1
|
Zhong Z, Wang X, Tan B. Porous Organic Polymers for CO 2 Capture and Catalytic Conversion. Chemistry 2024:e202404089. [PMID: 39715715 DOI: 10.1002/chem.202404089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
Overuse of fossil fuels and anthropogenic activities have led to excessive emissions of carbon dioxide, leading to global warming, and measures to reduce atmospheric carbon dioxide concentrations are needed to overcome this global challenge. Therefore, exploring an environmentally friendly strategy for capturing airborne CO2 and converting it into high-value-added chemicals offers a promising pathway toward "carbon neutrality". In recent years, porous organic polymers have attracted much attention for carbon capture and the catalytic conversion of carbon dioxide because of their high specific surface area, high chemical stability, nanoscale porosity, and structural versatility, which make them easy to functionalize. In this review, we introduce the preparation methods for various POPs, the types of POPs adsorbed during carbon dioxide capture, and the progress in the use of POPs for the photocatalytic and chemicatalytic conversion of carbon dioxide, with a special discussion on the influence of adsorption type on the efficiency of catalytic conversion. Finally, we propose a prospective direction for the subsequent development of this field.
Collapse
Affiliation(s)
- Zicheng Zhong
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037#, Hongshan District, Wuhan, 430074, P. R. China
| | - Xiaoyan Wang
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037#, Hongshan District, Wuhan, 430074, P. R. China
| | - Bien Tan
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037#, Hongshan District, Wuhan, 430074, P. R. China
| |
Collapse
|
2
|
Li D, Yang T, Wang Q, Wang S, Sun Y, Liu R, Chen D. Effective strategy to improve nitrification inhibitor efficiency and minimize environmental risk with microenvironments created by ecofriendly biocomposites. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123056. [PMID: 39490018 DOI: 10.1016/j.jenvman.2024.123056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Over half the global population depends on food grown with synthetic nitrogen fertilizers, but much of this nitrogen is lost as nitrates, N2O and NH3, harming the environment and health and incurring substantial environmental costs. Practical technologies aimed at enhancing nitrogen efficiency to reduce these losses promised considerable societal benefits. Nitrification inhibitors (NIs) can help reduce these losses, but their effectiveness varies, often lasting only weeks or days, for the strategy to improve NIs efficiency reducing environmental pollution that are still poorly contrived. Therefore, this study developed a novel approach by ecofriendly alginate and polyphenols to create a microenvironment (SANMP), which increased NIs based on DMPP stability at temperatures between 70 and 125 °C (47%-77% increase), in compound fertilizers (1.4%-11% increase), and in soils with a wide pH range of 5.6-7.9 (21%-27% increase). Enhanced stability can significantly increase environmental benefits in agriculture. SANMP reduces N2O emissions by 89% relative to nitrogen fertilizer-only treatments and a further 26% decrease compared to traditional DMPP formulations. Analysis of the chemical structure of alginate-metal-polyphenol hybrid materials demonstrated that DMPP immobilization, achieved through pore filling, chelation, and electrostatic attraction, significantly reduced its degradation from high temperatures, pH fluctuations, environmental ions, and soil microbial activities. The novel microenvironment offers an effective solution to the problems of high cost and unstable inhibition efficiency of DMPP, thus improving its environmental and agricultural benefits. This technology promises to offer solutions for nutrient management strategies that are efficient, highly beneficial to the environment and cost-effective.
Collapse
Affiliation(s)
- Dongjia Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Ting Yang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Qi Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Saihong Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yingying Sun
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Rui Liu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China.
| | - Deli Chen
- School of Agriculture and Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
3
|
Sahoo A, Jaiswal S, Das S, Patra A. Imidazolium and Pyridinium-Based Ionic Porous Organic Polymers: Advances in Transformative Solutions for Oxoanion Sequestration and Non-Redox CO 2 Fixation. Chempluschem 2024; 89:e202400189. [PMID: 38963082 DOI: 10.1002/cplu.202400189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 07/05/2024]
Abstract
The rapid pace of industrialization has led to a multitude of detrimental environmental consequences, including water pollution and global warming. Consequently, there is an urgent need to devise appropriate materials to address these challenges. Ionic porous organic polymers (iPOPs) have emerged as promising materials for oxoanion sequestration and non-redox CO2 fixation. Notably, iPOPs offer hydrothermal stability, structural tunability, a charged framework, and readily available nucleophilic counteranions. This review explores the significance of pores and charged functionalities alongside design strategies outlined in existing literature, mainly focusing on the incorporation of pyridinium and imidazolium units into nitrogen-rich iPOPs for oxoanion sequestration and non-redox CO2 fixation. The present review also addresses the current challenges and future prospects, delineating the design and development of innovative iPOPs for water treatment and heterogeneous catalysis.
