1
|
Wang YD, Liu JZ, Fang HQ, Sun GB, Yang J, Ding G. UPLC-Q-TOF-MS/MS analysis of ophiobolins sesterterpenoids and bioactive analogs from Bipolaris eleusines. PHYTOCHEMISTRY 2025; 229:114267. [PMID: 39216632 DOI: 10.1016/j.phytochem.2024.114267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
In order to elucidate the mass fragmentation patterns and unveil more undescribed ophiobolin analogs, the mass fragmentation patterns of ophiobolins were analyzed based on UPLC-Q-TOF-MS/MS experiments. Different kinds of rearrangements (including McLafferty rearrangement) were the main cleavage patterns. Twenty-six (9-31) analogs were then tentatively characterized based on their mass analysis, and three undescribed ophiobolins (6-8) and a known analogue (5) were isolated in target. Compound 5 possesses a rare polycyclic carbon skeleton only recently reported, and compound 6 contains an undescribed lactone ring system fused with A/B ring at C-3/C-21, whereas compounds 7 and 8 have a peroxyl group in the side chain, which is the first reported in all ophiobolins. Compounds 5 and 7 displayed significant cytotoxicity against MCF-7 cancer cells.
Collapse
Affiliation(s)
- Yan-Duo Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Jian-Zi Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Hui-Qi Fang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Gui-Bo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China.
| | - Jian Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, 100700, People's Republic of China.
| | - Gang Ding
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China.
| |
Collapse
|
2
|
An TC, Ngoc PH, Tuan Hiep N, Long DD, Nhu TPH, Trung PV. Characterisation of saponins from Hedera nepalensis in Vietnam northwest mountainous areas with the aid of high-resolution mass spectrometry. Nat Prod Res 2023:1-9. [PMID: 37859413 DOI: 10.1080/14786419.2023.2272021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
This research aims to explore the saponins composition of H. nepalensis in four northwest mountainous areas of Vietnam including Ha Giang, Lai Chau, Lao Cai, and Lang Son with the aid of high-resolution mass spectrometry. As a result, 42 saponins are successfully identified in H. nepalensis leaves by UHPLC-Q-TOF-MS/MS analyses, in which two 30-noroleanane and four oleanane triterpene saponins structures have been reported for the first time. Two structures of compound 20 were discovered in four samples. Two structures of compound 8 were found in H. nepalensis from Ha Giang and Lao Cai, while two structures of compound 28 were not observed in Lang Son. Different environmental and climatic circumstances in various places may have an impact on chemical constituents of H. nepalensis. By providing the phytochemicals profile of H. nepalensis leaves, our study supports the orientation for future research on this medicinal plant as well as other Hedera species.
Collapse
Affiliation(s)
- Tran Chieu An
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology (VAST), Ho Chi Minh City, Vietnam
| | - Pham Hong Ngoc
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology (VAST), Ho Chi Minh City, Vietnam
| | | | - Dinh Doan Long
- Department of Basic Sciences in Medicine and Pharmacy, VNU-H-School of Medicine and Pharmacy, Hanoi, Vietnam
| | - Tran Phan Huynh Nhu
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology (VAST), Ho Chi Minh City, Vietnam
| | - Phung Van Trung
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology (VAST), Ho Chi Minh City, Vietnam
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology (VAST), Ha Noi City, Vietnam
| |
Collapse
|
3
|
Zhang T, Zhang J, Chen F, Liu A, Jiang J, Yan Z, Liu X. Qualitative and quantitative analysis of triterpenoids in different tissues of Pulsatilla chinensis. J Pharm Biomed Anal 2023; 234:115528. [PMID: 37331205 DOI: 10.1016/j.jpba.2023.115528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Pulsatilla chinensis (P.chinensis) is a traditional Chinese medicine used for the treatment of intestinal amebiasis diseases, vaginal trichomoniasis and bacterial infections. Tritepenoid saponins were important components of P.chinensis. Therefore, we asssessmented expression profiling of triterpenoids in different fresh tissues of P.chinensis by ultra high performance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) and ultra high performance liquid chromatography coupled to triple quadrupole mass spectrometry (UHPLC-QQQ-MS). Firstly, we identified 132 triterpenoids, including 119 triterpenoid saponins, 13 triterpenoid acids and forty seven of them were first determined in Pulsatilla genus, including new aglycones and new ways of rhamnose linking to the aglycone. Secondly, we established the analytical method to analysis triterpenoids content of P.chinensis and comprehensively verified the analytical method by linearity, precision, repeatability, stability and recovery. At last, we quantified 119 triterpenoids simultaneously based on UHPLC-QQQ-MS. The results show that the types and contents of triterpenoids had obvious tissue distribution. New components like rhamnose directly linked to the aglycone mainely distributed in aboveground tissues. Additionally, We identified 15 chemical ingredients as differential components between the aboveground and underground tissues of P.chinensis. This study provides an efficient analysis strategy for the qualitative and quantitative analysis of triterpenoids in P.chinensis even in other traditional Chinese medicines. At the same time, it provides important informations to explain the biosynthetic pathway of triterpenoid saponins in P.chinensis.
Collapse
Affiliation(s)
- Tinglan Zhang
- School of Life Science and Engineering,Southwest Jiaotong University, Chengdu 610031, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jun Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fangfang Chen
- School of Life Science and Engineering,Southwest Jiaotong University, Chengdu 610031, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - An Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jinzhu Jiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhiyong Yan
- School of Life Science and Engineering,Southwest Jiaotong University, Chengdu 610031, China
| | - Xianju Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
4
|
Belmehdi O, Taha D, Abrini J, Ming LC, Khalid A, Abdalla AN, Algarni AS, Hermansyah A, Bouyahya A. Anticancer properties and mechanism insights of α-hederin. Biomed Pharmacother 2023; 165:115205. [PMID: 37499451 DOI: 10.1016/j.biopha.2023.115205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
α-Hederin is a natural bioactive molecule very abundant in aromatic and medicinal plants (AMP). It was identified, characterized, and isolated using different extraction and characterization technologies, such as HPLC, LC-MS and NMR. Biological tests have revealed that this natural molecule possesses different biological properties, particularly anticancer activity. Indeed, this activity has been investigated against several cancers (e.g., esophageal, hepatic, breast, colon, colorectal, lung, ovarian, and gastric). The underlying mechanisms are varied and include induction of apoptosis and cell cycle arrest, reduction of ATP generation, as well as inhibition of autophagy, cell proliferation, invasion, and metastasis. In fact, these anticancer mechanisms are considered the most targeted for new chemotherapeutic agents' development. In the light of all these data, α-hederin could be a very interesting candidate as an anticancer drug for chemotherapy, as well as it could be used in combination with other molecules already validated or possibly investigated as an agent sensitizing tumor cells to chemotherapeutic treatments.
