1
|
Hsu CY, Khachatryan LG, Younis NK, Mustafa MA, Ahmad N, Athab ZH, Polyanskaya AV, Kasanave EV, Mirzaei R, Karampoor S. Microbiota-derived short chain fatty acids in pediatric health and diseases: from gut development to neuroprotection. Front Microbiol 2024; 15:1456793. [PMID: 39439941 PMCID: PMC11493746 DOI: 10.3389/fmicb.2024.1456793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024] Open
Abstract
The infant gut microbiota undergoes significant changes during early life, which are essential for immune system maturation, nutrient absorption, and metabolic programming. Among the various microbial metabolites, short-chain fatty acids (SCFAs), primarily acetate, propionate, and butyrate, produced through the fermentation of dietary fibers by gut bacteria, have emerged as critical modulators of host-microbiota interactions. SCFAs serve as energy sources for colonic cells and play pivotal roles in regulating immune responses, maintaining gut barrier integrity, and influencing systemic metabolic pathways. Recent research highlights the potential neuroprotective effects of SCFAs in pediatric populations. Disruptions in gut microbiota composition and SCFA production are increasingly associated with a range of pediatric health issues, including obesity, allergic disorders, inflammatory bowel disease (IBD), and neurodevelopmental disorders. This review synthesizes current knowledge on the role of microbiota-derived SCFAs in pediatric health, emphasizing their contributions from gut development to neuroprotection. It also underscores the need for further research to unravel the precise mechanisms by which SCFAs influence pediatric health and to develop targeted interventions that leverage SCFAs for therapeutic benefits.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, United States
| | - Lusine G. Khachatryan
- Department of Pediatric Diseases, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Techniques, University of Imam Jafar Al-Sadiq, College of Technology, Baghdad, Iraq
| | - Nabeel Ahmad
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
- Department of Biotechnology, School of Allied Sciences, Dev Bhoomi Uttarakhand University Dehradun, Uttarakhand, India
| | - Zainab H. Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Angelina V. Polyanskaya
- Department of Pediatric Diseases, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Elena Victorovna Kasanave
- Department of Pediatric Diseases, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Kumar TR, Reusch JEB, Kohrt WM, Regensteiner JG. Sex Differences Across the Lifespan: A Focus on Cardiometabolism. J Womens Health (Larchmt) 2024; 33:1299-1305. [PMID: 39056116 DOI: 10.1089/jwh.2024.0595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
Women's health and sex differences research remain understudied. In 2022, to address the topic of sex differences, the Ludeman Family Center for Women's Health Research (LFCWHR) at the University of Colorado (LudemanCenter.org) held its third National Conference, "Sex Differences Across the Lifespan: A Focus on Metabolism." The research presentations and discussions from the 2022 conference addressed cardiometabolic sex differences across the lifespan and included sessions focusing on scientific methods with which to study sex differences, effects of estrogen on metabolism, and sex differences in cardiovascular disease-implications for women and policy among others. Over 100 participants, including basic scientists, clinical scientists, policymakers, advocacy group leaders, and federal agency leadership participated. The meeting proceedings reveal that although exciting advances in the area of sex differences have taken place, significant questions and gaps remain about women's health and sex differences in critical areas of health. Identifying these gaps and the subsequent research that will result may lead to important breakthroughs.
Collapse
Affiliation(s)
- T Rajendra Kumar
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jane E B Reusch
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Ludeman Family Center for Women's Health Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Wendy M Kohrt
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Ludeman Family Center for Women's Health Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Judith G Regensteiner
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Ludeman Family Center for Women's Health Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
3
|
Zhang QR, Zhang JB, Shen F, Xue R, Yang RX, Ren TY, Fan JG. Loss of NAT10 alleviates maternal high-fat diet-induced hepatic steatosis in male offspring of mice. Obesity (Silver Spring) 2024; 32:1349-1361. [PMID: 38816990 DOI: 10.1002/oby.24041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/02/2024] [Accepted: 03/21/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE Metabolic dysfunction-associated steatotic liver disease (MASLD) is becoming an escalating health problem in pediatric populations. This study aimed to investigate the role of N-acetyltransferase 10 (NAT10) in maternal high-fat diet (HFD)-induced MASLD in offspring at early life. METHODS We generated male hepatocyte-specific NAT10 knockout (Nat10HKO) mice and mated them with female Nat10fl/fl mice under chow or HFD feeding. Body weight, liver histopathology, and expression of lipid metabolism-associated genes (Srebp1c, Fasn, Pparα, Cd36, Fatp2, Mttp, and Apob) were assessed in male offspring at weaning. Lipid uptake assays were performed both in vivo and in vitro. The mRNA stability assessment and RNA immunoprecipitation were performed to determine NAT10-regulated target genes. RESULTS NAT10 deletion in hepatocytes of male offspring alleviated perinatal lipid accumulation induced by maternal HFD, decreasing expression levels of Srebp1c, Fasn, Cd36, Fatp2, Mttp, and Apob while enhancing Pparα expression. Furthermore, Nat10HKO male mice exhibited reduced lipid uptake. In vitro, NAT10 promoted lipid uptake by enhancing the mRNA stability of CD36 and FATP2. RNA immunoprecipitation assays exhibited direct interactions between NAT10 and CD36/FATP2 mRNA. CONCLUSIONS NAT10 deletion in offspring hepatocytes ameliorates maternal HFD-induced hepatic steatosis through decreasing mRNA stability of CD36 and FATP2, highlighting NAT10 as a potential therapeutic target for pediatric MASLD.
Collapse
Affiliation(s)
- Qian-Ren Zhang
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Bin Zhang
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Shen
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Xue
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui-Xu Yang
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian-Yi Ren
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jian-Gao Fan
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| |
Collapse
|
4
|
Alves FCR, Moreira A, Moutinho O. Maternal and long-term offspring outcomes of obesity during pregnancy. Arch Gynecol Obstet 2024; 309:2315-2321. [PMID: 38502190 DOI: 10.1007/s00404-023-07349-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 03/21/2024]
Abstract
PURPOSE Obesity`s prevalence is rising in women of reproductive age worldwide and has become the most common medical condition at this age group. Besides, its occurrence is also rising during pregnancy. This condition not only increases the risk of noncommunicable diseases on the mother, such as cardiovascular disease and diabetes, but also transfers this risk to the offspring. METHODS This is a narrative review based on scientific and review articles on the matter. RESULTS Obesity is associated with an increased risk of gestational diabetes mellitus, gestational hypertension and preeclampsia, venous thromboembolism, infection, and mental health problems. Furthermore, it has an impact on the progress of labor and induction matters. Regarding offspring outcomes, it is related to higher incidence of congenital anomalies, perinatal mortality, and the occurrence of large for gestational age newborns. Still, it has implications on cardiometabolic risk and neurodevelopment in offspring. CONCLUSION It is, therefore, imperative to encourage the adoption of healthy lifestyles, especially in the peri-conception and interpregnancy periods. Likewise, there must be support in the multidisciplinary monitoring of these pregnant women to minimize associated complication rates.
Collapse
Affiliation(s)
- Fernanda Cristina Ribeiro Alves
- Obstetrics and Gynecology Department, Centro Hospitalar de Trás-os-Montes e Alto Douro, Avenida da Noruega, Lordelo, Vila Real, Portugal.
| | - Ana Moreira
- Obstetrics and Gynecology Department, Centro Hospitalar de Trás-os-Montes e Alto Douro, Avenida da Noruega, Lordelo, Vila Real, Portugal
| | - Osvaldo Moutinho
- Obstetrics and Gynecology Department, Centro Hospitalar de Trás-os-Montes e Alto Douro, Avenida da Noruega, Lordelo, Vila Real, Portugal
| |
Collapse
|
5
|
Shook LL, Castro VM, Herzberg EM, Fourman LT, Kaimal AJ, Perlis RH, Edlow AG. Offspring cardiometabolic outcomes and postnatal growth trajectories after exposure to maternal SARS-CoV-2 infection. Obesity (Silver Spring) 2024; 32:969-978. [PMID: 38351665 PMCID: PMC11039385 DOI: 10.1002/oby.23998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/12/2023] [Accepted: 01/06/2024] [Indexed: 03/13/2024]
Abstract
OBJECTIVE The objective of this study is to determine whether in utero exposure to SARS-CoV-2 is associated with increased risk for a cardiometabolic diagnosis by 18 months of age. METHODS This retrospective electronic health record (EHR)-based cohort study included the live-born offspring of all individuals who delivered during the COVID-19 pandemic (April 1, 2020-December 31, 2021) at eight hospitals in Massachusetts. Offspring exposure was defined as a positive maternal SARS-CoV-2 polymerase chain reaction test during pregnancy. The primary outcome was presence of an ICD-10 code for a cardiometabolic disorder in offspring EHR by 18 months. Weight-, length-, and BMI-for-age z scores were calculated and compared at 6-month intervals from birth to 18 months. RESULTS A total of 29,510 offspring (1599 exposed and 27,911 unexposed) were included. By 18 months, 6.7% of exposed and 4.4% of unexposed offspring had received a cardiometabolic diagnosis (crude odds ratio [OR] 1.47 [95% CI: 1.10 to 1.94], p = 0.007; adjusted OR 1.38 [1.06 to 1.77], p = 0.01). Exposed offspring had a significantly greater mean BMI-for-age z score versus unexposed offspring at 6 months (z score difference 0.19 [95% CI: 0.10 to 0.29], p < 0.001; adjusted difference 0.04 [-0.06 to 0.13], p = 0.4). CONCLUSIONS Exposure to maternal SARS-CoV-2 infection was associated with an increased risk of receiving a cardiometabolic diagnosis by 18 months preceded by greater BMI-for-age at 6 months.
