1
|
Goepp T, Hayes M, Di Domenico H, Hot P, Rupp T. Adding a sustained attention task to a physically demanding cycling exercise exacerbates neuromuscular fatigue and impairs cognitive performance in both normoxia and hypoxia. Eur J Appl Physiol 2024; 124:3543-3556. [PMID: 39030427 DOI: 10.1007/s00421-024-05555-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
PURPOSE Both cognitive motor dual-tasks (CMDT) protocols and hypoxic environments have been associated with significant impairments in cognitive and physical performance. We aimed to determine the effects of hypoxia on cognitive performance and neuromuscular fatigue during a highly physically demanding CMDT. METHODS Fifteen young adults completed a first session involving a cognitive task (CTLCOG) followed by cycling exercise (CTLEX) in normoxia. After that, they randomly participated in CMDT sessions in normoxia (DTNOR) and hypoxia (DTHYP). The physical exercise consisted of 20 min cycling at a "hard" perceived effort, and the cognitive task consisted of 15 min sustained attention to response time task (SART). Concurrent psycho-physiological measurements included: quadriceps neuromuscular fatigue (peripheral/central components from femoral nerve electrostimulation), prefrontal cortex (PFC) oxygenation by near-infrared spectroscopy, and perception of effort. RESULTS SART performance significantly decreased in DTNOR (-15.7 ± 15.6%, P < 0.01) and DTHYP (-26.2 ± 16.0%, P < 0.01) compared to CTLCOG (-1.0 ± 17.7%, P = 0.61). Peripheral fatigue similarly increased across conditions, whereas the ability of the central nervous system to activate the working muscles was impaired similarly in DTNOR (-6.1 ± 5.9%, P < 0.001) and DTHYP (-5.4 ± 7.3%, P < 0.001) compared to CTLEX (-1.1 ± 0.2%, P = 0.52). Exercise-induced perception of effort was higher in DTHYP vs. DTNOR and in DTNOR vs. CTLEX. This was correlated with cognitive impairments in both normoxia and hypoxia. PFC deoxygenation was more pronounced in DTHYP compared to DTNOR and CTLEX. CONCLUSION In conclusion, performing a sustained attention task together with physically challenging cycling exercise promotes central neuromuscular fatigue and impairs cognitive accuracy; the latter is particularly noticeable when the CMDT is performed in hypoxia.
Collapse
Affiliation(s)
- T Goepp
- Inter-University Laboratory of Human Movement Sciences EA7424, LIBM University Savoie Mont-Blanc, Chambéry, France
| | - M Hayes
- Environmental Extremes Laboratory, School of Sport and Health Sciences, University of Brighton, Eastbourne, UK
| | - H Di Domenico
- Inter-University Laboratory of Human Movement Sciences EA7424, LIBM University Savoie Mont-Blanc, Chambéry, France
| | - P Hot
- CNRS URM 5105, LPNC, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, 38000, Grenoble, France
- Institut Universitaire de France, Paris, France
| | - T Rupp
- Inter-University Laboratory of Human Movement Sciences EA7424, LIBM University Savoie Mont-Blanc, Chambéry, France.
| |
Collapse
|
2
|
Oliveira DM, Rashid A, Brassard P, Silva BM. Exercise-induced potentiation of the acute hypoxic ventilatory response: Neural mechanisms and implications for cerebral blood flow. Exp Physiol 2024; 109:1844-1855. [PMID: 38441858 PMCID: PMC11633340 DOI: 10.1113/ep091330] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/19/2024] [Indexed: 11/01/2024]
Abstract
A given dose of hypoxia causes a greater increase in pulmonary ventilation during physical exercise than during rest, representing an exercise-induced potentiation of the acute hypoxic ventilatory response (HVR). This phenomenon occurs independently from hypoxic blood entering the contracting skeletal muscle circulation or metabolic byproducts leaving skeletal muscles, supporting the contention that neural mechanisms per se can mediate the HVR when humoral mechanisms are not at play. However, multiple neural mechanisms might be interacting intricately. First, we discuss the neural mechanisms involved in the ventilatory response to hypoxic exercise and their potential interactions. Current evidence does not support an interaction between the carotid chemoreflex and central command. In contrast, findings from some studies support synergistic interactions between the carotid chemoreflex and the muscle mechano- and metaboreflexes. Second, we propose hypotheses about potential mechanisms underlying neural interactions, including spatial and temporal summation of afferent signals into the medulla, short-term potentiation and sympathetically induced activation of the carotid chemoreceptors. Lastly, we ponder how exercise-induced potentiation of the HVR results in hyperventilation-induced hypocapnia, which influences cerebral blood flow regulation, with multifaceted potential consequences, including deleterious (increased central fatigue and impaired cognitive performance), inert (unchanged exercise) and beneficial effects (protection against excessive cerebral perfusion).
