1
|
Mortezagholi S, Maghsood F, Shojaeian S, Shokri F, Amiri MM, Ghorbani A, Shabani M, Zarnani AH. Production and characterization of a panel of anti-mouse placenta-specific protein 1 (plac1) monoclonal antibodies. Anal Biochem 2025; 696:115682. [PMID: 39332465 DOI: 10.1016/j.ab.2024.115682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/02/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Placenta-Specific Protein 1 (PLAC1) is essential for normal placental and embryonic development. It is widely expressed in various types of cancer cells. We produced a panel of anti-mouse plac1 monoclonal antibodies (mAbs) with different applications. Two recombinant proteins were produced containing either the extracellular domain (ED) plus tetanus toxin P2, P30, pan-DR epitope (PADRE), and KDEL3 (main plac1) or ED plus KDEL3 (control plac1). Recombinant proteins were used for immunization and screening. Positive clones were selected by ELISA and flow cytometry. Purified mAbs were tested by ELISA, WB, flow cytometry, immunohistochemistry (IHC), and immunofluorescent (IF). A combination of bioinformatics tools was used to predict the target epitope(s) of the mAbs. Eight anti-mouse plac1 mAbs (all IgG1/κ1) were generated, all reacting with high affinity in ELISA. Seven clones recognized plac1 in both reduced and non-reduced Western blots, while one only recognized the non-reduced form. Cross-inhibition ELISA revealed that all mAbs recognized overlapping epitopes with a shared motif except for 5C9. Four clones reacted with the native antigen in flow cytometry, but none were functional in IF or IHC staining. The produced multifunctional mAbs can be used to investigate different aspects of PLAC1 biology in reproduction and cancer.
Collapse
Affiliation(s)
- Sahar Mortezagholi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Maghsood
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sorour Shojaeian
- Department of Biochemistry, Alborz University of Medical Sciences, Karaj, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Ghorbani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| |
Collapse
|
2
|
Nunes LGA, Rosario FJ, Urschitz J. In vivo placental gene modulation via sonoporation. Placenta 2024:S0143-4004(24)00688-X. [PMID: 39477696 DOI: 10.1016/j.placenta.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/25/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024]
Abstract
Placental dysregulation frequently results in pregnancy complications that impact fetal well-being and potentially predispose the infant to diseases later in life. Thus, efforts to understand the molecular mechanisms underlying placental disorders are crucial to aid the development of effective treatments to restore placental function. Currently, the most common methods used for trophoblast-specific gene modulation in the laboratory are transgenic animals and lentiviral trophectoderm transduction. The generation of transgenic animal lines is costly and requires a considerable amount of time to generate and maintain, while the integration preference of lentiviruses, actively transcribed genes, may result in genotoxicity. Therefore, there is much interest in the development of non-viral in vivo transfection techniques for use in both research and clinical settings. Herein, we describe a non-viral, minimally invasive method for in vivo placental gene modulation through sonoporation, an ultrasound-mediated transfection technique wherein the application of ultrasound on target tissues is used to direct the uptake of DNA vectors. In this method, plasmids are bound to lipid microbubbles, which are then injected into the maternal bloodstream and ultimately delivered to the placenta when subjected to low-frequency ultrasound. Syncytiotrophoblasts are directly exposed to maternal blood and, therefore highly accessible to therapeutic agents in the maternal circulation. This technique can be used to modulate gene expression and, subsequently, the function of the placenta, circumventing the requirement to generate transgenic animals. Sonoporation also offers a safer alternative to existing viral techniques, making it not only an advantageous research tool but also a potentially adaptable technique in clinical settings.
Collapse
Affiliation(s)
- Lance G A Nunes
- Institute for Biogenesis Research, University of Hawai'i, Honolulu, HI, United States
| | - Fredrick J Rosario
- Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Johann Urschitz
- Institute for Biogenesis Research, University of Hawai'i, Honolulu, HI, United States.
| |
Collapse
|
3
|
Khorami-Sarvestani S, Vanaki N, Shojaeian S, Zarnani K, Stensballe A, Jeddi-Tehrani M, Zarnani AH. Placenta: an old organ with new functions. Front Immunol 2024; 15:1385762. [PMID: 38707901 PMCID: PMC11066266 DOI: 10.3389/fimmu.2024.1385762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
The transition from oviparity to viviparity and the establishment of feto-maternal communications introduced the placenta as the major anatomical site to provide nutrients, gases, and hormones to the developing fetus. The placenta has endocrine functions, orchestrates maternal adaptations to pregnancy at different periods of pregnancy, and acts as a selective barrier to minimize exposure of developing fetus to xenobiotics, pathogens, and parasites. Despite the fact that this ancient organ is central for establishment of a normal pregnancy in eutherians, the placenta remains one of the least studied organs. The first step of pregnancy, embryo implantation, is finely regulated by the trophoectoderm, the precursor of all trophoblast cells. There is a bidirectional communication between placenta and endometrium leading to decidualization, a critical step for maintenance of pregnancy. There are three-direction interactions between the placenta, maternal immune cells, and the endometrium for adaptation of endometrial immune system to the allogeneic fetus. While 65% of all systemically expressed human proteins have been found in the placenta tissues, it expresses numerous placenta-specific proteins, whose expression are dramatically changed in gestational diseases and could serve as biomarkers for early detection of gestational diseases. Surprisingly, placentation and carcinogenesis exhibit numerous shared features in metabolism and cell behavior, proteins and molecular signatures, signaling pathways, and tissue microenvironment, which proposes the concept of "cancer as ectopic trophoblastic cells". By extensive researches in this novel field, a handful of cancer biomarkers has been discovered. This review paper, which has been inspired in part by our extensive experiences during the past couple of years, highlights new aspects of placental functions with emphasis on its immunomodulatory role in establishment of a successful pregnancy and on a potential link between placentation and carcinogenesis.
Collapse
Affiliation(s)
- Sara Khorami-Sarvestani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Negar Vanaki
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sorour Shojaeian
- Department of Biochemistry, School of Medical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Kayhan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir-Hassan Zarnani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Jamioł M, Sozoniuk M, Wawrzykowski J, Kankofer M. Changes in plasma PLAC-1 concentration and its expression during early-mid pregnancy in bovine placental tissues - a pilot study. BMC Vet Res 2024; 20:59. [PMID: 38378537 PMCID: PMC10877859 DOI: 10.1186/s12917-024-03898-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Placenta-specific protein 1 (PLAC1) is a small secreted protein considered to be a molecule with a significant role in the development of the placenta and the establishment of the mother-foetus interface. This study aimed to confirm the presence of bovine PLAC1 and to examine its profile in the placenta and plasma in the first six months of pregnancy. The expression pattern of PLAC1 was analysed by RT-qPCR and Western Blotting. Quantitative evaluation was carried out using ELISA. RESULTS PLAC1 concentrations in the plasma of pregnant cows were significantly higher (p < 0.05) than those obtained from non-pregnant animals. PLAC1 protein concentrations in the placental tissues of the foetal part were significantly (p < 0.05) higher than in the tissues of the maternal part of the placenta. PLAC1 transcripts were detected in both placental tissue samples and epithelial cell cultures. CONCLUSIONS In conclusion, the results of the present preliminary study suggest that PLAC1 is involved in the development of bovine placenta. The presence of this protein in the plasma of pregnant animals as early as the first month may make it a potential candidate as a pregnancy marker in cows. Further studies on exact mechanisms of action of PLAC1 in bovine placenta are necessary.
Collapse
Affiliation(s)
- Monika Jamioł
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka Street 12, Lublin, 20-033, Poland
| | - Magdalena Sozoniuk
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences in Lublin, Akademicka Street 15, Lublin, 20-950, Poland
| | - Jacek Wawrzykowski
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka Street 12, Lublin, 20-033, Poland
| | - Marta Kankofer
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka Street 12, Lublin, 20-033, Poland.
| |
Collapse
|
5
|
Gholami P, Asgarian-Omran H, Yaghmaie M, Mahmudian J, Kianersi S, Salari S, Zaboli E, Jeddi-Tehrani M, Zarnani AH, Shabani M. Investigation of Expression Profile of Placenta-specific 1 (PLAC1) in Acute Myeloid and Lymphoid Leukemias. Avicenna J Med Biotechnol 2023; 15:167-172. [PMID: 37538244 PMCID: PMC10395456 DOI: 10.18502/ajmb.v15i3.12926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 04/26/2023] [Indexed: 08/05/2023] Open
Abstract
Background Placenta-specific 1 (PLAC1) is one of the cancer-testis-placenta antigens that has no expression in normal tissue except placenta trophoblast and testicular germ cells, but is overexpressed in a variety of solid tumors. There is a lack of studies on the expression of PLAC1 in leukemia. We investigated expression of PLAC1 in Acute Myeloid Leukemia (AML) and Acute Lymphoblastic Leukemia (ALL). Methods In this study, we investigated expression pattern of PLAC1 gene in peripheral blood and bone marrow mononuclear cells of newly-diagnosed patients with AML (n=31) and ALL (n=31) using quantitative real-time PCR. Normal subjects (n=17) were considered as control. The PLAC1 protein expression in the samples were also detected using western blotting. Results Our data demonstrated that PLAC1 transcripts had 2.7 and 2.9 fold-change increase in AML and ALL, respectively, compared to normal samples. PLAC1 transcript expression was totally negative in all studied normal subjects. Level of PLAC1 mRNA expression in ALL statistically increased compared to normal samples (p=0.038). However, relative mRNA expression of PLAC1 in AML was not significant in comparison to normal subjects (p=0.848). Furthermore, relative mRNA expression of PLAC1 in AML subtypes was not statistically significant (p=0.756). PLAC1 gene expression showed no difference in demographical clinical and para-clinical parameters. Western blotting confirmed expression of PLAC1 in the ALL and AML samples. Conclusion Considering PLAC1 expression profile in acute leukemia, PLAC1 could be a potential marker in leukemia which needs complementary studies in the future.
Collapse
Affiliation(s)
- Parastou Gholami
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Asgarian-Omran
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Marjan Yaghmaie
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Mahmudian
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Shirin Kianersi
- HSCT Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Salari
- HSCT Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Zaboli
- Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Conese M, Napolitano O, Laselva O, Di Gioia S, Nappi L, Trabace L, Matteo M. The Oncogenic Theory of Preeclampsia: Is Amniotic Mesenchymal Stem Cells-Derived PLAC1 Involved? Int J Mol Sci 2023; 24:ijms24043612. [PMID: 36835024 PMCID: PMC9962629 DOI: 10.3390/ijms24043612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
The pathomechanisms of preeclampsia (PE), a complication of late pregnancy characterized by hypertension and proteinuria, and due to improper placentation, are not well known. Mesenchymal stem cells derived from the amniotic membrane (AMSCs) may play a role in PE pathogenesis as placental homeostasis regulators. PLACenta-specific protein 1 (PLAC1) is a transmembrane antigen involved in trophoblast proliferation that is found to be associated with cancer progression. We studied PLAC1 in human AMSCs obtained from control subjects (n = 4) and PE patients (n = 7), measuring the levels of mRNA expression (RT-PCR) and secreted protein (ELISA on conditioned medium). Lower levels of PLAC1 mRNA expression were observed in PE AMSCs as compared with Caco2 cells (positive controls), but not in non-PE AMSCs. PLAC1 antigen was detectable in conditioned medium obtained from PE AMSCs, whereas it was undetectable in that obtained from non-PE AMSCs. Our data suggest that abnormal shedding of PLAC1 from AMSC plasma membranes, likely by metalloproteinases, may contribute to trophoblast proliferation, supporting its role in the oncogenic theory of PE.
