1
|
Gędek A, Modrzejewski S, Materna M, Szular Z, Wichniak A, Mierzejewski P, Dominiak M. Efficacy and Safety of Agomelatine in Depressed Patients with Diabetes: A Systematic Review and Meta-Analysis. Int J Mol Sci 2024; 25:12631. [PMID: 39684343 DOI: 10.3390/ijms252312631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Major depressive disorder (MDD) and diabetes mellitus (DM) remain among the most prevalent diseases and the most significant challenges faced by medicine in the 21st century. The frequent co-occurrence and bidirectional relationship between the two conditions necessitates the identification of treatment strategies that benefit both. The purpose of this study was to systematically review and meta-analyze data on the efficacy and safety of agomelatine (AGO) in the treatment of patients with depression with comorbid diabetes to explore its potential mechanism of action in both diseases and its impact on diabetic parameters. Following PRISMA guidelines, a total of 11 studies were identified, both preclinical and clinical trials. Agomelatine has shown great potential as a treatment option for patients with diabetes and comorbid depression and anxiety. In addition to improving depressive and anxiety symptoms, it is also beneficial in glycemic control. A meta-analysis demonstrated a statistically significant reduction in glycated hemoglobin (HbA1C) and fasting blood glucose (FBG) levels following AGO administration over a period of 8-16 weeks. The administration of agomelatine was found to result in a significantly greater reduction in HbA1C than that observed with the selective serotonin reuptake inhibitor (SSRI) medications (namely fluoxetine, sertraline, and paroxetine) during 12-16 weeks of therapy. Furthermore, AGO has been found to be at least as effective as SSRIs in reducing depressive symptoms and more effective than SSRIs in reducing anxiety symptoms. The safety of such treatment is similar to SSRIs; no severe adverse events were reported, and the incidence of some side effects, such as insomnia and sexual dysfunction, are even less often reported. Particularly promising is also its potential action in improving some diabetic complications reported in preclinical trials. This might be through mechanisms involving the reduction in oxidative stress, anti-inflammatory effects, and potentially noradrenergic or NMDA receptor modulation. Further clinical studies on larger sample sizes, as well as elucidating its mechanisms of action, especially in the context of diabetic complications, are needed. Research should also focus on identifying the patient subpopulations most likely to benefit from agomelatine treatment.
Collapse
Affiliation(s)
- Adam Gędek
- Department of Pharmacology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
- Third Department of Psychiatry, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | | | | | - Zofia Szular
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Adam Wichniak
- Third Department of Psychiatry, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Paweł Mierzejewski
- Department of Pharmacology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Monika Dominiak
- Department of Pharmacology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| |
Collapse
|
2
|
Pańczyszyn-Trzewik P, Sowa-Kućma M, Misztak P, Tabecka-Lonczynska A, Stachowicz K. Time-dependent dual mode of action of COX-2 inhibition on mouse serum corticosterone levels. Steroids 2024; 207:109438. [PMID: 38723842 DOI: 10.1016/j.steroids.2024.109438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
To elucidate the effect of cyclooxygenase-2 (COX-2) inhibition on corticosterone release, mice were divided into a group receiving NS398, a selective COX-2 inhibitor at a dose of 3 mg/kg for seven days, and a group receiving NS398 for fourteen days. After this time, the mice were sacrificed, and blood serum was collected. An ELISA protocol was used to analyze serum corticosterone levels. Short-term COX-2 inhibition increased corticosterone levels, while long-term inhibition lowered them. The exact schedule of experiments was repeated after the lipopolysaccharide (LPS) Escherichia coli challenge in mice to check the influence of stress stimuli on the tested parameters. In this case, we observed increases in corticosterone levels, significant in a seven-day pattern. These results indicate that corticosterone levels are regulated through a COX-2-dependent mechanism in mice.
Collapse
Affiliation(s)
- Patrycja Pańczyszyn-Trzewik
- Medical College of Rzeszów University, Institute of Medical Science, Department of Human Physiology, 35-310 Rzeszow, Kopisto Street 2a, Poland
| | - Magdalena Sowa-Kućma
- Medical College of Rzeszów University, Institute of Medical Science, Department of Human Physiology, 35-310 Rzeszow, Kopisto Street 2a, Poland
| | - Paulina Misztak
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Anna Tabecka-Lonczynska
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Katarzyna Stachowicz
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| |
Collapse
|
3
|
Avgana H, Toledano RS, Akirav I. Examining the Role of Oxytocinergic Signaling and Neuroinflammatory Markers in the Therapeutic Effects of MDMA in a Rat Model for PTSD. Pharmaceuticals (Basel) 2024; 17:846. [PMID: 39065697 PMCID: PMC11279644 DOI: 10.3390/ph17070846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
MDMA-assisted psychotherapy has shown potential as an effective treatment for post-traumatic stress disorder (PTSD). Preclinical studies involving rodents have demonstrated that MDMA can facilitate the extinction of fear memories. It has been noted that MDMA impacts oxytocin neurons and pro-inflammatory cytokines. Thus, the aim of this study was to explore the role of oxytocinergic signaling and neuroinflammatory markers in the therapeutic effects of MDMA. To achieve this, male rats were subjected to a model of PTSD involving exposure to shock and situational reminders. MDMA was microinjected into the medial prefrontal cortex (mPFC) before extinction training, followed by behavioral tests assessing activity levels, anxiety, and social function. Our findings indicate that MDMA treatment facilitated fear extinction and mitigated the shock-induced increase in freezing, as well as deficits in social behavior. Shock exposure led to altered expression of the gene coding for OXT-R and neuroinflammation in the mPFC and basolateral amygdala (BLA), which were restored by MDMA treatment. Importantly, the OXT-R antagonist L-368,899 prevented MDMA's therapeutic effects on extinction and freezing behavior. In conclusion, MDMA's therapeutic effects in the PTSD model are associated with alterations in OXT-R expression and neuroinflammation, and MDMA's effects on extinction and anxiety may be mediated by oxytocinergic signaling.
