1
|
Harris BN, Yavari M, Ramalingam L, Mounce PL, Alers Maldonado K, Chavira AC, Thomas S, Scoggin S, Biltz C, Moustaid-Moussa N. Impact of Long-Term Dietary High Fat and Eicosapentaenoic Acid on Behavior and Hypothalamic-Pituitary-Adrenal Axis Activity in Amyloidogenic APPswe/PSEN1dE9 Mice. Neuroendocrinology 2024; 114:553-576. [PMID: 38301617 PMCID: PMC11153005 DOI: 10.1159/000536586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) alters neurocognitive and emotional function and causes dysregulation of multiple homeostatic processes. The leading AD framework pins amyloid beta plaques and tau tangles as primary drivers of dysfunction. However, many additional variables, including diet, stress, sex, age, and pain tolerance, interact in ways that are not fully understood to impact the onset and progression of AD pathophysiology. We asked: (1) does high-fat diet, compared to low-fat diet, exacerbate AD pathophysiology and behavioral decline? And, (2) can supplementation with eicosapentaenoic (EPA)-enriched fish oil prevent high-fat-diet-induced changes? METHODS Male and female APPswePSdE9 mice, and their non-transgenic littermates, were randomly assigned to a diet condition (low-fat, high-fat, high-fat with EPA) and followed from 2 to 10 months of age. We assessed baseline corticosterone concentration during aging, pain tolerance, cognitive function, stress coping, and corticosterone response to a stressor. RESULTS Transgenic mice were consistently more active than non-transgenic mice but did not perform worse on either cognitive task, even though we recently reported that these same transgenic mice exhibited metabolic changes and had increased amyloid beta. Mice fed high-fat diet had higher baseline and post-stressor corticosterone, but diet did not impact cognition or pain tolerance. Sex had the biggest influence, as female mice were consistently more active and had higher corticosterone than males. CONCLUSION Overall, diet, genotype, and sex did not have consistent impacts on outcomes. We found little support for predicted interactions and correlations, suggesting diet impacts metabolic function and amyloid beta levels, but these outcomes do not translate to changes in behaviors measured here.
Collapse
Affiliation(s)
- Breanna N. Harris
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
| | - Mahsa Yavari
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
- Current address: Department of Molecular Metabolism, School of Public Health, Harvard University, Boston, MA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
- Current address: Department of Nutritional and Food Studies Syracuse University, Syracuse, NY
| | - P. Logan Mounce
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | | | - Angela C. Chavira
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
| | - Sarah Thomas
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | - Shane Scoggin
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
| | - Caroline Biltz
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
| |
Collapse
|
2
|
SR-BI deficiency disassociates obesity from hepatic steatosis and glucose intolerance development in high fat diet-fed mice. J Nutr Biochem 2021; 89:108564. [DOI: 10.1016/j.jnutbio.2020.108564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 01/05/2023]
|
3
|
García-Eguren G, Sala-Vila A, Giró O, Vega-Beyhart A, Hanzu FA. Long-term hypercortisolism induces lipogenesis promoting palmitic acid accumulation and inflammation in visceral adipose tissue compared with HFD-induced obesity. Am J Physiol Endocrinol Metab 2020; 318:E995-E1003. [PMID: 32315213 DOI: 10.1152/ajpendo.00516.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (GCs) play critical roles in adipose tissue metabolism. Here, we compare in a mouse model the effects of chronic glucocorticoid excess and diet-induced obesity on white adipose tissue mass and distribution, by focusing on visceral adipose tissue (VAT) fatty acid composition changes, the role of de novo lipogenesis (DNL) and the inflammatory state. We used a noninvasive mouse model of hypercortisolism to compare GC-induced effects on adipose tissue with diet-induced obesity [high-fat diet (HFD) 45%] and control mice after 10 wk of treatment. Subcutaneous adipose tissue (SAT) and VAT mass and distribution were measured by nuclear magnetic resonance imaging (NMRI). Fatty acid composition in VAT was analyzed by NMR spectroscopy and gas chromatography. Gene expression of key enzymes involved in DNL was analyzed in liver and VAT. Macrophage infiltration markers and proinflammatory cytokines were measured by gene expression in VAT. HFD or GC treatment induced similar fat mass expansion with comparable distribution between SAT and VAT depots. However, in VAT, GCs induce DNL, higher palmitic acid (PA), macrophage infiltration, and proinflammatory cytokine levels, accompanied by systemic nonesterified fatty acid (NEFA) elevation, hyperinsulinemia, and higher homeostatic model assessment for insulin resistance (HOMA-IR) levels compared with diet-induced obesity. Thus, chronic hypercortisolism induces DNL and fatty acid composition changes toward increased SFA and reduced polyunsaturated fatty acid (PUFA) levels in VAT, promoting macrophage recruitment and proinflammatory cytokines, suggesting a worse cardiometabolic profile even compared with HFD mice.