Collapse
Affiliation(s)
- Aniket Sahoo
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Madhya Pradesh, 462066, India
| | - Shilpi Jaiswal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Madhya Pradesh, 462066, India
| | - Subhadeep Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Madhya Pradesh, 462066, India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Madhya Pradesh, 462066, India
| |
Collapse
|
4
|
Fathalian F, Moghadamzadeh H, Hemmati A, Ghaemi A. Efficient CO 2 adsorption using chitosan, graphene oxide, and zinc oxide composite. Sci Rep 2024; 14:3186. [PMID: 38326382 PMCID: PMC10850217 DOI: 10.1038/s41598-024-53577-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/02/2024] [Indexed: 02/09/2024] Open
Abstract
This study was deeply focused on developing a novel CTS/GO/ZnO composite as an efficient adsorbent for CO2 adsorption process. To do so, design of experiment (DOE) was done based on RSM-BBD technique and according to the DOE runs, various CTS/GO/ZnO samples were synthesized with different GO loading (in the range of 0 wt% to 20 wt%) and different ZnO nanoparticle's loading (in the range of 0 wt% to 20 wt%). A volumetric adsorption setup was used to investigate the effect of temperature (in the range of 25-65 °C) and pressure (in the range of 1-9 bar) on the obtained samples CO2 uptake capability. A quadratic model was developed based on the RSM-BBD method to predict the CO2 adsorption capacity of the composite sample within design space. In addition, CO2 adsorption process optimization was conducted and the optimum values of the GO, ZnO, temperature, and pressure were obtained around 23.8 wt%, 18.2 wt%, 30.1 °C, and 8.6 bar, respectively, with the highest CO2 uptake capacity of 470.43 mg/g. Moreover, isotherm and kinetic modeling of the CO2 uptake process were conducted and the Freundlich model (R2 = 0.99) and fractional order model (R2 = 0.99) were obtained as the most appropriate isotherm and kinetic models, respectively. Also, thermodynamic analysis of the adsorption was done and the ∆H°, ∆S°, and ∆G° values were obtained around - 19.121 kJ/mol, - 0.032 kJ/mol K, and - 9.608 kJ/mol, respectively, indicating exothermic, spontaneously, and physically adsorption of the CO2 molecules on the CTS/GO/ZnO composite's surface. Finally, a renewability study was conducted and a minor loss in the CO2 adsorption efficiency of about 4.35% was obtained after ten cycles, demonstrating the resulting adsorbent has good performance and robustness for industrial CO2 capture purposes.
Collapse
Affiliation(s)
- Farnoush Fathalian
- Department of Chemical Engineering, Faculty of Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran
| | - Hamidreza Moghadamzadeh
- Department of Chemical Engineering, Faculty of Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran.
| | - Alireza Hemmati
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, (IUST), Tehran, Iran.
| | - Ahad Ghaemi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, (IUST), Tehran, Iran
| |
Collapse
|
5
|
Younis M, Ahmad S, Atiq A, Amjad Farooq M, Huang MH, Abbas M. Recent Progress in Azobenzene-Based Supramolecular Materials and Applications. CHEM REC 2023; 23:e202300126. [PMID: 37435961 DOI: 10.1002/tcr.202300126] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/31/2023] [Indexed: 07/13/2023]
Abstract
Azobenzene-containing small molecules and polymers are functional photoswitchable molecules to form supramolecular nanomaterials for various applications. Recently, supramolecular nanomaterials have received enormous attention in material science because of their simple bottom-up synthesis approach, understandable mechanisms and structural features, and batch-to-batch reproducibility. Azobenzene is a light-responsive functional moiety in the molecular design of small molecules and polymers and is used to switch the photophysical properties of supramolecular nanomaterials. Herein, we review the latest literature on supramolecular nano- and micro-materials formed from azobenzene-containing small molecules and polymers through the combinatorial effect of weak molecular interactions. Different classes including complex coacervates, host-guest systems, co-assembled, and self-assembled supramolecular materials, where azobenzene is an essential moiety in small molecules, and photophysical properties are discussed. Afterward, azobenzene-containing polymers-based supramolecular photoresponsive materials formed through the host-guest approach, polymerization-induced self-assembly, and post-polymerization assembly techniques are highlighted. In addition to this, the applications of photoswitchable supramolecular materials in pH sensing, and CO2 capture are presented. In the end, the conclusion and future perspective of azobenzene-based supramolecular materials for molecular assembly design, and applications are given.
Collapse
Affiliation(s)
- Muhammad Younis
- School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
| | - Sadia Ahmad
- School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
| | - Atia Atiq
- Division of Science and Technology, Department of Physics, University of Education, 54770, Lahore, Pakistan
| | - Muhammad Amjad Farooq
- Department of Polymer Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Mu-Hua Huang
- School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing, 100081, China
| | - Manzar Abbas
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
- Advanced Materials Chemistry Center (AMCC), Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
| |
Collapse
|
6
|
Danil de Namor AF, Al Hakawati N. Anion Complexation by an Azocalix[4]arene Derivative and the Scope of Its Fluoride Complex Salt to Capture CO 2 from the Air. Molecules 2023; 28:6029. [PMID: 37630281 PMCID: PMC10458297 DOI: 10.3390/molecules28166029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
A newly synthesized upper rim azocalix[4]arene, namely 5,11,17,23-tetra[(4-ethylacetoxyphenyl) (azo)]calix[4]arene, CA-AZ has been fully characterized, and its chromogenic and selective properties for anions are reported. Among univalent anions, the receptor is selective for the fluoride anion, and its mode of interaction in solution is discussed. The kinetics of the complexation process were found to be very fast as reflected in the immediate colour change observed with a naked eye resulting from the receptor-anion interaction. An emphasis is made about the relevance in selecting a solvent in which the formulation of the process is representative of the events taking place in the solution. The composition of the fluoride complex investigated using UV/VIS spectrophotometry, conductance measurements and titration calorimetry was 1:1, and the thermodynamics of complexation of anions and CA-AZ in DMSO were determined. The fluoride complex salt was isolated, and a detailed investigation was carried out to assess its ability to remove CO2 from the air. The recycling of the complex was easily achieved. Final conclusions are given.