Collapse
Affiliation(s)
- Haron Avgana
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel; (H.A.); (R.S.T.)
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Roni Shira Toledano
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel; (H.A.); (R.S.T.)
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Irit Akirav
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel; (H.A.); (R.S.T.)
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
4
|
Matsuura S, Nishimoto Y, Endo A, Shiraki H, Suzuki K, Segi-Nishida E. Hippocampal Inflammation and Gene Expression Changes in Peripheral Lipopolysaccharide Challenged Mice Showing Sickness and Anxiety-Like Behaviors. Biol Pharm Bull 2023; 46:1176-1183. [PMID: 37661396 DOI: 10.1248/bpb.b22-00729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Neuroinflammation is often associated with the development of depressive and anxiety disorders. The hippocampus is one of the brain regions affected by inflammation that is associated with these symptoms. However, the mechanism of hippocampal inflammation-induced emotional behavior remains unknown. The aim of this study was to clarify temporal changes in the neuroinflammatory responses in the hippocampus and the response of dentate gyrus (DG) neurons using peripheral lipopolysaccharide (LPS)-challenged mice. LPS administration induced anxiety-like activity in the elevated plus maze test and social interaction test after 24 h, at which time the mice had recovered from sickness behavior. We examined the hippocampal inflammation-related gene expression changes over time. The expression of interleukin-1β (Il1b) and tumor necrosis factor α (Tnfa) was rapidly enhanced and sustained until 24 h after LPS administration, whereas the expression of Il6 was transiently induced at approx. 6 h. IL-6-dependent downstream signaling of transducer and activator of transcription 3 (STAT3) was also activated approx. 3-6 h after LPS treatment. The expression of innate immune genes including interferon-induced transmembrane proteins such as interferon-induced transmembrane protein 1 (Ifitm1) and Ifitm3 and complement factors such as C1qa and C1qb started to increase approx. 6 h and showed sustained or further increase at 24 h. We also examined changes in the expression of several maturation markers in the DG and found that LPS enhanced the expression of calbindin 1 (Calb1), tryptophan-2,3-dioxigenase 2 (Tdo2), Il1rl, and neurotrophin-3 (Ntf3) at 24 h after LPS treatment. Collectively, these results demonstrate temporal changes of inflammation and gene expression in the hippocampus in LPS-induced sickness and anxiety-like behaviors.
Collapse
Affiliation(s)
- Sumire Matsuura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
| | - Yuki Nishimoto
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
| | - Akane Endo
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
| | - Hirono Shiraki
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
| | - Kanzo Suzuki
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
| | - Eri Segi-Nishida
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
| |
Collapse
|
5
|
Wang W, Lin W, Chen G, You Z. History and main research of psychoneuroimmunology in China. Brain Behav Immun Health 2022; 26:100562. [DOI: 10.1016/j.bbih.2022.100562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/28/2022] [Accepted: 11/13/2022] [Indexed: 11/30/2022] Open
|
6
|
Hu P, Lu Y, Pan BX, Zhang WH. New Insights into the Pivotal Role of the Amygdala in Inflammation-Related Depression and Anxiety Disorder. Int J Mol Sci 2022; 23:11076. [PMID: 36232376 PMCID: PMC9570160 DOI: 10.3390/ijms231911076] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 12/04/2022] Open
Abstract
Depression and anxiety disorders are the two most prevalent psychiatric diseases that affect hundreds of millions of individuals worldwide. Understanding the etiology and related mechanisms is of great importance and might yield new therapeutic strategies to treat these diseases effectively. During the past decades, a growing number of studies have pointed out the importance of the stress-induced inflammatory response in the amygdala, a kernel region for processing emotional stimuli, as a potentially critical contributor to the pathophysiology of depression and anxiety disorders. In this review, we first summarized the recent progress from both animal and human studies toward understanding the causal link between stress-induced inflammation and depression and anxiety disorders, with particular emphasis on findings showing the effect of inflammation on the functional changes in neurons in the amygdala, at levels ranging from molecular signaling, cellular function, synaptic plasticity, and the neural circuit to behavior, as well as their contributions to the pathology of inflammation-related depression and anxiety disorders. Finally, we concluded by discussing some of the difficulties surrounding the current research and propose some issues worth future study in this field.