Collapse
Affiliation(s)
| | - Aleix Sala-Vila
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Oriol Giró
- Group of Endocrine Disorders, IDIBAPS, Barcelona, Spain
| | | | - Felicia A Hanzu
- Group of Endocrine Disorders, IDIBAPS, Barcelona, Spain
- Endocrinology and Nutrition Service, Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Adhikary S, Kothari P, Choudhary D, Tripathi AK, Trivedi R. Glucocorticoid aggravates bone micro-architecture deterioration and skeletal muscle atrophy in mice fed on high-fat diet. Steroids 2019; 149:108416. [PMID: 31150681 DOI: 10.1016/j.steroids.2019.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/10/2019] [Accepted: 05/24/2019] [Indexed: 11/30/2022]
Abstract
High fat diet (HFD) induced obesity has deleterious effect on bone micro-architecture and is associated with low-grade chronic inflammation. Exogenous glucocorticoids (GC) are used to treat inflammatory conditions but with concomitant adverse effect on musculoskeletal system. This study aims to highlight the effect of exogenous GCs on musculoskeletal system in mice fed on HFD. Adult BALB/c mice were fed either normal chow or high fat diet and were exogenously administered with GC for 10 weeks. At the end of the study, animals were autopsied and bone, muscle, serum samples were collected for micro-CT, gene expression and histological study. HFD induced obesity resulted in deterioration in bone micro-architecture predominant in trabecular region of long bones and was significantly amplified with GC administration. Approximately, 37% and 25% loss in femoral and tibial bone volume was observed in obese animals with exogenous GC. Further, deteriorating bone pathology was apparent from reduced bone mineral density (BMD) and bone strength parameter which was correlated to alteration in osteoblast and adipocytes pool of cells in bone marrow. Transcriptional analysis of osteoblast marker genes, bone morphogenetic protein 2 (BMP-2), osteocalcin (OCN) exhibited decreased formation. Moreover, similar degeneration was observed in skeletal muscle physiology with stimulation in muscle atrophy genes atrogin-1, muscle ring finger motif-1 (MuRF-1) and inflammatory markers accompanied with intra-myocellular lipid accumulation. Thus, our results showed that detrimental effect of GC on bone and skeletal muscle is aggravated with HFD, attributed to alteration in bone marrow cell population and skeletal muscle atrophy.
Collapse
Affiliation(s)
- Sulekha Adhikary
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Priyanka Kothari
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Dharmendra Choudhary
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ashish Kumar Tripathi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ritu Trivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
5
|
Sefton C, Davies A, Allen TJ, Wray JR, Shoop R, Adamson A, Humphreys N, Coll AP, White A, Harno E. Metabolic Abnormalities of Chronic High-Dose Glucocorticoids Are Not Mediated by Hypothalamic AgRP in Male Mice. Endocrinology 2019; 160:964-978. [PMID: 30794724 PMCID: PMC6444294 DOI: 10.1210/en.2019-00018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/15/2019] [Indexed: 12/20/2022]
Abstract
Glucocorticoids are potent and widely used medicines but often cause metabolic side effects. A murine model of corticosterone treatment resulted in increased hypothalamic expression of the melanocortin antagonist AgRP in parallel with obesity and hyperglycemia. We investigated how these adverse effects develop over time, with particular emphasis on hypothalamic involvement. Wild-type and Agrp-/- male mice were treated with corticosterone for 3 weeks. Phenotypic, biochemical, protein, and mRNA analyses were undertaken on central and peripheral tissues, including white and brown adipose tissue, liver, and muscle, to determine the metabolic consequences. Corticosterone treatment induced hyperphagia within 1 day in wild-type mice, which persisted for 3 weeks. Despite this early increase in food intake, the body weight only started to increase after 10 days. Hyperinsulinemia occurred at day 1. Also, although after 2 days, alterations were present in the genes often associated with insulin resistance in several peripheral tissues, hyperglycemia only developed at 3 weeks. Throughout, sustained elevation in hypothalamic Agrp expression was present. Mice with Agrp deleted [using clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9, Agrp-/-] were partially protected against corticosterone-induced hyperphagia. However, Agrp-/- mice still had corticosterone-induced increases in body weight and adiposity similar to those of the Agrp+/+ mice. Loss of Agrp did not diminish corticosterone-induced hyperinsulinemia or correct changes in hepatic gluconeogenic genes. Chronic glucocorticoid treatment in mice mimics many of the metabolic side effects seen in patients and leads to a robust increase in Agrp. However, AgRP does not appear to be responsible for most of the glucocorticoid-induced adverse metabolic effects.
