oncology Unit and Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Peter Hau
- Wilhelm Sander Neuro-Oncology Unit and Department of Neurology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
25
|
Wei J, Ma L, Li C, Pierson CR, Finlay JL, Lin J. Targeting Upstream Kinases of STAT3 in Human Medulloblastoma Cells. Curr Cancer Drug Targets 2019; 19:571-582. [PMID: 30332965 PMCID: PMC6533162 DOI: 10.2174/1568009618666181016165604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 08/21/2018] [Accepted: 09/28/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Medulloblastoma is the most common malignant brain tumor in children. Despite improvement in overall survival rate, it still lacks an effective targeted treatment strategy. The Janus family of cytoplasmic tyrosine kinases (JAKs) and Src kinases, upstream protein kinases of signal transducer and activator of transcription 3 (STAT3), play important roles in medulloblastoma pathogenesis and therefore represent potential therapeutic targets. METHODS In this report, we examined the inhibitory efficacy of the JAK1/2 inhibitor, ruxolitinib, the JAK3 inhibitor, tofacitinib and two Src inhibitors, KX2-391 and dasatinib. RESULTS These small molecule drugs significantly reduce cell viability and inhibit cell migration and colony formation in human medulloblastoma cells in vitro. Src inhibitors have more potent efficacy than JAK inhibitors in inhibiting medulloblastoma cell migration ability. The Src inhibitors can inhibit both phosphorylation of STAT3 and Src while JAK inhibitors reduce JAK/STAT3 phosphorylation. We also investigated the combined effect of the Src inhibitor, dasatinib with cisplatin. The results show that dasatinib exerts synergistic effects with cisplatin in human medulloblastoma cells through the inhibition of STAT3 and Src. CONCLUSION Our results suggest that the small molecule inhibitors of STAT3 upstream kinases, ruxolitinib, tofacitinib, KX2-391, and dasatinib could be novel and attractive candidate drugs for the treatment of human medulloblastoma.
Collapse
Affiliation(s)
- Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Ling Ma
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Chenglong Li
- College of Pharmacy, University of Florida, Gainesville, FL 32610
| | - Christopher R. Pierson
- Department of Pathology and Laboratory Medicine, Nationwide Children ‘s Hospital, The Department of Pathology and Department of Biomedical Education & Anatomy, The College of Medicine, The Ohio State University, Columbus,OH 43205, USA
| | - Jonathan L. Finlay
- Division of Hematology, Oncology and BMT, The Research Institute at Nationwide Children’s Hospital, Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43205, USA
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
26
|
Prince EW, Balakrishnan I, Shah M, Mulcahy Levy JM, Griesinger AM, Alimova I, Harris PS, Birks DK, Donson AM, Davidson N, Remke M, Taylor MD, Handler MH, Foreman NK, Venkataraman S, Vibhakar R. Checkpoint kinase 1 expression is an adverse prognostic marker and therapeutic target in MYC-driven medulloblastoma. Oncotarget 2018; 7:53881-53894. [PMID: 27449089 PMCID: PMC5288228 DOI: 10.18632/oncotarget.10692] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/05/2016] [Indexed: 12/01/2022] Open
Abstract
Checkpoint kinase 1 (CHK1) is an integral component of the cell cycle as well as the DNA Damage Response (DDR) pathway. Previous work has demonstrated the effectiveness of inhibiting CHK1 with small-molecule inhibitors, but the role of CHK1 mediated DDR in medulloblastoma is unknown. CHK1, both at the mRNA and protein level, is highly expressed in medulloblastoma and elevated CHK1 expression in Group3 medulloblastoma is an adverse prognostic marker. CHK1 inhibition with the small-molecule drug AZD7762, results in decreased cell growth, increased DNA damage and cell apoptosis. Furthermore, AZD7762 acts in synergy with cisplatin in reducing cell proliferation in medulloblastoma. Similar phenotypic changes were observed with another CHK1 inhibitor, PF477736, as well as genetic knockdown using siRNA against CHK1. Treatments with small-molecule inhibitors of CHK1 profoundly modulated the expression of both upstream and downstream target proteins within the CHK1 signaling pathways. This suggests the presence of a feedback loop in activating CHK1. Overall, our results demonstrate that small-molecule inhibition of CHK1 in combination with, cisplatin, is more advantageous than either treatment alone, especially for Group 3 medulloblastoma, and therefore this combined therapeutic approach serves as an avenue for further investigation.