Collapse
Affiliation(s)
- Ping Hu
- Institute of Translational Medicine, Nanchang University, Nanchang 330001, China
| | - Ying Lu
- Department of Biological Science, School of Life Science, Nanchang University, Nanchang 330031, China
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, China
| | - Bing-Xing Pan
- Department of Biological Science, School of Life Science, Nanchang University, Nanchang 330031, China
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, China
| | - Wen-Hua Zhang
- Department of Biological Science, School of Life Science, Nanchang University, Nanchang 330031, China
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, China
| |
Collapse
|
7
|
van Rensburg D, Lindeque Z, Harvey BH, Steyn SF. Reviewing the mitochondrial dysfunction paradigm in rodent models as platforms for neuropsychiatric disease research. Mitochondrion 2022; 64:82-102. [DOI: 10.1016/j.mito.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022]
|
8
|
Nettis MA. Minocycline in Major Depressive Disorder: And overview with considerations on treatment-resistance and comparisons with other psychiatric disorders. Brain Behav Immun Health 2021; 17:100335. [PMID: 34568852 PMCID: PMC7611693 DOI: 10.1016/j.bbih.2021.100335] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Evidence on the link between the immune system and Major Depressive Disorder (MDD) has led to explore antidepressant properties of anti-inflammatory drugs. Among these, minocycline has been identified as a potential novel treatment for MDD, in particular for treatment-resistant depression. The aim of the current paper is to review current pre-clinical and clinical evidence on the antidepressant efficacy of minocycline. The review includes considerations on the role of both peripheral and central inflammation in the response to minocycline and comparisons of minocycline efficacy across different psychiatric disorders (i.e., unipolar depression, bipolar depression, and schizophrenia).
Collapse
Affiliation(s)
- Maria Antonietta Nettis
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, London, UK.,National Institute for Health Research Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| |
Collapse
|
9
|
Shishkina GT, Kalinina TS, Gulyaeva NV, Lanshakov DA, Dygalo NN. Changes in Gene Expression and Neuroinflammation in the Hippocampus after Focal Brain Ischemia: Involvement in the Long-Term Cognitive and Mental Disorders. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:657-666. [PMID: 34225589 DOI: 10.1134/s0006297921060043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ischemic brain injuries are accompanied by the long-term changes in gene expression in the hippocampus, the limbic system structure, involved in the regulation of key aspects of the higher nervous activity, such as cognitive functions and emotions. The altered expression of genes and proteins encoded by them may be related to the development of post-ischemic psycho-emotional and cognitive disturbances. Activation of neuroinflammation following stroke in the hippocampus has been suggested to play an essential role in induction of long-lasting consequences. Identification of changes in the gene expression patterns after ischemia and investigation of the dynamics of these changes in the hippocampus are the necessary first steps toward understanding molecular pathways responsible for the development of post-stroke cognitive impairments and mental pathologies.
Collapse
Affiliation(s)
- Galina T Shishkina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Tatiana S Kalinina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Dmitry A Lanshakov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Nikolay N Dygalo
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
10
|
Fritz M, Klawonn AM, Zhao Q, Sullivan EV, Zahr NM, Pfefferbaum A. Structural and biochemical imaging reveals systemic LPS-induced changes in the rat brain. J Neuroimmunol 2020; 348:577367. [PMID: 32866714 DOI: 10.1016/j.jneuroim.2020.577367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
Despite mounting evidence for the role of inflammation in Major Depressive Disorder (MDD), in vivo preclinical investigations of inflammation-induced negative affect using whole brain imaging modalities are scarce, precluding a valid model within which to evaluate pharmacological interventions. Here we used an E. coli lipopolysaccharide (LPS)-based model of inflammation-induced depressive signs in rats to explore brain changes using multimodal neuroimaging methods. During the acute phase of the LPS response (2 h post injection), prior to the emergence of a task-quantifiable depressive phenotype, striatal glutamine levels and splenial, retrosplenial, and peri-callosal hippocampal cortex volumes were greater than at baseline. LPS-induced depressive behaviors observed at 24 h, however, occurred concurrently with lower than control levels of striatal glutamine and a reversibility of volume expansion (i.e., shrinkage of splenial, retrosplenial, and peri-callosal hippocampal cortex to baseline volumes). In both striatum and hippocampus at 24 h, mRNA expression in LPS relative to control animals demonstrated alterations in enzymes and transporters regulating glutamine homeostasis. Collectively, the observed behavioral, in vivo structural and metabolic, and mRNA expression alterations suggest a critical role for astrocytic regulation of inflammation-induced depressive behaviors.