Collapse
Affiliation(s)
- Charlotte Sefton
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Alison Davies
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Tiffany-Jayne Allen
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Jonathan R Wray
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Rosemary Shoop
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Antony Adamson
- Manchester Transgenic Unit, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Neil Humphreys
- Manchester Transgenic Unit, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Anthony P Coll
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom
- Correspondence : Erika Harno, PhD, or Anne White, PhD, Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, 3.016 AV Hill Building, Manchester M13 9PT, United Kingdom. E-mail: or ; or Anthony P. Coll, PhD, University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, United Kingdom. E-mail:
| | - Anne White
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- Correspondence : Erika Harno, PhD, or Anne White, PhD, Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, 3.016 AV Hill Building, Manchester M13 9PT, United Kingdom. E-mail: or ; or Anthony P. Coll, PhD, University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, United Kingdom. E-mail:
| | - Erika Harno
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- Correspondence : Erika Harno, PhD, or Anne White, PhD, Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, 3.016 AV Hill Building, Manchester M13 9PT, United Kingdom. E-mail: or ; or Anthony P. Coll, PhD, University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, United Kingdom. E-mail:
| |
Collapse
|
6
|
Li B, Wang Y, Yin L, Huang G, Xu Y, Su J, Ma L, Lu J. Glucocorticoids promote the development of azoxymethane and dextran sulfate sodium-induced colorectal carcinoma in mice. BMC Cancer 2019; 19:94. [PMID: 30665389 PMCID: PMC6341596 DOI: 10.1186/s12885-019-5299-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 01/09/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Stress has been suggested as a promoter of tumor growth and development. Glucocorticoids (GCs) are the main stress hormones and widely prescribed as drugs. However, the effect of GCs on the development and progression of colorectal carcinoma (CRC) is unclear. METHODS We evaluated the effect of corticosterone (CORT) on azoxymethane and dextran sulfate sodium (AOM/DSS)-induced carcinogenesis in the colorectum of C57BL/6 strain mice. Plasma level of CORT was detected by radioimmunoassay. The expression of proliferation markers (Ki-67 and PCNA), nuclear factor (NF)-κB p65 and phosphoto-p65 (P-p65), as well as cyclooxygenase (COX)-2 were determined by immunohistochemistry. Inflammation in colorectum was evaluated by histopathology. RESULTS CORT feeding in drinking water of mice not only significantly elevated plasma CORT concentration, but also significantly increased the incidence and neoplasms burden (number and size of neoplasms) in colorectum. CORT also significant enhanced the expression of cell proliferation marker (Ki-67 and PCNA), NF-κB p65 and P-p65 as well as COX-2 in colorectal neoplasm of AOM/DSS-treated mice. CONCLUSION In this study, we have found for the first time that CORT at stress level potentially promotes the growth and development of AOM/DSS-induced colorectal adenoma and carcinoma in mice. Up-regulation of NF-κB and COX-2 may be involved in the promoting effect of CORT.
Collapse
Affiliation(s)
- Bo Li
- Department of pathophysiology, Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433, People's Republic of China.,Department of general surgery, Changhai hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Yan Wang
- Department of pathophysiology, Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433, People's Republic of China
| | - Lijuan Yin
- Department of pathology, Changhai hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Gaoxiang Huang
- Department of pathophysiology, Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433, People's Republic of China
| | - Yi Xu
- Department of pathology, Changhai hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Jie Su
- Department of pathophysiology, Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433, People's Republic of China
| | - Liye Ma
- Department of general surgery, Changhai hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Jian Lu
- Department of pathophysiology, Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
7
|
He Z, Lv F, Ding Y, Huang H, Liu L, Zhu C, Lei Y, Zhang L, Si C, Wang H. High-fat diet and chronic stress aggravate adrenal function abnormality induced by prenatal caffeine exposure in male offspring rats. Sci Rep 2017; 7:14825. [PMID: 29093513 PMCID: PMC5665976 DOI: 10.1038/s41598-017-14881-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/18/2017] [Indexed: 12/13/2022] Open
Abstract
We previously demonstrated thatprenatal caffeine exposure (PCE) suppressed fetal adrenal steroidogenesis and resulted in developmental programming changes in offspring rats. However, whether these changes play a role in adrenal corticosterone synthesis under high-fat diet (HFD) and unpredictable chronic stress (UCS) remains unknown. In present study, rat model was established by PCE (120 mg/kg.d), and male offspring were provided normal diet or HFD after weaning. At postnatal week 21, several rats fed HFD were exposed to UCS for 3 weeks and sacrificed. The results showed that compared with the corresponding control group, the serum corticosterone levels and adrenal steroid synthetase expression of the PCE offspring without UCS were reduced. Moreover, the glucocorticoid (GC)-activation system was inhibited, and insulin-like growth factor 1 (IGF1) signaling pathway expression was increased. With UCS exposure in the PCE offspring, serum corticosterone levels and adrenal steroid synthetase expression were increased, the activity of GC-activation system was enhanced, and adrenal IGF1 signaling pathway expression was decreased. Based on these findings, PCE induced adrenal hypersensitivity in adult male offspring rats, as shown by the reduced corticosterone levels under HFD conditions but significantly enhanced corticosterone levels with UCS, in which GC-IGF1 axis programming alteration may play an important role.