Collapse
Affiliation(s)
- Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
- Correspondence:
| | - Ottavio Napolitano
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Onofrio Laselva
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Luigi Nappi
- Department of Medical and Surgical Sciences, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Maria Matteo
- Department of Medical and Surgical Sciences, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| |
Collapse
|
7
|
Rahdan S, Razavi SA, Shojaeian S, Shokri F, Amiri MM, Zarnani AH. Immunization with placenta-specific 1 (plac1) induces potent anti-tumor responses and prolongs survival in a mouse model of melanoma. Adv Med Sci 2022; 67:338-345. [PMID: 36084365 DOI: 10.1016/j.advms.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/07/2022] [Accepted: 08/16/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE Melanoma is a malignant and metastatic form of skin cancer, which is not diagnosed in early stages of the disease. Nowadays, immunotherapy is changing the treatment landscape for metastatic melanoma. Placenta-specific1 (PLAC1) is a cancer-testis-placenta (CTP) antigen with differential expression in melanoma tissues. Here, we evaluated the potential of plac1 to induce anti-cancer immune responses as well as to prevent cancer development in a mouse model of melanoma. METHODS Two proteins containing full extracellular domain (ED) of mouse plac1+KDEL3 and full ED of mouse plac1+ tetanus toxin P2 and P30+ pan DR epitope (PADRE) + KDEL3 were produced and injected in mice to evaluate their capacity to induce anti-cancer immune responses as well as their potential to prevent melanoma development. Induction of plac1-specific humoral and cellular responses as well as tumor-associated parameters were tested in a series of 36 mice. RESULTS Sera of mice immunized with ED + P2P30+PADRE + KDEL3 contained antibodies able to react with surface plac1 in B16F10 cells. Both proteins induced proliferative cellular immune responses against B16F10 cells and plac1-specific cytotoxic T cells (CTL) and CD107a + CTL responses, which was higher in mice immunized with ED + P2P30+PADRE + KDEL3. Splenocytes of mice vaccinated with ED + P2P30+PADRE + KDEL3 exerted a significant cytotoxicity against B16F10 cells. Vaccination with ED + P2P30+PADRE + KDEL3 significantly delayed B16F10-induced tumor onset, reduced tumor growth, and increased survival. Tumors induced by B16F10 expressed plac1 in vivo. CONCLUSION Our results pave the way for development of effective melanoma preventive vaccine in humans, although further studies are needed.
Collapse
Affiliation(s)
- Shaghayegh Rahdan
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Razavi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sorour Shojaeian
- Department of Biochemistry, School of Medical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| |
Collapse
|
8
|
Jiang H, Li L, Zhu D, Zhou X, Yu Y, Zhou Q, Sun L. A Review of Nanotechnology for Treating Dysfunctional Placenta. Front Bioeng Biotechnol 2022; 10:845779. [PMID: 35402416 PMCID: PMC8987505 DOI: 10.3389/fbioe.2022.845779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
The placenta plays a significant role during pregnancy. Placental dysfunction contributes to major obstetric complications, such as fetal growth restriction and preeclampsia. Currently, there is no effective treatment for placental dysfunction in the perinatal period, and prophylaxis is often delivered too late, at which point the disease manifestation cannot be prevented. However, with recent integration of nanoscience and medicine to perform elaborate experiments on the human placenta, it is expected that novel and efficient nanotherapies will be developed to resolve the challenge of managing placental dysfunction. The advent of nanomedicine has enabled the safe and targeted delivery of drugs using nanoparticles. These smart nanoparticles can load the necessary therapeutic substances that specifically target the placenta, such as drugs, targeting molecules, and ligands. Packaging multifunctional molecules into specific delivery systems with high targeting ability, diagnosis, and treatment has emerged as a novel theragnostic (both therapeutic and diagnostic) approach. In this review, the authors discuss recent advances in nanotechnology for placental dysfunction treatment. In particular, the authors highlight potential candidate nanoparticle-loaded molecules that target the placenta to improve utero-placental blood flow, and reduce reactive oxygen species and oxidative stress. The authors intend to provide basic insight and understanding of placental dysfunction, potential delivery targets, and recent research on placenta-targeted nanoparticle delivery systems for the potential treatment of placental dysfunction. The authors hope that this review will sensitize the reader for continued exploration of novel nanomedicines.
Collapse
Affiliation(s)
- Huabo Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Li
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Zhu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinyao Zhou
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yongsheng Yu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yongsheng Yu, ; Qian Zhou, ; Luming Sun,
| | - Qian Zhou
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yongsheng Yu, ; Qian Zhou, ; Luming Sun,
| | - Luming Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yongsheng Yu, ; Qian Zhou, ; Luming Sun,
| |
Collapse
|
9
|
Kozlov AP. Mammalian tumor-like organs. 1. The role of tumor-like normal organs and atypical tumor organs in the evolution of development (carcino-evo-devo). Infect Agent Cancer 2022; 17:2. [PMID: 35012580 PMCID: PMC8751115 DOI: 10.1186/s13027-021-00412-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022] Open
Abstract
Background Earlier I hypothesized that hereditary tumors might participate in the evolution of multicellular organisms. I formulated the hypothesis of evolution by tumor neofunctionalization, which suggested that the evolutionary role of hereditary tumors might consist in supplying evolving multicellular organisms with extra cell masses for the expression of evolutionarily novel genes and the origin of new cell types, tissues, and organs. A new theory—the carcino-evo-devo theory—has been developed based on this hypothesis. Main text My lab has confirmed several non-trivial predictions of this theory. Another non-trivial prediction is that evolutionarily new organs if they originated from hereditary tumors or tumor-like structures, should recapitulate some tumor features in their development. This paper reviews the tumor-like features of evolutionarily novel organs. It turns out that evolutionarily new organs such as the eutherian placenta, mammary gland, prostate, the infantile human brain, and hoods of goldfishes indeed have many features of tumors. I suggested calling normal organs, which have many tumor features, the tumor-like organs. Conclusion Tumor-like organs might originate from hereditary atypical tumor organs and represent the part of carcino-evo-devo relationships, i.e., coevolution of normal and neoplastic development. During subsequent evolution, tumor-like organs may lose the features of tumors and the high incidence of cancer and become normal organs without (or with almost no) tumor features.
Collapse
Affiliation(s)
- A P Kozlov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3, Gubkina Street, Moscow, Russia, 117971. .,Peter the Great St. Petersburg Polytechnic University, 29, Polytekhnicheskaya Street, St. Petersburg, Russia, 195251.
| |
Collapse
|
10
|
Di Fiore R, Suleiman S, Felix A, O’Toole SA, O’Leary JJ, Ward MP, Beirne J, Sabol M, Ozretić P, Yordanov A, Vasileva-Slaveva M, Kostov S, Nikolova M, Said-Huntingford I, Ayers D, Ellul B, Pentimalli F, Giordano A, Calleja-Agius J. An Overview of the Role of Long Non-Coding RNAs in Human Choriocarcinoma. Int J Mol Sci 2021; 22:ijms22126506. [PMID: 34204445 PMCID: PMC8235025 DOI: 10.3390/ijms22126506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023] Open
Abstract
Choriocarcinoma (CC), a subtype of trophoblastic disease, is a rare and highly aggressive neoplasm. There are two main CC subtypes: gestational and non-gestational, (so called when it develops as a component of a germ cell tumor or is related to a somatic mutation of a poorly differentiated carcinoma), each with very diverse biological activity. A therapeutic approach is highly effective in patients with early-stage CC. The advanced stage of the disease also has a good prognosis with around 95% of patients cured following chemotherapy. However, advancements in diagnosis and treatment are always needed to improve outcomes for patients with CC. Long non-coding (lnc) RNAs are non-coding transcripts that are longer than 200 nucleotides. LncRNAs can act as oncogenes or tumor suppressor genes. Deregulation of their expression has a key role in tumor development, angiogenesis, differentiation, migration, apoptosis, and proliferation. Furthermore, detection of cancer-associated lncRNAs in body fluids, such as blood, saliva, and urine of cancer patients, is emerging as a novel method for cancer diagnosis. Although there is evidence for the potential role of lncRNAs in a number of cancers of the female genital tract, their role in CC is poorly understood. This review summarizes the current knowledge of lncRNAs in gestational CC and how this may be applied to future therapeutic strategies in the treatment of this rare cancer.
Collapse
Affiliation(s)
- Riccardo Di Fiore
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Correspondence: (R.D.F.); (J.C.-A.); Tel.: +356-2340-3871 (R.D.F.); +356-2340-1892 (J.C.-A.)
| | - Sherif Suleiman
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
| | - Ana Felix
- Department of Pathology, Campo dos Mártires da Pátria, Instituto Portugues de Oncologia de Lisboa, NOVA Medical School, UNL, 130, 1169-056 Lisboa, Portugal;
| | - Sharon A. O’Toole
- Departments of Obstetrics and Gynaecology and Histopathology, Trinity St James’s Cancer Institute, Trinity College Dublin, 8 Dublin, Ireland;
| | - John J. O’Leary
- Department of Histopathology, Trinity College Dublin, Trinity St James’s Cancer Institute, 8 Dublin, Ireland; (J.J.O.); (M.P.W.)
| | - Mark P. Ward
- Department of Histopathology, Trinity College Dublin, Trinity St James’s Cancer Institute, 8 Dublin, Ireland; (J.J.O.); (M.P.W.)
| | - James Beirne
- Department of Gynaecological Oncology, Trinity St James Cancer Institute, St James Hospital, 8 Dublin, Ireland;
| | - Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.S.); (P.O.)
| | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.S.); (P.O.)
| | - Angel Yordanov
- Department of Gynecologic Oncology, Medical University Pleven, 5800 Pleven, Bulgaria;
| | | | - Stoyan Kostov
- Department of Gynecology, Medical University Varna “Prof. Dr. Paraskev Stoyanov”, 9002 Varna, Bulgaria;
| | - Margarita Nikolova
- Saint Marina University Hospital—Pleven, Medical University Pleven, 5800 Pleven, Bulgaria;
| | - Ian Said-Huntingford
- Department of Histopathology, Mater Dei Hospital, Birkirkara Bypass, MSD 2090 Msida, Malta;
| | - Duncan Ayers
- Centre for Molecular Medicine & Biobanking, University of Malta, MSD 2080 Msida, Malta; (D.A.); (B.E.)
