1
|
Sun G, Wei X, Zhang D, Huang L, Liu H, Fang H. Immobilization of Enzyme Electrochemical Biosensors and Their Application to Food Bioprocess Monitoring. BIOSENSORS 2023; 13:886. [PMID: 37754120 PMCID: PMC10526424 DOI: 10.3390/bios13090886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Electrochemical biosensors based on immobilized enzymes are among the most popular and commercially successful biosensors. The literature in this field suggests that modification of electrodes with nanomaterials is an excellent method for enzyme immobilization, which can greatly improve the stability and sensitivity of the sensor. However, the poor stability, weak reproducibility, and limited lifetime of the enzyme itself still limit the requirements for the development of enzyme electrochemical biosensors for food production process monitoring. Therefore, constructing sensing technologies based on enzyme electrochemical biosensors remains a great challenge. This article outlines the construction principles of four generations of enzyme electrochemical biosensors and discusses the applications of single-enzyme systems, multi-enzyme systems, and nano-enzyme systems developed based on these principles. The article further describes methods to improve enzyme immobilization by combining different types of nanomaterials such as metals and their oxides, graphene-related materials, metal-organic frameworks, carbon nanotubes, and conducting polymers. In addition, the article highlights the challenges and future trends of enzyme electrochemical biosensors, providing theoretical support and future perspectives for further research and development of high-performance enzyme chemical biosensors.
Collapse
Affiliation(s)
- Ganchao Sun
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; (G.S.); (X.W.)
| | - Xiaobo Wei
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; (G.S.); (X.W.)
| | - Dianping Zhang
- School of Mechanical Engineering, Ningxia University, Yinchuan 750021, China;
| | - Liben Huang
- Huichuan Technology (Zhuhai) Co., Ltd., Zhuhai 519060, China;
| | - Huiyan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; (G.S.); (X.W.)
| | - Haitian Fang
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; (G.S.); (X.W.)
| |
Collapse
|
2
|
Wijayanti SD, Tsvik L, Haltrich D. Recent Advances in Electrochemical Enzyme-Based Biosensors for Food and Beverage Analysis. Foods 2023; 12:3355. [PMID: 37761066 PMCID: PMC10529900 DOI: 10.3390/foods12183355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Food analysis and control are crucial aspects in food research and production in order to ensure quality and safety of food products. Electrochemical biosensors based on enzymes as the bioreceptors are emerging as promising tools for food analysis because of their high selectivity and sensitivity, short analysis time, and high-cost effectiveness in comparison to conventional methods. This review provides the readers with an overview of various electrochemical enzyme-based biosensors in food analysis, focusing on enzymes used for different applications in the analysis of sugars, alcohols, amino acids and amines, and organic acids, as well as mycotoxins and chemical contaminants. In addition, strategies to improve the performance of enzyme-based biosensors that have been reported over the last five years will be discussed. The challenges and future outlooks for the food sector are also presented.
Collapse
Affiliation(s)
- Sudarma Dita Wijayanti
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190 Wien, Austria; (S.D.W.)
- Department of Food Science and Biotechnology, Brawijaya University, Malang 65145, Indonesia
| | - Lidiia Tsvik
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190 Wien, Austria; (S.D.W.)
| | - Dietmar Haltrich
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190 Wien, Austria; (S.D.W.)
| |
Collapse
|
3
|
Arshi S, Xiao X, Belochapkine S, Magner E. Electrochemical Immobilisation of Glucose Oxidase for the Controlled Production of H 2O 2 in a Biocatalytic Flow Reactor. ChemElectroChem 2022; 9:e202200319. [PMID: 36246851 PMCID: PMC9545823 DOI: 10.1002/celc.202200319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/24/2022] [Indexed: 11/09/2022]
Abstract
Electrochemical methods can be used to selectively modify the surfaces of electrodes, enabling the immobilisation of enzymes on defined areas on the surfaces of electrodes. Such selective immobilisation methods can be used to pattern catalysts on surfaces in a controlled manner. Using this approach, the selective patterning of the enzyme glucose oxidase on the electrodes was used to develop a flow reactor for the controlled delivery of the oxidant H2O2. GOx was immobilised on a glassy carbon electrode using polypyrrole, silica films, and diazonium linkers. The rate of production of H2O2 and the stability of the response was dependent on the immobilisation method. GOx encapsulated in polypyrrole was selected as the optimal method of immobilisation, with a rate of production of 91±11 μM h-1 for 4 hours of continuous operation. The enzyme was subsequently immobilised on carbon rod electrodes (surface area of 5.76 cm2) using a polypyrrole/Nafion® film and incorporated into a flow reactor. The rate of production of H2O2 was 602±57 μM h-1, with 100 % retention of activity after 7 h of continuous operation, demonstrating that such a system can be used to prepare H2O2 at continuous and stable rate for use in downstream oxidation reactions.