Collapse
Affiliation(s)
- Michael Fritz
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, CA 94304, United States of America
| | - Anna M Klawonn
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, CA 94304, United States of America
| | - Qingyu Zhao
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, CA 94304, United States of America
| | - Edith V Sullivan
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, CA 94304, United States of America; Neuroscience Program, SRI International, Menlo Park, CA 94025, United States of America
| | - Natalie M Zahr
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, CA 94304, United States of America; Neuroscience Program, SRI International, Menlo Park, CA 94025, United States of America.
| | - Adolf Pfefferbaum
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, CA 94304, United States of America; Neuroscience Program, SRI International, Menlo Park, CA 94025, United States of America
| |
Collapse
|
11
|
Zhang K, Lin W, Zhang J, Zhao Y, Wang X, Zhao M. Effect of Toll-like receptor 4 on depressive-like behaviors induced by chronic social defeat stress. Brain Behav 2020; 10:e01525. [PMID: 31945269 PMCID: PMC7066327 DOI: 10.1002/brb3.1525] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/14/2019] [Accepted: 11/10/2019] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION A growing body of evidence suggests that stress is an important factor in depression, and pro-inflammatory cytokines contribute to the occurrence and development of depression in both animal models and human patients. Toll-like receptor 4 (TLR4) has been shown to be a key innate immune pattern recognition receptor involved in the regulation of stress responses and inflammation. However, the exact effects of TLR4 on depressive-like behaviors induced by chronic social defeat stress (CSDS) are not known. METHODS In this study, the effects of TLR4 on depressive-like behaviors were investigated in an animal model of depression induced by CSDS. The depressive-like behaviors were assessed by forced swimming test (FST), social interaction test (SIT), and light-dark box test (LDT). The protein expressions of TLR4 and tumor necrosis factor-α (TNF-α) in the hippocampus were measured using Western blotting. RESULTS We found that CSDS increased TLR4 protein levels in the hippocampus and induced behavioral despair in FST, social avoidance in SIT, and anxiety-like behavior in LDT. Fluoxetine normalized the increased expression of TLR4 and reversed behavioral despair, social avoidance, as well as anxiety-like behavior induced by CSDS. However, directly blocking TLR4, by using either TLR4 inhibitor TAK-242 or knockout of TLR4, only inhibited behavioral despair, but not social avoidance or anxiety-like behavior induced by CSDS. CONCLUSIONS These results demonstrate a specific modulating role of TLR4 in behavioral despair induced by CSDS and suggest that TAK-242 may be a beneficial treatment for patients with behavioral despair.
Collapse
Affiliation(s)
- Ke Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjuan Lin
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Juntao Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yawei Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaqing Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Mei Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Zhang J, Lin W, Tang M, Zhao Y, Zhang K, Wang X, Li Y. Inhibition of JNK ameliorates depressive-like behaviors and reduces the activation of pro-inflammatory cytokines and the phosphorylation of glucocorticoid receptors at serine 246 induced by neuroinflammation. Psychoneuroendocrinology 2020; 113:104580. [PMID: 31901732 DOI: 10.1016/j.psyneuen.2019.104580] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 12/26/2022]
Abstract
Depression is associated with immune dysregulation and the aberrant activity of the hypothalamic-pituitary-adrenal (HPA) axis. However, the neurobiological molecular mechanisms underlying these associations remain unclear. c-Jun amino-terminal kinase (JNK), an important modulator in inflammation and stress responses, is often critically implicated in the development of central nervous system diseases. However, whether and how JNK mediates neuroinflammation-induced depression remains largely unknown. In this study, we investigated the role of JNK in depressive-like behaviors induced by central lipopolysaccharide (LPS) infusion. The results showed that LPS infusion led to depressive-like behaviors, accompanied by increased proinflammatory cytokine expression, increased JNK activation, and upregulated glucocorticoid receptor (GR) phosphorylation at serine 246 (pGR-Ser246) in the habenula (Hb), amygdala (Amyg) and medial prefrontal cortex (mPFC). Treatment with SP600125, a known JNK inhibitor, prevented the LPS-induced hyper-activation of JNK and alleviated depressive-like behaviors. Moreover, LPS-induced increases in the expression levels of TNF-α, IL-1β and pGR-Ser246 in these brain regions were reduced when the rats were treated with SP600125. Our results show, for the first time, that JNK activities in the Hb, Amyg, and mPFC are involved in the modulation of neuroinflammation-induced depression and participate in the regulation of the expression of proinflammatory cytokines and GR phosphorylation, which are pathological factors associated with depression. Our findings provide new insights into the mechanism of neuroinflammation-associated depression and suggest that the JNK pathway may be a potential target for treating inflammation-related depression.
Collapse
Affiliation(s)
- Juntao Zhang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjuan Lin
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Mingming Tang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yawei Zhao
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Zhang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaqing Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingcong Li
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
13
|
Adams RCM, Smith C. Chronic Gestational Inflammation: Transfer of Maternal Adaptation over Two Generations of Progeny. Mediators Inflamm 2019; 2019:9160941. [PMID: 31582905 PMCID: PMC6754931 DOI: 10.1155/2019/9160941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023] Open
Abstract
Changes in the in utero environment result in generational transfer of maladapted physiology in the context of conditions such as stress, obesity, and anxiety. Given the significant contribution of noncommunicable diseases-which are characterised by chronic inflammation-to population mortality, the potential for chronic maternal inflammation mediating foetal programming is a growing concern. The extent of generational transfer in terms of immune functionality and leukocyte glucocorticoid sensitivity was investigated over two generations of offspring (F1 and F2) in a model of chronic LPS-induced maternal inflammation in C57/BL/6 mice. Maternal inflammation resulted in glucocorticoid hypersensitivity (increased glucocorticoid receptor expression levels) in the majority of leukocyte subpopulations in both F1 and F2 offspring. Furthermore, splenocytes stimulated with LPS in vitro exhibited exacerbated inflammatory cytokine responses, which were even more prominent in F2 than F1; this effect could be ascribed to NLRP3 inflammasome hyperactivity in F1 but not F2. Current data illustrates that parental chronic inflammation may mediate the inflammatory profile in offspring, potentially propagating a maladapted proinflammatory phenotype in subsequent generations.