- Faculty of Biology, Medicine and Human Sciences, The University of Manchester, Manchester M1 7DN, UK
| | - Bridget Ellul
- Centre for Molecular Medicine & Biobanking, University of Malta, MSD 2080 Msida, Malta; (D.A.); (B.E.)
| | - Francesca Pentimalli
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy;
| | - Antonio Giordano
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
- Correspondence: (R.D.F.); (J.C.-A.); Tel.: +356-2340-3871 (R.D.F.); +356-2340-1892 (J.C.-A.)
| |
Collapse
|
11
|
Mahmoudi AR, Ghods R, Madjd Z, Abolhasani M, Saeednejad Zanjani L, Safaei M, Balaei Goli L, Vafaei S, Katouzian L, Soltanghoraei H, Shekarabi M, Zarnani AH. Expression profiling of RTL1 in human breast cancer tissues and cell lines. Exp Mol Pathol 2021; 121:104654. [PMID: 34087231 DOI: 10.1016/j.yexmp.2021.104654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 04/18/2021] [Accepted: 05/21/2021] [Indexed: 12/24/2022]
Abstract
Breast cancer (BC) is the most common cancer in females. In this regard, the identification of molecular alterations driving BC is an immediate need for developing effective immunotherapeutic tools. Here we investigated the expression of a placenta-specific protein, Retrotransposon-like 1 (RTL1) in a series of BC tissues and cell lines. RTL1-specific polyclonal antibody was generated and characterized. Using tissue microarray immunohistochemistry, expression of RTL1 in a total of 147 BC and 36 non-malignant breast tissues was investigated and the association of patient's clinicopathological parameters with RTL1 expression was then examined. Expression of RTL1 in four BC cells was assessed by flow cytometry, immunofluorescent staining and Western blotting. We observed a mixture pattern of nuclear and cytoplasmic RTL1 expression in most tissues examined, however nuclear expression was found to be dominant pattern of expression. The level of nuclear RTL1 expression was significantly higher in BC tissues (P < 0.001). A statistically significant association between nuclear RTL1 expression and histological grade and vascular invasion was found (P < 0.001 and P < 0.05). All cell lines expressed RTL1 with varying degrees at their surface. The most invasive BC cell line MDA-MB-231, compared to T-47D, SKBR3 and MCF7 expressed higher levels of RTL1 at their surface. Cells with a low level of surface expression, expressed high levels of intracellular RTL1 expression. Our antibody reacted with a specific band of about 125 KD in normal human placenta and all cell lines examined. In contrast to placenta, two additional bands were also observed in cancer cell lines. Our results showed for the first time that RTL1 is differentially expressed in BC compared to non-malignant breast tissues and is associated with a higher grade and vascular invasion. In BC cells with high metastatic and invasive potential, this antigen is mostly confined to cell surface compartment indicating the possibility of using antibody-based immunotherapy for advanced metastatic BC patients.
Collapse
Affiliation(s)
- Ahmad-Reza Mahmoudi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Abolhasani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran; Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Masoomeh Safaei
- Department of Pathology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Balaei Goli
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Sedigheh Vafaei
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Leila Katouzian
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Haleh Soltanghoraei
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mehdi Shekarabi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Amir-Hassan Zarnani
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran; Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Hayashi R, Nagato T, Kumai T, Ohara K, Ohara M, Ohkuri T, Hirata-Nozaki Y, Harabuchi S, Kosaka A, Nagata M, Yajima Y, Yasuda S, Oikawa K, Kono M, Kishibe K, Takahara M, Katada A, Hayashi T, Celis E, Harabuchi Y, Kobayashi H. Expression of placenta-specific 1 and its potential for eliciting anti-tumor helper T-cell responses in head and neck squamous cell carcinoma. Oncoimmunology 2020; 10:1856545. [PMID: 33457076 PMCID: PMC7781841 DOI: 10.1080/2162402x.2020.1856545] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Placenta-specific 1 (PLAC1) is expressed primarily in placental trophoblasts but not in normal tissues and is a targetable candidate for cancer immunotherapy because it is a cancer testis antigen known to be up-regulated in various tumors. Although peptide epitopes capable of stimulating CD8 T cells have been previously described, there have been no reports of PLAC1 CD4 helper T lymphocyte (HTL) epitopes and the expression of this antigen in head and neck squamous cell carcinoma (HNSCC). Here, we show that PLAC1 is highly expressed in 74.5% of oropharyngeal and 51.9% of oral cavity tumors from HNSCC patients and in several HNSCC established cell lines. We also identified an HTL peptide epitope (PLAC131-50) capable of eliciting effective antigen-specific and tumor-reactive T cell responses. Notably, this peptide behaves as a promiscuous epitope capable of stimulating T cells in the context of more than one human leukocyte antigen (HLA)-DR allele and induces PLAC1-specific CD4 T cells that kill PLAC1-positive HNSCC cell lines in an HLA-DR-restricted manner. Furthermore, T-cells reactive to PLAC131-50 peptide were detected in the peripheral blood of HNSCC patients. These findings suggest that PLAC1 represents a potential target antigen for HTL based immunotherapy in HNSCC.
Collapse
Affiliation(s)
- Ryusuke Hayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Toshihiro Nagato
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Takumi Kumai
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan.,Department of Innovative Research for Diagnosis and Treatment of Head and Neck Cancer, Asahikawa Medical University, Asahikawa, Japan
| | - Kenzo Ohara
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Mizuho Ohara
- Department of Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Takayuki Ohkuri
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yui Hirata-Nozaki
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Shohei Harabuchi
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Akemi Kosaka
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Marino Nagata
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yuki Yajima
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Oral and Maxillofacial Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Syunsuke Yasuda
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Respiratory and Breast Center, Asahikawa Medical University Hospital, Asahikawa, Japan
| | - Kensuke Oikawa
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Michihisa Kono
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Kan Kishibe
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Miki Takahara
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Akihiro Katada
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Tatsuya Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan.,Department of Innovative Research for Diagnosis and Treatment of Head and Neck Cancer, Asahikawa Medical University, Asahikawa, Japan
| | - Esteban Celis
- Cancer Immunology, Inflammation and Tolerance Program, Augusta University, Georgia Cancer Center, Augusta, GA, USA
| | - Yasuaki Harabuchi
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
13
|
Mahmoudi AR, Ghods R, Rakhshan A, Madjd Z, Bolouri MR, Mahmoudian J, Rahdan S, Shokri MR, Dorafshan S, Shekarabi M, Zarnani AH. Discovery of a potential biomarker for immunotherapy of melanoma: PLAC1 as an emerging target. Immunopharmacol Immunotoxicol 2020; 42:604-613. [PMID: 33106058 DOI: 10.1080/08923973.2020.1837865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Melanoma has increased in incidence worldwide prompting investigators to search for new biomarkers for targeted immunotherapy of this disease. Placenta specific 1 (PLAC1) is a new member of cancer-testis antigens with widespread expression in many types of cancer. Here, we aimed to study for the first time the expression pattern of PLAC1 in skin cancer samples including cutaneous melanoma, basal cell carcinoma (BCC), squamous cell carcinoma (SCC) in comparison to normal skin and nevus tissues and potential therapeutic effect of anti-PLAC1 antibody in melanoma cancer cell lines in vitro. MATERIALS AND METHODS Polyclonal and monoclonal antibodies were applied for immunohistochemical profiling of PLAC1 expression using tissue microarray. The cytotoxic action of anti-PLAC1 antibody alone or as an antibody drug conjugate (with anti-neoplastic agent SN38) was investigated in melanoma cell lines. RESULTS We observed that 100% (39 of 39) of melanoma tissues highly expressed PLAC1 with both cytoplasmic and surface expression pattern. Investigation of PLAC1 expression in BCC (n = 110) samples showed negative results. Cancer cells in SCC samples (n = 66) showed very weak staining. Normal skin tissues and nevus samples including congenital melanocytic nevus failed to express PLAC1. Anti-PLAC1-SN38 exerted a specific pattern of cytotoxicity in a dose- and time-dependent manner in melanoma cells expressing surface PLAC1. CONCLUSIONS Our findings re-inforce the concept of re-expression of embryonic/placental tissue antigens in cancer and highlight the possibility of melanoma targeted therapy by employing anti-PLAC1 antibodies. The data presented here should lead to the future research on targeted immunotherapy of patients with melanoma.
Collapse
Affiliation(s)
- Ahmad-Reza Mahmoudi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.,Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Rakhshan
- Department of Pathology, Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Bolouri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Mahmoudian
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Shaghayegh Rahdan
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Dorafshan
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shekarabi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir-Hassan Zarnani
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.,Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.,Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
George MR, Duan Q, Nagle A, Kathiriya IS, Huang Y, Rao K, Haldar SM, Bruneau BG. Minimal in vivo requirements for developmentally regulated cardiac long intergenic non-coding RNAs. Development 2019; 146:dev.185314. [PMID: 31784461 DOI: 10.1242/dev.185314] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/20/2019] [Indexed: 12/30/2022]
Abstract
Long intergenic non-coding RNAs (lincRNAs) have been implicated in gene regulation, but their requirement for development needs empirical interrogation. We computationally identified nine murine lincRNAs that have developmentally regulated transcriptional and epigenomic profiles specific to early heart differentiation. Six of the nine lincRNAs had in vivo expression patterns supporting a potential function in heart development, including a transcript downstream of the cardiac transcription factor Hand2, which we named Handlr (Hand2-associated lincRNA), Rubie and Atcayos We genetically ablated these six lincRNAs in mouse, which suggested genomic regulatory roles for four of the cohort. However, none of the lincRNA deletions led to severe cardiac phenotypes. Thus, we stressed the hearts of adult Handlr and Atcayos mutant mice by transverse aortic banding and found that absence of these lincRNAs did not affect cardiac hypertrophy or left ventricular function post-stress. Our results support roles for lincRNA transcripts and/or transcription in the regulation of topologically associated genes. However, the individual importance of developmentally specific lincRNAs is yet to be established. Their status as either gene-like entities or epigenetic components of the nucleus should be further considered.