Collapse
Affiliation(s)
- Eric W Prince
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, Children's Hospital Colorado and University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, United States
| | - Ilango Balakrishnan
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, Children's Hospital Colorado and University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, United States
| | - Monil Shah
- University of Colorado School of Medicine, Aurora, CO, United States
| | - Jean M Mulcahy Levy
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, Children's Hospital Colorado and University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, United States
| | - Andrea M Griesinger
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, Children's Hospital Colorado and University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, United States
| | - Irina Alimova
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, Children's Hospital Colorado and University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, United States
| | - Peter S Harris
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, Children's Hospital Colorado and University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, United States
| | - Diane K Birks
- Division of Pediatric Neurosurgery, Children's Hospital Colorado and University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, United States
| | - Andrew M Donson
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, Children's Hospital Colorado and University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, United States
| | - Nathan Davidson
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, Children's Hospital Colorado and University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, United States
| | - Marc Remke
- DKFZ German Cancer Research Center, University Hospital Düsseldorf, Heidelberg, Germany
| | - Michael D Taylor
- Division of Neurosurgery, Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Michael H Handler
- Division of Pediatric Neurosurgery, Children's Hospital Colorado and University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, United States
| | - Nicholas K Foreman
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, Children's Hospital Colorado and University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, United States.,University of Colorado School of Medicine, Aurora, CO, United States.,Division of Pediatric Neurosurgery, Children's Hospital Colorado and University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, United States
| | - Sujatha Venkataraman
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, Children's Hospital Colorado and University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, United States
| | - Rajeev Vibhakar
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, Children's Hospital Colorado and University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, United States.,University of Colorado School of Medicine, Aurora, CO, United States.,Division of Pediatric Neurosurgery, Children's Hospital Colorado and University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
27
|
Zhang H, Wang X, Chen X. Retracted
: Potential Role of Long Non‐Coding RNA ANRIL in Pediatric Medulloblastoma Through Promotion on Proliferation and Migration by Targeting miR‐323. J Cell Biochem 2017; 118:4735-4744. [DOI: 10.1002/jcb.26141] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/16/2017] [Indexed: 01/22/2023]
Affiliation(s)
| | - Xiuli Wang
- Department of PediatricsLiaocheng People's HospitalLiaocheng252000China
| | - Xinxin Chen
- Department of PediatricsLiaocheng People's HospitalLiaocheng252000China
| |
Collapse
|
28
|
Albumin nanoparticles for glutathione-responsive release of cisplatin: New opportunities for medulloblastoma. Int J Pharm 2016; 517:168-174. [PMID: 27956195 DOI: 10.1016/j.ijpharm.2016.12.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 11/21/2022]
Abstract
Redox-responsive nanoparticles were synthesized by desolvation of bovine serum albumin followed by disulfide-bond crosslinking with N, N'-Bis (acryloyl) cystamine. Dynamic light scattering and transmission electron microscopy studies revealed spherical nanoparticles (mean diameter: 83nm, polydispersity index: 0.3) that were glutathione-responsive. Confocal microscopy revealed rapid, efficient internalization of the nanoparticles by Daoy medulloblastoma cells and healthy controls (HaCaT keratinocytes). Cisplatin-loaded nanoparticles with drug:carrier ratios of 5%, 10%, and 20% were tested in both cell lines. The formulation with the highest drug:carrier ratio reduced Daoy and HaCaT cell viability with IC50 values of 6.19 and 11.17μgmL-1, respectively. The differential cytotoxicity reflects the cancer cells' higher glutathione content, which triggers more extensive disruption of the disulfide bond-mediated intra-particle cross-links, decreasing particle stability and increasing their cisplatin release. These findings support continuing efforts to improve the safety and efficacy of antineoplastic drug therapy for pediatric brain tumors using selective nanoparticle-based drug delivery systems.