Collapse
Affiliation(s)
- R. C. M. Adams
- Department of Physiological Sciences, Science Faculty, Stellenbosch University, South Africa
- Fluorescence Microscopy Unit, Central Analytical Facilities, Stellenbosch University, South Africa
| | - C. Smith
- Department of Physiological Sciences, Science Faculty, Stellenbosch University, South Africa
| |
Collapse
|
14
|
Ozcan M, Canpolat S, Bulmus O, Ulker N, Tektemur A, Tekin S, Ozcan S, Serhatlioglu I, Kacar E, Ayar A, Kelestimur H. Agomelatine pretreatment prevents development of hyperglycemia and hypoinsulinemia in streptozotocin-induced diabetes in mice. Fundam Clin Pharmacol 2018; 33:170-180. [PMID: 30216538 DOI: 10.1111/fcp.12413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/25/2018] [Accepted: 09/10/2018] [Indexed: 01/22/2023]
Abstract
The main objective of this study was to investigate potential effectiveness of agomelatine pretreatment in the prevention of diabetes itself and encephalopathy, with a focus on brain tissue oxidative stress and inflammatory processes in streptozotocin (STZ)-induced diabetic mice. Interleukine-1β (IL-1β) and TACR1 (NK1), which is a tachykinine receptor, were used for the investigation of inflammation in the brain regions including raphe nucleus, periaqueductal gyrus (PAG), amygdala, and nucleus accumbens. The effects of agomelatine on total antioxidant capacity were also evaluated. In the in vitro part of the study, the effects of agomelatine on cell viability were investigated in dorsal root ganglion (DRG) neurons. Fasting blood glucose levels were measured 72 h after STZ injection to determine the diabetic condition. Agomelatine pretreatment prevented both hyperglycemia and hypoinsulinemia in STZ-treated mice. When STZ was injected to induce diabetes in mice, neither hyperglycemia nor hypoinsulinemia was developed in agomelatine pretreated mice and 6 weeks after development of diabetes, agomelatine treatment significantly decreased levels of IL-1β mRNA in raphe nucleus and nucleus accumbens. TACR1 mRNA levels were lower in raphe nucleus, PAG, and amygdala of agomelatine-treated diabetic mice. The increase in total antioxidant capacity after agomelatine administration may responsible for its beneficial effect in the prevention of diabetes. We showed that agomelatine reversed high glucose-induced cell viability decreases in DRG neurons. Both the antihyperglycemic and antioxidant effects of agomelatine might have contributed to the DRG neuron viability improvement. In conclusion, agomelatine seems to both prevent development of diabetes and reverse the encephalopathic changes caused by diabetes.
Collapse
Affiliation(s)
- Mete Ozcan
- Department of Biophysics, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Sinan Canpolat
- Department of Physiology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Ozgur Bulmus
- Department of Physiology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Nazife Ulker
- Department of Physiology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Ahmet Tektemur
- Department of Medical Biology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Suat Tekin
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Sibel Ozcan
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Ihsan Serhatlioglu
- Department of Biophysics, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Emine Kacar
- Department of Physiology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Ahmet Ayar
- Department of Physiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Haluk Kelestimur
- Department of Physiology, Faculty of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
15
|
Tang MM, Lin WJ, Pan YQ, Li YC. Fibroblast Growth Factor 2 Modulates Hippocampal Microglia Activation in a Neuroinflammation Induced Model of Depression. Front Cell Neurosci 2018; 12:255. [PMID: 30135647 PMCID: PMC6092504 DOI: 10.3389/fncel.2018.00255] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/24/2018] [Indexed: 01/08/2023] Open
Abstract
Recent studies indicate that disturbed structure and function of microglia can cause depression and associated neurogenesis impairments. Our previous work has demonstrated that exogenous fibroblast growth factor 2 (FGF2) reverses the depressive-like behaviors and the impaired hippocampal neurogenesis in a neuroinflammatory model of depression. However, whether and how the antidepressant effects of FGF2 involve the modulation of microglia activation has not been elucidated. In this study, to examine the effects of FGF2 on microglia activation, exogenous FGF2 was supplemented to the lateral ventricle of rats during the neuroinflammatory state induced by central lipopolysaccharides (LPS) administrations. It was found that FGF2 infusions reversed the LPS-induced depressive-like behaviors and inhibited the hippocampal microglia activation. In LPS-treated rats, FGF2 decreased the level of pro-inflammatory cytokines including interlukin-1β (IL-1β), IL-6 and tumor necrosis factor (TNF)-α, increased the level of IL-10, the anti-inflammatory cytokine and reversed the decreased expression of CX3CL1, a chemokine mainly expressed by neurons and keeping microglia in surveillance. Further, we examined the effects of inhibited FGF2 signaling by administration of SU5402, an FGFR inhibitor. It was found that SU5402 itself evoked depressive-like behaviors, induced microglia activation, increased production of pro-inflammatory cytokines including IL-1β, IL-6 and TNF-α, and decreased the expression of CX3CL1. Two lines of results that FGF2 signaling and FGFR inhibitor can effectively but oppositely modulate the regulation of microglia and the generation of depressive-like behavior, suggesting that microglia-regulated mechanisms may underlie the antidepressant role of FGF2. The present data provide novel insights into the understanding of mechanism of neuroinflammation-associated depression and may serve as a novel mechanism-based target for the treatment of inflammation-related depression.