Collapse
Affiliation(s)
- Diogo M. Oliveira
- Postgraduate Program in Translational Medicine, Department of MedicinePaulista School of Medicine (EPM)Federal University of São Paulo (UNIFESP)São PauloBrazil
| | - Anas Rashid
- Postgraduate Program in Translational Medicine, Department of MedicinePaulista School of Medicine (EPM)Federal University of São Paulo (UNIFESP)São PauloBrazil
- Pulmonary Function and Clinical Exercise Physiology Unit (SEFICE), Division of Pneumology, Department of Medicine, Paulista School of Medicine (EPM)Federal University of São Paulo (UNIFESP)São PauloBrazil
| | - Patrice Brassard
- Department of Kinesiology, Faculty of MedicineUniversité LavalQuébec CityQCCanada
- Research Centre of the Institut Universitaire de Cardiologie et de Pneumologie de QuébecQuébecQCCanada
| | - Bruno M. Silva
- Postgraduate Program in Translational Medicine, Department of MedicinePaulista School of Medicine (EPM)Federal University of São Paulo (UNIFESP)São PauloBrazil
- Pulmonary Function and Clinical Exercise Physiology Unit (SEFICE), Division of Pneumology, Department of Medicine, Paulista School of Medicine (EPM)Federal University of São Paulo (UNIFESP)São PauloBrazil
- Department of Physiology, Paulista School of Medicine (EPM)Federal University of São Paulo (UNIFESP)São PauloBrazil
| |
Collapse
|
3
|
Hohenauer E, Freitag L, Herten M, Siallagan J, Pollock E, Taube W, Clijsen R. The Methodological Quality of Studies Investigating the Acute Effects of Exercise During Hypoxia Over the Past 40 years: A Systematic Review. Front Physiol 2022; 13:919359. [PMID: 35784889 PMCID: PMC9243659 DOI: 10.3389/fphys.2022.919359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
Exercise under hypoxia and the physiological impact compared to normoxia or hypoxia has gained attention in the last decades. However, methodological quality assessment of articles in this area is lacking in the literature. Therefore, this article aimed to evaluate the methodologic quality of trials studying exercise under hypoxia. An electronic search was conducted until December 2021. The search was conducted in PubMed, CENTRAL, and PEDro using the PICO model. (P) Participants had to be healthy, (I) exercise under normobaric or hypobaric hypoxia had to be (C) compared to exercise in normoxia or hypoxia on (O) any physiological outcome. The 11-item PEDro scale was used to assess the methodological quality (internal validity) of the studies. A linear regression model was used to evaluate the evolution of trials in this area, using the total PEDro score of the rated trials. A total of n = 81 studies met the inclusion criteria and were processed in this study. With a mean score of 5.1 ± 0.9 between the years 1982 and 2021, the mean methodological quality can be described as "fair." Only one study reached the highest score of 8/10, and n = 2 studies reached the lowest observed value of 3/10. The linear regression showed an increase of the PEDro score of 0.1 points per decade. A positive and small tendency toward increased methodologic quality was observed. The current results demonstrate that a positive and small tendency can be seen for the increase in the methodological quality in the field of exercise science under hypoxia. A "good" methodological quality, reaching a PEDro score of 6 points can be expected in the year 2063, using a linear regression model analysis. To accelerate this process, future research should ensure that methodological quality criteria are already included during the planning phase of a study.
Collapse
Affiliation(s)
- Erich Hohenauer
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
- International University of Applied Sciences THIM, Landquart, Switzerland
- Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland
- Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Livia Freitag
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
| | - Miriam Herten
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
| | - Julia Siallagan
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
| | - Elke Pollock
- Department of Physiotherapy, Zurich University of Applied Sciences, Zurich, Switzerland
| | - Wolfgang Taube
- Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Ron Clijsen
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
- International University of Applied Sciences THIM, Landquart, Switzerland
- Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Health, Bern University of Applied Sciences, Berne, Switzerland
| |
Collapse
|
4
|
Hyland-Monks R, Marchant D, Cronin L. Self-Paced Endurance Performance and Cerebral Hemodynamics of the Prefrontal Cortex: A Scoping Review of Methodology and Findings. Percept Mot Skills 2022; 129:1089-1114. [PMID: 35609231 PMCID: PMC9301167 DOI: 10.1177/00315125221101017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent research has suggested that top-down executive function associated with the prefrontal cortex is key to the decision-making processes and pacing of endurance performance. A small but growing body of literature has investigated the neurological underpinnings of these processes by subjecting the prefrontal cortex to functional near-infrared spectroscopy (fNIRS) measurement during self-paced endurance task performance. Given that fNIRS measurement for these purposes is a relatively recent development, the principal aim of this review was to assess the methodological rigor and findings of this body of research. We performed a systematic literature search to collate research assessing prefrontal cortex oxygenation via fNIRS during self-paced endurance performance. A total of 17 studies met the criteria for inclusion. We then extracted information concerning the methodology and findings from the studies reviewed. Promisingly, most of the reviewed studies reported having adopted commonplace and feasible best practice guidelines. However, a lack of adherence to these guidelines was evident in some areas. For instance, there was little evidence of measures to tackle and remove artifacts from data. Lastly, the reviewed studies provide insight into the significance of cerebral oxygenation to endurance performance and the role of the prefrontal cortex in pacing behavior. Therefore, future research that better follows the guidelines presented will help advance our understanding of the role of the brain in endurance performance and aid in the development of techniques to improve or maintain prefrontal cortex (PFC) oxygenation to help bolster endurance performance.