Collapse
Affiliation(s)
- Zheng He
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Lv
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Yufeng Ding
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hegui Huang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Lian Liu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Chunyan Zhu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Youyin Lei
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Li Zhang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Cai Si
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
8
|
Stress-induced alterations in estradiol sensitivity increase risk for obesity in women. Physiol Behav 2016; 166:56-64. [PMID: 27182047 DOI: 10.1016/j.physbeh.2016.05.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 04/04/2016] [Accepted: 05/11/2016] [Indexed: 02/02/2023]
Abstract
The prevalence of obesity in the United States continues to rise, increasing individual vulnerability to an array of adverse health outcomes. One factor that has been implicated causally in the increased accumulation of fat and excess food intake is the activity of the limbic-hypothalamic-pituitary-adrenal (LHPA) axis in the face of relentless stressor exposure. However, translational and clinical research continues to understudy the effects sex and gonadal hormones and LHPA axis dysfunction in the etiology of obesity even though women continue to be at greater risk than men for stress-induced disorders, including depression, emotional feeding and obesity. The current review will emphasize the need for sex-specific evaluation of the relationship between stress exposure and LHPA axis activity on individual risk for obesity by summarizing data generated by animal models currently being leveraged to determine the etiology of stress-induced alterations in feeding behavior and metabolism. There exists a clear lack of translational models that have been used to study female-specific risk. One translational model of psychosocial stress exposure that has proven fruitful in elucidating potential mechanisms by which females are at increased risk for stress-induced adverse health outcomes is that of social subordination in socially housed female macaque monkeys. Data from subordinate female monkeys suggest that increased risk for emotional eating and the development of obesity in females may be due to LHPA axis-induced changes in the behavioral and physiological sensitivity of estradiol. The lack in understanding of the mechanisms underlying these alterations necessitate the need to account for the effects of sex and gonadal hormones in the rationale, design, implementation, analysis and interpretation of results in our studies of stress axis function in obesity. Doing so may lead to the identification of novel therapeutic targets with which to combat stress-induced obesity exclusively in females.
Collapse
|
9
|
van den Heuvel JK, Boon MR, van Hengel I, Peschier-van der Put E, van Beek L, van Harmelen V, van Dijk KW, Pereira AM, Hunt H, Belanoff JK, Rensen PCN, Meijer OC. Identification of a selective glucocorticoid receptor modulator that prevents both diet-induced obesity and inflammation. Br J Pharmacol 2016; 173:1793-804. [PMID: 26990179 DOI: 10.1111/bph.13477] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 02/14/2016] [Accepted: 02/16/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE High-fat diet consumption results in obesity and chronic low-grade inflammation in adipose tissue. Whereas glucocorticoid receptor (GR) antagonism reduces diet-induced obesity, GR agonism reduces inflammation, the combination of which would be desired in a strategy to combat the metabolic syndrome. The purpose of this study was to assess the beneficial effects of the selective GR modulator C108297 on both diet-induced weight gain and inflammation in mice and to elucidate underlying mechanisms. EXPERIMENTAL APPROACH Ten-week-old C57Bl/6 J mice were fed a high-fat diet for 4 weeks while being treated with the selective GR modulator C108297, a full GR antagonist (RU486/mifepristone) or vehicle. KEY RESULTS C108297 and, to a lesser extent, mifepristone reduced body weight gain and fat mass. C108297 decreased food and fructose intake and increased lipolysis in white adipose tissue (WAT) and free fatty acid levels in plasma, resulting in decreased fat cell size and increased fatty acid oxidation. Furthermore, C108297 reduced macrophage infiltration and pro-inflammatory cytokine expression in WAT, as well as in vitro LPS-stimulated TNF-α secretion in macrophage RAW 264.7 cells. However, mifepristone also increased energy expenditure, as measured by fully automatic metabolic cages, and enhanced expression of thermogenic markers in energy-combusting brown adipose tissue (BAT) but did not affect inflammation. CONCLUSIONS AND IMPLICATIONS C108297 attenuates obesity by reducing caloric intake and increasing lipolysis and fat oxidation, and in addition attenuates inflammation. These data suggest that selective GR modulation may be a viable strategy for the reduction of diet-induced obesity and inflammation.