Collapse
Affiliation(s)
- Omar Belmehdi
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco.
| | - Douae Taha
- Laboratory of Spectroscopy, Molecular Modelling Materials, Nanomaterials Water and Environment-CERNE2D, Faculty of Sciences, Mohammed V University in Rabat, Morocco.
| | - Jamal Abrini
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco.
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia; PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, BE1410 Gadong, Brunei Darussalam; School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia.
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia; Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P. O. Box 2404, Khartoum, the Sudan.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah , Saudi Arabia.
| | - Alanood S Algarni
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah , Saudi Arabia.
| | - Andi Hermansyah
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco.
| |
Collapse
|
5
|
Su S, Xue G, Shang J, Yan P, Wang J, Yan C, Li J, Xiong X, Xu H. Computational method for rapid screening of the metabolites of Pulsatilla chinensis in rats using UHPLC-Q-TOF/MS combined with mass spectrum-based orthogonal projection. J Pharm Biomed Anal 2023; 229:115345. [PMID: 36958113 DOI: 10.1016/j.jpba.2023.115345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Screening metabolites in vivo can be challenging due to the complexity of traditional Chinese medicine (TCM) and the ambiguous intracorporal process. To resolve this problem, we established the mass spectrum-based orthogonal projection (MSOP) method to differentiate prototype compounds from metabolites in vivo and applied it to the study of metabolites of Pulsatilla chinensis (PC). Initially, the validity and feasibility of the MSOP method were verified by using the ultra- high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) data of reference solution. Then, the MSOP method was applied to screen the metabolites of PC. A total of 63 metabolites were identified in vivo (urine, feces, bile, and plasma samples) and in vitro (intestinal bacteria biological sample). The results indicated that the main metabolic pathways of pentacyclic triterpenoids were demethylation, oxidation, dehydration, sulfation, and glucuronidation reactions. This study contributes to developing an integrated strategy based on chemometrics to characterize and classify the metabolism feature of pentacyclic triterpenoids of PC. This will support the scientific and rational application of PC in the clinic. The MSOP method based on the orthogonality of MS signals was used to differentiate the prototype compounds from metabolites in vivo. The method provides scientific and reliable support for fully understanding the metabolic fate of TCM.
Collapse
Affiliation(s)
- Shanshan Su
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Guiren Xue
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Jiawei Shang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Pengfei Yan
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Jianxin Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Chengye Yan
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Jiaxi Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Xue Xiong
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Huijun Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China.
| |
Collapse
|
6
|
Łaska G, Sieniawska E, Maciejewska-Turska M, Świątek Ł, Pasco DS, Balachandran P. Pulsatilla vulgaris Inhibits Cancer Proliferation in Signaling Pathways of 12 Reporter Genes. Int J Mol Sci 2023; 24:ijms24021139. [PMID: 36674653 PMCID: PMC9860614 DOI: 10.3390/ijms24021139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
This study aimed to examine if methanolic extracts of Pulsatilla vulgaris Mill. can inhibit HeLa cell proliferation through the modulation of cancer-related signaling pathways. The cytotoxicity and chemical composition of P. vulgaris leaves and root extracts were also determined. Research showed that root extract of P. vulgaris inhibited 12 signaling pathways in a cervical cancer cell line and the most potent activation inhibition was observed for MYC, Notch, Wnt, E2F, Ets, Stat3, Smad, Hdghog, AP-1, and NF-κB, at a concentration of 40 µg/mL. The methanolic extracts of P. vulgaris enhanced apoptotic death and deregulated cellular proliferation, differentiation, and progression toward the neoplastic phenotype by altering key signaling molecules required for cell cycle progression. This is the first study to report the influence of P. vulgaris on cancer signaling pathways. Additionally, our detailed phytochemical analysis of the methanolic extracts of P. vulgaris gives a conclusion that compounds, which strongly suppressed the growth and proliferation of HeLa cancer cells were mainly triterpenoid saponins accompanied by phenolic acids.
Collapse
Affiliation(s)
- Grażyna Łaska
- Department of Agri-Food Engineering and Environmental Management, Bialystok University of Technology, 15-351 Bialystok, Poland
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence:
| | - Magdalena Maciejewska-Turska
- Department of Pharmacognosy with the Medicinal Plant Garden, Medical University of Lublin, 20-093 Lublin, Poland
| | - Łukasz Świątek
- Department of Virology with SARS Laboratory, Medical University of Lublin, 20-093 Lublin, Poland
| | - David S. Pasco
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Premalatha Balachandran
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
7
|
Wang L, Fu H, Li J, Chen L, Yang J, Zhong L, Xiao X, Feng Y, Luo Y. Ultra-high-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry coupled with three-step data post-processing techniques for comprehensive profiling of the multiple components in Fufang Xianzhuli Ye. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:92-104. [PMID: 36289055 DOI: 10.1002/pca.3182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 09/20/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
INTRODUCTION Fufang Xianzhuli (FXZL) Ye, a classical formula of traditional Chinese medicine, is composed of Succus Bambusae, Houttuyniae herba, Pinelliae Rhizoma, Zingiberis Rhizoma Recens, Eriobotryae Folium, Platycodonis Radix, and peppermint oil. For many years, FXZL has been primarily utilised in China to treat cough and phlegm. The chemical composition of FXZL has not been reported, which seriously affects the safety of the clinical application. OBJECTIVE To establish a systematic method for rapidly classifying and recognising the chemical constituents in the FXZL for the safety of the clinical application. METHODS An ultra-high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry coupled with a three-step data post-processing strategy was developed to screen the chemical constituents of FXZL. RESULTS In this experiment, the diagnostic ions in FXZL were classified into six main compounds. A total of 106 compounds were unambiguously identified in FXZL based on their retention times, accurate masses, and tandem mass spectrometry data. These include 11 chlorogenic acids, three flavonoids, eight sesquiterpenoids, six organic acids, 65 triterpenoid saponins, and 13 other compounds. CONCLUSION The chemical composition of FXZL was identified and summarised, providing useful information for quality control and a basis for further exploration of its active ingredients in vivo.