Collapse
Affiliation(s)
- Ming-Ming Tang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wen-Juan Lin
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Qin Pan
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ying-Cong Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| |
Collapse
|
16
|
Zhao YW, Pan YQ, Tang MM, Lin WJ. Blocking p38 Signaling Reduces the Activation of Pro-inflammatory Cytokines and the Phosphorylation of p38 in the Habenula and Reverses Depressive-Like Behaviors Induced by Neuroinflammation. Front Pharmacol 2018; 9:511. [PMID: 29867510 PMCID: PMC5962764 DOI: 10.3389/fphar.2018.00511] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/27/2018] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence has demonstrated that neuroinflammation contributes to the development of depressive-like behaviors, in both animal models and human patients; however, the brain areas and signaling pathways involved are still elusive. Recent studies have suggested novel roles of the habenula in the onset of depression and other psychiatric disorders; however, there is no evidence for whether the habenula has a function in neuroinflammation-induced depression. Using an animal model of depression, which is induced by the repeated central administration of lipopolysaccharide (LPS), we examined whether cytokine expression and p38 signal activation in the habenula were involved in the depressive-like behaviors. Body weight, saccharin preference test, and tail suspension test were used to measure depressive-like behaviors. Immunohistochemistry, quantitative-polymerase chain reaction (q-PCR), and western blot were used to measure the expression of tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), and the phosphorylation of p38 in the habenula. The results showed that central LPS administration induced depressive-like behaviors, characterized by anhedonia in the saccharin preference test and increased immobility in the tail suspension test. Central LPS administration also significantly increased the p-p38 level in microglial cells and increased TNF-α expression in the habenula. Treatment with fluoxetine, a widely prescribed antidepressant, or SB203580, a p38-specific inhibitor, reversed the depressive-like behaviors, normalized the alterations in p-p38 and TNF-α levels and increased the levels of the anti-inflammatory cytokine IL-10 in the habenula. The present findings suggest that the habenula is involved in the pathophysiology of behavioral depression induced by neuroinflammation, and the p38 pathway may serve as a novel mechanism-based target for the treatment of inflammation-related depression.
Collapse
Affiliation(s)
- Ya-Wei Zhao
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Qin Pan
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ming-Ming Tang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Wen-Juan Lin
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Dihydromyricetin exerts a rapid antidepressant-like effect in association with enhancement of BDNF expression and inhibition of neuroinflammation. Psychopharmacology (Berl) 2018; 235:233-244. [PMID: 29058041 DOI: 10.1007/s00213-017-4761-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/11/2017] [Indexed: 12/19/2022]
Abstract
RATIONALE Major depressive disorder (MDD) is a highly prevalent illness that affects large populations across the world, and increasing evidence suggests that neuroinflammation and levels of brain-derived neurotrophic factor (BDNF) are closely related to depression. Dihydromyricetin (DHM) is a kind of flavonoid natural product that has been reported to display multiple pharmacological effects, including anti-inflammatory and anti-oxidative properties, and these may contribute to ameliorate MDD. OBJECTIVE This study investigated the effect of DHM on depression-related phenotypes in various experimental animal models. METHODS The antidepressant-like effect of DHM was validated via depression-related behavioral tests in naïve male C57BL/6 mice, as well as in the acute lipopolysaccharide-induced mouse model of depression. The chronic unpredicted mild stress (CUMS) mouse model of depression was also used to assess the rapid antidepressant-like effect of DHM by tail suspension test (TST), forced swimming test (FST), locomotor activity, and sucrose preference test (SPT). The expression of BDNF and inflammatory factors were determined through Western blotting and enzyme-linked immunosorbent assay, respectively. RESULTS DHM reduced immobility time in the TST and FST both in mice and the acute LPS-induced mouse model of depression. Seven days of DHM treatment ameliorated depression-related behaviors induced by CUMS, whereas similar treatment with the typical antidepressant venlafaxine did not. DHM activated the ERK1/2-CREB pathway and increased glycogen synthase kinase-3 beta (GSK-3β) phosphorylation at ser-9, with upregulation of BDNF expression, in both hippocampal tissues and cultured hippocampal cells. CONCLUSION The present data indicate that DHM exerts a more rapid antidepressant-like effect than does a typical antidepressant, in association with enhancement of BDNF expression and inhibition of neuroinflammation.