Collapse
Affiliation(s)
- Robert Hyland-Monks
- Department of Sport and Physical Activity, 6249Edge Hill University, Ormskirk, UK
| | - David Marchant
- Department of Sport and Physical Activity, 6249Edge Hill University, Ormskirk, UK
| | - Lorcan Cronin
- Department of Sport and Physical Activity, 6249Edge Hill University, Ormskirk, UK
| |
Collapse
|
5
|
Lu Y, Yuan Z, Chen J, Wang Z, Liu Z, Wu Y, Zhan D, Zhao Q, Pei M, Xie M. A New Tool for Rapid Assessment of Acute Exercise-Induced Fatigue. Front Hum Neurosci 2022; 16:856432. [PMID: 35370582 PMCID: PMC8965889 DOI: 10.3389/fnhum.2022.856432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background There are limited sensitive evaluation methods to distinguish people's symptoms of peripheral fatigue and central fatigue simultaneously. The purpose of this study is to identify and evaluate them after acute exercise with a simple and practical scale. Methods The initial scale was built through a literature review, experts and athlete population survey, and a small sample pre-survey. Randomly selected 1,506 students were evaluated with the initial scale after exercise. Subjective fatigue self-assessments (SFSA) were completed at the same time. Results The Acute Exercise-Induced Fatigue Scale (AEIFS) was determined after performing a factor analysis. In the exploratory factor analysis, the cumulative variance contribution rate was 65.464%. The factor loadings of the total 8 questions were 0.661-0.816. In the confirmatory factor analysis, χ2/df = 2.529, GFI = 0.985, AGFI = 0.967, NFI = 0.982, IFI = 0.989, CFI = 0.989, and RMSEA = 0.048. The Cronbach's alpha coefficient for the scale was 0.872, and it was 0.833 for peripheral fatigue and 0.818 for central fatigue. The intra-class correlation coefficient for the scale was 0.536, and the intra-class correlation coefficients for peripheral fatigue and central fatigue were 0.421 and 0.548, respectively. The correlation coefficient between the total score of the AEIFS and the SFSA score was 0.592 (p < 0.01). Conclusion Our results demonstrate that the AEIFS can distinguish peripheral fatigue and central fatigue and can also reflect their correlation. This scale can be a useful evaluation tool not only for measuring fatigue after acute exercise but also for guiding reasonable exercise, choosing objective testing indicators, and preventing sports injuries resulting from acute exercise-induced fatigue.
Collapse
Affiliation(s)
- Yao Lu
- Department of Neurology, Medical Health Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Clinical Medicine, Capital Medical University, Beijing, China
| | - Ziyang Yuan
- Department of Clinical Medicine, Capital Medical University, Beijing, China
| | - Jiaping Chen
- Department of Neurology, Medical Health Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Clinical Medicine, Capital Medical University, Beijing, China
| | - Zeyi Wang
- Department of Neurology, Medical Health Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Clinical Medicine, Capital Medical University, Beijing, China
| | - Zhandong Liu
- Department of Neurology, Medical Health Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yanjue Wu
- Beijing Peirong Biotech Co., Ltd, Beijing, China
| | - Donglin Zhan
- Daxing No.1 Middle School Beijing, Beijing, China
| | - Qingbao Zhao
- Department of Physical Education, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Mofei Pei
- Baoding No.17 Middle School, Baoding, China
| | - Minhao Xie
- China Institute of Sports Medicine, Beijing, China
| |
Collapse
|
6
|
Aebi MR, Bourdillon N, Kunz A, Bron D, Millet GP. Specific effect of hypobaria on cerebrovascular hypercapnic responses in hypoxia. Physiol Rep 2021; 8:e14372. [PMID: 32097541 PMCID: PMC7058173 DOI: 10.14814/phy2.14372] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
It remains unknown whether hypobaria plays a role on cerebrovascular reactivity to CO2 (CVR). The present study evaluated the putative effect of hypobaria on CVR and its influence on cerebral oxygen delivery (cDO2) in five randomized conditions (i.e., normobaric normoxia, NN, altitude level of 440 m; hypobaric hypoxia, HH at altitude levels of 3,000 m and 5,500 m; normobaric hypoxia, NH, altitude simulation of 5,500 m; and hypobaric normoxia, HN). CVR was assessed in nine healthy participants (either students in aviation or pilots) during a hypercapnic test (i.e., 5% CO2). We obtained CVR by plotting middle cerebral artery velocity versus end‐tidal CO2 pressure (PETCO2) using a sigmoid model. Hypobaria induced an increased slope in HH (0.66 ± 0.33) compared to NH (0.35 ± 0.19) with a trend in HN (0.46 ± 0.12) compared to NN (0.23 ± 0.12, p = .069). PETCO2 was decreased (22.3 ± 2.4 vs. 34.5 ± 2.8 mmHg and 19.9 ± 1.3 vs. 30.8 ± 2.2 mmHg, for HN vs. NN and HH vs. NH, respectively, p < .05) in hypobaric conditions when compared to normobaric conditions with comparable inspired oxygen pressure (141 ± 1 vs. 133 ± 3 mmHg and 74 ± 1 vs. 70 ± 2 mmHg, for NN vs. HN and NH vs. HH, respectively) During hypercapnia, cDO2 was decreased in 5,500 m HH (p = .046), but maintained in NH when compared to NN. To conclude, CVR seems more sensitive (i.e., slope increase) in hypobaric than in normobaric conditions. Moreover, hypobaria potentially affected vasodilation reserve (i.e., MCAv autoregulation) and brain oxygen delivery during hypercapnia. These results are relevant for populations (i.e., aviation pilots; high‐altitude residents as miners; mountaineers) occasionally exposed to hypobaric normoxia.