Collapse
Affiliation(s)
- Lanxin Wang
- NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Patent Medicine, Jiangxi Institute for Drug Control, Nanchang, 330029, P. R. China
- School of Pharmacy, Nanchang University, Nanchang, 330031, P. R. China
| | - Huizheng Fu
- NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Patent Medicine, Jiangxi Institute for Drug Control, Nanchang, 330029, P. R. China
| | - Junmao Li
- The National Pharmaceutical Engineering Center (NPEC) for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330002, P. R. China
| | - Linan Chen
- NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Patent Medicine, Jiangxi Institute for Drug Control, Nanchang, 330029, P. R. China
- School of Pharmacy, Nanchang University, Nanchang, 330031, P. R. China
| | - Jiaxi Yang
- NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Patent Medicine, Jiangxi Institute for Drug Control, Nanchang, 330029, P. R. China
- School of Pharmacy, Nanchang University, Nanchang, 330031, P. R. China
| | - Lan Zhong
- NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Patent Medicine, Jiangxi Institute for Drug Control, Nanchang, 330029, P. R. China
- School of Pharmacy, Nanchang University, Nanchang, 330031, P. R. China
| | - Xiaowu Xiao
- NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Patent Medicine, Jiangxi Institute for Drug Control, Nanchang, 330029, P. R. China
| | - Yulin Feng
- The National Pharmaceutical Engineering Center (NPEC) for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330002, P. R. China
| | - Yuehua Luo
- NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Patent Medicine, Jiangxi Institute for Drug Control, Nanchang, 330029, P. R. China
- School of Pharmacy, Nanchang University, Nanchang, 330031, P. R. China
| |
Collapse
|
8
|
Pham HN, Tran CA, Trinh TD, Nguyen Thi NL, Tran Phan HN, Le VN, Le NH, Phung VT. UHPLC-Q-TOF-MS/MS Dereplication to Identify Chemical Constituents of Hedera helix Leaves in Vietnam. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:1167265. [PMID: 35979140 PMCID: PMC9377918 DOI: 10.1155/2022/1167265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/01/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Hedera helix has been reported to contain a wide range of metabolites and produce many pharmacological effects. This research demonstrates the determination and evaluation of the phytochemical profiling of H. helix grown in central Vietnam. Methanolic extract of ivy had been analyzed by ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS). MS, and MS/MS experiments were manipulated using both negative and positive ionization modes to provide molecular mass information and production spectra for the structural elucidation of compounds. A total of 46 compounds including 24 triterpene saponins and other compounds were successfully identified of which four established saponin structures have been reported for the first time. This study has provided a base for building a quality control of the raw materials according to the profile of triterpene saponins and assessment of pharmaceutical ingredients of H. helix planted in Vietnam.
Collapse
Affiliation(s)
- Hong Ngoc Pham
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam
| | - Chieu An Tran
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam
| | | | | | - Huynh Nhu Tran Phan
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam
| | - Van Nhan Le
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam
| | - Ngoc Hung Le
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam
| | - Van Trung Phung
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam
| |
Collapse
|
9
|
Qi J, Zhang Q, Li L, Huang Q, Yao M, Wang N, Peng D. Spectrum-effect relationship between UPLC-Q-TOF-MS fingerprint and anti-AUB effect of Clinopodium chinense (Benth.) O. Kuntze. J Pharm Biomed Anal 2022; 217:114828. [DOI: 10.1016/j.jpba.2022.114828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/10/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022]
|
10
|
Ma J, Li K, Shi S, Li J, Tang S, Liu L. The Application of UHPLC-HRMS for Quality Control of Traditional Chinese Medicine. Front Pharmacol 2022; 13:922488. [PMID: 35721122 PMCID: PMC9201421 DOI: 10.3389/fphar.2022.922488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
UHPLC-HRMS (ultra-high-performance liquid chromatography-high resolution mass spectrometry) is a new technique that unifies the application of UHPLC with HRMS. Because of the high sensitivity and good separation ability of UHPLC and the sensitivity of HRMS, this technique has been widely used for structure identification, quantitative determination, fingerprint analysis, and elucidation of the mechanisms of action of traditional Chinese medicines (TCMs) in recent years. This review mainly outlines the advantages of using UHPLC-HRMS and provides a survey of the research advances on UHPLC-HRMS for the quality control of TCMs.
Collapse
Affiliation(s)
- Jieyao Ma
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China.,Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, China
| | - Kailin Li
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - Silin Shi
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - Jian Li
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - Sunv Tang
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - LiangHong Liu
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China.,Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
11
|
Duan L, Xiong H, Du Y, Wang Z, Li Y, Zhao S, Chen J, Si D, Pan H. High-throughput LC-MS method for the rapid characterisation and comparative analysis of multiple ingredients of four hawthorn leaf extracts. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:635-643. [PMID: 35229907 DOI: 10.1002/pca.3116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/28/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
INTRODUCTION The comprehensive component characterisation of Chinese herbal medicine is the premise of effectively driving the discovery of pharmacodynamic substances or new drugs in recent years. OBJECTIVE To use the high-throughput liquid chromatography-mass spectrometry (LC-MS) approach to systematically characterise phytochemical compounds from four hawthorn leaf extracts, along with evaluating their classification. METHODS In the present study, the compounds from 50% ethanol extract, macro porous resin extract, ethyl acetate extract and standard decoction of hawthorn leaves were completely analysed by ultrahigh-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS). RESULTS Eight-nine compounds were putatively identified by comparison with secondary MS data and available references. Of these compounds identified, 56 compounds were found for the first time in hawthorn leaves, which was somewhat inconsistent with the findings of other studies. It could be inferred that falconoid, organic acids and nitrogenous compounds were the most abundant in 50% ethanol extract and standard decoction extract, which were considered as better choices for extracting hawthorn leaves. CONCLUSIONS This work developed a simple, accurate and rapid method for the compound identification of hawthorn leaves, which laid the basis for further discovering pharmacodynamic material basis or new drugs from hawthorn leaves.