Collapse
Affiliation(s)
- Simin Arshi
- Department of Chemical SciencesBernal InstituteUniversity of LimerickV94 T9PXLimerickIreland
| | - Xinxin Xiao
- Department of ChemistryTechnical University of DenmarkKongens Lyngby2800Denmark
| | - Serguei Belochapkine
- Department of Chemical SciencesBernal InstituteUniversity of LimerickV94 T9PXLimerickIreland
| | - Edmond Magner
- Department of Chemical SciencesBernal InstituteUniversity of LimerickV94 T9PXLimerickIreland
| |
Collapse
|
4
|
Oh HE, Eathorne S, Jones MA. Use of biosensor technology in analysing milk and dairy components: A review. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Revisiting Some Recently Developed Conducting Polymer@Metal Oxide Nanostructures for Electrochemical Sensing of Vital Biomolecules: A Review. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00209-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Martínez-Aviñó A, Molins-Legua C, Campíns-Falcó P. Combining high performance thin layer chromatography with minispectrometer-fiber optic probe-coupled to smartphone for in place analysis: Lactose quantification in several matrices. J Chromatogr A 2021; 1661:462694. [PMID: 34879310 DOI: 10.1016/j.chroma.2021.462694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
An in place colorimetric method has been proposed for estimation of the quantity of lactose in several matrix (milk, water effluents and surfaces). Analyzing the amount of this carbohydrate it can be control the product, the cleanliness of the parts of the dairy companies and it can avoid contamination of milk products produced there. This method combines the use of HPTLC for sugars separation with novel analytical devices as minispectrophotometer with fiber optic coupled to a smartphone. In order to measure the lactose a colorimetric reaction has been used. Variable volumes of samples or stock solutions were deposited in nano-silica gel layer, a mobile phase of acetonitrile:water:acetic acid was used for carbohydrate separation and a solution of thymol (0.05 g Thymol in 95 mL of EtOH and 5 mL H2SO4) was used for revealed the carbohydrate spot. Finally, the reflectance of samples and stock solutions were measured. The achieved limits of detection were 0.03 mg mL-1 and 0.003 mg mL-1 for the working concentration range and the analysis at traces level respectively.
Collapse
Affiliation(s)
- Adria Martínez-Aviñó
- MINTOTA research group. Departament de Química Analítica, Facultat de Química, Universitat de València, Dr. Moliner 50, Valencia, Burjassot 46100, Spain
| | - Carmen Molins-Legua
- MINTOTA research group. Departament de Química Analítica, Facultat de Química, Universitat de València, Dr. Moliner 50, Valencia, Burjassot 46100, Spain.
| | - Pilar Campíns-Falcó
- MINTOTA research group. Departament de Química Analítica, Facultat de Química, Universitat de València, Dr. Moliner 50, Valencia, Burjassot 46100, Spain.
| |
Collapse
|
7
|
Li D, Xiong Q, Liang L, Duan H. Multienzyme nanoassemblies: from rational design to biomedical applications. Biomater Sci 2021; 9:7323-7342. [PMID: 34647942 DOI: 10.1039/d1bm01106e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Multienzyme nanoassemblies (MENAs) that combine the functions of several enzymes into one entity have attracted widespread research interest due to their improved enzymatic performance and great potential for multiple applications. Considerable progress has been made to design and fabricate MENAs in recent years. This review begins with an introduction of the up-to-date strategies in designing MENAs, mainly including substrate channeling, compartmentalization and control of enzyme stoichiometry. The desirable properties that endow MENAs with important applications are also discussed in detail. Then, the recent advances in utilizing MENAs in the biomedical field are reviewed, with a particular focus on biosensing, tumor therapy, antioxidant and drug delivery. Finally, the challenges and perspectives for development of versatile MENAs are summarized.
Collapse
Affiliation(s)
- Di Li
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qirong Xiong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.
| | - Li Liang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.
| |
Collapse
|
8
|
Jarosz T, Ledwon P. Electrochemically Produced Copolymers of Pyrrole and Its Derivatives: A Plentitude of Material Properties Using "Simple" Heterocyclic Co-Monomers. MATERIALS (BASEL, SWITZERLAND) 2021; 14:E281. [PMID: 33430477 PMCID: PMC7826606 DOI: 10.3390/ma14020281] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 11/16/2022]
Abstract
Polypyrrole is a classical, well-known conjugated polymer that is produced from a simple heterocyclic system. Numerous pyrrole derivatives exhibit biological activity, and the repeat unit is a common building block present in the chemical structure of many polymeric materials, finding wide application, primarily in optoelectronics and sensing. In this work, we focus on the variety of copolymers and their material properties that can be produced electrochemically, even though all these systems are obtained from mixtures of the "simple" pyrrole monomer and its derivatives with different conjugated and non-conjugated species.