Collapse
Affiliation(s)
- Mathias R Aebi
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.,Aeromedical Center (AeMC), Swiss Air Force, Dübendorf, Switzerland
| | - Nicolas Bourdillon
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.,Becare SA, Renens, Switzerland
| | - Andres Kunz
- Aeromedical Center (AeMC), Swiss Air Force, Dübendorf, Switzerland
| | - Denis Bron
- Aeromedical Center (AeMC), Swiss Air Force, Dübendorf, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Hansen RK, Nielsen PS, Schelske MW, Secher NH, Volianitis S. CO 2 supplementation dissociates cerebral oxygenation and middle cerebral artery blood velocity during maximal cycling. Scand J Med Sci Sports 2019; 30:399-407. [PMID: 31650627 DOI: 10.1111/sms.13582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/28/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022]
Abstract
This study evaluated whether the reduction of prefrontal cortex oxygenation (ScO2 ) during maximal exercise depends on the hyperventilation-induced hypocapnic attenuation of middle cerebral artery blood velocity (MCA Vmean ). Twelve endurance-trained males (age: 25 ± 3 years, height: 183 ± 8 cm, weight: 75 ± 9 kg; mean ± SD) performed in three separate laboratory visits, a maximal oxygen uptake (VO2 max) test, an isocapnic (end-tidal CO2 tension (PetCO2 ) clamped at 40 ± 1 mmHg), and an ambient air controlled-pace constant load high-intensity ergometer cycling to exhaustion, while MCA Vmean (transcranial Doppler ultrasound) and ScO2 (near-infrared spectroscopy) were determined. Duration of exercise (12 min 25 s ± 1 min 18 s) was matched by performing the isocapnic trial first. Pulmonary VO2 was 90 ± 6% versus 93 ± 5% of the maximal value (P = .012) and PetCO2 40 ± 1 versus 34 ± 4 mmHg (P < .05) during the isocapnic and control trials, respectively. During the isocapnic trial MCA Vmean increased by 16 ± 13% until clamping was applied and continued to increase (by 14 ± 28%; P = .017) until the end of exercise, while there was no significant change during the control trial (P = .071). In contrast, ScO2 decreased similarly in both trials (-3.2 ± 5.1% and -4.1 ± 9.6%; P < .001, isocapnic and control, respectively) at exhaustion. The reduction in prefrontal cortex oxygenation during maximal exercise does not depend solely on lowered cerebral blood flow as indicated by middle cerebral blood velocity.