Collapse
Affiliation(s)
- Lydia L. Shook
- Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Victor M. Castro
- Center for Quantitative Health and Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Research Information Science and Computing, Mass General Brigham, Somerville, MA
| | - Emily M. Herzberg
- Division of Neonatology and Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School
| | - Lindsay T. Fourman
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Anjali J. Kaimal
- Department of Obstetrics and Gynecology, University of South Florida Morsani College of Medicine, Tampa, FL
| | - Roy H. Perlis
- Center for Quantitative Health and Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Andrea G. Edlow
- Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
6
|
Grace MR, Vora NL, Smeester L, Dotters-Katz SK, Fry RC, Bae-Jump V, Boggess K. Sex-Dependent Differences in Mouse Placental Gene Expression following a Maternal High-Fat Diet. Am J Perinatol 2024; 41:e1273-e1280. [PMID: 36608700 PMCID: PMC10427734 DOI: 10.1055/a-2008-8286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE In utero fetal exposures may have sex-specific placental gene responses. Our objective was to measure sex-based differences in placental gene expression from dams fed high-fat diet (HFD) versus control diet (CD). STUDY DESIGN We fed timed pregnant Friend virus B-strain dams either a CD (n = 5) or an HFD (n = 5). We euthanized dams on embryonic day 17.5 to collect placentas. We extracted placental RNA and hybridized it to a customized 96-gene Nanostring panel focusing on angiogenic, inflammatory, and growth genes. We compared normalized gene expression between CD and HFD, stratified by fetal sex, using analysis of variance. Pathway analysis was used to further interpret the genomic data. RESULTS Pups from HFD-fed dams were heavier than those from CD-fed dams (0.97 ± 0.06 vs. 0.84 ± 0.08 g, p < 0.001). Male pups were heavier than females in the HFD (0.99 ± 0.05 vs. 0.94 ± 0.06 g, p = 0.004) but not CD (0.87 ± 0.08 vs. 0.83 ± 0.07 g, p = 0.10) group. No sex-based differences in placental gene expression in CD-fed dams were observed. Among HFD-fed dams, placentas from female pups exhibited upregulation of 15 genes (q = 0.01). Network analyses identified a cluster of genes involved in carbohydrate metabolism, cellular function and maintenance, and endocrine system development and function (p = 1 × 10-23). The observed female-specific increased gene expression following in utero HFD exposure was predicted to be regulated by insulin (p = 5.79 × 10-13). CONCLUSION In female compared with male pups, in utero exposure to HFD upregulated placental gene expression in 15 genes predicted to be regulated by insulin. Sex-specific differences in placental expression of these genes should be further investigated. KEY POINTS · Male pups were heavier than female pups at the time of sacrifice when dams were fed an HFD.. · HFD was associated with upregulated gene expression in female placentas.. · Female-specific increased gene was predicted to be regulated by insulin..
Collapse
Affiliation(s)
- Matthew R. Grace
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Neeta L. Vora
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Lisa Smeester
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Sarah K. Dotters-Katz
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Duke University, Durham, North Carolina
| | - Rebecca C. Fry
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Victoria Bae-Jump
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina School of Medicine, North Carolina
| | - Kim Boggess
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
7
|
Mata-Greenwood E, Chow WL, Anti NAO, Sands LD, Adeoye O, Ford SP, Nathanielsz PW. Dysregulation of Glucocorticoid Receptor Homeostasis and Glucocorticoid-Associated Genes in Umbilical Cord Endothelial Cells of Diet-Induced Obese Pregnant Sheep. Int J Mol Sci 2024; 25:2311. [PMID: 38396987 PMCID: PMC10888705 DOI: 10.3390/ijms25042311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Maternal obesity (MO) is associated with offspring cardiometabolic diseases that are hypothesized to be partly mediated by glucocorticoids. Therefore, we aimed to study fetal endothelial glucocorticoid sensitivity in an ovine model of MO. Rambouillet/Columbia ewes were fed either 100% (control) or 150% (MO) National Research Council recommendations from 60 d before mating until near-term (135 days gestation). Sheep umbilical vein and artery endothelial cells (ShUVECs and ShUAECs) were used to study glucocorticoid receptor (GR) expression and function in vitro. Dexamethasone dose-response studies of gene expression, activation of a glucocorticoid response element (GRE)-dependent luciferase reporter vector, and cytosolic/nuclear GR translocation were used to assess GR homeostasis. MO significantly increased basal GR protein levels in both ShUVECs and ShUAECs. Increased GR protein levels did not result in increased dexamethasone sensitivity in the regulation of key endothelial gene expression such as endothelial nitric oxide synthase, plasminogen activator inhibitor 1, vascular endothelial growth factor, or intercellular adhesion molecule 1. In ShUVECs, MO increased GRE-dependent transactivation and FKBP prolyl isomerase 5 (FKBP5) expression. ShUAECs showed generalized glucocorticoid resistance in both dietary groups. Finally, we found that ShUVECs were less sensitive to dexamethasone-induced activation of GR than human umbilical vein endothelial cells (HUVECs). These findings suggest that MO-mediated effects in the offspring endothelium could be further mediated by dysregulation of GR homeostasis in humans as compared with sheep.
Collapse
Affiliation(s)
- Eugenia Mata-Greenwood
- Lawrence D. Longo Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (W.L.C.); (N.A.O.A.); (L.D.S.)
| | - Wendy L. Chow
- Lawrence D. Longo Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (W.L.C.); (N.A.O.A.); (L.D.S.)
| | - Nana A. O. Anti
- Lawrence D. Longo Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (W.L.C.); (N.A.O.A.); (L.D.S.)
| | - LeeAnna D. Sands
- Lawrence D. Longo Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (W.L.C.); (N.A.O.A.); (L.D.S.)
| | - Olayemi Adeoye
- Department of Pharmaceutical Sciences, School of Pharmacy, Loma Linda University, Loma Linda, CA 92350, USA;
| | - Stephen P. Ford
- Center for the Study of Fetal Programming, Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA (P.W.N.)
| | - Peter W. Nathanielsz
- Center for the Study of Fetal Programming, Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA (P.W.N.)
| |
Collapse
|
8
|
Robles M, Rousseau-Ralliard D, Dubois C, Josse T, Nouveau É, Dahirel M, Wimel L, Couturier-Tarrade A, Chavatte-Palmer P. Obesity during Pregnancy in the Horse: Effect on Term Placental Structure and Gene Expression, as Well as Colostrum and Milk Fatty Acid Concentration. Vet Sci 2023; 10:691. [PMID: 38133242 PMCID: PMC10748288 DOI: 10.3390/vetsci10120691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
In horses, the prevalence of obesity is high and associated with serious metabolic pathologies. Being a broodmare has been identified as a risk factor for obesity. In other species, maternal obesity is known to affect the development of the offspring. This article is a follow-up study of previous work showing that Obese mares (O, n = 10, body condition score > 4.25 at insemination) were more insulin resistant and presented increased systemic inflammation during pregnancy compared to Normal mares (N, n = 14, body condition score < 4 at insemination). Foals born to O mares were more insulin-resistant, presented increased systemic inflammation, and were more affected by osteoarticular lesions. The objective of the present study was to investigate the effect of maternal obesity on placental structure and function, as well as the fatty acid profile in the plasma of mares and foals, colostrum, and milk until 90 days of lactation, which, to our knowledge, has been poorly studied in the horse. Mares from both groups were fed the same diet during pregnancy and lactation. During lactation, mares were housed in pasture. A strong heat wave, followed by a drought, occurred during their 2nd and 3rd months of lactation (summer of 2016 in the Limousin region, France). In the present article, term placental morphometry, structure (stereology), and gene expression (RT-qPCR, genes involved in nutrient transport, growth, and development, as well as vascularization) were studied. Plasma of mares and their foals, as well as colostrum and milk, were sampled at birth, 30 days, and 90 days of lactation. The fatty acid composition of these samples was measured using gas chromatography. No differences between the N and O groups were observed for term placental morphometry, structure, or gene expression. No difference in plasma fatty acid composition was observed between groups in mares. The plasma fatty acid profile of O foals was more pro-inflammatory and indicated an altered placental lipid metabolism between birth and 90 days of age. These results are in line with the increased systemic inflammation and altered glucose metabolism observed until 18 months of age in this group. The colostrum fatty acid profile of O mares was more pro-inflammatory and indicated an increased transfer and/or desaturation of long-chain fatty acids. Moreover, O foals received a colostrum poorer in medium-chain saturated fatty acid, a source of immediate energy for the newborn that can also play a role in immunity and gut microbiota development. Differences in milk fatty acid composition indicated a decreased ability to adapt to heat stress in O mares, which could have further affected the metabolic development of their foals. In conclusion, maternal obesity affected the fatty acid composition of milk, thus also influencing the foal's plasma fatty acid composition and likely participating in the developmental programming observed in growing foals.