Collapse
|
29
|
Bouffet E. Reducing cisplatin ototoxicity in children: some hope and many questions. Lancet Oncol 2016; 18:6-7. [PMID: 27914821 DOI: 10.1016/s1470-2045(16)30630-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 11/25/2022]
Affiliation(s)
- Eric Bouffet
- The Hospital for Sick Children, University of Toronto, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
30
|
van As JW, van den Berg H, van Dalen EC. Platinum-induced hearing loss after treatment for childhood cancer. Cochrane Database Syst Rev 2016; 2016:CD010181. [PMID: 27486906 PMCID: PMC6466671 DOI: 10.1002/14651858.cd010181.pub2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Platinum-based therapy, including cisplatin, carboplatin, oxaliplatin or a combination of these, is used to treat a variety of paediatric malignancies. Unfortunately, one of the most important adverse effects is the occurrence of hearing loss or ototoxicity. There is a wide variation in the reported prevalence of platinum-induced ototoxicity and the associated risk factors. More insight into the prevalence of and risk factors for platinum-induced hearing loss is essential in order to develop less ototoxic treatment protocols for the future treatment of children with cancer and to develop adequate follow-up protocols for childhood cancer survivors treated with platinum-based therapy. OBJECTIVES To evaluate the existing evidence on the association between childhood cancer treatment including platinum analogues and the occurrence of hearing loss. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (2015, Issue 8), MEDLINE (PubMed) (1945 to 23 September 2015) and EMBASE (Ovid) (1980 to 23 September 2015). In addition, we searched reference lists of relevant articles and the conference proceedings of the International Society for Paediatric Oncology (2008 to 2014), the American Society of Pediatric Hematology/Oncology (2008 to 2015) and the International Conference on Long-Term Complications of Treatment of Children and Adolescents for Cancer (2010 to 2015). Experts in the field provided information on additional studies. SELECTION CRITERIA All study designs, except case reports, case series (i.e. a description of non-consecutive participants) and studies including fewer than 100 participants treated with platinum-based therapy who had an ototoxicity assessment, examining the association between childhood cancer treatment including platinum analogues and the occurrence of hearing loss. DATA COLLECTION AND ANALYSIS Two review authors independently performed the study selection. One review author performed data extraction and risk of bias assessment, which was checked by another review author. MAIN RESULTS We identified 13 eligible cohort studies including 2837 participants with a hearing test after treatment with a platinum analogue for different types of childhood cancers. All studies had methodological limitations, with regard to both internal (risk of bias) and external validity. Participants were treated with cisplatin, carboplatin or both, in varying doses. The reported prevalence of hearing loss varied considerably between 0% and 90.1%; none of the studies provided data on tinnitus. Three studies reported a prevalence of 0%, but none of these studies provided a definition for hearing loss and there might be substantial or even complete overlap in included participants between these three studies. When only studies that did provide a definition for hearing loss were included, the prevalence of hearing loss still varied widely between 1.7% and 90.1%. All studies were very heterogeneous with regard to, for example, definitions of hearing loss, used diagnostic tests, participant characteristics, (prior) anti-tumour treatment, other ototoxic drugs and length of follow-up. Therefore, pooling of results was not possible.Only two studies included a control group of people who had not received platinum treatment. In one study, the prevalence of hearing loss was 67.1% (95% confidence interval (CI) 59.3% to 74.1%) in platinum-treated participants, while in the control participants it was 7.4% (95% CI 6.2% to 8.8%). However, hearing loss was detected by screening in survivors treated with platinum analogues and by clinical presentation in control participants. It is uncertain what the effect of this difference in follow-up/diagnostic testing was. In the other study, the prevalence of hearing loss was 20.1% (95% CI 17.4% to 23.2%) in platinum-treated participants and 0.4% (95% CI 0.12% to 1.6%) in control participants. As neither study was a randomized controlled trial or controlled clinical trial, the calculation of a risk ratio was not feasible as it is very likely that both groups differed more