Collapse
Affiliation(s)
- Matthew R George
- Gladstone Institutes, San Francisco, CA 94158, USA.,Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA.,Program in Developmental and Stem Cell Biology, University of California, San Francisco, CA 94143, USA
| | - Qiming Duan
- Gladstone Institutes, San Francisco, CA 94158, USA
| | | | - Irfan S Kathiriya
- Gladstone Institutes, San Francisco, CA 94158, USA.,Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94158, USA
| | - Yu Huang
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Kavitha Rao
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Saptarsi M Haldar
- Gladstone Institutes, San Francisco, CA 94158, USA.,Division of Cardiology, Department of Medicine, University of California, San Francisco, CA 94143, USA.,Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Benoit G Bruneau
- Gladstone Institutes, San Francisco, CA 94158, USA .,Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA.,Program in Developmental and Stem Cell Biology, University of California, San Francisco, CA 94143, USA.,Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA.,Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
15
|
Yilmaz N, Timur H, Ugurlu EN, Yilmaz S, Ozgu-Erdinc AS, Erkilinc S, Inal HA. Placenta specific protein-1 in recurrent pregnancy loss and in In Vitro Fertilisation failure: a prospective observational case-control study. J OBSTET GYNAECOL 2019; 40:843-848. [PMID: 31791163 DOI: 10.1080/01443615.2019.1674263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Observations from studies have provided evidence that Placenta-specific protein1 (PLAC1) is important for the establishment and maintenance of pregnancy and suggest it as a potential biomarker for gestational pathologies. The aim of this study is to investigate whether maternal serum PLAC1 levels have any impact on etiopathogenesis of recurrent pregnancy loss (RPL) and repeated implantation failure after In Vitro Fertilisation (RIF). We conducted a prospective observational case-control study in a Research Hospital. Twenty-eight patients with RPL (group 1), 30 patients with unexplained infertility and RIF (group 2), 29 fertile patients (group 3) were included. The demographic features and serum PLAC1 levels were compared. There was a significant difference in PLAC1 levels between the groups (group 1 = 19.71 + 16.55 ng/ml; group 2 = 4.82 + 1.44 ng/ml; group 3 = 0.89 + 0.62 ng/ml, respectively) (p=.001). Positive correlation was found between serum PLAC1 levels and abortion rates (r = 0.64; p=.001), a negative correlation was found between serum PLAC1 levels and live birth rates (r = -0.69; p=.001). PLAC1 might have a negative effect on implantation in RPL and RIF. There may be a subgroup of PLAC with different bioactivity. There are no relevant studies conducted among these populations, further large-scale studies are needed to assess the molecular role of PLAC1 on implantation.IMPACT STATEMENTWhat is already known about this subject? PLAC1 (placenta-specific protein-1) gene is located on the X chromosome which encodes for a protein that is thought to be important for placental development although its role has not been clearly defined. Studies in the literature have provided evidence that PLAC1 has an important role in the establishment and maintenance of pregnancy and suggest it as a potential biomarker for gestational pathologies. Several reports over the past few years have demonstrated PLAC1 expression in a variety of human tumours including lung cancers, breast cancer, hepatocellular and colorectal cancers, gastric cancers and uterine cancers.What do the results of this study add? There have been no previous studies conducted among patients with recurrent pregnancy loss (RPL) or repeated implantation failure after In Vitro Fertilisation (RIF) that have searched for any association between PLAC1 levels and implantation failure. This study has demonstrated higher PLAC1 levels in infertile women with RIF and RPL for the first time; suggesting that it could have a negative effect on implantation in these populations. PLAC1 could be detected in the serum as a biomarker that is associated with RIF and RPL. What are the implications of these findings for clinical practice and/or further research? Defining the precise role of PLAC1 during implantation will provide new insight into understanding of poor reproductive outcomes such as RIF and RPL and help in developing treatment strategies. Further large-scale studies with more patients are needed to uncover the clinical value of PLAC1 as a biomarker to predict repeated implantation failure and RPL.
Collapse
Affiliation(s)
- Nafiye Yilmaz
- Dr. Zekai Tahir Burak Women's Health Research and Education Hospital, Ankara, Turkey
| | - Hakan Timur
- Dr. Zekai Tahir Burak Women's Health Research and Education Hospital, Ankara, Turkey
| | - Evin Nil Ugurlu
- Dr. Zekai Tahir Burak Women's Health Research and Education Hospital, Ankara, Turkey
| | - Saynur Yilmaz
- Dr. Zekai Tahir Burak Women's Health Research and Education Hospital, Ankara, Turkey
| | - A Seval Ozgu-Erdinc
- Dr. Zekai Tahir Burak Women's Health Research and Education Hospital, Ankara, Turkey
| | - Selcuk Erkilinc
- Dr. Zekai Tahir Burak Women's Health Research and Education Hospital, Ankara, Turkey
| | - Hasan Ali Inal
- Dr. Zekai Tahir Burak Women's Health Research and Education Hospital, Ankara, Turkey
| |
Collapse
|
16
|
Cabreira-Cagliari C, Dias NDC, Bohn B, Fagundes DGDS, Margis-Pinheiro M, Bodanese-Zanettini MH, Cagliari A. Revising the PLAC8 gene family: from a central role in differentiation, proliferation, and apoptosis in mammals to a multifunctional role in plants. Genome 2018; 61:857-865. [DOI: 10.1139/gen-2018-0035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PLAC8 is a cysteine-rich protein described as a central mediator of tumor evolution in mammals; as such, it represents a promising candidate for diagnostic and therapeutic targeting. The human PLAC8 gene is also involved in contact hypersensitivity response and presents a role in psoriatic skin. In plants, PLAC8 motif-containing proteins are involved in the determination of organ size and growth, response to infection, Ca2+ influx, Cd resistance, and zinc detoxification. In general, PLAC8 motif-containing proteins present the conserved CCXXXXCPC or CLXXXXCPC region. However, there is no devised nomenclature for the PLAC8 motif-containing proteins. Here, through the analysis of 445 sequences, we show that PLAC8 motif-containing proteins constitute a unique gene family, and we propose a unified nomenclature. This is the first report indicating the existence of different groups of PLAC8 proteins, which we have called types I, II, and III. Type I genes are found in mammals, fungi, plants, and algae, and types II and III are exclusive to plants. Our study describes for the first time PLAC8 type III proteins. Whether these sequences maintain their known functional role or possess distinct functions of types I and II genes remains unclear.
Collapse
Affiliation(s)
- Caroline Cabreira-Cagliari
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | - Bianca Bohn
- Universidade Estadual do Rio Grande do Sul (UERGS), Santa Cruz do Sul, RS, Brazil
| | | | - Marcia Margis-Pinheiro
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Maria Helena Bodanese-Zanettini
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Alexandro Cagliari
- Universidade Estadual do Rio Grande do Sul (UERGS), Santa Cruz do Sul, RS, Brazil
- Programa de Pós-Graduação em Ambiente e Sustentabilidade - UERGS, RS, Brazil
| |
Collapse
|
17
|
Chi Soh JE, Abu N, Jamal R. The potential immune-eliciting cancer testis antigens in colorectal cancer. Immunotherapy 2018; 10:1093-1104. [DOI: 10.2217/imt-2018-0044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The identification of cancer testis antigens (CTAs) has been an important finding in the search of potential targets for cancer immunotherapy. CTA is one of the subfamilies of the large tumor-associated antigens groups. It is aberrantly expressed in various types of human tumors but is absent in normal tissues except for the testis and placenta. This CTAs-restricted pattern of expression in human malignancies together with its potential immunogenic properties, has stirred the interest of many researchers to use CTAs as one of the ideal targets in cancer immunotherapy. To date, multiple studies have shown that CTAs-based vaccines can elicit clinical and immunological responses in different tumors, including colorectal cancer (CRC). This review details our current understanding of CTAs and CRC in regard to the expression and immunological responses as well as some of the critical hurdles in CTAs-based immunotherapy.
Collapse
Affiliation(s)
- Joanne Ern Chi Soh
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Cheras, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Yuan H, Wang X, Shi C, Jin L, Hu J, Zhang A, Li J, Vijayendra N, Doodala V, Weiss S, Tang Y, Weiner LM, Glazer RI. Plac1 Is a Key Regulator of the Inflammatory Response and Immune Tolerance In Mammary Tumorigenesis. Sci Rep 2018; 8:5717. [PMID: 29632317 PMCID: PMC5890253 DOI: 10.1038/s41598-018-24022-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 03/22/2018] [Indexed: 01/09/2023] Open
Abstract
Plac1 is an X-linked trophoblast gene expressed at high levels in the placenta, but not in adult somatic tissues other than the testis. Plac1 however is re-expressed in several solid tumors and in most human cancer cell lines. To explore the role of Plac1 in cancer progression, Plac1 was reduced by RNA interference in EO771 mammary carcinoma cells. EO771 "knockdown" (KD) resulted in 50% reduction in proliferation in vitro and impaired tumor growth in syngeneic mice; however, tumor growth in SCID mice was equivalent to tumor cells expressing a non-silencing control RNA, suggesting that Plac1 regulated adaptive immunity. Gene expression profiling of Plac1 KD cells indicated reduction in several inflammatory and immune factors, including Cxcl1, Ccl5, Ly6a/Sca-1, Ly6c and Lif. Treatment of mice engrafted with wild-type EO771 cells with a Cxcr2 antagonist impaired tumor growth, reduced myeloid-derived suppressor cells and regulatory T cells, while increasing macrophages, dendritic cells, NK cells and the penetration of CD8+ T cells into the tumor bed. Cxcl1 KD phenocopied the effects of Plac1 KD on tumor growth, and overexpression of Cxcl1 partially rescued Plac1 KD cells. These results reveal that Plac1 modulates a tolerogenic tumor microenvironment in part by modulating the chemokine axis.
Collapse
Affiliation(s)
- Hongyan Yuan
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Xiaoyi Wang
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Chunmei Shi
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Lu Jin
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Jianxia Hu
- Laboratory of Thyroid Diseases, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Alston Zhang
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - James Li
- Department of Bioinformatics, Biostatistics and Biomathematics, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Nairuthya Vijayendra
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Venkata Doodala
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Spencer Weiss
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Yong Tang
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Louis M Weiner
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Robert I Glazer
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA.
| |
Collapse
|
19
|
Sifakis S, Androutsopoulos VP, Pontikaki A, Velegrakis A, Papaioannou GI, Koukoura O, Spandidos DA, Papantoniou N. Placental expression of PAPPA, PAPPA-2 and PLAC-1 in pregnacies is associated with FGR. Mol Med Rep 2018. [PMID: 29532882 PMCID: PMC5928614 DOI: 10.3892/mmr.2018.8721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Fetal growth restriction (FGR) is a gynecological disorder of varying etiology. In the present study, an expression analysis of pregnancy-associated plasma protein A (PAPPA), pregnancy-associated plasma protein A2 (PAPPA2) and placenta-specific-1 (PLAC-1) was conducted in pregnancies with FGR and control pregnancies. Placental tissues were collected from pregnancies with FGR (n=16) and control pregnancies (n=16) and the expression of the genes of interest was examined by qPCR. The mean expression levels of PAPPA and PAPPA2 were significantly lower (P<0.001) in placental tissues from FGR pregnancies compared with tissues from healthy subjects, whereas the opposite pattern was observed for PLAC-1 (P<0.001). PAPPA and PLAC-1 expression in FGR and control subjects correlated with birth weight (P<0.001). The findings suggest a possible pathophysiological link between the development of FGR and the expression of PAPPA, PAPPA2 and PLAC-1.