Collapse
Affiliation(s)
- Morgane Robles
- BREED, Domaine de Vilvert, Université Paris Saclay, UVSQ, INRAE, 78350 Jouy en Josas, France; (D.R.-R.); (A.C.-T.)
- BREED, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
- Institut Polytechnique Unilasalle, 76130 Mont-Saint-Aignan, France
| | - Delphine Rousseau-Ralliard
- BREED, Domaine de Vilvert, Université Paris Saclay, UVSQ, INRAE, 78350 Jouy en Josas, France; (D.R.-R.); (A.C.-T.)
- BREED, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| | - Cédric Dubois
- Institut Français du Cheval et de l’Equitation, Station Expérimentale de la Valade, 19370 Chamberet, France (L.W.)
| | - Tiphanie Josse
- BREED, Domaine de Vilvert, Université Paris Saclay, UVSQ, INRAE, 78350 Jouy en Josas, France; (D.R.-R.); (A.C.-T.)
- BREED, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| | - Émilie Nouveau
- BREED, Domaine de Vilvert, Université Paris Saclay, UVSQ, INRAE, 78350 Jouy en Josas, France; (D.R.-R.); (A.C.-T.)
- BREED, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| | - Michele Dahirel
- BREED, Domaine de Vilvert, Université Paris Saclay, UVSQ, INRAE, 78350 Jouy en Josas, France; (D.R.-R.); (A.C.-T.)
- BREED, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| | - Laurence Wimel
- Institut Français du Cheval et de l’Equitation, Station Expérimentale de la Valade, 19370 Chamberet, France (L.W.)
| | - Anne Couturier-Tarrade
- BREED, Domaine de Vilvert, Université Paris Saclay, UVSQ, INRAE, 78350 Jouy en Josas, France; (D.R.-R.); (A.C.-T.)
- BREED, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| | - Pascale Chavatte-Palmer
- BREED, Domaine de Vilvert, Université Paris Saclay, UVSQ, INRAE, 78350 Jouy en Josas, France; (D.R.-R.); (A.C.-T.)
- BREED, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| |
Collapse
|
9
|
Brown RSE, Jacobs IM, Khant Aung Z, Knowles PJ, Grattan DR, Ladyman SR. High fat diet-induced maternal obesity in mice impairs peripartum maternal behaviour. J Neuroendocrinol 2023; 35:e13350. [PMID: 37926066 DOI: 10.1111/jne.13350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
Obesity during pregnancy represents a significant health issue and can lead to increased complications during pregnancy and impairments with breastfeeding, along with long-term negative health consequences for both mother and offspring. In rodent models, diet-induced obesity (DIO) during pregnancy leads to poor outcomes for offspring. Using a DIO mouse model, consisting of feeding mice a high fat diet for 8 weeks before mating, we recapitulate the effect of high pup mortality within the first 3 days postpartum. To examine the activity of the dam around the time of birth, late pregnant control and DIO dams were recorded in their home cages and the behaviour of the dam immediately before and after birth was analysed. Prior to giving birth, DIO dams spent less time engaging in nesting behaviour, while after birth, DIO dams spent less time in the nest with their pups compared to control dams, indicating reduced pup-engagement in the early postpartum period. We have previously reported that lactogenic hormone action, mediated by the prolactin receptor, in the medial preoptic area of the hypothalamus (MPOA) is critical for the onset of normal postpartum maternal behaviour. We hypothesized that DIO dams may have lower lactogenic hormone activity during late pregnancy, which would contribute to impaired onset of normal postpartum maternal behaviour. Day 16 lactogenic activity, transport of prolactin into the brain, and plasma prolactin concentrations around birth were all similar in control and DIO dams. Moreover, endogenous pSTAT5, a marker of prolactin receptor activity, in the MPOA was unaffected by DIO. Overall, these data indicate that lactogenic activity in late pregnancy of DIO dams is not different to controls and is unlikely to play a major role in impaired onset of normal postpartum maternal behaviour.
Collapse
Affiliation(s)
- Rosemary Shanon Eileen Brown
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ireland M Jacobs
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Zin Khant Aung
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Pene J Knowles
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Sharon R Ladyman
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
10
|
Shook LL, James KE, Roberts DJ, Powe CE, Perlis RH, Thornburg KL, O'Tierney-Ginn PF, Edlow AG. Sex-specific impact of maternal obesity on fetal placental macrophages and cord blood triglycerides. Placenta 2023; 140:100-108. [PMID: 37566941 PMCID: PMC10529163 DOI: 10.1016/j.placenta.2023.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
INTRODUCTION Maternal obesity is associated with increased risk of offspring obesity and cardiometabolic disease. Altered fetoplacental immune programming is a potential candidate mechanism. Differences in fetal placental macrophages, or Hofbauer cells (HBCs), have been observed in maternal obesity, and lipid metabolism is a key function of resident macrophages that may be deranged in inflammation/immune activation. We sought to test the following hypotheses: 1) maternal obesity is associated with altered HBC density and phenotype in the term placenta and 2) obesity-associated HBC changes are associated with altered placental lipid transport to the fetus. The impact of fetal sex was evaluated in all experiments. METHODS We quantified the density and morphology of CD163-and CD68-positive HBCs in placental villi in 34 full-term pregnancies undergoing cesarean delivery (N = 15, maternal BMI ≥30 kg/m2; N = 19, BMI <30 kg/m2). Antibody-positive cells in terminal villi were detected and cell size and circularity analyzed using a semi-automated method for thresholding of bright-field microscopy images (ImageJ). Placental expression of lipid transporter genes was quantified using RTqPCR, and cord plasma triglycerides (TGs) were profiled using modified Wahlefeld method. The impact of maternal obesity and fetal sex on HBC features, lipid transporters, and cord TGs were evaluated by two-way ANOVA. Spearman correlations of cord TGs, HBC metrics and gene expression levels were calculated. RESULTS Maternal obesity was associated with significantly increased density of HBCs, with male placentas most affected (fetal sex by maternal obesity interaction p = 0.04). CD163+ HBCs were larger and rounder in obesity-exposed male placentas. Sexually dimorphic expression of placental FATP4, FATP6, FABPPM, AMPKB1 and AMPKG and cord TGs was noted in maternal obesity, such that levels were higher in males and lower in females relative to sex-matched controls. Cord TGs were positively correlated with HBC density and FATP1 expression. DISCUSSION Maternal obesity is associated with sex-specific alterations in HBC density and placental lipid transporter expression, which may impact umbilical cord blood TG levels and offspring cardiometabolic programming.
Collapse
Affiliation(s)
- Lydia L Shook
- Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 0114, USA; Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Kaitlyn E James
- Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 0114, USA
| | - Drucilla J Roberts
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Camille E Powe
- Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 0114, USA; Department of Medicine, Diabetes Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Roy H Perlis
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114, USA; Center for Quantitative Health, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Kent L Thornburg
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Perrie F O'Tierney-Ginn
- Tufts Medical Center, Mother Infant Research Institute, Box# 394, 800 Washington Street, Boston, MA, 02111, USA
| | - Andrea G Edlow
- Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 0114, USA; Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
11
|
Zheng Y, Wang W, Huo Y, Gui Y. Maternal Obesity and Kawasaki Disease-like Vasculitis: A New Perspective on Cardiovascular Injury and Inflammatory Response in Offspring Male Mice. Nutrients 2023; 15:3823. [PMID: 37686855 PMCID: PMC10490206 DOI: 10.3390/nu15173823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Maternal obesity affects the risk of cardiovascular disease and inflammatory response in offspring. However, the impact of maternal obesity on offspring with Kawasaki disease (KD), the leading cause of childhood acquired heart disease, is still an understudied area. This study aimed to elucidate the impact of maternal obesity on offspring in KD-like vasculitis and the underlying mechanisms. Offspring of obese female mice and normal diet dams were randomly divided into two subgroups. The pups were injected intraperitoneally with either Candida albicans water-soluble fraction (CAWS) or phosphate buffered saline (PBS) to establish the obesity (OB)-CAWS group, OB group, wild type (WT)-CAWS group, and WT group. Their weight was monitored during the study. After four weeks, echocardiography was applied to obtain the alternation of cardiac structures. Mouse cytokine panel, Hematoxylin-Eosin (HE) staining, western blot, and real-time qPCR were used to study the pathological changes and protein and RNA expression alternations. Based on the study of pathology, serology and molecular biology, maternal obesity lead to more severe vasculitis and induced altered cardiac structure in the offspring mice and promoted the expression of pro-inflammatory cytokines through activating the NF-κB signaling pathway. Maternal obesity aggravated the inflammatory response of offspring mice in KD-like vasculitis.