than only the platinum treatment.Only two studies evaluated possible risk factors using multivariable analysis. One study identified a significantly higher risk of hearing loss in people treated with cisplatin 400 mg/m(2) plus carboplatin 1700 mg/m(2) as compared to treatment with cisplatin 400 mg/m(2) or less, irrespective of the definition of hearing loss. They also identified a significantly higher risk of hearing loss in people treated with non-anthracycline aminoglycosides antibiotics (using a surrogate marker) as compared to people not treated with them, for three out of four definitions of hearing loss. The other study reported that age at treatment (odds ratio less than 1 for each single-unit increase) and single maximum cisplatin dose (odds ratio greater than 1 for each single-unit increase) were significant predictors for hearing loss, while gender was not. AUTHORS' CONCLUSIONS This systematic review shows that children treated with platinum analogues are at risk for developing hearing loss, but the exact prevalence and risk factors remain unclear. There were no data available for tinnitus. Based on the currently available evidence we can only advise that children treated with platinum analogues are screened for ototoxicity in order to make it possible to diagnose hearing loss early and to take appropriate measures. However, we are unable to give recommendations for specific follow-up protocols including frequency of testing. Counselling regarding the prevention of noise pollution can be considered, such as the use of noise-limiting equipment, avoiding careers with excess noise and ototoxic medication. Before definitive conclusions on the prevalence and associated risk factors of platinum-induced ototoxicity can be made, more high-quality research is needed. Accurate and transparent reporting of findings will make it possible for readers to appraise the results of these studies critically.
Collapse
Affiliation(s)
- Jorrit W van As
- Princess Máxima Center for Pediatric Oncologyc/o Cochrane Childhood CancerHeidelberglaan 25UtrechtNetherlands3584 CS
| | - Henk van den Berg
- Emma Children's Hospital, Amsterdam UMC, University of AmsterdamDepartment of Paediatric OncologyPO Box 22660AmsterdamNetherlands1100 DD
| | - Elvira C van Dalen
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25UtrechtNetherlands3584 CS
| | | |
Collapse
|
31
|
Yock TI, Yeap BY, Ebb DH, Weyman E, Eaton BR, Sherry NA, Jones RM, MacDonald SM, Pulsifer MB, Lavally B, Abrams AN, Huang MS, Marcus KJ, Tarbell NJ. Long-term toxic effects of proton radiotherapy for paediatric medulloblastoma: a phase 2 single-arm study. Lancet Oncol 2016; 17:287-298. [DOI: 10.1016/s1470-2045(15)00167-9] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/10/2015] [Accepted: 07/14/2015] [Indexed: 01/12/2023]
|
32
|
Gajjar A, Finlay JL. The management of children and adolescents with medulloblastoma in low and middle income countries. Pediatr Blood Cancer 2015; 62:549-50. [PMID: 25545387 DOI: 10.1002/pbc.25371] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 10/29/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Amar Gajjar
- Department of Oncology, Division of Neuro-oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | |
Collapse
|
33
|
Rooney JW, Laack NN. Pharmacological interventions to treat or prevent neurocognitive decline after brain radiation. CNS Oncol 2013; 2:531-41. [PMID: 25054823 PMCID: PMC6136103 DOI: 10.2217/cns.13.60] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
After surgery, radiation is the most effective treatment for the majority of brain tumors in both children and adults. Although improvements in radiotherapy delivery and targeting have resulted in reduction in neurologic morbidity, radiotherapy is still associated with acute and late toxicities that are dependent on a variety of treatment- and patient-specific variables. Variables of treatment include radiation dose, fractionation, volume, technique, photons or protons, and concomitant or adjuvant chemotherapy. Patient- and tumor-specific variables include tumor type, location and patient age. Side effects of treatment are also variable and can range from mild fatigue to significant memory difficulties and even death. This review will focus on the hypothesized mechanisms of cognitive dysfunction after radiation therapy and will discuss possible intervention strategies including behavioral and pharmacological prevention and treatment.
Collapse
Affiliation(s)
- Jessica W Rooney
- Mayo Clinic Department of Radiation Oncology, 200 First Street SW, Rochester, MN 55905, USA
| | - Nadia N Laack
- Mayo Clinic Department of Radiation Oncology, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|