Collapse
Affiliation(s)
- Angela F. Danil de Namor
- Laboratory of Thermochemistry, School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Nawal Al Hakawati
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Tripoli 1300, Lebanon;
| |
Collapse
|
7
|
Mousa AO, Chuang CH, Kuo SW, Mohamed MG. Strategic Design and Synthesis of Ferrocene Linked Porous Organic Frameworks toward Tunable CO 2 Capture and Energy Storage. Int J Mol Sci 2023; 24:12371. [PMID: 37569744 PMCID: PMC10419241 DOI: 10.3390/ijms241512371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
This work focuses on porous organic polymers (POPs), which have gained significant global attention for their potential in energy storage and carbon dioxide (CO2) capture. The study introduces the development of two novel porous organic polymers, namely FEC-Mel and FEC-PBDT POPs, constructed using a simple method based on the ferrocene unit (FEC) combined with melamine (Mel) and 6,6'-(1,4-phenylene)bis(1,3,5-triazine-2,4-diamine) (PBDT). The synthesis involved the condensation reaction between ferrocenecarboxaldehyde monomer (FEC-CHO) and the respective aryl amines. Several analytical methods were employed to investigate the physical characteristics, chemical structure, morphology, and potential applications of these porous materials. Through thermogravimetric analysis (TGA), it was observed that both FEC-Mel and FEC-PBDT POPs exhibited exceptional thermal stability. FEC-Mel POP displayed a higher surface area and porosity, measuring 556 m2 g-1 and 1.26 cm3 g-1, respectively. These FEC-POPs possess large surface areas, making them promising materials for applications such as supercapacitor (SC) electrodes and gas adsorption. With 82 F g-1 of specific capacitance at 0.5 A g-1, the FEC-PBDT POP electrode has exceptional electrochemical characteristics. In addition, the FEC-Mel POP showed remarkable CO2 absorption capabilities, with 1.34 and 1.75 mmol g-1 (determined at 298 and 273 K; respectively). The potential of the FEC-POPs created in this work for CO2 capacity and electrical testing are highlighted by these results.
Collapse
Affiliation(s)
- Aya Osama Mousa
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804201, Taiwan;
| | - Cheng-Hsin Chuang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804201, Taiwan;
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
8
|
Merukan Chola N, Gajera P, Kulkarni H, Kumar G, Parmar R, Nagarale RK, Sethia G. Sorption of Carbon Dioxide and Nitrogen on Porous Hyper-Cross-Linked Aromatic Polymers: Effect of Textural Properties, Composition, and Electrostatic Interactions. ACS OMEGA 2023; 8:24761-24772. [PMID: 37483180 PMCID: PMC10357451 DOI: 10.1021/acsomega.2c07553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/24/2023] [Indexed: 07/25/2023]
Abstract
Porous hyper-cross-linked aromatic polymers are one of the emerging classes of porous organic polymers with the potential for industrial application. Four different porous polymeric materials have been prepared using different precursors (indole, pyrene, carbazole, and naphthalene), and the composition and textural properties were analyzed. The materials were characterized in detail using different physicochemical techniques like scanning electron microscopy, transmission electron microscopy, nitrogen adsorption at 77 K, Fourier transform infrared spectroscopy, X-ray diffraction, etc. The effect of textural properties and nitrogen species on carbon dioxide and nitrogen adsorption capacities and selectivity was studied and discussed. The carbon dioxide and nitrogen adsorption capacities were measured using a volumetric gas adsorption system. The adsorption data were fitted into different adsorption models, and the ideal absorbed solution theory was used to calculate adsorption selectivity. Among the studied samples, POP-4 shows the highest carbon dioxide and nitrogen adsorption capacities. While POP-1 shows maximum CO2/N2 selectivity of 78.0 at 298 K and 1 bar pressure. It is observed that ultra-micropores, which are present in the prepared materials but not measured during conventional surface area measurement via nitrogen adsorption at 77 K, play a very important role in carbon dioxide adsorption capacity and determining the carbon dioxide selectivity over nitrogen. Surface nitrogen also increases the CO2 selectivity in the dual mode by increasing carbon dioxide adsorption via the acid-base interaction as well as by decreasing nitrogen adsorption due to N-N repulsion.