Collapse
Affiliation(s)
- Yuanzheng Zheng
- Cardiovascular Center, Children’s Hospital of Fudan University, Shanghai 201102, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai 201102, China
| | - Wenji Wang
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai 201102, China
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510080, China
| | - Yu Huo
- Cardiovascular Center, Children’s Hospital of Fudan University, Shanghai 201102, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai 201102, China
| | - Yonghao Gui
- Cardiovascular Center, Children’s Hospital of Fudan University, Shanghai 201102, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai 201102, China
| |
Collapse
|
12
|
Shi Y, Wang CC, Wu L, Zhang Y, Xu A, Wang Y. Pathophysiological Insight into Fatty Acid-Binding Protein-4: Multifaced Roles in Reproduction, Pregnancy, and Offspring Health. Int J Mol Sci 2023; 24:12655. [PMID: 37628833 PMCID: PMC10454382 DOI: 10.3390/ijms241612655] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Fatty acid-binding protein-4 (FABP4), commonly known as adipocyte-fatty acid-binding protein (A-FABP), is a pleiotropic adipokine that broadly affects immunity and metabolism. It has been increasingly recognized that FABP4 dysfunction is associated with various metabolic syndromes, including obesity, diabetes, cardiovascular diseases, and metabolic inflammation. However, its explicit roles within the context of women's reproduction and pregnancy remain to be investigated. In this review, we collate recent studies probing the influence of FABP4 on female reproduction, pregnancy, and even fetal health. Elevated circulating FABP4 levels have been found to correlate with impaired reproductive function in women, such as polycystic ovary syndrome and endometriosis. Throughout pregnancy, FABP4 affects maternal-fetal interface homeostasis by affecting both glycolipid metabolism and immune tolerance, leading to adverse pregnancy outcomes, including miscarriage, gestational obesity, gestational diabetes, and preeclampsia. Moreover, maternal FABP4 levels exhibit a substantial linkage with the metabolic health of offspring. Herein, we discuss the emerging significance and potential application of FABP4 in reproduction and pregnancy health and delve into its underlying mechanism at molecular levels.
Collapse
Affiliation(s)
- Yue Shi
- The Second Clinical Medical School, Beijing University of Chinese Medicine, Beijing 100078, China; (Y.S.); (Y.Z.)
| | - Chi-Chiu Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong;
- Li Ka Shing Institute of Health Sciences, School of Biomedical Sciences, Chinese University of Hong Kong-Sichuan University Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Liqun Wu
- Department of Pediatrics, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China;
| | - Yunqing Zhang
- The Second Clinical Medical School, Beijing University of Chinese Medicine, Beijing 100078, China; (Y.S.); (Y.Z.)
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong;
- Department of Medicine, The University of Hong Kong, Hong Kong
| | - Yao Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong;
| |
Collapse
|
13
|
Carson KE, Alvarez J, Mackley J, Travagli RA, Browning KN. Perinatal high-fat diet exposure alters oxytocin and corticotropin releasing factor inputs onto vagal neurocircuits controlling gastric motility. J Physiol 2023; 601:2853-2875. [PMID: 37154244 PMCID: PMC10524104 DOI: 10.1113/jp284726] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/03/2023] [Indexed: 05/10/2023] Open
Abstract
Perinatal high-fat diet (pHFD) exposure alters the development of vagal neurocircuits that control gastrointestinal (GI) motility and reduce stress resiliency in offspring. Descending oxytocin (OXT; prototypical anti-stress peptide) and corticotropin releasing factor (CRF; prototypical stress peptide) inputs from the paraventricular nucleus (PVN) of the hypothalamus to the dorsal motor nucleus of the vagus (DMV) modulate the GI stress response. How these descending inputs, and their associated changes to GI motility and stress responses, are altered following pHFD exposure are, however, unknown. The present study used retrograde neuronal tracing experiments, cerebrospinal fluid extraction, in vivo recordings of gastric tone, motility and gastric emptying rates, and in vitro electrophysiological recordings from brainstem slice preparations to investigate the hypothesis that pHFD alters descending PVN-DMV inputs and dysregulates vagal brain-gut responses to stress. Compared to controls, rats exposed to pHFD had slower gastric emptying rates and did not respond to acute stress with the expected delay in gastric emptying. Neuronal tracing experiments demonstrated that pHFD reduced the number of PVNOXT neurons that project to the DMV, but increased PVNCRF neurons. Both in vitro electrophysiology recordings of DMV neurons and in vivo recordings of gastric motility and tone demonstrated that, following pHFD, PVNCRF -DMV projections were tonically active, and that pharmacological antagonism of brainstem CRF1 receptors restored the appropriate gastric response to brainstem OXT application. These results suggest that pHFD exposure disrupts descending PVN-DMV inputs, leading to a dysregulated vagal brain-gut response to stress. KEY POINTS: Maternal high-fat diet exposure is associated with gastric dysregulation and stress sensitivity in offspring. The present study demonstrates that perinatal high-fat diet exposure downregulates hypothalamic-vagal oxytocin (OXT) inputs but upregulates hypothalamic-vagal corticotropin releasing factor (CRF) inputs. Both in vitro and in vivo studies demonstrated that, following perinatal high-fat diet, CRF receptors were tonically active at NTS-DMV synapses, and that pharmacological antagonism of these receptors restored the appropriate gastric response to OXT. The current study suggests that perinatal high-fat diet exposure disrupts descending PVN-DMV inputs, leading to a dysregulated vagal brain-gut response to stress.
Collapse
Affiliation(s)
- Kaitlin E. Carson
- Department of Neural and Behavioral Sciences, Pennsylvania State College of Medicine, Hershey, PA
| | - Jared Alvarez
- Barrett Honors College, Arizona State University, Tempe, AZ
| | - Jasmine Mackley
- Schreyer Honors College, Pennsylvania State University, State College, PA
| | | | - Kirsteen N. Browning
- Address for correspondence: Kirsteen N. Browning, PhD, Penn State College of Medicine, 500 University Drive, MC H109, Hershey, PA, 17033;
| |
Collapse
|
14
|
Guixeres-Esteve T, Ponce-Zanón F, Morales JM, Lurbe E, Alvarez-Pitti J, Monleón D. Impact of Maternal Weight Gain on the Newborn Metabolome. Metabolites 2023; 13:561. [PMID: 37110219 PMCID: PMC10142613 DOI: 10.3390/metabo13040561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Pre-pregnancy obesity and excessive gestational weight gain (GWG) appear to affect birth weight and the offspring's risk of obesity and disease later in life. However, the identification of the mediators of this relationship, could be of clinical interest, taking into account the presence of other confounding factors, such as genetics and other shared influences. The aim of this study was to evaluate the metabolomic profiles of infants at birth (cord blood) and 6 and 12 months after birth to identify offspring metabolites associated with maternal GWG. Nuclear Magnetic Resonance (NMR) metabolic profiles were measured in 154 plasma samples from newborns (82 cord blood samples) and in 46 and 26 of these samples at 6 months and 12 months of age, respectively. The levels of relative abundance of 73 metabolomic parameters were determined in all the samples. We performed univariate and machine-learning analysis of the association between the metabolic levels and maternal weight gain adjusted for mother's age, Body Mass Index (BMI), diabetes, diet adherence and infant sex. Overall, our results showed differences, both at the univariate level and in the machine-learning models, between the offspring, according to the tertiles of maternal weight gain. Some of these differences were resolved at 6 and 12 months of age, whereas some others remained. Lactate and leucine were the metabolites with the strongest and longest association with maternal weight gain during pregnancy. Leucine, as well as other significant metabolites, have been associated in the past with metabolic wellness in both general and obese populations. Our results suggest that the metabolic changes associated to excessive GWG are present in children from early life.
Collapse
Affiliation(s)
- Teresa Guixeres-Esteve
- Pediatric Department, Consorcio Hospital General, University of Valencia, 46014 Valencia, Spain; (T.G.-E.)
| | - Francisco Ponce-Zanón
- Pediatric Department, Consorcio Hospital General, University of Valencia, 46014 Valencia, Spain; (T.G.-E.)
- INCLIVA Biomedical Research Institute, Hospital Clínico, University of Valencia, 46010 Valencia, Spain
- Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - José Manuel Morales
- INCLIVA Biomedical Research Institute, Hospital Clínico, University of Valencia, 46010 Valencia, Spain
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
| | - Empar Lurbe
- Pediatric Department, Consorcio Hospital General, University of Valencia, 46014 Valencia, Spain; (T.G.-E.)
- INCLIVA Biomedical Research Institute, Hospital Clínico, University of Valencia, 46010 Valencia, Spain
- Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Julio Alvarez-Pitti
- Pediatric Department, Consorcio Hospital General, University of Valencia, 46014 Valencia, Spain; (T.G.-E.)