Collapse
Affiliation(s)
- Rasmus K Hansen
- Sport Sciences, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Peter S Nielsen
- Sport Sciences, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Markus W Schelske
- Sport Sciences, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Niels H Secher
- Department of Anaesthesia, The Copenhagen Muscle Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Stefanos Volianitis
- Sport Sciences, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.,Department of Anaesthesia, The Copenhagen Muscle Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Fan JL, Bourdillon N, Meyer P, Kayser B. Oral Nitrate Supplementation Differentially Modulates Cerebral Artery Blood Velocity and Prefrontal Tissue Oxygenation During 15 km Time-Trial Cycling in Normoxia but Not in Hypoxia. Front Physiol 2018; 9:869. [PMID: 30061839 PMCID: PMC6054990 DOI: 10.3389/fphys.2018.00869] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/18/2018] [Indexed: 12/22/2022] Open
Abstract
Background: Nitrate is a precursor of nitric oxide (NO), an important regulator of cerebral perfusion in normoxic and hypoxic conditions. Nitrate supplementation could be used to improve cerebral perfusion and oxygenation during exercise in hypoxia. The effects of dietary nitrate supplementation on cerebral haemodynamics during exercise in severe hypoxia (arterial O2 saturation < 70%) have not been explored. Methods: In twelve trained male cyclists, we measured blood pressure (BP), middle cerebral artery blood velocity (MCAv), cerebrovascular resistance (CVR) and prefrontal oxyhaemoglobin and deoxyhaemoglobin concentration (O2Hb and HHb, respectively) during 15 km cycling time trials (TT) in normoxia and severe hypoxia (11% inspired O2, peripheral O2 saturation ∼66%) following 3-day oral supplementation with placebo or sodium nitrate (0.1 mmol/kg/day) in a randomised, double-blinded manner. We tested the hypothesis that dietary nitrate supplementation increases MCAv and cerebral O2Hb during TT in severe hypoxia. Results: During TT in normoxia, nitrate supplementation lowered MCAv by ∼2.3 cm/s and increased cerebral O2Hb by ∼6.8 μM and HHb by ∼2.1 μM compared to normoxia placebo (p ≤ 0.01 for all), while BP tended to be lowered (p = 0.06). During TT in severe hypoxia, nitrate supplementation elevated MCAv (by ∼2.5 cm/s) and BP (by ∼5 mmHg) compared to hypoxia placebo (p < 0.01 for both), while it had no effect on cerebral O2Hb (p = 0.98), HHb (p = 0.07) or PETCO2 (p = 0.12). Dietary nitrate had no effect of CVR during TT in normoxia or hypoxia (p = 0.19). Conclusion: Our findings indicate that during normoxic TT, the modulatory effect of dietary nitrate on regional and global cerebral perfusion is heterogeneous. Meanwhile, the lack of major changes in cerebral perfusion with dietary nitrate during hypoxic TT alludes to an exhausted cerebrovascular reserve.
Collapse
Affiliation(s)
- Jui-Lin Fan
- Wellington Medical Technology Group, Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand.,Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Nicolas Bourdillon
- Institute of Sports Sciences, University of Lausanne, Lausanne, Switzerland
| | - Philippe Meyer
- Cardiology Service, Geneva University Hospital, Geneva, Switzerland
| | - Bengt Kayser
- Institute of Sports Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Deb SK, Brown DR, Gough LA, Mclellan CP, Swinton PA, Andy Sparks S, Mcnaughton LR. Quantifying the effects of acute hypoxic exposure on exercise performance and capacity: A systematic review and meta-regression. Eur J Sport Sci 2017; 18:243-256. [PMID: 29220311 DOI: 10.1080/17461391.2017.1410233] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To quantify the effects of acute hypoxic exposure on exercise capacity and performance, which includes continuous and intermittent forms of exercise. DESIGN A systematic review was conducted with a three-level mixed effects meta-regression. The ratio of means method was used to evaluate main effects and moderators providing practical interpretations with percentage change. DATA SOURCES A systemic search was performed using three databases (Google scholar, PubMed and SPORTDiscus). Eligibility criteria for selecting studies: Inclusion was restricted to investigations that assessed exercise performance (time trials (TTs), sprint and intermittent exercise tests) and capacity (time to exhaustion test, TTE) with acute hypoxic (<24 h) exposure and a normoxic comparator. RESULTS Eighty-two outcomes from 53 studies (N = 798) were included in this review. The results show an overall reduction in exercise performance/capacity -17.8 ± 3.9% (95% CI -22.8% to -11.0%), which was significantly moderated by -6.5 ± 0.9% per 1000 m altitude elevation (95% CI -8.2% to -4.8%) and oxygen saturation (-2.0 ± 0.4%; 95% CI -2.9% to -1.2%). TT (-16.2 ± 4.3%; 95% CI -22.9% to -9%) and TTE (-44.5 ± 6.9%; 95% CI -51.3% to -36.7%) elicited a negative effect, whilst indicating a quadratic relationship between hypoxic magnitude and both TTE and TT performance. Furthermore, exercise less than 2 min exhibited no ergolytic effect from acute hypoxia. Summary/Conclusion: This review highlights the ergolytic effect of acute hypoxic exposure, which is curvilinear for TTE and TT performance with increasing hypoxic levels, but short duration intermittent and sprint exercise seem to be unaffected.