Collapse
Affiliation(s)
- Noufal Merukan Chola
- Membrane
Science and Separation Technology Division, Electro Membrane Processes
Laboratory, CSIR-Central Salt and Marine
Chemicals Research Institute, Bhavnagar 364002, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prayag Gajera
- Inorganic
Material and Catalysis Division, CSIR-Central
Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Harshal Kulkarni
- Inorganic
Material and Catalysis Division, CSIR-Central
Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gaurav Kumar
- Inorganic
Material and Catalysis Division, CSIR-Central
Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rahulbhai Parmar
- Inorganic
Material and Catalysis Division, CSIR-Central
Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajaram K. Nagarale
- Membrane
Science and Separation Technology Division, Electro Membrane Processes
Laboratory, CSIR-Central Salt and Marine
Chemicals Research Institute, Bhavnagar 364002, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Govind Sethia
- Inorganic
Material and Catalysis Division, CSIR-Central
Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
9
|
Buddhadasa M, Verougstraete B, Gomez-Rueda Y, Petitjean D, Denayer JF, Reniers F. A study of plasma−porous carbon−CO2 interactions: Ammonia plasma treatment and CO2 capture. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Combining Polymerization and Templating toward Hyper-Cross-Linked Poly(propargyl aldehyde)s and Poly(propargyl alcohol)s for Reversible H 2O and CO 2 Capture and Construction of Porous Chiral Networks. Polymers (Basel) 2023; 15:polym15030743. [PMID: 36772045 PMCID: PMC9919244 DOI: 10.3390/polym15030743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/18/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Two series of hyper-cross-linked microporous polyacetylene networks containing either -[CH=C(CH=O)]- or -[CH=C(CH2OH)]- monomeric units are reported. Networks are prepared by chain-growth copolymerization of acetal-protected propargyl aldehyde and acetal-protected propargyl alcohol with a 1,3,5-triethynylbenzene cross-linker followed by hydrolytic deprotection/detemplating. Deprotection not only liberates reactive CH=O and CH2OH groups in the networks but also modifies the texture of the networks towards higher microporosity and higher specific surface area. The final networks with CH=O and CH2OH groups attached directly to the polyene main chains of the networks have a specific surface area from 400 to 800 m2/g and contain functional groups in a high amount, up to 9.6 mmol/g. The CH=O and CH2OH groups in the networks serve as active centres for the reversible capture of CO2 and water vapour. The water vapour capture capacities of the networks (up to 445 mg/g at 297 K) are among the highest values reported for porous polymers, making these materials promising for cyclic water harvesting from the air. Covalent modification of the networks with (R)-(+)-3-aminopyrrolidine and (S)-(+)-2-methylbutyric acid enables the preparation of porous chiral networks and shows networks with CH=O and CH2OH groups as reactive supports suitable for the anchoring of various functional molecules.
Collapse
|
11
|
Šorm D, Bashta B, Blahut J, Císařová I, Dolejšová Sekerová L, Vyskočilová E, Sedláček J. Porous polymer networks cross-linked by novel copper Schiff base complex: From synthesis to catalytic activity. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2022.111772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Pasricha S, Chaudhary A, Srivastava A. Evolving Trends for C−C Bond Formation Using Functionalized Covalent Organic Frameworks as Heterogeneous Catalysts. ChemistrySelect 2022. [DOI: 10.1002/slct.202200576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sharda Pasricha
- Department of Chemistry Sri Venkateswara College University of Delhi India
| | - Ankita Chaudhary
- Department of Chemistry Maitreyi College, Bapu New Delhi 110021 India
| | - Abhay Srivastava
- Abhay Srivastava Material Research Centre Indian Institute of Science, Bangalore India
| |
Collapse
|
13
|
Bermeo M, Vega LF, Abu-Zahra MRM, Khaleel M. Critical assessment of the performance of next-generation carbon-based adsorbents for CO 2 capture focused on their structural properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151720. [PMID: 34861307 DOI: 10.1016/j.scitotenv.2021.151720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/27/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Carbon dioxide emissions and their sharply rising effect on global warming have encouraged research efforts to develop efficient technologies and materials for CO2 capture. Post-combustion CO2 capture by adsorption using solid materials is considered an attractive technology to achieve this goal. Templated materials, such as Zeolite Templated-Carbons and MOF-Derived Carbons, are considered as the next-generation carbon adsorbent materials, owing to their outstanding textural properties (high surface areas of ca. 4000 m2 g-1 and micropore volumes of ca. 1.7 cm3 g-1) and their versatility for surface functionalization. These materials have demonstrated remarkable CO2 adsorption capacities and CO2/N2 selectivities up to ca. 5 mmol g-1 and 100, respectively, at 298 K and 1 bar, and low isosteric heat of adsorption at zero coverage of ca. 12 kJ mol-1. Herein, a review of the advances in preparation of ZTCs and MDCs for CO2 capture is presented, followed by a critical analysis of the effects of textural properties and surface functionality on CO2 adsorption, including CO2 uptake, CO2/N2 selectivity, and isosteric heat of adsorption. This analysis led to the introduction of a Vmicrox N-content factor to evaluate the interplay between N-content and textural properties to maximize the CO2 uptake. Despite their promising performance in CO2 uptake, further testing using mixtures and impurities, and studies on adsorbent regeneration, and cyclic operation are desirable to demonstrate the stability of the MDCs and ZTCs for large scale processes. In addition, advances in scale-up syntheses and their economics are needed.
Collapse
Affiliation(s)
- Marie Bermeo
- Chemical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Lourdes F Vega
- Chemical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Mohammad R M Abu-Zahra
- Chemical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Maryam Khaleel
- Chemical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates.
| |
Collapse
|
14
|
Li Y, Shen Y, Niu Z, Tian J, Zhang D, Tang Z, Li W. Process analysis of temperature swing adsorption and temperature vacuum swing adsorption in VOCs recovery from activated carbon. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.01.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Liang W, Huang J, Xiao P, Singh R, Guo J, Dehdari L, Kevin Li G. Amine-immobilized HY zeolite for CO2 capture from hot flue gas. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Du J, Ouyang H, Tan B. Porous Organic Polymers for Catalytic Conversion of Carbon Dioxide. Chem Asian J 2021; 16:3833-3850. [PMID: 34605613 DOI: 10.1002/asia.202100991] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/01/2021] [Indexed: 01/07/2023]
Abstract
To overcome the challenges of global warming and environmental pollution, it is necessary to reduce the concentration of carbon dioxide (CO2 ) in the atmosphere, which is mainly accumulated in the air through the burning of fossil fuels. Therefore, the development of environmentally friendly strategies to capture carbon dioxide and convert it into value-added products offers a promising way forward for reducing carbon dioxide concentration in the atmosphere. In this context, POPs (porous organic polymers) have shown great potential as CO2 selective adsorbents due to their high specific surface area, chemical stability, nanoscale porosity and structural diversity, as well as POPs based heterogeneous catalysts for CO2 conversion. This review provides a concise account of preparation methods of various POPs, challenges and current development trends of POPs in photocatalytic CO2 reduction, electrocatalytic CO2 reduction and chemical CO2 conversion.