- INCLIVA Biomedical Research Institute, Hospital Clínico, University of Valencia, 46010 Valencia, Spain
- Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Daniel Monleón
- INCLIVA Biomedical Research Institute, Hospital Clínico, University of Valencia, 46010 Valencia, Spain
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
- CIBER of Frailty and Healthy Aging (CIBERFES), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
15
|
Ghildayal N, Allard C, Blais K, Doyon M, Arguin M, Bouchard L, Perron P, Hivert MF. Associations of maternal insulin sensitivity during pregnancy with childhood central adiposity in the Genetics of Glucose regulation in Gestation and Growth (Gen3G) cohort. Pediatr Obes 2023; 18:e12982. [PMID: 36218084 PMCID: PMC9852010 DOI: 10.1111/ijpo.12982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/22/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Childhood obesity has been associated with prenatal exposure to maternal hyperglycaemia, but we lack understanding about maternal insulin physiologic components that contribute to this association. OBJECTIVES Evaluate the association between maternal insulin sensitivity during pregnancy and adiposity measures in childhood. METHODS In 422 mother-child pairs, we tested associations between maternal insulin sensitivity measures at ~26 weeks of pregnancy and child adiposity measures, including dual-energy X-ray absorptiometry body composition and anthropometry (body mass index and waist circumference) at ~5 years. We used linear regression analyses to adjust for maternal age, ethnicity, gravidity, first-trimester body mass index, and child sex and age at mid-childhood. RESULTS In early pregnancy, maternal mean age was 28.6 ± 4.3 years and median body mass index was 24.1 kg/m2 . Lower maternal insulin sensitivity indices were correlated with greater child adiposity based on anthropometry measures and on dual-energy X-ray absorptiometry total and trunk % fat in univariate associations (r = -0.122 to -0.159). Lower maternal insulin sensitivity was specifically associated with higher dual-energy X-ray absorptiometry trunk % fat (n = 359 for Matsuda; β = -0.034 ± 0.013; p = 0.01) after adjustment for covariates, including maternal body mass index. CONCLUSIONS Maternal insulin sensitivity during pregnancy may contribute to increased risk for higher offspring central adiposity in middle childhood.
Collapse
Affiliation(s)
- Nidhi Ghildayal
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA
| | - Catherine Allard
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Kasandra Blais
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Myriam Doyon
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Melina Arguin
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Luigi Bouchard
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
- Faculty of Medicine and Health Sciences, Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Department of Medical Biology, CIUSSS of Saguenay-Lac-Saint-Jean, Saguenay, Québec, Canada
| | - Patrice Perron
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
- Faculty of Medicine and Health Sciences, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA
- Faculty of Medicine and Health Sciences, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Long-Term Impact of the Great Chinese Famine on the Risks of Specific Arrhythmias and Severe Hypertension in the Offspring at an Early Stage of Aging. J Pers Med 2023; 13:jpm13020163. [PMID: 36836398 PMCID: PMC9960876 DOI: 10.3390/jpm13020163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/09/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Perinatal malnutrition affects postnatal cardiovascular functions. This study used the Great Chinese Famine (GCF) to determine the long-term impact of perinatal undernutrition on hypertension and arrhythmias in older offspring. Subjects (n = 10,065) were divided into an exposed group whose fetal life was in the GCF and an unexposed group. The exposed group showed higher systolic/diastolic pressure, heart rate, and total cholesterol. Perinatal exposure to the GCF was a significant risk to Grade 2 and Grade 3 hypertension (OR = 1.724, 95%CI: 1.441-2.064, p < 0.001; OR = 1.480, 95%CI: 1.050-2.086, p < 0.05) compared to the control. The GCF also increased risks for myocardial ischemia (OR = 1.301, 95%CI: 1.135-1.490, p < 0.001), bradycardia (OR = 1.383, 95%CI: 1.154-1.657, p < 0.001), atrial fibrillation (OR = 1.931, 95%CI: 1.033-3.610, p < 0.05), and atrioventricular block (OR = 1.333, 95%CI: 1.034-1.719, p < 0.05). Total cholesterol, diabetes, and metabolic syndrome were associated with Grade 2 or Grade 3 hypertension after exposure to the GCF; high cholesterol, high BMI, diabetes, metabolic syndrome, and elevated blood pressure were linked to certain types of arrhythmias in exposed offspring. The results first demonstrated perinatal undernutrition was a significant risk factor for the development of Grade 2-3 hypertension and certain arrhythmias in humans. Perinatal undernutrition still significantly impacted cardiovascular systems of the aged offspring even 50 years after the GCF. The results also provided information to a specific population with a history of prenatal undernutrition for early prevention against cardiovascular diseases before aging.
Collapse
|
17
|
Strobel KM, Kafali SG, Shih SF, Artura AM, Masamed R, Elashoff D, Wu HH, Calkins KL. Pregnancies complicated by gestational diabetes and fetal growth restriction: an analysis of maternal and fetal body composition using magnetic resonance imaging. J Perinatol 2023; 43:44-51. [PMID: 36319757 PMCID: PMC9840659 DOI: 10.1038/s41372-022-01549-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Maternal body composition may influence fetal body composition. OBJECTIVE The objective of this pilot study was to investigate the relationship between maternal and fetal body composition. METHODS Three pregnant women cohorts were studied: healthy, gestational diabetes (GDM), and fetal growth restriction (FGR). Maternal body composition (visceral adipose tissue volume (VAT), subcutaneous adipose tissue volume (SAT), pancreatic and hepatic proton-density fat fraction (PDFF) and fetal body composition (abdominal SAT and hepatic PDFF) were measured using MRI between 30 to 36 weeks gestation. RESULTS Compared to healthy and FGR fetuses, GDM fetuses had greater hepatic PDFF (5.2 [4.2, 5.5]% vs. 3.2 [3, 3.3]% vs. 1.9 [1.4, 3.7]%, p = 0.004). Fetal hepatic PDFF was associated with maternal SAT (r = 0.47, p = 0.02), VAT (r = 0.62, p = 0.002), and pancreatic PDFF (r = 0.54, p = 0.008). When controlling for maternal SAT, GDM increased fetal hepatic PDFF by 0.9 ([0.51, 1.3], p = 0.001). CONCLUSION In this study, maternal SAT, VAT, and GDM status were positively associated with fetal hepatic PDFF.
Collapse
Affiliation(s)
- Katie M. Strobel
- Department of Pediatrics, Division of Neonatology & Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Sevgi Gokce Kafali
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Shu-Fu Shih
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Rinat Masamed
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - David Elashoff
- University of California Los Angeles, Los Angeles, CA, USA
| | - Holden H. Wu
- Department of Medicine, Biostatistics and Computational Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kara L. Calkins
- Department of Pediatrics, Division of Neonatology & Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
18
|
Blasetti A, Quarta A, Guarino M, Cicolini I, Iannucci D, Giannini C, Chiarelli F. Role of Prenatal Nutrition in the Development of Insulin Resistance in Children. Nutrients 2022; 15:nu15010087. [PMID: 36615744 PMCID: PMC9824240 DOI: 10.3390/nu15010087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Nutrition during the prenatal period is crucial for the development of insulin resistance (IR) and its consequences in children. The relationship between intrauterine environment, fetal nutrition and the onset of IR, type 2 diabetes (T2D), obesity and metabolic syndrome later in life has been confirmed in many studies. The intake of carbohydrates, protein, fat and micronutrients during pregnancy seems to damage fetal metabolism programming; indeed, epigenetic mechanisms change glucose-insulin metabolism. Intrauterine growth restriction (IUGR) induced by unbalanced nutrient intake during prenatal life cause fetal adipose tissue and pancreatic beta-cell dysfunction. In this review we have summarized and discussed the role of maternal nutrition in preventing insulin resistance in youth.
Collapse
|
19
|
Childhood obesity and adverse cardiometabolic risk in large for gestational age infants and potential early preventive strategies: a narrative review. Pediatr Res 2022; 92:653-661. [PMID: 34916624 DOI: 10.1038/s41390-021-01904-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 02/08/2023]
Abstract
Accumulating evidence indicates that obesity and cardiometabolic risks become established early in life due to developmental programming and infants born as large for gestational age (LGA) are particularly at risk. This review summarizes the recent literature connecting LGA infants and early childhood obesity and cardiometabolic risk and explores potential preventive interventions in early infancy. With the rising obesity rates in women of childbearing age, the LGA birth rate is about 10%. Recent literature continues to support the higher rates of obesity in LGA infants. However, there is a knowledge gap for their lifetime risk for adverse cardiometabolic outcomes. Potential factors that may modify the risk in early infancy include catch-down early postnatal growth, reduction in body fat growth trajectory, longer breastfeeding duration, and presence of a healthy gut microbiome. The early postnatal period may be a critical window of opportunity for active interventions to mitigate or prevent obesity and potential adverse metabolic consequences in later life. A variety of promising candidate biomarkers for the early identification of metabolic alterations in LGA infants is also discussed. IMPACT: LGA infants are the greatest risk category for future obesity, especially if they experience rapid postnatal growth during infancy. Potential risk modifying secondary prevention strategies in early infancy in LGA infants include catch-down early postnatal growth, reduction in body fat growth trajectory, longer breastfeeding duration, and presence of a healthy gut microbiome. LGA infants may be potential low-hanging fruit targets for early preventive interventions in the fight against childhood obesity.
Collapse
|
20
|
Butyrate ameliorates maternal high-fat diet-induced fetal liver cellular apoptosis. PLoS One 2022; 17:e0270657. [PMID: 35793323 PMCID: PMC9258878 DOI: 10.1371/journal.pone.0270657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/14/2022] [Indexed: 12/22/2022] Open
Abstract
A maternal high-fat diet (HFD) can impact the offspring’s development of liver steatosis, with fetal development in utero being a crucial period. Therefore, this study investigated the mechanism and whether butyrate can rescue liver injury caused by maternal HFD in the fetus. Pregnant female Sprague Dawley rats were randomly divided into two groups, prenatal HFD (58% fat) exposure or normal control diet (4.5% fat). The HFD group was fed an HFD 7 weeks before mating and during gestation until sacrifice at gestation 21 days. After confirmation of mating, the other HFD group was supplemented with sodium butyrate (HFSB). The results showed that maternal liver histology showed lipid accumulation with steatosis and shortened ileum villi in HFD, which was ameliorated in the HFSB group (P<0.05). There was increased fetal liver and ileum TUNEL staining and IL-6 expression with increased fetal liver TNF-α and malondialdehyde expression in the HFD group (P<0.05), which decreased in the HFSB group (P<0.05). The fetal liver expression of phospho-AKT/AKT and GPX1 decreased in the HFD group but increased in the HFSB group (P<0.05). In conclusion that oxidative stress with inflammation and apoptosis plays a vital role after maternal HFD in the fetus liver that can be ameliorated with butyrate supplementation.