Collapse
Affiliation(s)
- Sanjoy K Deb
- a Sports Nutriton and Performance Research Group, Department of Sport and Physical Activity , Edge Hill University , Ormskirk , UK
| | - Daniel R Brown
- a Sports Nutriton and Performance Research Group, Department of Sport and Physical Activity , Edge Hill University , Ormskirk , UK
| | - Lewis A Gough
- a Sports Nutriton and Performance Research Group, Department of Sport and Physical Activity , Edge Hill University , Ormskirk , UK
| | | | - Paul A Swinton
- c School of Health Sciences , Robert Gordon University , Aberdeen , UK
| | - S Andy Sparks
- a Sports Nutriton and Performance Research Group, Department of Sport and Physical Activity , Edge Hill University , Ormskirk , UK
| | - Lars R Mcnaughton
- a Sports Nutriton and Performance Research Group, Department of Sport and Physical Activity , Edge Hill University , Ormskirk , UK.,d Department of Sport and Movement Studies, Faculty of Health Science , University of Johannesburg , Johannesburg , South Africa
| |
Collapse
|
10
|
Jubeau M, Rupp T, Temesi J, Perrey S, Wuyam B, Millet GY, Verges S. Neuromuscular Fatigue during Prolonged Exercise in Hypoxia. Med Sci Sports Exerc 2017; 49:430-439. [PMID: 27753741 DOI: 10.1249/mss.0000000000001118] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Prolonged cycling exercise performance in normoxia is limited because of both peripheral and central neuromuscular impairments. It has been reported that cerebral perturbations are greater during short-duration exercise in hypoxia compared with normoxia. The purpose of this study was to test the hypothesis that central deficits are accentuated in hypoxia compared with normoxia during prolonged (three bouts of 80 min separated by 25 min) whole-body exercise at the same relative intensity. METHODS Ten subjects performed two sessions consisting of three 80-min cycling bouts at 45% of their relative maximal aerobic power in normoxia and hypoxia (FiO2 = 0.12). Before exercise and after each bout, maximal voluntary force, voluntary activation assessed with nerve stimulation and transcranial magnetic stimulation, corticospinal excitability (motor evoked potential), intracortical inhibition (cortical silent period), and electrical (M-wave) and contractile (twitch and doublet peak forces) properties of the knee extensors were measured. Prefrontal and motor cortical oxygenation was also recorded during each cycling bout in both conditions. RESULTS A significant but similar force reduction (≈-22%) was observed at the end of exercise in normoxia and hypoxia. The modifications of voluntary activation assessed with transcranial magnetic stimulation and nerve stimulation, motor evoked potential, cortical silent period, and M-wave were also similar in both conditions. However, cerebral oxygenation was reduced in hypoxia compared with normoxia. CONCLUSION These findings show that when performed at the same relative low intensity, prolonged exercise does not induce greater supraspinal fatigue in hypoxia compared with normoxia. Despite lower absolute exercise intensities in hypoxia, reduced brain O2 availability might contribute to similar amounts of central fatigue compared with normoxia.
Collapse
Affiliation(s)
- Marc Jubeau
- 1Laboratory HP2, Grenoble Alpes University, Grenoble, FRANCE; 2INSERM U1042, Grenoble, FRANCE; 3Laboratory "Movement, Interactions, Performance" (EA 4334), Faculty of Sport Sciences, University of Nantes, Nantes, FRANCE; 4Inter-university Laboratory of Human Movement Biology, University Savoie Mont Blanc, Chambéry, FRANCE; 5Inter-university Laboratory of Human Movement Biology, University of Lyon, UJM-Saint-Etienne, Saint-Etienne, FRANCE; 6Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, CANADA; and 7EuroMov, University of Montpellier, FRANCE
| | | | | | | | | | | | | |
Collapse
|
11
|
Rupp T, Mallouf TLR, Perrey S, Wuyam B, Millet GY, Verges S. CO2 Clamping, Peripheral and Central Fatigue during Hypoxic Knee Extensions in Men. Med Sci Sports Exerc 2016; 47:2513-24. [PMID: 26110698 DOI: 10.1249/mss.0000000000000724] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION The central nervous system can play a critical role in limiting exercise performance during hypoxic conditions. Hypocapnia, which is associated with hypoxia-induced hyperventilation, may affect cerebral perfusion. We hypothesized that CO2 clamping during hypoxic isometric knee extensions would improve cerebral oxygenation and reduce central fatigue. METHODS Fifteen healthy men (mean ± SD: age, 25 ± 8 yr; body mass, 72 ± 11 kg; height, 179 ± 7 cm) performed intermittent isometric knee extensions at ∼50% of maximal voluntary contraction to task failure in normoxia, hypoxia with CO2 clamping (arterial O2 saturation, 80% ± 2%; end-tidal CO2 partial pressure, 40 ± 2 mm Hg), and hypoxia without CO2 clamping (arterial O2 saturation, 80% ± 3%). Transcranial magnetic stimulation and femoral nerve electrical stimulation were used to assess central and peripheral determinants of fatigue. Prefrontal cortex and quadriceps femoris oxygenation were monitored by multichannel near-infrared spectroscopy. RESULTS Exercise duration was reduced to a similar extent in hypoxia with CO2 clamping (997 ± 460 s) or hypoxia without CO2 clamping (929 ± 412 s) compared to normoxia (1473 ± 876 s; P < 0.001). Prefrontal cortex and quadriceps oxygenation were increased (+5.3 ± 8.6 and +2.6 ± 3.0 μmol·cm at task failure, respectively; P < 0.01) during hypoxia with CO2 clamping compared to hypoxia without CO2 clamping. Transcranial magnetic stimulation maximal voluntary activation decreased to a greater extent at task failure in hypoxia without CO2 clamping (-18% ± 8%) compared to hypoxia with CO2 clamping (-9% ± 9%; P < 0.01) and normoxia (-10% ± 7%; P < 0.05). Conversely, exercise-induced peripheral fatigue was larger in hypoxia with CO2 clamping than in hypoxia without CO2 clamping (e.g., Db10-to-Db100 ratio of 0.54 ± 0.12 and 0.63 ± 0.11 at task failure, respectively; P < 0.05). CONCLUSION The results demonstrate that CO2 clamping can alter central and peripheral mechanisms that contribute to neuromuscular fatigue during hypoxic isometric knee extensions in men. Hypocapnia impairs cerebral oxygenation and central drive but exerts a protective effect against fatigability in muscles.