Collapse
Affiliation(s)
- Liying Duan
- Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical College, Chengde, Hebei, China
| | - Hui Xiong
- Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical College, Chengde, Hebei, China
| | - Yilong Du
- Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical College, Chengde, Hebei, China
| | - Ziyi Wang
- Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical College, Chengde, Hebei, China
| | - Yanrong Li
- Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical College, Chengde, Hebei, China
| | - Shengnan Zhao
- Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical College, Chengde, Hebei, China
| | | | | | - Haifeng Pan
- Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical College, Chengde, Hebei, China
| |
Collapse
|
12
|
Wang YD, Yang J, Li Q, Li YY, Tan XM, Yao SY, Niu SB, Deng H, Guo LP, Ding G. UPLC-Q-TOF-MS/MS Analysis of Seco-Sativene Sesquiterpenoids to Detect New and Bioactive Analogues From Plant Pathogen Bipolaris sorokiniana. Front Microbiol 2022; 13:807014. [PMID: 35356527 PMCID: PMC8959811 DOI: 10.3389/fmicb.2022.807014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Seco-sativene sesquiterpenoids are an important member of phytotoxins and plant growth regulators isolated from a narrow spectrum of fungi. In this report, eight seco-sativene sesquiterpenoids (1-8) were first analyzed using the UPLC-Q-TOF-MS/MS technique in positive mode, from which their mass fragmentation pathways were suggested. McLafferty rearrangement, 1,3-rearrangement, and neutral losses were considered to be the main fragmentation patterns for the [M+1]+ ions of 1-8. According to the structural features (of different substitutes at C-1, C-2, and C-13) in compounds 1-8, five subtypes (A-E) of seco-sativene were suggested, from which subtypes A, B/D, and E possessed the diagnostic daughter ions at m/z 175, 189, and 203, respectively, whereas subtype C had the characteristic daughter ion at m/z 187 in the UPLC-Q-TOF-MS/MS profiles. Based on the fragmentation patterns of 1-8, several known compounds (1-8) and two new analogues (9 and 10) were detected in the extract of plant pathogen fungus Bipolaris sorokiniana based on UPLC-Q-TOF-MS/MS analysis, of which 1, 2, 9, and 10 were then isolated and elucidated by NMR spectra. The UPLC-Q-TOF-MS/MS spectra of these two new compounds (9 and 10) were consistent with the fragmentation mechanisms of 1-8. Compound 1 displayed moderate antioxidant activities with IC50 of 0.90 and 1.97 mM for DPPH and ABTS+ scavenging capacity, respectively. The results demonstrated that seco-sativene sesquiterpenoids with the same subtypes possessed the same diagnostic daughter ions in the UPLC-Q-TOF-MS/MS profiles, which could contribute to structural characterization of seco-sativene sesquiterpenoids. Our results also further supported that UPLC-Q-TOF-MS/MS is a powerful and sensitive tool for dereplication and detection of new analogues from crude extracts of different biological origins.
Collapse
Affiliation(s)
- Yan-Duo Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan-Yuan Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiang-Mei Tan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Si-Yang Yao
- Department of Pharmacy, Beijing City University, Beijing, China
| | - Shu-Bin Niu
- Department of Pharmacy, Beijing City University, Beijing, China
| | - Hui Deng
- Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lan-Ping Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Gang Ding
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Zhang L, Li MH, Tian J, Yin M, Cheng XL, Wei F, Ma SC. Identification of Pulsatilla chinensis (Bge.) Regel and look-alike species by ultra-performance liquid chromatography/time-of-flight mass spectrometry using multivariate statistical analysis. J Sep Sci 2022; 45:1297-1304. [PMID: 35000282 DOI: 10.1002/jssc.202100732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 11/08/2022]
Abstract
Pulsatillae Radix, the root of Pulsatilla chinensis (Bge.) Regel, is recorded in the Pharmacopoeia of the People's Republic of China and has been widely used for its pharmacological activities, such as anti-inflammatory, antioxidant, antibacterial, antitumor, and cardiovascular benefits. However, there are several look-alike species that can be marketed as Pulsatillae Radix. To distinguish Pulsatilla chinensis (Bge.) Regel from its look-alikes, viz. Pulsatilla cernua (Thunb.) Bercht et Opiz., Pulsatilla dahurica (Fisch.) Spreng., Anemone tomeutosa (Maxim.) Pei., and Rhaponticum uniflorum (L.) DC, we used ultra-performance liquid chromatography/time-of-flight mass spectrometry combined with principal component analysis to compare their chemical compositions. Four ions, a (RT 8.98 min, m/z 1381.6671), b (RT 10.64 min, m/z 1219.6143), c (RT 11.52 min, m/z 1217.5978), and d (RT 13.6 min, m/z 749.4463) from Pulsatillae chinensis (Bge.) Regel were identified as potential chemical markers to distinguish it from look-alike species using an unsupervised statistical model combined with orthogonal partial least-squares discriminant analysis. The results of this study provide an effective method for identifying and distinguishing Pulsatilla chinensis (Bge.) Regel from similar plants. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lu Zhang
- Yangzhou Center for Food and Drug Control, Jiangsu, P. R. China
| | - Ming-Hua Li
- National Institute for Food and Drug Control, Beijing, P. R. China
| | - Jing Tian
- Yangzhou Center for Food and Drug Control, Jiangsu, P. R. China
| | - Meng Yin
- Yangzhou Center for Food and Drug Control, Jiangsu, P. R. China
| | - Xian-Long Cheng
- National Institute for Food and Drug Control, Beijing, P. R. China
| | - Feng Wei
- National Institute for Food and Drug Control, Beijing, P. R. China
| | - Shuang-Cheng Ma
- National Institute for Food and Drug Control, Beijing, P. R. China
| |
Collapse
|
14
|
Wan JY, Wan JX, Wang S, Wang X, Guo W, Ma H, Wu Y, Wang CZ, Qi LW, Li P, Yao H, Yuan CS. Chemical profiling of root bark extract from Oplopanax elatus and its in vitro biotransformation by human intestinal microbiota. PeerJ 2021; 9:e12513. [PMID: 34900430 PMCID: PMC8627129 DOI: 10.7717/peerj.12513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/27/2021] [Indexed: 11/20/2022] Open
Abstract
Oplopanax elatus (Nakai) Nakai, in the Araliaceae family, has been used in traditional Chinese medicine (TCM) to treat diseases as an adaptogen for thousands of years. This study established an ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF/MS) method to identify chemical components and biotransformation metabolites of root bark extract from O. elatus. A total of 18 compounds were characterized in O. elatus extract, and 62 metabolites by human intestinal microbiota were detected. Two polyynes, falcarindiol and oplopandiol were recognized as the main components of O. elatus, whose metabolites are further illustrated. Several metabolic pathways were proposed to generate the detected metabolites, including methylation, hydrogenation, demethylation, dehydroxylation, and hydroxylation. These findings indicated that intestinal microbiota might play an essential role in mediating the bioactivity of O. elatus.