Collapse
Affiliation(s)
- Stavros Sifakis
- Department of Obstetrics and Gynecology, University Hospital of Heraklion, 71110 Heraklion, Greece
| | | | - Artemis Pontikaki
- Department of Obstetrics and Gynecology, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Alexis Velegrakis
- Department of Obstetrics and Gynecology, Venizeleion Hospital, 71409 Heraklion, Greece
| | - George I Papaioannou
- Department of Obstetrics and Gynecology, Attikon University Hospital, University of Athens, 12462 Athens, Greece
| | - Ourania Koukoura
- Department of Obstetrics and Gynecology, University of Thessalia, 41110 Larissa, Greece
| | - Demetrios A Spandidos
- Department of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Nikos Papantoniou
- Department of Obstetrics and Gynecology, Attikon University Hospital, University of Athens, 12462 Athens, Greece
| |
Collapse
|
20
|
Yang L, Zha TQ, He X, Chen L, Zhu Q, Wu WB, Nie FQ, Wang Q, Zang CS, Zhang ML, He J, Li W, Jiang W, Lu KH. Placenta-specific protein 1 promotes cell proliferation and invasion in non-small cell lung cancer. Oncol Rep 2017; 39:53-60. [PMID: 29138842 PMCID: PMC5783604 DOI: 10.3892/or.2017.6086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/26/2017] [Indexed: 01/08/2023] Open
Abstract
Pulmonary carcinoma-associated proteins have emerged as crucial players in governing fundamental biological processes such as cell proliferation, apoptosis and metastasis in human cancers. Placenta-specific protein 1 (PLAC1) is a cancer-related protein, which is activated and upregulated in a variety of malignant tissues, including prostate cancer, gastric adenocarcinoma, colorectal, epithelial ovarian and breast cancer. However, its biological role and clinical significance in non-small cell lung cancer (NSCLC) development and progression are still unknown. In the present study, we found that PLAC1 was significantly upregulated in NSCLC tissues, and its expression level was associated with advanced pathological stage and it was also correlated with shorter progression-free survival of lung cancer patients. Furthermore, knockdown of PLAC1 expression by siRNA inhibited cell proliferation, induced apoptosis and impaired invasive ability in NSCLC cells partly via regulation of epithelial-mesenchymal transition (EMT)-related protein expression. Our findings present that increased PLAC1 could be identified as a negative prognostic biomarker in NSCLC and regulate cell proliferation and invasion. Thus, we conclusively demonstrated that PLAC1 plays a key role in NSCLC development and progression, which may provide novel insights on the function of tumor-related gene-driven tumorigenesis.
Collapse
Affiliation(s)
- Li Yang
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Tian-Qi Zha
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Xiang He
- Department of Digestive, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Liang Chen
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Quan Zhu
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Wei-Bing Wu
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Feng-Qi Nie
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Qian Wang
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Chong-Shuang Zang
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Mei-Ling Zhang
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Jing He
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Wei Li
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Wen Jiang
- Department of Biochemistry, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| | - Kai-Hua Lu
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Gulou, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
21
|
Elston M, Urschitz J. Transposase-mediated gene modulation in the placenta. Placenta 2017; 59 Suppl 1:S32-S36. [PMID: 28778732 PMCID: PMC5682209 DOI: 10.1016/j.placenta.2017.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/12/2017] [Accepted: 07/27/2017] [Indexed: 11/27/2022]
Abstract
The placenta is an organ vital to fetal development as well as the maintenance of a healthy pregnancy and plays a crucial role in developmental programming of the fetus. The mechanisms that link intrauterine milieu, fetal health and disease development later in life are poorly understood. Placenta-specific gene modulation, both by generating transgenic animals as well as by developing methods for in vivo genetic modifications is a growing area of interest as this approach provides the opportunity to investigate the role of particular genes or gene networks in regulating placental function and fetal growth. Furthermore, in vivo placental gene transfer may be adapted to treat humans in the future and could be used as an early intervention strategy for a wide range of pregnancy complications. This review is an overview of transposase-based methods available for both transgenic animal generation and in vivo placental gene modifications with an emphasis on piggyBac-based systems.
Collapse
Affiliation(s)
- Marlee Elston
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, Honolulu, HI 96822, United States
| | - Johann Urschitz
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, Honolulu, HI 96822, United States.
| |
Collapse
|
22
|
Placenta-specific1 (PLAC1) is a potential target for antibody-drug conjugate-based prostate cancer immunotherapy. Sci Rep 2017; 7:13373. [PMID: 29042604 PMCID: PMC5645454 DOI: 10.1038/s41598-017-13682-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/26/2017] [Indexed: 11/13/2022] Open
Abstract
Our recent findings strongly support the idea of PLAC1 being as a potential immunotherapeutic target in prostate cancer (PCa). Here, we have generated and evaluated an anti-placenta-specific1 (PLAC1)-based antibody drug conjugate (ADC) for targeted immunotherapy of PCa. Prostate cancer cells express considerable levels of PLAC1. The Anti-PLAC1 clone, 2H12C12, showed high reactivity with recombinant PLAC1 and selectivity recognized PLAC1 in prostate cancer cells but not in LS180 cells, the negative control. PLAC1 binding induced rapid internalization of the antibody within a few minutes which reached to about 50% after 15 min and almost completed within an hour. After SN38 conjugation to antibody, a drug-antibody ratio (DAR) of about 5.5 was achieved without apparent negative effect on antibody affinity to cell surface antigen. The ADC retained intrinsic antibody activity and showed enhanced and selective cytotoxicity with an IC50 of 62 nM which was about 15-fold lower compared to free drug. Anti-PLAC1-ADC induced apoptosis in human primary prostate cancer cells and prostate cell lines. No apparent cytotoxic effect was observed in in vivo animal safety experiments. Our newly developed anti-PLAC1-based ADCs might pave the way for a reliable, efficient, and novel immunotherapeutic modality for patients with PCa.
Collapse
|
23
|
Yin Y, Zhu X, Huang S, Zheng J, Zhang M, Kong W, Chen Q, Zhang Y, Chen X, Lin K, Ouyang X. Expression and clinical significance of placenta-specific 1 in pancreatic ductal adenocarcinoma. Tumour Biol 2017; 39:1010428317699131. [PMID: 28618924 DOI: 10.1177/1010428317699131] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Yin Yin
- Department of Medical Oncology, Fuzhou Dongfang Hospital, Xiamen University, Fuzhou, China
| | - Xu Zhu
- Department of Hepatobiliary Surgery, Fuzhou Dongfang Hospital, Xiamen University, Fuzhou, China
| | - Shanshan Huang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiawei Zheng
- Department of Medical Oncology, Fuzhou General Hospital of Nanjing Military Command, Fuzong Clinical College, Fujian Medical University, Fuzhou, China
| | - Mengyun Zhang
- Department of Medical Oncology, Fuzhou Dongfang Hospital, Xiamen University, Fuzhou, China
| | - Wencui Kong
- Department of Medical Oncology, Fuzhou General Hospital of Nanjing Military Command, Fuzong Clinical College, Fujian Medical University, Fuzhou, China
| | - Qun Chen
- Department of Medical Oncology, Fuzhou General Hospital of Nanjing Military Command, Fuzong Clinical College, Fujian Medical University, Fuzhou, China
| | - Yan Zhang
- Department of Medical Oncology, Fuzhou Dongfang Hospital, Xiamen University, Fuzhou, China
| | - Xiong Chen
- Department of Medical Oncology, Fuzhou Dongfang Hospital, Xiamen University, Fuzhou, China
- Department of Medical Oncology, Fuzhou General Hospital of Nanjing Military Command, Fuzong Clinical College, Fujian Medical University, Fuzhou, China
| | - Kerong Lin
- Department of Gastroenterology, Fuzhou Dongfang Hospital, Xiamen University, Fuzhou, China
| | - Xuenong Ouyang
- Department of Medical Oncology, Fuzhou Dongfang Hospital, Xiamen University, Fuzhou, China
- Department of Medical Oncology, Fuzhou General Hospital of Nanjing Military Command, Fuzong Clinical College, Fujian Medical University, Fuzhou, China
| |
Collapse
|
24
|
Nazari M, Zarnani AH, Ghods R, Emamzadeh R, Najafzadeh S, Minai-Tehrani A, Mahmoudian J, Yousefi M, Vafaei S, Massahi S, Nejadmoghaddam MR. Optimized protocol for soluble prokaryotic expression, purification and structural analysis of human placenta specific-1(PLAC1). Protein Expr Purif 2017; 133:139-151. [PMID: 28315746 DOI: 10.1016/j.pep.2017.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 12/17/2022]
Abstract
Placenta specific -1 (PLAC1) has been recently introduced as a small membrane-associated protein mainly involved in placental development. Expression of PLAC1 transcript has been documented in almost one hundred cancer cell lines standing for fourteen distinct cancer types. The presence of two disulfide bridges makes difficult to produce functional recombinant PLAC1 in soluble form with high yield. This limitation also complicates the structural studies of PLAC1, which is important for prediction of its physiological roles. To address this issue, we employed an expression matrix consisting of two expression vectors, five different E. coli hosts and five solubilization conditions to optimize production of full and truncated forms of human PLAC1. The recombinant proteins were then characterized using an anti-PLAC1-specific antibody in Western blotting (WB) and enzyme linked immunosorbent assay (ELISA). Structure of full length protein was also investigated using circular dichroism (CD). We demonstrated the combination of Origami™ and pCold expression vector to yield substantial amount of soluble truncated PLAC1 without further need for solubilization step. Full length PLAC1, however, expressed mostly as inclusion bodies with higher yield in Origami™ and Rosetta2. Among solubilization buffers examined, buffer containing Urea 2 M, pH 12 was found to be more effective. Recombinant proteins exhibited excellent reactivity as detected by ELISA and WB. The secondary structure of full length PLAC1 was considered by CD spectroscopy. Taken together, we introduced here a simple, affordable and efficient expression system for soluble PLAC1 production.
Collapse
Affiliation(s)
- Mahboobeh Nazari
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran; Department of Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, IUMS, Tehran, Iran
| | - Rahman Emamzadeh
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Somayeh Najafzadeh
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Arash Minai-Tehrani
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Jafar Mahmoudian
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Yousefi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Sedigheh Vafaei
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Sam Massahi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad-Reza Nejadmoghaddam
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
PPAR δ as a Metabolic Initiator of Mammary Neoplasia and Immune Tolerance. PPAR Res 2016; 2016:3082340. [PMID: 28077942 PMCID: PMC5203902 DOI: 10.1155/2016/3082340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/03/2016] [Indexed: 12/12/2022] Open
Abstract
PPARδ is a ligand-activated nuclear receptor that regulates the transcription of genes associated with proliferation, metabolism, inflammation, and immunity. Within this transcription factor family, PPARδ is unique in that it initiates oncogenesis in a metabolic and tissue-specific context, especially in mammary epithelium, and can regulate autoimmunity in some tissues. This review discusses its role in these processes and how it ultimately impacts breast cancer.