Collapse
Affiliation(s)
| | - Przemyslaw Ledwon
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 9 Strzody Street, 44-100 Gliwice, Poland;
| |
Collapse
|
9
|
Bounegru AV, Apetrei C. Voltamperometric Sensors and Biosensors Based on Carbon Nanomaterials Used for Detecting Caffeic Acid-A Review. Int J Mol Sci 2020; 21:E9275. [PMID: 33291758 PMCID: PMC7730703 DOI: 10.3390/ijms21239275] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Caffeic acid is one of the most important hydroxycinnamic acids found in various foods and plant products. It has multiple beneficial effects in the human body such as antioxidant, antibacterial, anti-inflammatory, and antineoplastic. Since overdoses of caffeic acid may have negative effects, the quality and quantity of this acid in foods, pharmaceuticals, food supplements, etc., needs to be accurately determined. The present paper analyzes the most representative scientific papers published mostly in the last 10 years which describe the development and characterization of voltamperometric sensors or biosensors based on carbon nanomaterials and/or enzyme commonly used for detecting caffeic acid and a series of methods which may improve the performance characteristics of such sensors.
Collapse
Affiliation(s)
| | - Constantin Apetrei
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galaţi, 47 Domnească Street, 800008 Galaţi, Romania;
| |
Collapse
|
10
|
Facile and Low-Cost SPE Modification Towards Ultra-Sensitive Organophosphorus and Carbamate Pesticide Detection in Olive Oil. Molecules 2020; 25:molecules25214988. [PMID: 33126549 PMCID: PMC7672650 DOI: 10.3390/molecules25214988] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 01/30/2023] Open
Abstract
Despite the fact that a considerable amount of effort has been invested in the development of biosensors for the detection of pesticides, there is still a lack of a simple and low-cost platform that can reliably and sensitively detect their presence in real samples. Herein, an enzyme-based biosensor for the determination of both carbamate and organophosphorus pesticides is presented that is based on acetylcholinesterase (AChE) immobilized on commercially available screen-printed carbon electrodes (SPEs) modified with carbon black (CB), as a means to enhance their conductivity. Most interestingly, two different methodologies to deposit the enzyme onto the sensor surfaces were followed; strikingly different results were obtained depending on the family of pesticides under investigation. Furthermore, and towards the uniform application of the functionalization layer onto the SPEs’ surfaces, the laser induced forward transfer (LIFT) technique was employed in conjunction with CB functionalization, which allowed a considerable improvement of the sensor’s performance. Under the optimized conditions, the fabricated sensors can effectively detect carbofuran in a linear range from 1.1 × 10−9 to 2.3 × 10−8 mol/L, with a limit of detection equal to 0.6 × 10−9 mol/L and chlorpyrifos in a linear range from 0.7 × 10−9 up to 1.4 × 10−8 mol/L and a limit of detection 0.4 × 10−9 mol/L in buffer. The developed biosensor was also interrogated with olive oil samples, and was able to detect both pesticides at concentrations below 10 ppb, which is the maximum residue limit permitted by the European Food Safety Authority.
Collapse
|
11
|
Gursoy SS, Yildiz A, Cogal GC, Gursoy O. A novel lactose biosensor based on electrochemically synthesized 3,4-ethylenedioxythiophene/thiophene (EDOT/Th) copolymer. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AbstractIn this study, a new lactose biosensor has been developed in which the 3,4-ethylenedioxythiophene/thiophene (EDOT/Th) copolymer is used as a transducer. The EDOT/Th copolymer was deposited on the glassy carbon electrode to be used as the working electrode. In addition to the working electrode, the three-electrode system was used in both the electrochemical synthesis and in the biosensor measurements. Lactase (β-galactosidase) that catalyzes the breakdown of lactose into monosaccharides (glucose and galactose) and galactose oxidase that catalyzes the oxidation of the resulting galactose were attached to the copolymer by a cross-linker on the modified working electrode. The response of the enzyme electrode to lactose was determined by cyclic voltammetry (CV) at +0.12 V. Enzyme electrode optimization parameters (pH, temperature, enzyme concentration, etc.) were performed. Fourier transform infrared spectroscopy, scanning electron microscopy and CV methods were used to support copolymer formation. In addition, the characteristics of the enzyme electrode prepared in this study (Km, 0.02 mM; activation energy Ea, 38 kJ/mol; linear working range, up to 1.72 mM; limit of detection, 1.9 × 10−5 M and effects of interferents [uric acid and ascorbic acid]) were determined.