Collapse
Affiliation(s)
- Jin-Yi Wan
- School of Traditional Chinese Medicine & National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing-Xuan Wan
- School of Traditional Chinese Medicine & National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shilei Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xiaolu Wang
- School of Traditional Chinese Medicine & National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenqian Guo
- School of Traditional Chinese Medicine & National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Han Ma
- School of Traditional Chinese Medicine & National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuqi Wu
- School of Traditional Chinese Medicine & National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research & Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, USA
| | - Lian-Wen Qi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Haiqiang Yao
- School of Traditional Chinese Medicine & National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research & Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, USA
| |
Collapse
|
15
|
Extracts from Pulsatilla patens target cancer-related signaling pathways in HeLa cells. Sci Rep 2021; 11:10654. [PMID: 34017038 PMCID: PMC8138020 DOI: 10.1038/s41598-021-90136-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/30/2021] [Indexed: 01/19/2023] Open
Abstract
The purpose of this study was to determine if a methanolic extract of the Pulsatilla patens (L.) Mill. can inhibit the progression of cancer through the modulation of cancer-related metabolic signaling pathways. We analyzed a panel of 13 inducible luciferase reporter gene vectors which expression is driven by enhancer elements that bind to specific transcription factors for the evaluation of the activity of cancer signaling pathways. The root extract of P. patens exhibited strong inhibition of several signaling pathways in HeLa cells, a cervical cancer cell line, and was found to be the most potent in inhibiting the activation of Stat3, Smad, AP-1, NF-κB, MYC, Ets, Wnt and Hdghog, at a concentration of 40 µg/mL. The methanolic extracts of P. patens enhanced apoptotic death, deregulated cellular proliferation, differentiation, and progression towards the neoplastic phenotype by altering key signaling molecules required for cell cycle progression. This is the first study to report the influence of Pulsatilla species on cancer signaling pathways. Further, our detailed phytochemical analysis of the methanolic extracts of the P. patens allowed to deduce that compounds, which strongly suppressed the growth and proliferation of HeLa cancer cells were mainly triterpenoid saponins accompanied by phenolic acids.
Collapse
|
16
|
Ling Y, Zhu Y, Gan Q, Li G, Luo Z, Pan Y, Zhao L, Lei Z, He X, Zeng M, Liu W. Rapid Screening and Characterization of Triterpene Saponins from the Root of Phytolacca acinosa Roxb by High-Performance Liquid Chromatography Coupled to Electrospray Ionization and Quadrupole Time-of-Flight Mass Spectrometry. J Chromatogr Sci 2021; 60:16-25. [PMID: 33621321 DOI: 10.1093/chromsci/bmab017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/20/2020] [Indexed: 11/14/2022]
Abstract
Triterpene saponins (TSs) are important bioactive constituents with structural diversity widely distributed in many plants. The root of Phytolacca acinosa Roxb (RPa) has been used as a traditional Chinese medicine. However, TSs as the main active ingredients in RPa have not been fully characterized. Here, we profiled TSs from RPa by high-performance liquid chromatography coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry (HPLC-ESI-QTOF-MS/MS). We tentatively identified 29 TSs, including 13 that had not been reported previously from this plant. This study indicates that HPLC-ESI-QTOF-MS/MS is an effective and rapid method for the characterization of complicated TSs in herbal extracts.
Collapse
Affiliation(s)
- Yun Ling
- School of Pharmaceutical and Life Sciences, Jiujiang University, Jiujiang 332005, People's Republic of China
| | - Yue Zhu
- School of Pharmaceutical and Life Sciences, Jiujiang University, Jiujiang 332005, People's Republic of China
| | - Qiao Gan
- School of Pharmaceutical and Life Sciences, Jiujiang University, Jiujiang 332005, People's Republic of China
| | - Guilan Li
- School of Pharmaceutical and Life Sciences, Jiujiang University, Jiujiang 332005, People's Republic of China
| | - Zefan Luo
- School of Pharmaceutical and Life Sciences, Jiujiang University, Jiujiang 332005, People's Republic of China
| | - Yali Pan
- School of Pharmaceutical and Life Sciences, Jiujiang University, Jiujiang 332005, People's Republic of China
| | - Lian Zhao
- School of Pharmaceutical and Life Sciences, Jiujiang University, Jiujiang 332005, People's Republic of China
| | - Zhineng Lei
- School of Pharmaceutical and Life Sciences, Jiujiang University, Jiujiang 332005, People's Republic of China
| | - Xin He
- School of Pharmaceutical and Life Sciences, Jiujiang University, Jiujiang 332005, People's Republic of China
| | - Ming Zeng
- School of Pharmaceutical and Life Sciences, Jiujiang University, Jiujiang 332005, People's Republic of China
| | - Wenbo Liu
- School of Pharmaceutical and Life Sciences, Jiujiang University, Jiujiang 332005, People's Republic of China
| |
Collapse
|
17
|
Cao GY, Geng SX, Luo Y, Tian S, Ning B, Zhuang XS, Meng ZQ. The rapid identification of chemical constituents in Fufang Xiling Jiedu capsule, a modern Chinese medicine, by ultra-performance liquid chromatography coupled with quadrupole-time-of-flight tandem mass spectrometry and data mining strategy. J Sep Sci 2021; 44:1815-1823. [PMID: 33576573 DOI: 10.1002/jssc.202001093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 11/06/2022]
Abstract
Fufang Xiling Jiedu capsule is an effective Chinese medicine widely used for the treatment of cold and influenza. However, its chemical constituents had not been determined, which entailed a huge obstacle to further pharmacological studies, clinical-safe medication administration, and quality evaluation. To identify the chemical constituents in Fufang Xiling Jiedu capsule, an efficient and systematic approach using ultra-high-performance liquid chromatography coupled with a quadrupole time-of-flight mass spectrometry in conjunction with a data mining strategy was adopted in this study. As a result, 145 compounds were qualitatively identified, including 26 phenolic acids, 46 flavonoids, 39 triterpenes, and 34 other compounds, among which 6 were potentially new and 144 were being reported from Fufang Xiling Jiedu capsule for the first time. This research not only provides useful information for quality control of Fufang Xiling Jiedu capsule and its involved single herbs but also serve as basis data for further study of Fufang Xiling Jiedu capsule in vivo. Moreover, it provides a reference for the characterization of the chemical constituents of other Chinese medicine preparations.