Collapse
|
26
|
Muys BR, Lorenzi JCC, Zanette DL, Bueno RDBLE, de Araújo LF, Dinarte-Santos AR, Alves CP, Ramão A, de Molfetta GA, Vidal DO, Silva WA. Placenta-Enriched LincRNAs MIR503HG and LINC00629 Decrease Migration and Invasion Potential of JEG-3 Cell Line. PLoS One 2016; 11:e0151560. [PMID: 27023770 PMCID: PMC4833476 DOI: 10.1371/journal.pone.0151560] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 03/01/2016] [Indexed: 12/16/2022] Open
Abstract
LINC00629 and MIR503HG are long intergenic non-coding RNAs (lincRNAs) mapped on chromosome X (Xq26), a region enriched for genes associated with human reproduction. Genes highly expressed in normal reproductive tissues and cancers (CT genes) are well known as potential tumor biomarkers. This study aimed to characterize the structure, expression, function and regulation mechanism of MIR503HG and LINC00629 lincRNAs. According to our data, MIR503HG expression was almost exclusive to placenta and LINC00629 was highly expressed in placenta and other reproductive tissues. Further analysis, using a cancer cell lines panel, showed that MIR503HG and LINC00629 were expressed in 50% and 100% of the cancer cell lines, respectively. MIR503HG was expressed predominantly in the nucleus of JEG-3 choriocarcinoma cells. We observed a positively correlated expression between MIR503HG and LINC00629, and between the lincRNAs and neighboring miRNAs. Also, both LINC00629 and MIR503GH could be negatively regulated by DNA methylation in an indirect way. Additionally, we identified new transcripts for MIR503HG and LINC00629 that are relatively conserved when compared to other primates. Furthermore, we found that overexpression of MIR503HG2 and the three-exon LINC00629 new isoforms decreased invasion and migration potential of JEG-3 tumor cell line. In conclusion, our results suggest that lincRNAs MIR503HG and LINC00629 impaired migration and invasion capacities in a choriocarcinoma in vitro model, indicating a potential role in human reproduction and tumorigenesis. Moreover, the MIR503HG expression pattern found here could indicate a putative new tumor biomarker.
Collapse
Affiliation(s)
- Bruna Rodrigues Muys
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Center for Cell-Based Therapy (CEPID/FAPESP), National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil
- Center for Medical Genomics (HCFMRP/USP), Center for Integrative Systems Biology (CISBi–NAP/USP), Ribeirão Preto, Brazil
| | - Júlio Cesar Cetrulo Lorenzi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Center for Cell-Based Therapy (CEPID/FAPESP), National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil
- Center for Medical Genomics (HCFMRP/USP), Center for Integrative Systems Biology (CISBi–NAP/USP), Ribeirão Preto, Brazil
| | | | - Rafaela de Barros Lima e Bueno
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Center for Cell-Based Therapy (CEPID/FAPESP), National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil
- Center for Medical Genomics (HCFMRP/USP), Center for Integrative Systems Biology (CISBi–NAP/USP), Ribeirão Preto, Brazil
| | - Luíza Ferreira de Araújo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Center for Cell-Based Therapy (CEPID/FAPESP), National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil
- Center for Medical Genomics (HCFMRP/USP), Center for Integrative Systems Biology (CISBi–NAP/USP), Ribeirão Preto, Brazil
| | - Anemari Ramos Dinarte-Santos
- Center for Cell-Based Therapy (CEPID/FAPESP), National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil
- Center for Medical Genomics (HCFMRP/USP), Center for Integrative Systems Biology (CISBi–NAP/USP), Ribeirão Preto, Brazil
| | - Cleidson Pádua Alves
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Center for Cell-Based Therapy (CEPID/FAPESP), National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil
- Center for Medical Genomics (HCFMRP/USP), Center for Integrative Systems Biology (CISBi–NAP/USP), Ribeirão Preto, Brazil
| | - Anelisa Ramão
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Center for Cell-Based Therapy (CEPID/FAPESP), National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil
| | - Greice Andreotti de Molfetta
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Center for Cell-Based Therapy (CEPID/FAPESP), National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil
- Center for Medical Genomics (HCFMRP/USP), Center for Integrative Systems Biology (CISBi–NAP/USP), Ribeirão Preto, Brazil
| | - Daniel Onofre Vidal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Wilson Araújo Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Center for Cell-Based Therapy (CEPID/FAPESP), National institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Riberão Preto, Brazil
- Center for Medical Genomics (HCFMRP/USP), Center for Integrative Systems Biology (CISBi–NAP/USP), Ribeirão Preto, Brazil
| |
Collapse
|
27
|
Abd Ellah N, Taylor L, Troja W, Owens K, Ayres N, Pauletti G, Jones H. Development of Non-Viral, Trophoblast-Specific Gene Delivery for Placental Therapy. PLoS One 2015; 10:e0140879. [PMID: 26473479 PMCID: PMC4608830 DOI: 10.1371/journal.pone.0140879] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/01/2015] [Indexed: 12/14/2022] Open
Abstract
Low birth weight is associated with both short term problems and the fetal programming of adult onset diseases, including an increased risk of obesity, diabetes and cardiovascular disease. Placental insufficiency leading to intrauterine growth restriction (IUGR) contributes to the prevalence of diseases with developmental origins. Currently there are no therapies for IUGR or placental insufficiency. To address this and move towards development of an in utero therapy, we employ a nanostructure delivery system complexed with the IGF-1 gene to treat the placenta. IGF-1 is a growth factor critical to achieving appropriate placental and fetal growth. Delivery of genes to a model of human trophoblast and mouse placenta was achieved using a diblock copolymer (pHPMA-b-pDMAEMA) complexed to hIGF-1 plasmid DNA under the control of trophoblast-specific promoters (Cyp19a or PLAC1). Transfection efficiency of pEGFP-C1-containing nanocarriers in BeWo cells and non-trophoblast cells was visually assessed via fluorescence microscopy. In vivo transfection and functionality was assessed by direct placental-injection into a mouse model of IUGR. Complexes formed using pHPMA-b-pDMAEMA and CYP19a-923 or PLAC1-modified plasmids induce trophoblast-selective transgene expression in vitro, and placental injection of PLAC1-hIGF-1 produces measurable RNA expression and alleviates IUGR in our mouse model, consequently representing innovative building blocks towards human placental gene therapies.
Collapse
Affiliation(s)
- Noura Abd Ellah
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45267, United States of America
- Faculty of Pharmacy, Assiut University, 71515, Assiut, Arab Republic of Egypt
| | - Leeanne Taylor
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, United States of America
| | - Weston Troja
- Divisions of General and Thoracic Surgery and Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, United States of America
| | - Kathryn Owens
- Divisions of General and Thoracic Surgery and Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, United States of America
| | - Neil Ayres
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, United States of America
| | - Giovanni Pauletti
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45267, United States of America
| | - Helen Jones
- Divisions of General and Thoracic Surgery and Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, United States of America
- * E-mail:
| |
Collapse
|
28
|
Ghods R, Ghahremani MH, Madjd Z, Asgari M, Abolhasani M, Tavasoli S, Mahmoudi AR, Darzi M, Pasalar P, Jeddi-Tehrani M, Zarnani AH. High placenta-specific 1/low prostate-specific antigen expression pattern in high-grade prostate adenocarcinoma. Cancer Immunol Immunother 2014; 63:1319-27. [PMID: 25186610 PMCID: PMC11029513 DOI: 10.1007/s00262-014-1594-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 08/05/2014] [Indexed: 11/25/2022]
Abstract
BACKGROUND The scarcity of effective therapeutic approaches for prostate cancer (PCa) has encouraged steadily growing interest for the identification of novel antigenic targets. Placenta-specific 1 (PLAC1) is a novel cancer-testis antigen with reported ectopic expression in a variety of tumors and cancer cell lines. The purpose of the present study was to investigate for the first time the differential expression of PLAC1 in PCa tissues. METHODS We investigated the differential expression of PLAC1 in PCa, high-grade prostatic intraepithelial neoplasia (HPIN), benign prostatic hyperplasia (BPH), and nonneoplastic/nonhyperplastic prostate tissues using microarray-based immunohistochemistry (n = 227). The correlation of PLAC1 expression with certain clinicopathological parameters and expression of prostate-specific antigen (PSA), as a prostate epithelial cell differentiation marker, were investigated. RESULTS Placenta-specific 1 (PLAC1) expression was increased in a stepwise manner from BPH to PCa, which expressed highest levels of this molecule, while in a majority of normal tissues, PLAC1 expression was not detected. Moreover, PLAC1 expression was positively associated with Gleason score (p ≤ 0.001). Interestingly, there was a negative correlation between PLAC1 and PSA expression in patients with PCa and HPIN (p ≤ 0.01). Increment of PLAC1 expression increased the odds of PCa and HPIN diagnosis (OR 49.45, 95 % CI for OR 16.17-151.25). CONCLUSION Our findings on differential expression of PLAC1 in PCa plus its positive association with Gleason score and negative correlation with PSA expression highlight the potential usefulness of PLAC1 for targeted PC therapy especially for patients with advanced disease.
Collapse
Affiliation(s)
- Roya Ghods
- Department of Molecular Medicine, School of Advanced Medical Technologies, Tehran University of Medical Sciences, TUMS, Tehran, Iran
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad-Hossein Ghahremani
- Department of Molecular Medicine, School of Advanced Medical Technologies, Tehran University of Medical Sciences, TUMS, Tehran, Iran
- Department of Pharmacology-Toxicology, Faculty of Medicine, Tehran University of Medical Sciences, TUMS, Tehran, Iran
- School of Advanced Technologies in Medicine, Eastern side of Tehran University, 88, Italia St, P.O. box: 1417755469, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, IUMS, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, IUMS, Tehran, Iran
| | - Mojgan Asgari
- Oncopathology Research Center, Iran University of Medical Sciences, IUMS, Tehran, Iran
- Department of Pathology, Hasheminejad Kidney Center, Iran University of Medical Sciences, IUMS, Tehran, Iran
| | - Maryam Abolhasani
- Oncopathology Research Center, Iran University of Medical Sciences, IUMS, Tehran, Iran
- Department of Pathology, Hasheminejad Kidney Center, Iran University of Medical Sciences, IUMS, Tehran, Iran
| | - Sanaz Tavasoli
- Department of Nutrition, Science and Research Branch, Azad University, Tehran, Iran
| | - Ahmad-Reza Mahmoudi
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Maryam Darzi
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Parvin Pasalar
- Department of Molecular Medicine, School of Advanced Medical Technologies, Tehran University of Medical Sciences, TUMS, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir-Hassan Zarnani
- Immunology Research Center, Iran University of Medical Sciences, IUMS, Hemmat Highway, P.O. box: 1449614535, Tehran, Iran
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
29
|
Placenta-specific protein 1 is conserved throughout the Placentalia under purifying selection. ScientificWorldJournal 2014; 2014:537356. [PMID: 25180201 PMCID: PMC4142310 DOI: 10.1155/2014/537356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/16/2014] [Indexed: 11/18/2022] Open
Abstract
Placental mammals (Placentalia) are a very successful group that, today, comprise 94% of all mammalian species. Recent phylogenetic analyses, coupled with new, quite complete fossils, suggest that the crown orders were all established rapidly from a common ancestor just after the Cretaceous/Tertiary (K/T) boundary 65 million years ago. Extensive molecular and morphologic evidence has led to a description of the common ancestor of all Placentalia in which a two-horned uterus and a hemochorial placenta are present. Thus, the process of placentation in which the placenta invades and anchors to the uterine epithelium was already established. One factor that has been suggested as a crucial component of this process is placenta-specific protein 1 (PLAC1). A phylogenetic analysis of the PLAC1 protein in 25 placental mammal species, representing nine of the sixteen crown orders of the Placentalia, suggests that this protein was present in the placental common ancestor in the form we see it today, that it evolved in the Placentalia and has been subject to the effects of purifying selection since its appearance.