Collapse
Affiliation(s)
- Songul Sen Gursoy
- Department of Chemistry, Burdur Mehmet Akif Ersoy University, Faculty of Arts and Sciences, TR-15030, Burdur, Turkey
| | - Abdulkerim Yildiz
- Department of Material Technology Engineering, Burdur Mehmet Akif Ersoy University, Institute of Applied and Natural Sciences, TR-15030, Burdur, Turkey
| | - Gamze Celik Cogal
- Department of Chemistry, Süleyman Demirel University, Institute of Applied and Natural Sciences, TR-32260, Isparta, Turkey
| | - Oguz Gursoy
- Department of Food Engineering, Burdur Mehmet Akif Ersoy University, Faculty of Engineering and Architecture, TR-15030, Burdur, Turkey
| |
Collapse
|
12
|
Yin Z, Zhi J. A photoelectrochemical biosensor based on the direct electron transfer to galactose oxidase. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Kucherenko IS, Soldatkin OO, Dzyadevych SV, Soldatkin AP. Electrochemical biosensors based on multienzyme systems: Main groups, advantages and limitations - A review. Anal Chim Acta 2020; 1111:114-131. [PMID: 32312388 DOI: 10.1016/j.aca.2020.03.034] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 12/13/2022]
Abstract
In the review, the principles and main purposes of using multienzyme systems in electrochemical biosensors are analyzed. Coupling several enzymes allows an extension of the spectrum of detectable substances, an increase in the biosensor sensitivity (in some cases, by several orders of magnitude), and an improvement of the biosensor selectivity, as showed on the examples of amperometric, potentiometric, and conductometric biosensors. The biosensors based on cascade, cyclic and competitive enzyme systems are described alongside principles of function, advantages, disadvantages and practical use for real sample analyses in various application areas (food production and quality control, clinical diagnostics, environmental monitoring). The complications and restrictions regarding the development of multienzyme biosensors are evaluated. The recommendations on the reasonability of elaboration of novel multienzyme biosensors are given.
Collapse
Affiliation(s)
- I S Kucherenko
- Department of Biomolecular Electronics, Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Zabolotnogo Street 150, 03148, Kyiv, Ukraine.
| | - O O Soldatkin
- Department of Biomolecular Electronics, Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Zabolotnogo Street 150, 03148, Kyiv, Ukraine; Institute of High Technologies, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, 01003, Kyiv, Ukraine
| | - S V Dzyadevych
- Department of Biomolecular Electronics, Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Zabolotnogo Street 150, 03148, Kyiv, Ukraine; Institute of High Technologies, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, 01003, Kyiv, Ukraine
| | - A P Soldatkin
- Department of Biomolecular Electronics, Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Zabolotnogo Street 150, 03148, Kyiv, Ukraine; Institute of High Technologies, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, 01003, Kyiv, Ukraine
| |
Collapse
|
14
|
Tajik S, Beitollahi H, Nejad FG, Shoaie IS, Khalilzadeh MA, Asl MS, Van Le Q, Zhang K, Jang HW, Shokouhimehr M. Recent developments in conducting polymers: applications for electrochemistry. RSC Adv 2020; 10:37834-37856. [PMID: 35515168 PMCID: PMC9057190 DOI: 10.1039/d0ra06160c] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/15/2020] [Indexed: 01/07/2023] Open
Abstract
Scientists have categorized conductive polymers as materials having strongly reversible redox behavior and uncommon combined features of plastics and metal. Because of their multifunctional characteristics, e.g., simplistic synthesis, acceptable environmental stability, beneficial optical, electronic, and mechanical features, researchers have largely considered them for diverse applications. Therefore, their capability of catalyzing several electrode reactions has been introduced as one of their significant features. A thin layer of the conducting polymer deposited on the substrate electrode surface can augment the electrode process kinetics of several solution species. Such electrocatalytic procedures with modified conducting polymer electrodes can create beneficial utilization in diverse fields of applied electrochemistry. This review article explores typical recent applications of conductive polymers (2016–2020) as active electrode materials for energy storage applications, electrochemical sensing, and conversion fields such as electrochemical supercapacitors, lithium-ion batteries, fuel cells, and solar cells. Scientists have categorized conductive polymers as materials having strongly reversible redox behavior and uncommon combined features of plastics and metal.![]()
Collapse
|