Collapse
Affiliation(s)
- Jing Du
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037#, Hongshan District, Wuhan, 430074, P. R. China
| | - Huang Ouyang
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037#, Hongshan District, Wuhan, 430074, P. R. China
| | - Bien Tan
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037#, Hongshan District, Wuhan, 430074, P. R. China
| |
Collapse
|
17
|
Poly (triphenylamine)-decorated UIO-66-NH2 mesoporous architectures with enhanced photocatalytic activity for CO2 reduction and H2 evolution. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Li Y, Liu J, Kong J, Qi N, Chen Z. Role of ultramicropores in the remarkable gas storage in hypercrosslinked polystyrene networks studied by positron annihilation. Phys Chem Chem Phys 2021; 23:13603-13611. [PMID: 34114590 DOI: 10.1039/d1cp01867a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this paper, hypercrosslinked polystyrene (HCLPS) networks were synthesized by radical bulk polymerization and Friedel-Crafts alkylation reactions using vinylbenzyl-co-divinylbenzene chloride (VBC-DVB) as the precursors. A series of HCLPS was prepared with varying content of DVB from 0 to 10% in the precursor. Both N2 adsorption and positron annihilation measurements reveal micropores in the HCLPS. Especially, the existence of ultramicropores with a size in the range of 0.63-0.7 nm is confirmed by positron lifetime measurements. With increasing DVB content from 0 to 10%, the number of ultramicropores shows a gradual increase. Both the H2 and CO2 adsorption capacity increase monotonously with the increase of the DVB content. With 10% DVB in the HCLPS, the H2 storage increases to 10.3 mmol g-1 (2.05 wt%) at 77 K and 1 bar and the CO2 capture reaches 2.81 mmol g-1 (12.4 wt%) at 273 K and 1 bar. The remarkable gas storage ability is ascribed to the existence of the ultramicropores, which result in a stronger affinity to the gas molecules. By using positrons as a new probe for the pores, our results provide convincing evidence of the role of ultramicropores in the gas adsorption performance in microporous organic polymers.
Collapse
Affiliation(s)
- Yilin Li
- Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan 430072, China.
| | - Junjie Liu
- Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan 430072, China.
| | - Jingjing Kong
- Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan 430072, China.
| | - Ning Qi
- Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan 430072, China.
| | - Zhiquan Chen
- Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
19
|
Wang Z, Chen H, Wang Y, Chen J, Arnould MA, Hu B, Popovs I, Mahurin SM, Dai S. Polymer-Grafted Porous Silica Nanoparticles with Enhanced CO 2 Permeability and Mechanical Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27411-27418. [PMID: 34096271 DOI: 10.1021/acsami.1c04342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Three different types of polymer ligands, poly(methyl methacrylate) (PMMA), poly(methyl methacrylate-random-poly(ethylene glycol)methyl ether methacrylate) (PMMA-r-PEGMEMA), and poly(ionic liquid)s (PIL), were grafted onto the surface of 15 nm solid and large hollow porous silica nanoparticles (average particle size ∼60 nm) by surface-initiated atom transfer radical polymerization (SI-ATRP) to demonstrate the enhanced carbon dioxide (CO2) permeability as well as mechanical properties. After characterizing the purified products, free-standing bulk films were fabricated by the solvent-casting method. The poly(ionic liquid) nanocomposite films exhibited a much higher carbon dioxide permeance than PMMA and PMMA-r-PEGMEMA systems with a similar silica content. Also, the hollow silica-mixed matrix membranes showed a significant enhancement in CO2 permeability compared to the 15 nm solid silica films because of the pore structure. Despite the transparency loss due to the scattering of larger particle sizes, the hollow silica particle brush films exhibited the same mechanical properties as the 15 nm solid silica-derived ones.
Collapse
Affiliation(s)
- Zongyu Wang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Hao Chen
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Yangyang Wang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jihua Chen
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Mark A Arnould
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Bin Hu
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ilja Popovs
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Shannon M Mahurin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
20
|
Wessely ID, Schade AM, Dey S, Bhunia A, Nuhnen A, Janiak C, Bräse S. Covalent Triazine Frameworks Based on the First Pseudo-Octahedral Hexanitrile Monomer via Nitrile Trimerization: Synthesis, Porosity, and CO 2 Gas Sorption Properties. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3214. [PMID: 34200941 PMCID: PMC8230500 DOI: 10.3390/ma14123214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022]
Abstract
Herein, we report the first synthesis of covalent triazine-based frameworks (CTFs) based on a hexanitrile monomer, namely the novel pseudo-octahedral hexanitrile 1,4-bis(tris(4'-cyano-phenyl)methyl)benzene 1 using both ionothermal reaction conditions with ZnCl2 at 400 °C and the milder reaction conditions with the strong Brønsted acid trifluoromethanesulfonic acid (TFMS) at room temperature. Additionally, the hexanitrile was combined with different di-, tri-, and tetranitriles as a second linker based on recent work of mixed-linker CTFs, which showed enhanced carbon dioxide captures. The obtained framework structures were characterized via infrared (IR) spectroscopy, elemental analysis, scanning electron microscopy (SEM), and gas sorption measurements. Nitrogen adsorption measurements were performed at 77 K to determine the Brunauer-Emmett-Teller (BET) surface areas range from 493 m2/g to 1728 m2/g (p/p0 = 0.01-0.05). As expected, the framework CTF-hex6 synthesized from 1 with ZnCl2 possesses the highest surface area for nitrogen adsorption. On the other hand, the mixed framework structure CTF-hex4 formed from the hexanitrile 1 and 1,3,5 tricyanobenzene (4) shows the highest uptake of carbon dioxide and methane of 76.4 cm3/g and 26.6 cm3/g, respectively, at 273 K.