Collapse
Affiliation(s)
- Gui-Yun Cao
- Traditional Chinese Medicine Research Institute, Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan, 250103, P. R. China.,Shandong Province Technical Innovation Center of Traditional Chinese Medicine Treatment of Respiratory Diseases, Jinan, 250103, P. R. China
| | - Shao-Xuan Geng
- Traditional Chinese Medicine Research Institute, Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan, 250103, P. R. China.,Shandong Province Technical Innovation Center of Traditional Chinese Medicine Treatment of Respiratory Diseases, Jinan, 250103, P. R. China
| | - Yi Luo
- Traditional Chinese Medicine Research Institute, Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan, 250103, P. R. China.,Shandong Province Technical Innovation Center of Traditional Chinese Medicine Treatment of Respiratory Diseases, Jinan, 250103, P. R. China
| | - Shuo Tian
- Traditional Chinese Medicine Research Institute, Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan, 250103, P. R. China.,Shandong Province Technical Innovation Center of Traditional Chinese Medicine Treatment of Respiratory Diseases, Jinan, 250103, P. R. China
| | - Bo Ning
- Traditional Chinese Medicine Research Institute, Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan, 250103, P. R. China.,Shandong Province Technical Innovation Center of Traditional Chinese Medicine Treatment of Respiratory Diseases, Jinan, 250103, P. R. China
| | - Xue-Song Zhuang
- Traditional Chinese Medicine Research Institute, Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan, 250103, P. R. China.,Shandong Province Technical Innovation Center of Traditional Chinese Medicine Treatment of Respiratory Diseases, Jinan, 250103, P. R. China
| | - Zhao-Qing Meng
- Traditional Chinese Medicine Research Institute, Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan, 250103, P. R. China.,Shandong Province Technical Innovation Center of Traditional Chinese Medicine Treatment of Respiratory Diseases, Jinan, 250103, P. R. China
| |
Collapse
|
18
|
Deng Y, Ye X, Chen Y, Ren H, Xia L, Liu Y, Liu M, Liu H, Zhang H, Wang K, Zhang J, Zhang Z. Chemical Characteristics of Platycodon grandiflorum and its Mechanism in Lung Cancer Treatment. Front Pharmacol 2021; 11:609825. [PMID: 33643040 PMCID: PMC7906976 DOI: 10.3389/fphar.2020.609825] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Objective: The technology, network pharmacology and molecular docking technology of the ultra performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) were used to explore the potential molecular mechanism of Platycodon grandiflorum (PG) in the treatment of lung cancer (LC). Methods: UPLC-Q-TOF-MS/MS technology was used to analyze the ingredients of PG and the potential LC targets were obtained from the Traditional Chinese Medicine Systems Pharmacology database, and the Analysis Platform (TCMSP), GeneCards and other databases. The interaction network of the drug-disease targets was constructed with the additional use of STRING 11.0. The pathway enrichment analysis was carried out using Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) in Metascape, and then the “Drug-Ingredients-Targets-Pathways-Disease” (D-I-T-P-D) network was constructed using Cytoscape v3.7.1. Finally, the Discovery Studio 2016 (DS) software was used to evaluate the molecular docking. Results: Forty-seven compounds in PG, including triterpenoid saponins, steroidal saponins and flavonoids, were identified and nine main bioactive components including platycodin D were screened. According to the method of data mining, 545 potential drug targets and 2,664 disease-related targets were collected. The results of topological analysis revealed 20 core targets including caspase 3 (CASP3) and prostaglandin-endoperoxide synthase 2 (PTGS2) suggesting that the potential signaling pathway potentially involved in the treatment of LC included MAPK signaling pathway and P13K-AKT signaling pathway. The results of molecular docking proved that the bound of the ingredients with potential key targets was excellent. Conclusion: The results in this study provided a novel insight in the exploration of the mechanism of action of PG against LC.
Collapse
Affiliation(s)
- Yaling Deng
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xianwen Ye
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yufan Chen
- Patient Service Center, Ganzhou People's Hospital, Ganzhou, China
| | - Hongmin Ren
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lanting Xia
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ying Liu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Minmin Liu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Haiping Liu
- School of Pharmacy, Guilin Medical University, Guilin, China
| | - Huangang Zhang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Kairui Wang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jinlian Zhang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Zhongwei Zhang
- School of Pharmacy, Youjiang Medical University for Nationalities, Guangxi, China
| |
Collapse
|
19
|
Ma B, Yang S, Li J, Ouyang H, He M, Feng Y, Tan T. A four-step filtering strategy based on ultra-high-performance liquid chromatography coupled to quadrupole-time-of-flight tandem mass spectrometry for comprehensive profiling the major chemical constituents of Akebiae Fructus. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1464-1474. [PMID: 31074056 DOI: 10.1002/rcm.8480] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/23/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE Akebiae Fructus (AF) is a traditional Chinese medicine (TCM) with antiphlogistic, analgesic, antineoplastic, diuretic, antirheumatic, antidepressant and antiobesity activities. Identification of chemical constituents from AF is helpful to discover the potential active ingredients and to control its quality. METHODS The four-step filtering strategy was as follows: (1) To extract the accurate mass by the different adduct ions. (2) To screen different types of the compounds using diagnostic ions. (3) By characteristic ion filtering, to confirm the substituted position and the sugar chain numbers. (4) Based on the neutral loss (NL), to identify the type of monosaccharide and the compositions of sugar chains of triterpenoid saponins and the structure of CGAs. RESULTS A total of 94 compounds (85 triterpenoid saponins, 9 chlorogenic acids) were unambiguously or reasonably identified. Fifty constituents were discovered for the first time from AF. Nine types of triterpenoid saponins, including akebonoic acid (type I), norhederagenin (type II), oleanolic acid (type III), 2α,3β-dihydroxy-23-oxo-30-norolean-12,20(21)-dien-28-oic acid (type IV), gypsogenin (type V), norarjunolic acid (type VI), hederagenin (type VII), 2α,3β-dihydroxy-23-oxo-olean-12-en-28-oic acid (type VIII), arjunolic acid (type IX), and two types of chlorogenic acid (mono-CQA and di-CQA), were identified in AF. CONCLUSIONS An ultra-high-performance liquid chromatography coupled to quadrupole-time-of-flight tandem mass spectrometry with MSE (UPLC-QTOF-MSE ) analysis with four-step filtering strategy was established and successfully applied to identify the chemical constituents of AF which can provide chemical support for further research and play an important role in the quality control of AF.