Collapse
|
21
|
Pomar CA, Castillo P, Palou M, Palou A, Picó C. Implementation of a healthy diet to lactating rats attenuates the early detrimental programming effects in the offspring born to obese dams. Putative relationship with milk hormone levels. J Nutr Biochem 2022; 107:109043. [PMID: 35569798 DOI: 10.1016/j.jnutbio.2022.109043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/27/2021] [Accepted: 03/21/2022] [Indexed: 12/17/2022]
Abstract
Lactation is a critical period of development and alterations in milk composition due to maternal diet or status may affect infant growth. We aimed to evaluate in rats whether improving maternal nutrition during lactation attenuates early imprinted adverse metabolic effects in the offspring born to obese dams. Three groups were studied: Control (C) dams, fed with standard diet; Western diet (WD) dams, fed with WD one month prior to gestation and during gestation and lactation; and Reversion (Rev) dams, fed as WD-dams, but moved to a standard diet during lactation. Macronutrient content, insulin, leptin and adiponectin levels were determined in milk. Phenotypic traits and circulating parameters in dams and their offspring were determined throughout lactation. Results showed that, at weaning, WD-dams displayed lower body weight and greater plasma insulin and non-esterified fatty acids levels than C-dams, and signs of hepatic steatosis. Milk from WD-dams showed lower protein content and insulin, leptin, and adiponectin levels during the entire or the late lactation. Rev-dams retained excess body fat content, but milk composition and most circulating parameters were not different from controls at late lactation and showed higher leptin mRNA levels in mammary gland than WD-dams. The offspring of WD-dams, but not that of Rev-dams, displayed higher body weight, adiposity, and circulating leptin and glucose levels than controls at weaning. In conclusion, dietary improvement during lactation prevents early adverse effects in offspring associated with maternal intake of an obesogenic diet, that may be related with the normalization of milk hormone levels.
Collapse
Affiliation(s)
- Catalina A Pomar
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122, Palma, Spain; Instituto de Investigación Sanitaria Illes Balears, IdISBa, 07010, Palma, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Pedro Castillo
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122, Palma, Spain; Instituto de Investigación Sanitaria Illes Balears, IdISBa, 07010, Palma, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Mariona Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122, Palma, Spain; Instituto de Investigación Sanitaria Illes Balears, IdISBa, 07010, Palma, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122, Palma, Spain; Instituto de Investigación Sanitaria Illes Balears, IdISBa, 07010, Palma, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122, Palma, Spain; Instituto de Investigación Sanitaria Illes Balears, IdISBa, 07010, Palma, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
22
|
Wang B, Xia L, Zhu D, Zeng H, Wei B, Lu L, Li W, Shi Y, Liu J, Zhang Y, Sun M. Paternal High-Fat Diet Altered Sperm 5'tsRNA-Gly-GCC Is Associated With Enhanced Gluconeogenesis in the Offspring. Front Mol Biosci 2022; 9:857875. [PMID: 35480893 PMCID: PMC9035875 DOI: 10.3389/fmolb.2022.857875] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022] Open
Abstract
Background: Paternal lifestyle, stress and environmental exposures play a crucial role in the health of offspring and are associated with non-genetic inheritance of acquired traits, however the underlying mechanisms are unclear. In this study, we aimed to find out how the sperm tsRNA involved in paternal high-fat diet induced abnormal gluconeogenesis of F1 offspring, and explore the underlying molecular mechanism of its regulation. Method: We generated a paternal high fat diet (42% kcal fat) model to investigate the mechanism by which paternal diet affects offspring metabolism. Four-week-old C57BL/6J male mice were randomly assigned into two groups to receive either a control diet (CD; 10% kcal fat) or a high-fat (HFD; 42% kcal fat) diet for 10 weeks, and mice from each group were then mated with 8-week-old females with control diet in a 1:2 ratio to generate F1. F0 sperms were isolated and small RNAs was sequenced by high-throughput sequencing. Metabolic phenotypes were examined with both F0 and F1. Results: A significant increase in body weight was observed with HFD-F0 mice at 8 weeks of age as compared to CD mice at the same age. F0 mice showed impaired glucose tolerance (GTT), resistance to insulin tolerance (ITT) and increased pyruvate tolerance (PTT) at 14 weeks. HFD-F1 male mice showed no significant difference in body weight. An increase in PTT was found at 13 weeks of age and no significant changes in GTT and ITT. PEPCK and G6Pase that related to gluconeogenesis increased significantly in the liver of HFD-F1 male mice. Sperm sequencing results showed that 5′tsRNA-Gly-GCC derived from tRNA-Gly-GCC-2 specifically was remarkably upregulated in sperm of HFD F0 mice. Q-PCR further showed that this tsRNA was also increased in the liver of HFD-F1 comparison with CD-F1 mice. In addition, we found that 5′tsRNA-Gly-GCC can regulate Sirt6-FoxO1 pathway and be involved in the gluconeogenesis pathway in liver. Conclusion: 5′tsRNA-Gly-GCC that increased in HFD mice mature sperms can promote gluconeogenesis in liver by regulating Sirt6-FoxO1 pathway, which might represent a potential paternal epigenetic factor mediating the intergenerational inheritance of diet-induced metabolic alteration.
Collapse
Affiliation(s)
- Bin Wang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Lin Xia
- Medical Center of Hematology, The Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Dan Zhu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Hongtao Zeng
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Bin Wei
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Likui Lu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Weisheng Li
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Yajun Shi
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Jingliu Liu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Yunfang Zhang
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
- *Correspondence: Yunfang Zhang, ; Miao Sun,
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, China
- *Correspondence: Yunfang Zhang, ; Miao Sun,
| |
Collapse
|
23
|
Rasmussen JM, Thompson PM, Entringer S, Buss C, Wadhwa PD. Fetal programming of human energy homeostasis brain networks: Issues and considerations. Obes Rev 2022; 23:e13392. [PMID: 34845821 DOI: 10.1111/obr.13392] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/29/2021] [Accepted: 10/24/2021] [Indexed: 02/07/2023]
Abstract
In this paper, we present a transdisciplinary framework and testable hypotheses regarding the process of fetal programming of energy homeostasis brain circuitry. Our model proposes that key aspects of energy homeostasis brain circuitry already are functional by the time of birth (with substantial interindividual variation); that this phenotypic variation at birth is an important determinant of subsequent susceptibility for energy imbalance and childhood obesity risk; and that this brain circuitry exhibits developmental plasticity, in that it is influenced by conditions during intrauterine life, particularly maternal-placental-fetal endocrine, immune/inflammatory, and metabolic processes and their upstream determinants. We review evidence that supports the scientific premise for each element of this formulation, identify future research directions, particularly recent advances that may facilitate a better quantification of the ontogeny of energy homeostasis brain networks, highlight animal and in vitro-based approaches that may better address the determinants of interindividual variation in energy homeostasis brain networks, and discuss the implications of this formulation for the development of strategies targeted towards the primary prevention of childhood obesity.
Collapse
Affiliation(s)
- Jerod M Rasmussen
- Development, Health and Disease Research Program, University of California, Irvine, California, USA.,Department of Pediatrics, University of California, Irvine, California, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Sonja Entringer
- Development, Health and Disease Research Program, University of California, Irvine, California, USA.,Department of Pediatrics, University of California, Irvine, California, USA.,Department of Medical Psychology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Departments of Psychiatry and Human Behavior, Obstetrics and Gynecology, Epidemiology, University of California, Irvine, California, USA
| | - Claudia Buss
- Development, Health and Disease Research Program, University of California, Irvine, California, USA.,Department of Pediatrics, University of California, Irvine, California, USA.,Department of Medical Psychology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Departments of Psychiatry and Human Behavior, Obstetrics and Gynecology, Epidemiology, University of California, Irvine, California, USA
| | - Pathik D Wadhwa
- Development, Health and Disease Research Program, University of California, Irvine, California, USA.,Department of Pediatrics, University of California, Irvine, California, USA.,Departments of Psychiatry and Human Behavior, Obstetrics and Gynecology, Epidemiology, University of California, Irvine, California, USA.,Department of Obstetrics and Gynecology, University of California, Irvine, California, USA.,Department of Epidemiology, University of California, Irvine, California, USA
| |
Collapse
|
24
|
Panera N, Mandato C, Crudele A, Bertrando S, Vajro P, Alisi A. Genetics, epigenetics and transgenerational transmission of obesity in children. Front Endocrinol (Lausanne) 2022; 13:1006008. [PMID: 36452324 PMCID: PMC9704419 DOI: 10.3389/fendo.2022.1006008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Sedentary lifestyle and consumption of high-calorie foods have caused a relentless increase of overweight and obesity prevalence at all ages. Its presently epidemic proportion is disquieting due to the tight relationship of obesity with metabolic syndrome and several other comorbidities which do call for urgent workarounds. The usual ineffectiveness of present therapies and failure of prevention campaigns triggered overtime a number of research studies which have unveiled some relevant aspects of obesity genetic and epigenetic inheritable profiles. These findings are revealing extremely precious mainly to serve as a likely extra arrow to allow the clinician's bow to achieve still hitherto unmet preventive goals. Evidence now exists that maternal obesity/overnutrition during pregnancy and lactation convincingly appears associated with several disorders in the offspring independently of the transmission of a purely genetic predisposition. Even the pre-conception direct exposure of either father or mother gametes to environmental factors can reprogram the epigenetic architecture of cells. Such phenomena lie behind the transfer of the obesity susceptibility to future generations through a mechanism of epigenetic inheritance. Moreover, a growing number of studies suggests that several environmental factors such as maternal malnutrition, hypoxia, and exposure to excess hormones and endocrine disruptors during pregnancy and the early postnatal period may play critical roles in programming childhood adipose tissue and obesity. A deeper understanding of how inherited genetics and epigenetics may generate an obesogenic environment at pediatric age might strengthen our knowledge about pathogenetic mechanisms and improve the clinical management of patients. Therefore, in this narrative review, we attempt to provide a general overview of the contribution of heritable genetic and epigenetic patterns to the obesity susceptibility in children, placing a particular emphasis on the mother-child dyad.