Collapse
Affiliation(s)
- Isabelle D. Wessely
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany; (I.D.W.); (A.M.S.)
| | - Alexandra M. Schade
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany; (I.D.W.); (A.M.S.)
- Herbstreith & Fox GmbH & Co. KG Pektin-Fabriken, D-75305 Neuenbürg, Germany
| | - Subarna Dey
- Institute of Inorganic and Structural Chemistry, Heinrich-Heine-University Düsseldorf, D-40204 Düsseldorf, Germany; (S.D.); (A.N.); (C.J.)
| | - Asamanjoy Bhunia
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Jadavpur, Kolkata 700032, India;
| | - Alexander Nuhnen
- Institute of Inorganic and Structural Chemistry, Heinrich-Heine-University Düsseldorf, D-40204 Düsseldorf, Germany; (S.D.); (A.N.); (C.J.)
| | - Christoph Janiak
- Institute of Inorganic and Structural Chemistry, Heinrich-Heine-University Düsseldorf, D-40204 Düsseldorf, Germany; (S.D.); (A.N.); (C.J.)
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany; (I.D.W.); (A.M.S.)
- Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
21
|
Abid A, Razzaque S, Hussain I, Tan B. Eco-Friendly Phosphorus and Nitrogen-Rich Inorganic–Organic Hybrid Hypercross-linked Porous Polymers via a Low-Cost Strategy. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00385] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Amin Abid
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Huazhong University of Science and Technology (HUST), 1037, Luoyu Road, Wuhan, Hubei 430074, China
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Shumaila Razzaque
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Huazhong University of Science and Technology (HUST), 1037, Luoyu Road, Wuhan, Hubei 430074, China
| | - Irshad Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Science (LUMS), D.H.A., Lahore 54792, Pakistan
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Huazhong University of Science and Technology (HUST), 1037, Luoyu Road, Wuhan, Hubei 430074, China
| |
Collapse
|
22
|
Sattari A, Ramazani A, Aghahosseini H, Aroua MK. The application of polymer containing materials in CO2 capturing via absorption and adsorption methods. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Hašková A, Bashta B, Titlová Š, Brus J, Vagenknechtová A, Vyskočilová E, Sedláček J. Microporous Hyper-Cross-Linked Polymers with High and Tuneable Content of Pyridine Units: Synthesis and Application for Reversible Sorption of Water and Carbon Dioxide. Macromol Rapid Commun 2021; 42:e2100209. [PMID: 34050705 DOI: 10.1002/marc.202100209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Indexed: 11/11/2022]
Abstract
New hyper-cross-linked porous organic polymers (POPs) with a high content of pyridine segments (7.86 mmol pyridine g-1 ), and a micro/mesoporous texture are reported. The networks are achieved by the chain-growth homopolymerization of 2,6- and 3,5-diethynylpyridines. The pyridine segments form links interconnecting the polyacetylene main chains in these networks. The content of pyridine segments in the networks can be tuned by copolymerizing diethynylpyridines with 1,3-diethynylbenzene. The pyridine rings in the networks serve as base and hydrophilic centers for the sorption of CO2 and water. The homopolymer pyridine networks are highly efficient in the low-pressure adsorption/desorption of CO2 . This sorption mode is promising for the postcombustion removal of CO2 from the fuel gas. The poly(3,5-diethynylpyridine) network exhibits high efficiency in capturing and releasing water vapor (determined capacity 376 mg g-1 at 298 K and relative humidity (RH) = 90% is one of the highest values reported for POPs) and is a promising material for the cyclic water harvesting from air. The reported networks are characterized by 13 C cross-polarization magic angle spinning NMR, thermogravimetric analysis, and N2 adsorption/desorption and their efficiency in CO2 and H2 O capturing is discussed in relation to the content and type of incorporated pyridine segments.
Collapse
Affiliation(s)
- Alena Hašková
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, 128 43, Czech Republic
| | - Bogdana Bashta
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, 128 43, Czech Republic
| | - Štěpánka Titlová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, 128 43, Czech Republic
| | - Jiří Brus
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, Prague 6, 162 06, Czech Republic
| | - Alice Vagenknechtová
- Department of Gaseous and Solid Fuels and Air Protection, University of Chemistry and Technology in Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Eliška Vyskočilová
- Department of Organic Technology, University of Chemistry and Technology in Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Jan Sedláček
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, 128 43, Czech Republic
| |
Collapse
|
24
|
James AM, Reynolds J, Reed DG, Styring P, Dawson R. A Pressure Swing Approach to Selective CO 2 Sequestration Using Functionalized Hypercrosslinked Polymers. MATERIALS 2021; 14:ma14071605. [PMID: 33806093 PMCID: PMC8036798 DOI: 10.3390/ma14071605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/17/2022]
Abstract
Functionalized hypercrosslinked polymers (HCPs) with surface areas between 213 and 1124 m2/g based on a range of monomers containing different chemical moieties were evaluated for CO2 capture using a pressure swing adsorption (PSA) methodology under humid conditions and elevated temperatures. The networks demonstrated rapid CO2 uptake reaching maximum uptakes in under 60 s. The most promising networks demonstrating the best selectivity and highest uptakes were applied to a pressure swing setup using simulated flue gas streams. The carbazole, triphenylmethanol and triphenylamine networks were found to be capable of converting a dilute CO2 stream (>20%) into a concentrated stream (>85%) after only two pressure swing cycles from 20 bar (adsorption) to 1 bar (desorption). This work demonstrates the ease with which readily synthesized functional porous materials can be successfully applied to a pressure swing methodology and used to separate CO2 from N2 from industrially applicable simulated gas streams under more realistic conditions.