Collapse
Affiliation(s)
- Baolian Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China
- Department of Pharmacy, Changzhi Medical College, Changzhi, 046000, China
- The National Pharmaceutical Engineering Center (NPEC) for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, 56 Yangming Road, Jiangxi, Nanchang, 330006, China
| | - Shilin Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China
- The National Pharmaceutical Engineering Center (NPEC) for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, 56 Yangming Road, Jiangxi, Nanchang, 330006, China
| | - Junmao Li
- The National Pharmaceutical Engineering Center (NPEC) for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, 56 Yangming Road, Jiangxi, Nanchang, 330006, China
| | - Hui Ouyang
- The National Pharmaceutical Engineering Center (NPEC) for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, 56 Yangming Road, Jiangxi, Nanchang, 330006, China
| | - Mingzhen He
- The National Pharmaceutical Engineering Center (NPEC) for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, 56 Yangming Road, Jiangxi, Nanchang, 330006, China
| | - Yulin Feng
- The National Pharmaceutical Engineering Center (NPEC) for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, 56 Yangming Road, Jiangxi, Nanchang, 330006, China
| | - Ting Tan
- The National Pharmaceutical Engineering Center (NPEC) for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, 56 Yangming Road, Jiangxi, Nanchang, 330006, China
| |
Collapse
|
20
|
Molecular Docking and Molecular Dynamics Studies on Selective Synthesis of α-Amyrin and β-Amyrin by Oxidosqualene Cyclases from Ilex Asprella. Int J Mol Sci 2019; 20:ijms20143469. [PMID: 31311103 PMCID: PMC6678101 DOI: 10.3390/ijms20143469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 11/22/2022] Open
Abstract
Amyrins are the immediate precursors of many pharmaceutically important pentacyclic triterpenoids. Although various amyrin synthases have been identified, little is known about the relationship between protein structures and the constituent and content of the products. IaAS1 and IaAS2 identified from Ilex asprella in our previous work belong to multifunctional oxidosqualene cyclases and can produce α-amyrin and β-amyrin at different ratios. More than 80% of total production of IaAS1 is α-amyrin; while IaAS2 mainly produces β-amyrin with a yield of 95%. Here, we present a molecular modeling approach to explore the underlying mechanism for selective synthesis. The structures of IaAS1 and IaAS2 were constructed by homology modeling, and were evaluated by Ramachandran Plot and Verify 3D program. The enzyme-product conformations generated by molecular docking indicated that ASP484 residue plays an important role in the catalytic process; and TRP611 residue of IaAS2 had interaction with β-amyrin through π–σ interaction. MM/GBSA binding free energy calculations and free energy decomposition after 50 ns molecular dynamics simulations were performed. The binding affinity between the main product and corresponding enzyme was higher than that of the by-product. Conserved amino acid residues such as TRP257; TYR259; PHE47; TRP534; TRP612; and TYR728 for IaAS1 (TRP257; TYR259; PHE473; TRP533; TRP611; and TYR727 for IaAS2) had strong interactions with both products. GLN450 and LYS372 had negative contribution to binding affinity between α-amyrin or β-amyrin and IaAS1. LYS372 and ARG261 had strong repulsive effects for the binding of α-amyrin with IaAS2. The importance of Lys372 and TRP612 of IaAS1, and Lys372 and TRP611 of IaAS2, for synthesizing amyrins were confirmed by site-directed mutagenesis. The different patterns of residue–product interactions is the cause for the difference in the yields of two products.
Collapse
|
21
|
Song Y, Shan B, Li H, Feng B, Peng H, Jin C, Xu P, Zeng Q, Liao Z, Mu P, Su D. Safety investigation of Pulsatilla chinensis saponins from chronic metabonomic study of serum biomedical changes in oral treated rat. JOURNAL OF ETHNOPHARMACOLOGY 2019; 235:435-445. [PMID: 30703498 DOI: 10.1016/j.jep.2019.01.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/28/2018] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pulsatilla chinensis (Bunge) Regel is a valuable traditional Chinese medicine (TCM) which is widely used for the treatment of schistosomiasis, inflammatory, bacterial infections. In recent years, P chinensis has been reported to exhibit antitumor activities. However, the mechanisms underlying its toxic effects remain largely unresolved. This paper is designed to investigate the damage of long-term oral P. chinensis saponins (PRS) and to explore its potential damage mechanisms by serum metabonomics approach. MATERIALS AND METHODS The serum samples from control and PRS treated rats were analyzed by ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) in positive ionization mode and negative ionization mode. Liver function index of ALT, AST and ALP, blood biochemistry and biomarkers were examined to identify specific changes of injury. Acquired data were subjected to principal component analysis (PCA) for differentiating the control and PRS treated groups. Then, serum metabolic profiling was analyzed and pathway analysis performed on the biomarkers reversed after PRS treated and further integration of metabolic networks. RESULTS The results suggested that serum liver function indexes of ALT had significantly changed and stage increased. AST, ALP detection content show volatility changes. Changes in the 15 biomarkers found in the serum, such as acetaminophen glucuronide, 9 E, 11 E-linoleic acid, chenodeoxycholic acid, monoacylglycerides, sphingomyelin (SM), 7-ketodeoxycholic acid and 12-keto-deoxycholic acid, which were closely related to changes in liver injury. It could be seen clearly that with the change of the dosing time, the biomarkers in the serum have undergone obvious, regular and progressive changes through the score plot and corresponding loading plot. The underlying regulations of PRS-perturbed metabolic pathways were discussed according to the identified metabolites. CONCLUSION The present study proves the potential of UPLC-QTOF-MS based metabonomics in mapping metabolic response. Long-term oral administration of P. chinensis saponins can cause chronic liver injury, and its safety needs further attention. It is of great significance in safeguarding human health to explore the damage mechanism of Pulsatilla chinensis saponins on liver by serum metabolomics.