Collapse
Affiliation(s)
- Nadia Panera
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Claudia Mandato
- Pediatrics Section, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Salermo, Italy
- *Correspondence: Anna Alisi, ; Claudia Mandato,
| | - Annalisa Crudele
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Sara Bertrando
- Pediatrics Clinic, San Giovanni di Dio e Ruggi d’Aragona University Hospital, Salerno, Italy
| | - Pietro Vajro
- Pediatrics Section, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Salermo, Italy
| | - Anna Alisi
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- *Correspondence: Anna Alisi, ; Claudia Mandato,
| |
Collapse
|
25
|
Breuer S, Kasper P, Vohlen C, Janoschek R, Hoffmann T, Appel S, Müller-Limberger E, Mesaros A, Rose-John S, Garbers C, Müller S, Lackmann JW, Mahabir E, Dötsch J, Hucklenbruch-Rother E, Bae-Gartz I. Brain-Restricted Inhibition of IL-6 Trans-Signaling Mildly Affects Metabolic Consequences of Maternal Obesity in Male Offspring. Nutrients 2021; 13:3735. [PMID: 34835991 PMCID: PMC8618896 DOI: 10.3390/nu13113735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Maternal obesity greatly affects next generations, elevating obesity risk in the offspring through perinatal programming and flawed maternal and newborn nutrition. The exact underlying mechanisms are poorly understood. Interleukin-6 (IL-6) mediates its effects through a membrane-bound receptor or by trans-signaling (tS), which can be inhibited by the soluble form of the co-receptor gp130 (sgp130). As IL-6 tS mediates western-style diet (WSD) effects via chronic low-grade inflammation (LGI) and LGI is an important mediator in brain-adipose tissue communication, this study aims at determining the effects of maternal obesity in a transgenic mouse model of brain-restricted IL-6tS inhibition (GFAPsgp130) on offspring's short- and long-term body composition and epigonadal white adipose tissue (egWAT) metabolism. Female wild type (WT) or transgenic mice were fed either standard diet (SD) or WSD pregestationally, during gestation, and lactation. Male offspring received SD from postnatal day (P)21 to P56 and were metabolically challenged with WSD from P56 to P120. At P21, offspring from WT and transgenic dams that were fed WSD displayed increased body weight and egWAT mass, while glucose tolerance testing showed the strongest impairment in GFAPsgp130WSD offspring. Simultaneously, egWAT proteome reveals a characteristic egWAT expression pattern in offspring as a result of maternal conditions. IL-6tS inhibition in transgenic mice was in tendency associated with lower body weight in dams on SD and their respective offspring but blunted by the WSD. In conclusion, maternal nutrition affects offspring's body weight and egWAT metabolism predominantly independent of IL-6tS inhibition, emphasizing the importance of maternal and newborn nutrition for long-term offspring health.
Collapse
Affiliation(s)
- Saida Breuer
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (C.V.); (R.J.); (T.H.); (S.A.); (E.M.-L.); (J.D.); (E.H.-R.)
| | - Philipp Kasper
- Clinic for Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany;
| | - Christina Vohlen
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (C.V.); (R.J.); (T.H.); (S.A.); (E.M.-L.); (J.D.); (E.H.-R.)
| | - Ruth Janoschek
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (C.V.); (R.J.); (T.H.); (S.A.); (E.M.-L.); (J.D.); (E.H.-R.)
| | - Thorben Hoffmann
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (C.V.); (R.J.); (T.H.); (S.A.); (E.M.-L.); (J.D.); (E.H.-R.)
| | - Sarah Appel
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (C.V.); (R.J.); (T.H.); (S.A.); (E.M.-L.); (J.D.); (E.H.-R.)
| | - Elena Müller-Limberger
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (C.V.); (R.J.); (T.H.); (S.A.); (E.M.-L.); (J.D.); (E.H.-R.)
| | - Andrea Mesaros
- Department of Phenotyping, Max-Planck Institute for Biology of Aging, University of Cologne, D-50931 Cologne, Germany;
| | - Stefan Rose-John
- Department for Biochemistry, Christian-Albrechts-University zu Kiel, D-24098 Kiel, Germany;
| | - Christoph Garbers
- Department of Pathology, Medical Faculty, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany;
| | - Stefan Müller
- Center for Molecular Medicine (CMMC), Proteomics Facility, University of Cologne, D-50931 Cologne, Germany;
| | - Jan-Wilm Lackmann
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, D-50931 Cologne, Germany;
| | - Esther Mahabir
- Comparative Medicine, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, D-50937 Cologne, Germany;
| | - Jörg Dötsch
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (C.V.); (R.J.); (T.H.); (S.A.); (E.M.-L.); (J.D.); (E.H.-R.)
| | - Eva Hucklenbruch-Rother
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (C.V.); (R.J.); (T.H.); (S.A.); (E.M.-L.); (J.D.); (E.H.-R.)
| | - Inga Bae-Gartz
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (S.B.); (C.V.); (R.J.); (T.H.); (S.A.); (E.M.-L.); (J.D.); (E.H.-R.)
| |
Collapse
|
26
|
Metformin ameliorates maternal high-fat diet-induced maternal dysbiosis and fetal liver apoptosis. Lipids Health Dis 2021; 20:100. [PMID: 34496884 PMCID: PMC8424801 DOI: 10.1186/s12944-021-01521-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The deleterious effect of maternal high-fat diet (HFD) on the fetal rat liver may cause later development of non-alcoholic fatty liver disease (NAFLD). The aim of this study was to evaluate the effect of maternal HFD-induced maternal hepatic steatosis and dysbiosis on the fetal liver and intestines, and the effect of prenatal metformin in a rat model. METHODS Sprague-Dawley rats were assigned to three groups (N = 6 in each group). Before mating, the rats were randomly assigned to HFD or normal-chow diet (NCD) group for 7 weeks. After mating, the HFD group rats were continued with high-fat diet during pregnancy and some of the HFD group rats were co-treated with metformin (HFMf) via drinking water during pregnancy. All maternal rats and their fetuses were sacrificed on gestational day 21. The liver and intestinal tissues of both maternal and fetal rats were analyzed. In addition, microbial deoxyribonucleic acid extracted from the maternal fecal samples was analyzed. RESULTS HFD resulted in maternal weight gain during pregnancy, intrahepatic lipid accumulation, and change in the serum short-chain fatty acid profile, intestinal tight junctions, and dysbiosis in maternal rats. The effect of HFD on maternal rats was alleviated by prenatal metformin, which also ameliorated inflammation and apoptosis in the fetal liver and intestines. CONCLUSIONS This study demonstrated the beneficial effects of prenatal metformin on maternal liver steatosis, focusing on the gut-liver axis. In addition, the present study indicates that prenatal metformin could ameliorate maternal HFD-induced inflammation and apoptosis in the fetal liver and intestines. This beneficial effect of in-utero exposure of metformin on fetal liver and intestines has not been reported. This study supports the use of prenatal metformin for pregnant obese women.