Collapse
Affiliation(s)
- Thomas Rupp
- 1HP2 Laboratory, Université Grenoble Alpes, Grenoble, FRANCE; 2U1042, INSERM, Grenoble, FRANCE; 3Laboratoire de Physiologie de l'Exercice, Université Savoie Mont Blanc, Chambéry, FRANCE; 4Movement To Health, Montpellier-I University, Euromov, Montpellier, FRANCE; 5Université de Lyon, Saint-Etienne, FRANCE; and 6Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, CANADA
| | | | | | | | | | | |
Collapse
|
12
|
Volianitis S, Secher NH. Cardiovascular control during whole body exercise. J Appl Physiol (1985) 2016; 121:376-90. [PMID: 27311439 PMCID: PMC5007320 DOI: 10.1152/japplphysiol.00674.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 06/10/2016] [Indexed: 12/25/2022] Open
Abstract
It has been considered whether during whole body exercise the increase in cardiac output is large enough to support skeletal muscle blood flow. This review addresses four lines of evidence for a flow limitation to skeletal muscles during whole body exercise. First, even though during exercise the blood flow achieved by the arms is lower than that achieved by the legs (∼160 vs. ∼385 ml·min(-1)·100 g(-1)), the muscle mass that can be perfused with such flow is limited by the capacity to increase cardiac output (42 l/min, highest recorded value). Secondly, activation of the exercise pressor reflex during fatiguing work with one muscle group limits flow to other muscle groups. Another line of evidence comes from evaluation of regional blood flow during exercise where there is a discrepancy between flow to a muscle group when it is working exclusively and when it works together with other muscles. Finally, regulation of peripheral resistance by sympathetic vasoconstriction in active muscles by the arterial baroreflex is critical for blood pressure regulation during exercise. Together, these findings indicate that during whole body exercise muscle blood flow is subordinate to the control of blood pressure.
Collapse
Affiliation(s)
- Stefanos Volianitis
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark; and
| | - Niels H Secher
- The Copenhagen Muscle Research Center, Department of Anesthesiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Fan JL, Kayser B. Fatigue and Exhaustion in Hypoxia: The Role of Cerebral Oxygenation. High Alt Med Biol 2016; 17:72-84. [DOI: 10.1089/ham.2016.0034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Jui-Lin Fan
- Centre for Translational Physiology, University of Otago, Wellington, New Zealand
- Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand
| | - Bengt Kayser
- Institute of Sports Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Farra SD, Kessler C, Duffin J, Wells GD, Jacobs I. Clamping end-tidal carbon dioxide during graded exercise with control of inspired oxygen. Respir Physiol Neurobiol 2016; 231:28-36. [PMID: 27236039 DOI: 10.1016/j.resp.2016.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 03/31/2016] [Accepted: 05/25/2016] [Indexed: 11/29/2022]
Abstract
Exercise- and hypoxia-induced hyperventilation decreases the partial pressure of end-tidal carbon dioxide (PETCO2), which in turn exerts many physiological effects. Several breathing circuits that control PETCO2 have been previously described, but their designs are not satisfactory for exercise studies where changes in inspired oxygen (FIO2) may be desired. This study is the first report of a breathing system that can maintain PETCO2 constant within a single session of graded submaximal exercise and graded hypoxia. Thirteen fit and healthy subjects completed two bouts of exercise consisting of three 3min stages on a cycle ergometer with increasing exercise intensity in normoxia (Part A; 142±14, 167±14, 192±14W) or with decreasing FIO2 at a constant exercise intensity (Part B; 21, 18, and 14%). One bout was a control (CON) where PETCO2 was not manipulated, while during the other bout the investigator clamped PETCO2 within 2mmHg (CO2Clamp) using sequential gas delivery (SGD). During the final 30s of each exercise stage during CO2Clamp, PETCO2 was successfully maintained in Part A (43±4, 44±4, 44±3mmHg; P=0.44) and Part B (45±3, 46±3, 45±3mmHg; P=0.68) despite the increases in ventilation due to exercise. These findings demonstrate that this SGD circuit can be used to maintain isocapania in exercising humans during progressively increasing exercise intensities and changing FIO2.