Collapse
Affiliation(s)
- Yonggui Song
- Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang 330004, PR China
| | - Baixi Shan
- Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang 330004, PR China
| | - Hanyun Li
- Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang 330004, PR China
| | - Bingwei Feng
- Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang 330004, PR China
| | - Hong Peng
- Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang 330004, PR China
| | - Chen Jin
- Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang 330004, PR China
| | - Pengfei Xu
- Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang 330004, PR China
| | - Qiang Zeng
- Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang 330004, PR China
| | - Zhou Liao
- Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang 330004, PR China
| | - Pengqian Mu
- SCIEX, Analytical Instrument Trading Co., Office Room 502, 5/F, Bldg 1, 518 North FU quan Road, IBP Changning District, Shanghai 200335, PR China
| | - Dan Su
- Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang 330004, PR China.
| |
Collapse
|
22
|
Rho T, Choi SJ, Kil HW, Ko J, Yoon KD. Separation of nine novel triterpene saponins from Camellia japonica seeds using high-performance countercurrent chromatography and reversed-phase high-performance liquid chromatography. PHYTOCHEMICAL ANALYSIS : PCA 2019; 30:226-236. [PMID: 30479045 DOI: 10.1002/pca.2808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/15/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
INTRODUCTION Camellia japonica L. (Theaceae) is an evergreen shrub, which is cultivated as a popular ornamental tree in Korea, China, and Japan and its seeds have been used as a source of cooking oil, in cosmetics and as a traditional medicine. Intensive phytochemical works have revealed that oleanane-type saponins are the characteristic compounds of the seeds of C. japonica. OBJECTIVE The purpose of the present study is to isolate and determine oleanane-type saponins from C. japonica using high-performance countercurrent chromatography (HPCCC) coupled with reversed-phase high-performance liquid chromatography (RP-HPLC) and spectroscopic evidences, respectively. METHODOLOGY HPLC electrospray ionisation quadrupole time-of-flight mass spectrometry (ESI-Q-TOF-MS) was applied to profile the saponin composition of an enriched saponin extract of C. japonica seeds. The enriched saponin extract was separated by HPCCC using a dichloromethane/methanol/isopropanol/water (9:6:1:4, v/v/v/v) system and RP-HPLC. The structures of the isolates were determined utilising ESI-Q-TOF-MS, one-dimensional and two-dimensional NMR and optical rotation. RESULTS HPCCC on enriched saponin extract of C. japonica yielded four saponin fractions in the order of the number of sugars attached to the triterpene aglycone, and preparative RP-HPLC on each saponin fraction led to the isolation of nine novel saponins, namely camoreoside A-I, along with six known ones. CONCLUSIONS This study indicates that combination of HPLC-ESI-Q-TOF-MS analysis and HPCCC coupled with RP-HPLC are excellent tools for discovering saponins from natural sources.
Collapse
Affiliation(s)
- Taewoong Rho
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Science, The Catholic University of Korea, Bucheon, Gyeonggi Province, Republic of Korea
| | - Soo-Jung Choi
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Science, The Catholic University of Korea, Bucheon, Gyeonggi Province, Republic of Korea
| | - Hyun Woo Kil
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Science, The Catholic University of Korea, Bucheon, Gyeonggi Province, Republic of Korea
| | - Jaeyoung Ko
- Amorepacific R&D Unit, Yongin, Gyeonggi Province, Republic of Korea
| | - Kee Dong Yoon
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Science, The Catholic University of Korea, Bucheon, Gyeonggi Province, Republic of Korea
| |
Collapse
|
23
|
A high-throughput metabolomics approach for the comprehensive differentiation of four Pulsatilla Adans herbs combined with a nontargeted bidirectional screen for rapid identification of triterpenoid saponins. Anal Bioanal Chem 2019; 411:2071-2088. [PMID: 30734858 DOI: 10.1007/s00216-019-01631-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/13/2019] [Accepted: 01/18/2019] [Indexed: 10/27/2022]
Abstract
Pulsatilla Adans (PSA) herbs (Ranunculaceae) have been widely used in traditional medicine in China and other countries. However, the authentication and quality control of PSA herbs have always been a challenging task due to their similar morphological characteristics and the diversity of the multiple components that exist in the complicated matrix. Herein, a novel integrated strategy combining UHPLC/Q-Orbitrap-MS techniques with chemometrics analysis is proposed for the discrimination of PSA materials. We developed a comprehensive method integrating a nontargeted bidirectionally screened (NTBDS) MS data set and a targeted extraction peak area analysis for the characterization of triterpenoid saponins of PSA from different species. After that, partial least-squares discriminant analysis (PLS-DA) was performed on the obtained MS data set and the parameter variable importance for the projection (VIP) value and P value were employed to screen the valuable MS features to discriminate PSA from different species. In addition, the receiver operating characteristic (ROC) curve is used to verify the reliability of MS features. Finally, heatmap visualization was employed to clarify the distribution of the identified triterpenoid saponins, and four medicinal species of PSA were successfully differentiated. Additionally, 34 constituents were reported in PSAs for the first time, 81 triterpenoid saponins were identified as differential components, and 12 chemical ingredients were characterized as potential chemical markers to differentiate the four officinal PSA herbs. This is the first time that the differences in different PSA herbs have been observed systematically at the chemical level. The results suggested that using the identified characteristic components as chemical markers to identify different PSA herbs was effective and viable. This method provides promising perspectives in the analysis and identification of the ingredients of Chinese herbal medicines, and the identification of similar herbs from the same species.
Collapse
|