Collapse
|
18
|
Tang MM, Lin WJ, Zhang JT, Zhao YW, Li YC. Exogenous FGF2 reverses depressive-like behaviors and restores the suppressed FGF2-ERK1/2 signaling and the impaired hippocampal neurogenesis induced by neuroinflammation. Brain Behav Immun 2017; 66:322-331. [PMID: 28529071 DOI: 10.1016/j.bbi.2017.05.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/10/2017] [Accepted: 05/17/2017] [Indexed: 01/03/2023] Open
Abstract
Our previous work demonstrated that neuroinflammation evoked by triple repeated central LPS challenges inhibited adult hippocampal neurogenesis that were correlated with the depressive-like behavioral symptoms induced by neuroinflammation. These findings suggest that hippocampal neurogenesis might be one of biological mechanisms underlying depression induced by neuroinflammation and targeting neurogenesis might lead to new therapeutic strategies for the treatment of depression. In this study, we manipulated adult hippocampal neurogenesis using fibroblast growth factor 2 (FGF2), one crucial molecule modulating cell proliferation and survival in central nervous system, and investigate the involvement and the potential therapeutic effects of FGF2 on neuroinflammation-induced depression. Central lipopolysaccharides (LPS) challenges were used as previously to evoke the neuroinflammatory state in the brain of rat. Exogenous FGF2 was infused into lateral ventricle during the neuroinflammatory state. It was found that the protein expression of FGF2 in hippocampus was inhibited by neuroinflammation. The activation of extracellular signal-regulated kinase (ERK), the downstream molecule of FGF2, was also inhibited by neuroinflammation. Exogenous FGF2 infusions prevented the decrease in phosphorylation of ERK1/2 under neuroinflammation state. Exogenous FGF2 reversed depressive-like behaviors and the impaired hippocampal neurogenesis induced by neuroinflammation. These findings provide evidence that the FGF2-ERK1/2 pathway is involved in the pathophysiology of depressive-like behaviors, and manipulating the neurogenesis pathway is a viable therapeutic approach to inflammation-associated depression.
Collapse
Affiliation(s)
- Ming-Ming Tang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Juan Lin
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China; Brain-Behavior Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jun-Tao Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ya-Wei Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ying-Cong Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China
| |
Collapse
|
19
|
Qiao H, An SC, Xu C, Ma XM. Role of proBDNF and BDNF in dendritic spine plasticity and depressive-like behaviors induced by an animal model of depression. Brain Res 2017; 1663:29-37. [PMID: 28284898 DOI: 10.1016/j.brainres.2017.02.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 02/14/2017] [Accepted: 02/20/2017] [Indexed: 10/20/2022]
|
20
|
Zhan H, Huang F, Yan F, Zhao Z, Zhang J, Cui T, Yang F, Hai G, Jia X, Shi Y. Alterations in splenic function and gene expression in mice with depressive-like behavior induced by exposure to corticosterone. Int J Mol Med 2017; 39:327-336. [PMID: 28075471 PMCID: PMC5358716 DOI: 10.3892/ijmm.2017.2850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 12/13/2016] [Indexed: 11/07/2022] Open
Abstract
Depressed patients present with increased cortisol levels and attenuated immune responses. However, little is known about the association between depression and the spleen, as this is the largest peripheral immune organ. In this study, we examined alterations in splenic function and gene expression in mice with depressive-like behavior, well as the expression of certain proteins in related pathways. A mouse model of depression was established with the use of corticosterone. Splenic function and histopathology were assessed using Wright and H&E staining. The Agilent Whole Mouse Genome Oligo Microarray containing >41,174 transcript probes was used to measure the levels of gene-expression in the spleens from control and model mice, and the levels of certain proteins associated with depression were measured by western blot analysis in the brain and spleen separately. We found that splenic function and immunity in the mice with depressive-like behavior were markedly impaired. A total of 53 genes exhibited a differential response in the mice with depressive-like behavior, 11 of which were more notable, including collagen, type VI, α5 (Col6a5), immunoglobulin superfamily, member 11 (Igsf11), D site albumin promoter binding protein (Dbp), tachykinin 2 (Tac2) and γ-aminobutyric acid B receptor 2 (Gabbr2). Pathway analysis revealed that the amino acid biosynthesis and the clock gene pathways were more meaningful among these genes. The levels of GABBR2, DBP and substance P (SP; encoded by the Tac2 gene) related proteins in the brain were markedly downregulated, and similar results were observed in the spleen. The anti-depressant, fluoxetine, reversed the changes in the levels of these proteins. The findings of our study regarding changes occurring in the spleen during depression may indirectly elucidate and shed light into the pathogenesis of depression and depressive-like behavior.