Collapse
Affiliation(s)
- Saro D Farra
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Canada
| | - Cathie Kessler
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Canada
| | - James Duffin
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Greg D Wells
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Canada
| | - Ira Jacobs
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Canada.
| |
Collapse
|
15
|
Exercise Intolerance in Heart Failure: Did We Forget the Brain? Can J Cardiol 2016; 32:475-84. [DOI: 10.1016/j.cjca.2015.12.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 01/15/2023] Open
|
16
|
Fan JL, Subudhi AW, Duffin J, Lovering AT, Roach RC, Kayser B. AltitudeOmics: Resetting of Cerebrovascular CO2 Reactivity Following Acclimatization to High Altitude. Front Physiol 2016; 6:394. [PMID: 26779030 PMCID: PMC4705915 DOI: 10.3389/fphys.2015.00394] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/03/2015] [Indexed: 12/25/2022] Open
Abstract
Previous studies reported enhanced cerebrovascular CO2 reactivity upon ascent to high altitude using linear models. However, there is evidence that this response may be sigmoidal in nature. Moreover, it was speculated that these changes at high altitude are mediated by alterations in acid-base buffering. Accordingly, we reanalyzed previously published data to assess middle cerebral blood flow velocity (MCAv) responses to modified rebreathing at sea level (SL), upon ascent (ALT1) and following 16 days of acclimatization (ALT16) to 5260 m in 21 lowlanders. Using sigmoid curve fitting of the MCAv responses to CO2, we found the amplitude (95 vs. 129%, SL vs. ALT1, 95% confidence intervals (CI) [77, 112], [111, 145], respectively, P = 0.024) and the slope of the sigmoid response (4.5 vs. 7.5%/mmHg, SL vs. ALT1, 95% CIs [3.1, 5.9], [6.0, 9.0], respectively, P = 0.026) to be enhanced at ALT1, which persisted with acclimatization at ALT16 (amplitude: 177, 95% CI [139, 215], P < 0.001; slope: 10.3%/mmHg, 95% CI [8.2, 12.5], P = 0.003) compared to SL. Meanwhile, the sigmoidal response midpoint was unchanged at ALT1 (SL: 36.5 mmHg; ALT1: 35.4 mmHg, 95% CIs [34.0, 39.0], [33.1, 37.7], respectively, P = 0.982), while it was reduced by ~7 mmHg at ALT16 (28.6 mmHg, 95% CI [26.4, 30.8], P = 0.001 vs. SL), indicating leftward shift of the cerebrovascular CO2 response to a lower arterial partial pressure of CO2 (PaCO2) following acclimatization to altitude. Sigmoid fitting revealed a leftward shift in the midpoint of the cerebrovascular response curve which could not be observed with linear fitting. These findings demonstrate that there is resetting of the cerebrovascular CO2 reactivity operating point to a lower PaCO2 following acclimatization to high altitude. This cerebrovascular resetting is likely the result of an altered acid-base buffer status resulting from prolonged exposure to the severe hypocapnia associated with ventilatory acclimatization to high altitude.
Collapse
Affiliation(s)
- Jui-Lin Fan
- Centre for Translational Physiology, University of OtagoWellington, New Zealand; Department of Surgery and Anaesthesia, University of OtagoWellington, New Zealand
| | - Andrew W Subudhi
- Department of Emergency Medicine, Altitude Research Center, University of Colorado DenverAurora, CO, USA; Department of Biology, University of Colorado Colorado SpringsColorado Springs, CO, USA
| | - James Duffin
- Department of Physiology, University of TorontoToronto, ON, Canada; Department of Anaesthesiology, University of TorontoToronto, ON, Canada; University Health NetworkToronto, ON, Canada
| | - Andrew T Lovering
- Department of Human Physiology, University of Oregon Eugene, Oregon, OR, USA
| | - Robert C Roach
- Department of Emergency Medicine, Altitude Research Center, University of Colorado DenverAurora, CO, USA; Department of Biology, University of Colorado Colorado SpringsColorado Springs, CO, USA
| | - Bengt Kayser
- Institute of Sports Sciences, Faculty of Biology and Medicine, University of LausanneLausanne, Switzerland; Department of Physiology, Faculty of Biology and Medicine, University of LausanneLausanne, Switzerland
| |
Collapse
|
17
|
|
18
|
Fan JL, Kayser B. Repeated pre-syncope from increased inspired CO2 in a background of severe hypoxia. High Alt Med Biol 2014; 15:70-7. [PMID: 24559484 DOI: 10.1089/ham.2013.1065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We describe a case of experimentally induced pre-syncope in a healthy young man when exposed to increased inspired CO2 in a background of hypoxia. Acute severe hypoxia (FIO2=0.10) was tolerated, but adding CO2 to the inspirate caused pre-syncope symptoms accompanied by hypotension and large reductions in both mean and diastolic middle cerebral artery velocity, while systolic flow velocity was maintained. The mismatch of cerebral perfusion pressure and vascular tone caused unique retrograde cerebral blood flow at the end of systole and a reduction in cerebral tissue oxygenation. We speculate that this occurrence of pre-syncope was due to hypoxia-induced inhibition of brain regions responsible for compensatory sympathetic activity to relative hypercapnia.
Collapse
Affiliation(s)
- Jui-Lin Fan
- 1 Faculty of Biology and Medicine, Institute of Sports Sciences, University of Lausanne , Lausanne, Switzerland
| | | |
Collapse
|