Collapse
|
27
|
Lim K, Burke SL, Marques FZ, Jackson KL, Gueguen C, Sata Y, Armitage JA, Head GA. Leptin and Melanocortin Signaling Mediates Hypertension in Offspring From Female Rabbits Fed a High-Fat Diet During Gestation and Lactation. Front Physiol 2021; 12:693157. [PMID: 34248679 PMCID: PMC8264761 DOI: 10.3389/fphys.2021.693157] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/24/2021] [Indexed: 01/02/2023] Open
Abstract
Maternal high-fat diet in rabbits leads to hypertension and elevated renal sympathetic nerve activity (RSNA) in adult offspring but whether this is due to adiposity or maternal programming is unclear. We gave intracerebroventricular (ICV) and ventromedial hypothalamus (VMH) administration of leptin-receptor antagonist, α-melanocyte-stimulating hormone (αMSH), melanocortin-receptor antagonist (SHU9119), or insulin-receptor (InsR) antagonist to conscious adult offspring from mothers fed a high-fat diet (mHFD), control diet (mCD), or mCD offspring fed HFD for 10d (mCD10d, to deposit equivalent fat but not during development). mHFD and mCD10d rabbits had higher mean arterial pressure (MAP, +6.4 mmHg, +12.1 mmHg, p < 0.001) and RSNA (+2.3 nu, +3.2 nu, p < 0.01) than mCD, but all had similar plasma leptin. VMH leptin-receptor antagonist reduced MAP (−8.0 ± 3.0 mmHg, p < 0.001) in mCD10d but not in mHFD or mCD group. Intracerebroventricular leptin-receptor antagonist reduced MAP only in mHFD rabbits (p < 0.05). Intracerebroventricular SHU9119 reduced MAP and RSNA in mHFD but only reduced MAP in the mCD10d group. VMH αMSH increased RSNA (+85%, p < 0.001) in mHFD rabbits but ICV αMSH increased RSNA in both mHFD and mCD10d rabbits (+45%, +51%, respectively, p < 0.001). The InsR antagonist had no effect by either route on MAP or RSNA. Hypothalamic leptin receptor and brain-derived neurotrophic factor (BDNF) mRNA were greater in mHFD compared with mCD rabbits and mCD10d rabbits. In conclusion, the higher MAP in mHFD and mCD10d offspring was likely due to greater central leptin signaling at distinct sites within the hypothalamus while enhanced melanocortin contribution was common to both groups suggesting that residual body fat was mainly responsible. However, the effects of SHU9119 and αMSH on RSNA pathways only in mHFD suggest a maternal HFD may program sympatho-excitatory capacity in these offspring and that this may involve increased leptin receptor and BDNF expression.
Collapse
Affiliation(s)
- Kyungjoon Lim
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Sandra L Burke
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Francine Z Marques
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Clayton, VIC, Australia
| | - Kristy L Jackson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Cindy Gueguen
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Yusuke Sata
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Human Neurotransmitters Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Cardiology, Alfred Hospital, Melbourne, VIC, Australia
| | - James A Armitage
- School of Medicine (Optometry), and IMPACT Institute for Innovation in Physical and Mental Health and Clinical Translation, Faculty of Health, Deakin University, Waurn Ponds, VIC, Australia
| | - Geoffrey A Head
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
28
|
Parisi F, Milazzo R, Savasi VM, Cetin I. Maternal Low-Grade Chronic Inflammation and Intrauterine Programming of Health and Disease. Int J Mol Sci 2021; 22:ijms22041732. [PMID: 33572203 PMCID: PMC7914818 DOI: 10.3390/ijms22041732] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/17/2022] Open
Abstract
Overweight and obesity during pregnancy have been associated with increased birth weight, childhood obesity, and noncommunicable diseases in the offspring, leading to a vicious transgenerational perpetuating of metabolic derangements. Key components in intrauterine developmental programming still remain to be identified. Obesity involves chronic low-grade systemic inflammation that, in addition to physiological adaptations to pregnancy, may potentially expand to the placental interface and lead to intrauterine derangements with a threshold effect. Animal models, where maternal inflammation is mimicked by single injections with lipopolysaccharide (LPS) resembling the obesity-induced immune profile, showed increased adiposity and impaired metabolic homeostasis in the offspring, similar to the phenotype observed after exposure to maternal obesity. Cytokine levels might be specifically important for the metabolic imprinting, as cytokines are transferable from maternal to fetal circulation and have the capability to modulate placental nutrient transfer. Maternal inflammation may induce metabolic reprogramming at several levels, starting from the periconceptional period with effects on the oocyte going through early stages of embryonic and placental development. Given the potential to reduce inflammation through inexpensive, widely available therapies, examinations of the impact of chronic inflammation on reproductive and pregnancy outcomes, as well as preventive interventions, are now needed.
Collapse
Affiliation(s)
- Francesca Parisi
- Department of Woman, Mother and Neonate, ‘V. Buzzi’ Children Hospital, ASST Fatebenefratelli Sacco, 20141 Milan, Italy; (R.M.); (I.C.)
- Department of Biomedical and Clinical Sciences, “Luigi Sacco”, University of Milan, 20157 Milan, Italy;
- Correspondence:
| | - Roberta Milazzo
- Department of Woman, Mother and Neonate, ‘V. Buzzi’ Children Hospital, ASST Fatebenefratelli Sacco, 20141 Milan, Italy; (R.M.); (I.C.)
- Department of Biomedical and Clinical Sciences, “Luigi Sacco”, University of Milan, 20157 Milan, Italy;
| | - Valeria M. Savasi
- Department of Biomedical and Clinical Sciences, “Luigi Sacco”, University of Milan, 20157 Milan, Italy;
- Department of Woman, Mother and Neonate, ‘L. Sacco’ Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy
| | - Irene Cetin
- Department of Woman, Mother and Neonate, ‘V. Buzzi’ Children Hospital, ASST Fatebenefratelli Sacco, 20141 Milan, Italy; (R.M.); (I.C.)
- Department of Biomedical and Clinical Sciences, “Luigi Sacco”, University of Milan, 20157 Milan, Italy;
| |
Collapse
|
29
|
Larsen JK, Bode L. Obesogenic Programming Effects during Lactation: A Narrative Review and Conceptual Model Focusing on Underlying Mechanisms and Promising Future Research Avenues. Nutrients 2021; 13:nu13020299. [PMID: 33494303 PMCID: PMC7911998 DOI: 10.3390/nu13020299] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/09/2021] [Accepted: 01/19/2021] [Indexed: 12/18/2022] Open
Abstract
Animal studies have consistently demonstrated that maternal obesity and a high-fat diet during lactation enhances obesity risk in the offspring. However, less is known about these potential obesogenic programming effects in obese humans. We propose three important pathways that may explain obesogenic programming effects of human breastmilk. First, human milk components and hormones may directly affect child eating and satiety characteristics. Second, human milk constituents can affect child microbiota that, in turn, may influence child eating and weight outcomes. Third, human milk composition may affect child eating and weight outcomes through flavor exposure. We reviewed a few very recent findings from well-powered longitudinal or experimental human research with regard to these three pathways. Moreover, we provide a research agenda for future intervention research with the overarching aim to prevent excessive pediatric weight gain during lactation and beyond. The ideas presented in this paper may represent important “black box” constructs that explain obesogenic programming effects during lactation. It should be noted, however, that given the scarcity of studies, findings should be seen as working hypotheses to further test in future research.
Collapse
Affiliation(s)
- Junilla K. Larsen
- Behavioural Science Institute, Radboud University, PO Box 9104, 6500 HE Nijmegen, The Netherlands
- Correspondence:
| | - Lars Bode
- Department of Pediatrics and Larsson-Rosenquist-Foundation Mother-Milk-Infant Center of Research Excellence, University of California, San Diego, CA 92101, USA;
| |
Collapse
|
30
|
Mechanisms Underlying the Cognitive and Behavioural Effects of Maternal Obesity. Nutrients 2021; 13:nu13010240. [PMID: 33467657 PMCID: PMC7829712 DOI: 10.3390/nu13010240] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
The widespread consumption of 'western'-style diets along with sedentary lifestyles has led to a global epidemic of obesity. Epidemiological, clinical and preclinical evidence suggests that maternal obesity, overnutrition and unhealthy dietary patterns programs have lasting adverse effects on the physical and mental health of offspring. We review currently available preclinical and clinical evidence and summarise possible underlying neurobiological mechanisms by which maternal overnutrition may perturb offspring cognitive function, affective state and psychosocial behaviour, with a focus on (1) neuroinflammation; (2) disrupted neuronal circuities and connectivity; and (3) dysregulated brain hormones. We briefly summarise research implicating the gut microbiota in maternal obesity-induced changes to offspring behaviour. In animal models, maternal obesogenic diet consumption disrupts CNS homeostasis in offspring, which is critical for healthy neurodevelopment, by altering hypothalamic and hippocampal development and recruitment of glial cells, which subsequently dysregulates dopaminergic and serotonergic systems. The adverse effects of maternal obesogenic diets are also conferred through changes to hormones including leptin, insulin and oxytocin which interact with these brain regions and neuronal circuits. Furthermore, accumulating evidence suggests that the gut microbiome may directly and indirectly contribute to these maternal diet effects in both human and animal studies. As the specific pathways shaping abnormal behaviour in offspring in the context of maternal obesogenic diet exposure remain unknown, further investigations are needed to address this knowledge gap. Use of animal models permits investigation of changes in neuroinflammation, neurotransmitter activity and hormones across global brain network and sex differences, which could be directly and indirectly modulated by the gut microbiome.
Collapse
|
31
|
Hui L. The intimate connection between maternal health and fetal development. Prenat Diagn 2020; 40:1045-1046. [PMID: 32602191 DOI: 10.1002/pd.5775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 06/20/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Lisa Hui
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, Australia.,Reproductive Epidemiology group, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Perinatal Medicine, Mercy Hospital for Women, Heidelberg, Victoria, Australia.,Department of Obstetrics and Gynaecology, Northern Health, Epping, Victoria, Australia
| |
Collapse
|