Collapse
|
30
|
Farina A. The Role of RNAs and microRNAs in Non-Invasive Prenatal Diagnosis. J Clin Med 2014; 3:440-52. [PMID: 26237384 PMCID: PMC4449680 DOI: 10.3390/jcm3020440] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/17/2014] [Accepted: 03/10/2014] [Indexed: 01/11/2023] Open
Abstract
In this paper, all possible clinical applications of circulating mRNA and miRNA for non-invasive prenatal diagnosis appearing in the medical literature so far are described. Data from the literature have also been reported and commented on along with some possible future applications.
Collapse
Affiliation(s)
- Antonio Farina
- Department of Medicine and Surgery (DIMEC) Division of Prenatal Medicine, University of Bologna, Bologna 40138, Italy.
| |
Collapse
|
31
|
Ghods R, Ghahremani MH, Darzi M, Mahmoudi AR, Yeganeh O, Bayat AA, Pasalar P, Jeddi-Tehrani M, Zarnani AH. Immunohistochemical characterization of novel murine monoclonal antibodies against human placenta-specific 1. Biotechnol Appl Biochem 2014; 61:363-9. [PMID: 24237073 DOI: 10.1002/bab.1177] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 11/08/2013] [Indexed: 11/08/2022]
Abstract
Human PLAC1 (placenta-specific 1) is a new member of cancer-testis antigens with 212 amino acids, and its expression is restricted to placenta and at much lower levels to testis. Recently, ectopic expression of the PLAC1 transcript has been demonstrated in a wide range of human tumors and cancer cell lines with a proposed function in tumor cell growth. No monoclonal anti-PLAC1 antibody applicable to immunohis-tochemical staining is available so far. To better understand the PLAC1 expression and localization, we aimed to produce monoclonal antibodies (mAbs) against the extracellular region of PLAC1. Mice were immunized with a synthetic peptide corresponding to the C-terminal 11 amino acids of PLAC1 conjugated with a carrier protein. Hybridomas were produced by standard protocol and screened for positive reactivity by enzyme-linked immunosorbent assay. Reactivity of final two clones was then assessed by Western blotting (WB), immunohistochemistry (IHC), and immunocytochemistry (ICC). Both clones showed a specific immunostaining pattern in human term placenta as the positive control. Reactivity was mostly localized to the cytoplasm of syncytiotrophoblasts. One of the clones showed an excellent staining signal in breast, ovary, and prostate cancer cell lines. Importantly, no reactivity was observed with human lymph node cells or prostate. None of the mAbs were able to detect PLAC1 in Western blot. Based on the present results, these mAbs can be used for detection of PLAC1 in IHC and ICC techniques.
Collapse
Affiliation(s)
- Roya Ghods
- Department of Molecular Medicine, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran; Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Liu X, Chen Q, Tsai HJ, Wang G, Hong X, Zhou Y, Zhang C, Liu C, Liu R, Wang H, Zhang S, Yu Y, Mestan KK, Pearson C, Otlans P, Zuckerman B, Wang X. Maternal preconception body mass index and offspring cord blood DNA methylation: exploration of early life origins of disease. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:223-30. [PMID: 24243566 PMCID: PMC4547934 DOI: 10.1002/em.21827] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/22/2013] [Indexed: 05/08/2023]
Abstract
Maternal obesity is associated with a variety of common diseases in the offspring. One possible underlying mechanism could be maternal obesity induced alterations in DNA methylation. However, this hypothesis is yet to be tested. We performed epigenomic mapping of cord blood among 308 Black mother-infant pairs delivered at term at the Boston Medical Center using the Illumina HumanMethylation27 BeadChip. Linear regression and pathway analyses were conducted to evaluate the associations between DNA methylation levels and prepregnancy maternal BMI (<25, 25-30, ≥30 kg/m(2) ). The methylation levels of 20 CpG sites were associated with maternal BMI at a significance level of P-value <10(-4) in the overall sample, and boys and girls, separately. One CpG site remained statistically significant after correction for multiple comparisons (FDR corrected P-value = 0.04) and was annotated to a potential cancer gene, ZCCHC10. Some of the other CpG site annotated genes appear to be critical to the development of cancers and cardiovascular diseases (i.e., WNT16, C18orf8, ANGPTL2, SAPCD2, ADCY3, PRR16, ERBB2, DOK2, PLAC1). Significant findings from pathway analysis, such as infectious and inflammatory and lipid metabolism pathways, lends support for the potential impact of maternal BMI on the above stated disorders. This study demonstrates that prepregnancy maternal BMI might lead to alterations in offspring DNA methylation in genes relevant to the development of a range of complex chronic diseases, providing evidence of trans-generational influence on disease susceptibility via epigenetic mechanism.
Collapse
Affiliation(s)
- Xin Liu
- Mary Ann and J. Milburn Smith Child Health Research Program, Ann & Robert H. Lurie Children’s Hospital of Chicago Research Center, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Correspondence to: Xin Liu, Mary Ann and J. Milburn Smith Child Health Research Program, Ann & Robert H. Lurie Children’s Hospital of Chicago Research Center, Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Qi Chen
- Mary Ann and J. Milburn Smith Child Health Research Program, Ann & Robert H. Lurie Children’s Hospital of Chicago Research Center, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hui-Ju Tsai
- Mary Ann and J. Milburn Smith Child Health Research Program, Ann & Robert H. Lurie Children’s Hospital of Chicago Research Center, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Research Institutes, Zhunan, Taiwan
- Department of Medical Genetics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Guoying Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Bloomberg School of Public Health; Johns Hopkins University, Baltimore, Maryland
| | - Xiumei Hong
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Bloomberg School of Public Health; Johns Hopkins University, Baltimore, Maryland
| | - Ying Zhou
- Biostatistics Research Core of Ann & Robert H. Lurie Children’s Hospital of Chicago Research Center, Chicago, Illinois
| | - Chunling Zhang
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Chunyu Liu
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Rong Liu
- Mary Ann and J. Milburn Smith Child Health Research Program, Ann & Robert H. Lurie Children’s Hospital of Chicago Research Center, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hongjian Wang
- Mary Ann and J. Milburn Smith Child Health Research Program, Ann & Robert H. Lurie Children’s Hospital of Chicago Research Center, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Shanchun Zhang
- Mary Ann and J. Milburn Smith Child Health Research Program, Ann & Robert H. Lurie Children’s Hospital of Chicago Research Center, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Yunxian Yu
- Mary Ann and J. Milburn Smith Child Health Research Program, Ann & Robert H. Lurie Children’s Hospital of Chicago Research Center, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Karen K. Mestan
- Department of Pediatrics, Division of Neonatology, Ann & Robert H. Lurie Children’s Hospital of Chicago and Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Colleen Pearson
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Peters Otlans
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Barry Zuckerman
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Xiaobin Wang
- Mary Ann and J. Milburn Smith Child Health Research Program, Ann & Robert H. Lurie Children’s Hospital of Chicago Research Center, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Bloomberg School of Public Health; Johns Hopkins University, Baltimore, Maryland
- Division of General Pediatrics and Adolescent Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
33
|
Yuan H, Lu J, Xiao J, Upadhyay G, Umans R, Kallakury B, Yin Y, Fant ME, Kopelovich L, Glazer RI. PPARδ induces estrogen receptor-positive mammary neoplasia through an inflammatory and metabolic phenotype linked to mTOR activation. Cancer Res 2013; 73:4349-61. [PMID: 23811944 PMCID: PMC3723355 DOI: 10.1158/0008-5472.can-13-0322] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The peroxisome proliferator-activated receptor-δ (PPARδ) regulates a multitude of physiological processes associated with glucose and lipid metabolism, inflammation, and proliferation. One or more of these processes are potential risk factors for the ability of PPARδ agonists to promote tumorigenesis in the mammary gland. In this study, we describe a new transgenic mouse model in which activation of PPARδ in the mammary epithelium by endogenous or synthetic ligands resulted in progressive histopathologic changes that culminated in the appearance of estrogen receptor- and progesterone receptor-positive and ErbB2-negative infiltrating ductal carcinomas. Multiparous mice presented with mammary carcinomas after a latency of 12 months, and administration of the PPARδ ligand GW501516 reduced tumor latency to 5 months. Histopathologic changes occurred concurrently with an increase in an inflammatory, invasive, metabolic, and proliferative gene signature, including expression of the trophoblast gene, Plac1, beginning 1 week after GW501516 treatment, and remained elevated throughout tumorigenesis. The appearance of malignant changes correlated with a pronounced increase in phosphatidylcholine and lysophosphatidic acid metabolites, which coincided with activation of Akt and mTOR signaling that were attenuated by treatment with the mTOR inhibitor everolimus. Our findings are the first to show a direct role of PPARδ in the pathogenesis of mammary tumorigenesis, and suggest a rationale for therapeutic approaches to prevent and treat this disease.
Collapse
MESH Headings
- Animals
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Carcinoma, Ductal/genetics
- Carcinoma, Ductal/metabolism
- Epithelium/metabolism
- Female
- Gene Expression
- Genes, erbB-2
- Inflammation/genetics
- Inflammation/metabolism
- Inflammatory Breast Neoplasms/genetics
- Inflammatory Breast Neoplasms/metabolism
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Metabolomics/methods
- Mice
- Mice, Transgenic
- PPAR delta/genetics
- PPAR delta/metabolism
- Phenotype
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Thiazoles/pharmacology
Collapse
Affiliation(s)
- Hongyan Yuan
- Department of Oncology and Lombardi Comprehensive Cancer Center, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007
| | - Jin Lu
- Department of Oncology and Lombardi Comprehensive Cancer Center, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007
| | - Junfeng Xiao
- Department of Oncology and Lombardi Comprehensive Cancer Center, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007
| | - Geeta Upadhyay
- Department of Oncology and Lombardi Comprehensive Cancer Center, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007
| | | | - Bhaskar Kallakury
- Department of Pathology, Georgetown University, Washington, DC 20007
| | - Yuhzi Yin
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20814
| | - Michael E. Fant
- Department of Pediatrics, University of South Florida, Tampa, FL 33606
| | - Levy Kopelovich
- Chemoprevention Agent Development and Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD 20814
| | - Robert I. Glazer
- Department of Oncology and Lombardi Comprehensive Cancer Center, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007
| |
Collapse
|
34
|
The oncoplacental gene placenta-specific protein 1 is highly expressed in endometrial tumors and cell lines. Obstet Gynecol Int 2013; 2013:807849. [PMID: 23935632 PMCID: PMC3723095 DOI: 10.1155/2013/807849] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/18/2013] [Indexed: 11/24/2022] Open
Abstract
Placenta-specific protein 1 (PLAC1) is a small secreted protein expressed exclusively in trophoblast cells in the mammalian placenta. PLAC1 is expressed early in gestation and is maintained throughout. It is thought to function in trophoblast invasion of the uterine epithelium and, subsequently, to anchor the placenta to the epithelium. In recent years, evidence has accumulated that PLAC1 is also expressed in a variety of human solid tumors, notably in breast cancers. We demonstrate for the first time that PLAC1 is ubiquitously expressed in tumors originating in uterine epithelium. Further, we find that PLAC1 expression is significantly higher in the more advanced, more aggressive endometrial serous adenocarcinomas and carcinosarcomas relative to endometrioid adenocarcinomas by more than 6-fold and 16-fold, respectively. We also show that PLAC1 is simultaneously transcribed from two promoters but that, in all cases, the more distal P1 promoter dominates the more proximal P2 promoter. While the function of the two PLAC1 promoters and their regulation are as yet unknown, overall expression data suggest that PLAC1 may serve as a biomarker for endometrial cancer as well as a potential prognostic indicator.