Collapse
Affiliation(s)
- José K van den Heuvel
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariëtte R Boon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Ingmar van Hengel
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Emma Peschier-van der Put
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lianne van Beek
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Vanessa van Harmelen
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ko Willems van Dijk
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Alberto M Pereira
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Hazel Hunt
- Corcept Therapeutics, Menlo Park, California, USA
| | | | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
10
|
Lagraauw HM, Kuiper J, Bot I. Acute and chronic psychological stress as risk factors for cardiovascular disease: Insights gained from epidemiological, clinical and experimental studies. Brain Behav Immun 2015; 50:18-30. [PMID: 26256574 DOI: 10.1016/j.bbi.2015.08.007] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular disease (CVD) remains a leading cause of death worldwide and identification and therapeutic modulation of all its risk factors is necessary to ensure a lower burden on the patient and on society. The physiological response to acute and chronic stress exposure has long been recognized as a potent modulator of immune, endocrine and metabolic pathways, however its direct implications for cardiovascular disease development, progression and as a therapeutic target are not completely understood. More and more attention is given to the bidirectional interaction between psychological and physical health in relation to cardiovascular disease. With atherosclerosis being a chronic disease starting already at an early age the contribution of adverse early life events in affecting adult health risk behavior, health status and disease development is receiving increased attention. In addition, experimental research into the biological pathways involved in stress-induced cardiovascular complications show important roles for metabolic and immunologic maladaptation, resulting in increased disease development and progression. Here we provide a concise overview of human and experimental animal data linking chronic and acute stress to CVD risk and increased progression of the underlying disease atherosclerosis.
Collapse
Affiliation(s)
- H Maxime Lagraauw
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Johan Kuiper
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Ilze Bot
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
11
|
Bowe JE, Franklin ZJ, Hauge-Evans AC, King AJ, Persaud SJ, Jones PM. Metabolic phenotyping guidelines: assessing glucose homeostasis in rodent models. J Endocrinol 2014; 222:G13-25. [PMID: 25056117 DOI: 10.1530/joe-14-0182] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The pathophysiology of diabetes as a disease is characterised by an inability to maintain normal glucose homeostasis. In type 1 diabetes, this is due to autoimmune destruction of the pancreatic β-cells and subsequent lack of insulin production, and in type 2 diabetes it is due to a combination of both insulin resistance and an inability of the β-cells to compensate adequately with increased insulin release. Animal models, in particular genetically modified mice, are increasingly being used to elucidate the mechanisms underlying both type 1 and type 2 diabetes, and as such the ability to study glucose homeostasis in vivo has become an essential tool. Several techniques exist for measuring different aspects of glucose tolerance and each of these methods has distinct advantages and disadvantages. Thus the appropriate methodology may vary from study to study depending on the desired end-points, the animal model, and other practical considerations. This review outlines the most commonly used techniques for assessing glucose tolerance in rodents and details the factors that should be taken into account in their use. Representative scenarios illustrating some of the practical considerations of designing in vivo experiments for the measurement of glucose homeostasis are also discussed.
Collapse
Affiliation(s)
- James E Bowe
- Diabetes Research GroupDivision of Diabetes and Nutritional Sciences, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Zara J Franklin
- Diabetes Research GroupDivision of Diabetes and Nutritional Sciences, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Astrid C Hauge-Evans
- Diabetes Research GroupDivision of Diabetes and Nutritional Sciences, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Aileen J King
- Diabetes Research GroupDivision of Diabetes and Nutritional Sciences, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Shanta J Persaud
- Diabetes Research GroupDivision of Diabetes and Nutritional Sciences, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Peter M Jones
- Diabetes Research GroupDivision of Diabetes and Nutritional Sciences, King's College London, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|