Collapse
Affiliation(s)
- Alex M. James
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK; (A.M.J.); (J.R.)
| | - Jake Reynolds
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK; (A.M.J.); (J.R.)
| | - Daniel G. Reed
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3DJ, UK; (D.G.R.); (P.S.)
| | - Peter Styring
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3DJ, UK; (D.G.R.); (P.S.)
| | - Robert Dawson
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK; (A.M.J.); (J.R.)
- Correspondence: ; Tel.: +44-114-222-9357
| |
Collapse
|
25
|
Senthilkumaran M, Muthu Mareeswaran P. Porous polymers-based adsorbent materials for CO2 capture. NANOMATERIALS FOR CO2 CAPTURE, STORAGE, CONVERSION AND UTILIZATION 2021:31-52. [DOI: 10.1016/b978-0-12-822894-4.00010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
26
|
New Porous Silicon-Containing Organic Polymers: Synthesis and Carbon Dioxide Uptake. Processes (Basel) 2020. [DOI: 10.3390/pr8111488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The design and synthesis of new multifunctional organic porous polymers has attracted significant attention over the years due to their favorable properties, which make them suitable for carbon dioxide storage. In this study, 2-, 3-, and 4-hydroxybenzaldehyde reacted with phenyltrichlorosilane in the presence of a base, affording the corresponding organosilicons 1–3, which further reacted with benzidine in the presence of glacial acetic acid, yielding the organic polymers 4–6. The synthesized polymers exhibited microporous structures with a surface area of 8.174–18.012 m2 g−1, while their pore volume and total average pore diameter ranged from 0.015–0.035 cm3 g−1 and 1.947–1.952 nm, respectively. In addition, among the synthesized organic polymers, the one with the meta-arrangement structure 5 showed the highest carbon dioxide adsorption capacity at 323 K and 40 bar due to its relatively high surface area and pore volume.
Collapse
|
27
|
Chen Y, Luo R, Ren Q, Zhou X, Ji H. Click-Based Porous Ionic Polymers with Intercalated High-Density Metalloporphyrin for Sustainable CO2 Transformation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03766] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yaju Chen
- School of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Fine Chemical Industry Research Institute, School of Chemistry, Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510275, China
| | - Rongchang Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Qinggang Ren
- School of Materials Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xiantai Zhou
- Fine Chemical Industry Research Institute, School of Chemistry, Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510275, China
| | - Hongbing Ji
- School of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Fine Chemical Industry Research Institute, School of Chemistry, Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
28
|
Meconi GM, Zangi R. Adsorption-induced clustering of CO 2 on graphene. Phys Chem Chem Phys 2020; 22:21031-21041. [PMID: 32926038 DOI: 10.1039/d0cp03482g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Utilization of graphene-based materials for selective carbon dioxide capture has been demonstrated recently as a promising technological approach. In this study we report results from density functional theory calculations and molecular dynamics simulations on the adsorption of CO2, N2, and CH4 gases on a graphene sheet. We calculate adsorption isotherms of ternary and binary mixtures of these gases and reproduce the larger selectivity of CO2 to graphene relative to the other two gases. Furthermore it is shown that the confinement to two-dimensions, associated with adsorbing the CO2 gas molecules on the plane of graphene, increases their propensity to form clusters on the surface. Above a critical surface coverage (or partial pressure) of the gas, these CO2-CO2 interactions augment the effective adsorption energy to graphene, and, in part, contribute to the high selectivity of carbon dioxide with respect to nitrogen and methane. The origin of the attractive interaction between the CO2 molecules adsorbed on the surface is of electric quadrupole-quadrupole nature, in which the positively-charged carbon of one molecule interacts with the negatively-charged oxygen of another molecule. The energy of attraction of forming a CO2 dimer is predicted to be around 5-6 kJ mol-1, much higher than the corresponding values calculated for N2 and CH4. We also evaluated the adsorption energies of these gases to a graphene sheet and found that the attractions obtained using the classical force-fields might be over-exaggerated. Nevertheless, even when the magnitudes of these (classical force-field) graphene-gas interactions are scaled-down sufficiently, the tendency of CO2 molecules to cluster on the surface is still observed.