Collapse
|
35
|
Zhou Y, Gormley MJ, Hunkapiller NM, Kapidzic M, Stolyarov Y, Feng V, Nishida M, Drake PM, Bianco K, Wang F, McMaster MT, Fisher SJ. Reversal of gene dysregulation in cultured cytotrophoblasts reveals possible causes of preeclampsia. J Clin Invest 2013; 123:2862-72. [PMID: 23934129 PMCID: PMC3999620 DOI: 10.1172/jci66966] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 04/04/2013] [Indexed: 11/17/2022] Open
Abstract
During human pregnancy, a subset of placental cytotrophoblasts (CTBs) differentiates into cells that aggressively invade the uterus and its vasculature, anchoring the progeny and rerouting maternal blood to the placenta. In preeclampsia (PE), CTB invasion is limited, reducing placental perfusion and/or creating intermittent flow. This syndrome, affecting 4%-8% of pregnancies, entails maternal vascular alterations (e.g., high blood pressure, proteinuria, and edema) and, in some patients, fetal growth restriction. The only cure is removal of the faulty placenta, i.e., delivery. Previously, we showed that defective CTB differentiation contributes to the placental component of PE, but the causes were unknown. Here, we cultured CTBs isolated from PE and control placentas for 48 hours, enabling differentiation and invasion. In various severe forms of PE, transcriptomics revealed common aberrations in CTB gene expression immediately after isolation, including upregulation of SEMA3B, which resolved in culture. The addition of SEMA3B to normal CTBs inhibited invasion and recreated aspects of the PE phenotype. Additionally, SEMA3B downregulated VEGF signaling through the PI3K/AKT and GSK3 pathways, effects that were observed in PE CTBs. We propose that, in severe PE, the in vivo environment dysregulates CTB gene expression; the autocrine actions of the upregulated molecules (including SEMA3B) impair CTB differentiation, invasion and signaling; and patient-specific factors determine the signs.
Collapse
Affiliation(s)
- Yan Zhou
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell
Research, Center for Reproductive Sciences, Department
of Obstetrics, Gynecology and Reproductive Sciences, Division of
Maternal Fetal Medicine, and Department of Anatomy, UCSF, San Francisco,
California, USA
| | - Matthew J. Gormley
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell
Research, Center for Reproductive Sciences, Department
of Obstetrics, Gynecology and Reproductive Sciences, Division of
Maternal Fetal Medicine, and Department of Anatomy, UCSF, San Francisco,
California, USA
| | - Nathan M. Hunkapiller
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell
Research, Center for Reproductive Sciences, Department
of Obstetrics, Gynecology and Reproductive Sciences, Division of
Maternal Fetal Medicine, and Department of Anatomy, UCSF, San Francisco,
California, USA
| | - Mirhan Kapidzic
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell
Research, Center for Reproductive Sciences, Department
of Obstetrics, Gynecology and Reproductive Sciences, Division of
Maternal Fetal Medicine, and Department of Anatomy, UCSF, San Francisco,
California, USA
| | - Yana Stolyarov
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell
Research, Center for Reproductive Sciences, Department
of Obstetrics, Gynecology and Reproductive Sciences, Division of
Maternal Fetal Medicine, and Department of Anatomy, UCSF, San Francisco,
California, USA
| | - Victoria Feng
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell
Research, Center for Reproductive Sciences, Department
of Obstetrics, Gynecology and Reproductive Sciences, Division of
Maternal Fetal Medicine, and Department of Anatomy, UCSF, San Francisco,
California, USA
| | - Masakazu Nishida
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell
Research, Center for Reproductive Sciences, Department
of Obstetrics, Gynecology and Reproductive Sciences, Division of
Maternal Fetal Medicine, and Department of Anatomy, UCSF, San Francisco,
California, USA
| | - Penelope M. Drake
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell
Research, Center for Reproductive Sciences, Department
of Obstetrics, Gynecology and Reproductive Sciences, Division of
Maternal Fetal Medicine, and Department of Anatomy, UCSF, San Francisco,
California, USA
| | - Katherine Bianco
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell
Research, Center for Reproductive Sciences, Department
of Obstetrics, Gynecology and Reproductive Sciences, Division of
Maternal Fetal Medicine, and Department of Anatomy, UCSF, San Francisco,
California, USA
| | - Fei Wang
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell
Research, Center for Reproductive Sciences, Department
of Obstetrics, Gynecology and Reproductive Sciences, Division of
Maternal Fetal Medicine, and Department of Anatomy, UCSF, San Francisco,
California, USA
| | - Michael T. McMaster
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell
Research, Center for Reproductive Sciences, Department
of Obstetrics, Gynecology and Reproductive Sciences, Division of
Maternal Fetal Medicine, and Department of Anatomy, UCSF, San Francisco,
California, USA
| | - Susan J. Fisher
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell
Research, Center for Reproductive Sciences, Department
of Obstetrics, Gynecology and Reproductive Sciences, Division of
Maternal Fetal Medicine, and Department of Anatomy, UCSF, San Francisco,
California, USA
| |
Collapse
|
36
|
Matteo M, Greco P, Levi Setti P, Morenghi E, De Rosario F, Massenzio F, Albani E, Totaro P, Liso A. Preliminary evidence for high anti-PLAC1 antibody levels in infertile patients with repeated unexplained implantation failure. Placenta 2013; 34:335-9. [DOI: 10.1016/j.placenta.2013.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 01/12/2013] [Accepted: 01/16/2013] [Indexed: 10/27/2022]
|
37
|
Liu W, Zhai M, Wu Z, Qi Y, Wu Y, Dai C, Sun M, Li L, Gao Y. Identification of a novel HLA-A2-restricted cytotoxic T lymphocyte epitope from cancer-testis antigen PLAC1 in breast cancer. Amino Acids 2011; 42:2257-65. [PMID: 21710262 DOI: 10.1007/s00726-011-0966-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/14/2011] [Indexed: 01/01/2023]
Abstract
Identification of cytotoxic T lymphocyte (CTL) epitopes from tumor antigens is essential for the development of peptide vaccines against tumor immunotherapy. Among all the tumor antigens, the caner-testis (CT) antigens are the most widely studied and promising targets. PLAC1 (placenta-specific 1, CT92) was considered as a novel member of caner-testis antigen, which expressed in a wide range of human malignancies, most frequently in breast cancer. In this study, three native peptides and their analogues derived from PLAC1 were predicted by T cell epitope prediction programs including SYFPEITHI, BIMAS and NetCTL 1.2. Binding affinity and stability assays in T2 cells showed that two native peptides, p28 and p31, and their analogues (p28-1Y9 V, p31-1Y2L) had more potent binding activity towards HLA-A*0201 molecule. In ELISPOT assay, the CTLs induced by these four peptides could release IFN-γ. The CTLs induced by these four peptides from the peripheral blood mononuclear cells (PBMCs) of HLA-A*02+ healthy donor could lyse MCF-7 breast cancer cells (HLA-A*0201+, PLAC1+) in vitro. When immunized in HLA-A2.1/Kb transgenic mice, the peptide p28 could induce the most potent peptide-specific CTLs among these peptides. Therefore, our results indicated that the peptide p28 (VLCSIDWFM) could serve as a novel candidate epitope for the development of peptide vaccines against PLAC1-positive breast cancer.
Collapse
Affiliation(s)
- Wei Liu
- Department of Bioengineering, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Otsubo T, Akiyama Y, Hashimoto Y, Shimada S, Goto K, Yuasa Y. MicroRNA-126 inhibits SOX2 expression and contributes to gastric carcinogenesis. PLoS One 2011; 6:e16617. [PMID: 21304604 PMCID: PMC3029394 DOI: 10.1371/journal.pone.0016617] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 01/07/2011] [Indexed: 12/12/2022] Open
Abstract
Background SRY (sex-determining region Y)-box 2 (SOX2) is a crucial transcription factor for the maintenance of embryonic stem cell pluripotency and the determination of cell fate. Previously, we demonstrated that SOX2 plays important roles in growth inhibition through cell cycle arrest and apoptosis, and that SOX2 expression is frequently down-regulated in gastric cancers. However, the mechanisms underlying loss of SOX2 expression and its target genes involved in gastric carcinogenesis remain largely unknown. Here, we assessed whether microRNAs (miRNAs) regulate SOX2 expression in gastric cancers. Furthermore, we attempted to find downstream target genes of SOX2 contributing to gastric carcinogenesis. Methodology/Principal Findings We performed in silico analysis and focused on miRNA-126 (miR-126) as a potential SOX2 regulator. Gain- and loss-of function experiments and luciferase assays revealed that miR-126 inhibited SOX2 expression by targeting two binding sites in the 3′-untranslated region (3′-UTR) of SOX2 mRNA in multiple cell lines. In addition, miR-126 was highly expressed in some cultured and primary gastric cancer cells with low SOX2 protein levels. Furthermore, exogenous miR-126 over-expression as well as siRNA-mediated knockdown of SOX2 significantly enhanced the anchorage-dependent and -independent growth of gastric cancer cell lines. We next performed microarray analysis after SOX2 over-expression in a gastric cancer cell line, and found that expression of the placenta-specific 1 (PLAC1) gene was significantly down-regulated by SOX2 over-expression. siRNA- and miR-126-mediated SOX2 knockdown experiments revealed that miR-126 positively regulated PLAC1 expression through suppression of SOX2 expression in gastric cancer cells. Conclusions Taken together, our results indicate that miR-126 is a novel miRNA that targets SOX2, and PLAC1 may be a novel downstream target gene of SOX2 in gastric cancer cells. These findings suggest that aberrant over-expression of miR-126 and consequent SOX2 down-regulation may contribute to gastric carcinogenesis.
Collapse
Affiliation(s)
- Takeshi Otsubo
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yutaka Hashimoto
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kentaro Goto
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhito Yuasa
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| |
Collapse
|