Collapse
Affiliation(s)
- Heqin Zhan
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Feng Huang
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Fulin Yan
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhenghang Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Jixia Zhang
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Taizhen Cui
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Fan Yang
- Department of Pathogenic Microorganism, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Guangfan Hai
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xiaoman Jia
- Department of Basic Medical Sciences, College of Sanquan, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yongji Shi
- Department of Basic Medical Sciences, College of Sanquan, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
21
|
Guissoni Campos LM, Buchaim RL, da Silva NC, Spilla CSG, Hataka A, Pinato L. Suprachiasmatic Nucleus and Subordinate Brain Oscillators: Clock Gene Desynchronization by Neuroinflammation. Neuroimmunomodulation 2017; 24:231-241. [PMID: 29301134 DOI: 10.1159/000484931] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/31/2017] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The clock genes Period (per) 1 and 2 are essential components in the generation and adjustment of biological circadian rhythms by the suprachiasmatic nucleus (SCN). Both genes are also rhythmically present in extrahypothalamic areas such as the hippocampus and cerebellum, considered subordinate oscillators. Several pathological conditions alter rhythmic biological phenomena, but the mechanisms behind these changes involving the clock genes are not well defined. The current study investigated changes in PER1 and PER2 immunoreactivity in the SCN, hippocampus, and cerebellum in a neuroinflammation model. METHODS Wistar rats received lipopolysaccharide (LPS) or vehicle intracerebroventricularly. The melatonin plasmatic content was quantified by ELISA to confirm the alterations in biological rhythms, and PER1 and PER2 immunoreactivities were analyzed in brain sections by immunohistochemistry. RESULTS In the SCN, intracerebroventricular LPS changed PER1 expression, increasing the number of PER1-immunoreactive (IR) cells at zeitgeber time (ZT) 15, decreasing it at ZT5 and ZT20 and not changing it at ZT10. LPS also induced a decrease in PER2-IR cells at ZT5, ZT10, and ZT15 but not at ZT20 in the SCN. In the hippocampus, LPS induced a decrease in PER1-IR and PER2-IR cells at both ZTs (ZT10 and ZT15). In the cerebellum, LPS increased the number of PER1-IR cells at ZT10 and decreased it at ZT15, while the number of PER2-IR cells was reduced at both ZTs. CONCLUSIONS These results indicate that a neuroinflammatory condition leads to desynchronization of primary and subordinate brain oscillators, supporting the existence of the integration between the immune and the circadian system.
Collapse
|
22
|
Tang MM, Lin WJ, Pan YQ, Guan XT, Li YC. Hippocampal neurogenesis dysfunction linked to depressive-like behaviors in a neuroinflammation induced model of depression. Physiol Behav 2016; 161:166-173. [DOI: 10.1016/j.physbeh.2016.04.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 10/21/2022]
|
23
|
Erythropoietin Pathway: A Potential Target for the Treatment of Depression. Int J Mol Sci 2016; 17:ijms17050677. [PMID: 27164096 PMCID: PMC4881503 DOI: 10.3390/ijms17050677] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 04/05/2016] [Accepted: 04/27/2016] [Indexed: 12/21/2022] Open
Abstract
During the past decade, accumulating evidence from both clinical and experimental studies has indicated that erythropoietin may have antidepressant effects. In addition to the kidney and liver, many organs have been identified as secretory tissues for erythropoietin, including the brain. Its receptor is expressed in cerebral and spinal cord neurons, the hypothalamus, hippocampus, neocortex, dorsal root ganglia, nerve axons, and Schwann cells. These findings may highlight new functions for erythropoietin, which was originally considered to play a crucial role in the progress of erythroid differentiation. Erythropoietin and its receptor signaling through JAK2 activate multiple downstream signaling pathways including STAT5, PI3K/Akt, NF-κB, and MAPK. These factors may play an important role in inflammation and neuroprogression in the nervous system. This is particularly true for the hippocampus, which is possibly related to learning, memory, neurocognitive deficits and mood alterations. Thus, the influence of erythropoietin on the downstream pathways known to be involved in the treatment of depression makes the erythropoietin-related pathway an attractive target for the development of new therapeutic approaches. Focusing on erythropoietin may help us understand the pathogenic mechanisms of depression and the molecular basis of its treatment.
Collapse
|
24
|
Remus JL, Dantzer R. Inflammation Models of Depression in Rodents: Relevance to Psychotropic Drug Discovery. Int J Neuropsychopharmacol 2016; 19:pyw028. [PMID: 27026361 PMCID: PMC5043641 DOI: 10.1093/ijnp/pyw028] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/23/2016] [Indexed: 01/06/2023] Open
Abstract
Inflammation and depression are closely inter-related; inflammation induces symptoms of depression and, conversely, depressed mood and stress favor an inflammatory phenotype. The mechanisms that mediate the ability of inflammation to induce symptoms of depression are intensively studied at the preclinical level. This review discusses how it has been possible to build animal models of inflammation-induced depression based on clinical data and to explore critical mechanisms downstream of inflammation. Namely, we focus on the ability of inflammation to increase the activity of the tryptophan-degrading enzyme, indoleamine 2,3 dioxygenase, which leads to the production of kynurenine and downstream neuroactive metabolites. By acting on glutamatergic neurotransmission, these neuroactive metabolites play a key role in the development of depression-like behaviors. An important outcome of the preclinical research on inflammation-induced depression is the identification of potential novel targets for antidepressant treatments, which include targeting the kynurenine system and production of downstream metabolites, altering transport of kynurenine into the brain, and modulating glutamatergic transmission.
Collapse
Affiliation(s)
- Jennifer L Remus
- Laboratory of Neuroimmunology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Robert Dantzer
- Laboratory of Neuroimmunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|