Collapse
Affiliation(s)
- Giulia Magi Meconi
- POLYMAT & Department of Applied Chemistry, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018, San Sebastian, Spain
| | | |
Collapse
|
29
|
Hypercrosslinked porous organic polymers based on tetraphenylanthraquinone for CO2 uptake and high-performance supercapacitor. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122857] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
30
|
Wang L, Zhang YS, Jiang HR, Wang H. Carbonyl-Incorporated Aromatic Hyper-Cross-Linked Polymers with Microporous Structure and Their Functional Materials for CO 2 Adsorption. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02165] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ling Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P.R. China
| | - Ying-shuang Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P.R. China
| | - Hong-ru Jiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P.R. China
| | - Hui Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P.R. China
| |
Collapse
|
31
|
Bashta B, Hašková A, Faukner T, Elsawy MA, Šorm D, Brus J, Sedláček J. Microporous hyper-cross-linked polyacetylene networks: Covalent structure and texture modification by reversible Schiff-base chemistry. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Hussain MW, Bhardwaj V, Giri A, Chande A, Patra A. Multifunctional ionic porous frameworks for CO 2 conversion and combating microbes. Chem Sci 2020; 11:7910-7920. [PMID: 34123075 PMCID: PMC8163429 DOI: 10.1039/d0sc01658f] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 07/01/2020] [Indexed: 01/14/2023] Open
Abstract
Porous organic frameworks (POFs) with a heteroatom rich ionic backbone have emerged as advanced materials for catalysis, molecular separation, and antimicrobial applications. The loading of metal ions further enhances Lewis acidity, augmenting the activity associated with such frameworks. Metal-loaded ionic POFs, however, often suffer from physicochemical instability, thereby limiting their scope for diverse applications. Herein, we report the fabrication of triaminoguanidinium-based ionic POFs through Schiff base condensation in a cost-effective and scalable manner. The resultant N-rich ionic frameworks facilitate selective CO2 uptake and afford high metal (Zn(ii): 47.2%) loading capacity. Owing to the ionic guanidinium core and ZnO infused mesoporous frameworks, Zn/POFs showed pronounced catalytic activity in the cycloaddition of CO2 and epoxides into cyclic organic carbonates under solvent-free conditions with high catalyst recyclability. The synergistic effect of infused ZnO and cationic triaminoguanidinium frameworks in Zn/POFs led to robust antibacterial (Gram-positive, Staphylococcus aureus and Gram-negative, Escherichia coli) and antiviral activity targeting HIV-1 and VSV-G enveloped lentiviral particles. We thus present triaminoguanidinium-based POFs and Zn/POFs as a new class of multifunctional materials for environmental remediation and biomedical applications.
Collapse
Affiliation(s)
- Md Waseem Hussain
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 Madhya Pradesh India
| | - Vipin Bhardwaj
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 Madhya Pradesh India
| | - Arkaprabha Giri
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 Madhya Pradesh India
| | - Ajit Chande
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 Madhya Pradesh India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 Madhya Pradesh India
| |
Collapse
|
33
|
Efficient and Tunable White‐Light Emission Using a Dispersible Porous Polymer. Macromol Rapid Commun 2020; 41:e2000176. [DOI: 10.1002/marc.202000176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/01/2020] [Indexed: 11/07/2022]
|
34
|
Politakos N, Barbarin I, Cordero-Lanzac T, Gonzalez A, Zangi R, Tomovska R. Reduced Graphene Oxide/Polymer Monolithic Materials for Selective CO 2 Capture. Polymers (Basel) 2020; 12:polym12040936. [PMID: 32316554 PMCID: PMC7240369 DOI: 10.3390/polym12040936] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 01/29/2023] Open
Abstract
Polymer composite materials with hierarchical porous structure have been advancing in many different application fields due to excellent physico-chemical properties. However, their synthesis continues to be a highly energy-demanding and environmentally unfriendly process. This work reports a unique water based synthesis of monolithic 3D reduced graphene oxide (rGO) composite structures reinforced with poly(methyl methacrylate) polymer nanoparticles functionalized with epoxy functional groups. The method is based on reduction-induced self-assembly process performed at mild conditions. The textural properties and the surface chemistry of the monoliths were varied by changing the reaction conditions and quantity of added polymer to the structure. Moreover, the incorporation of the polymer into the structures improves the solvent resistance of the composites due to the formation of crosslinks between the polymer and the rGO. The monolithic composites were evaluated for selective capture of CO2. A balance between the specific surface area and the level of functionalization was found to be critical for obtaining high CO2 capacity and CO2/N2 selectivity. The polymer quantity affects the textural properties, thus lowering its amount the specific surface area and the amount of functional groups are higher. This affects positively the capacity for CO2 capture, thus, the maximum achieved was in the range 3.56–3.85 mmol/g at 1 atm and 25 °C.
Collapse
Affiliation(s)
- Nikolaos Politakos
- POLYMAT and Departamento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta Center—Avda. Tolosa, 72, 20018 San Sebastian, Spain;
- Correspondence: (N.P.); (R.T.)
| | - Iranzu Barbarin
- POLYMAT and Departamento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta Center—Avda. Tolosa, 72, 20018 San Sebastian, Spain;
| | - Tomás Cordero-Lanzac
- Department of Chemical Engineering, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain;
| | - Alba Gonzalez
- POLYMAT, Department of Polymer Science and Technology, Faculty of Chemistry, University of the Basque Country, P.O. Box 1072, 20080 Donostia-San Sebastián, Spain;
| | - Ronen Zangi
- POLYMAT and Department of Organic Chemistry I, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta Center—Avda. Tolosa, 72, 20018 San Sebastian, Spain;
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Radmila Tomovska
- POLYMAT and Departamento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta Center—Avda. Tolosa, 72, 20018 San Sebastian, Spain;
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
- Correspondence: (N.P.); (R.T.)
| |
Collapse
|
35
|
Monterde C, Pintado-Sierra M, Navarro R, Sánchez F, Iglesias M. Effective Approach toward Conjugated Porous Organic Frameworks Based on Phenanthrene Building Blocks: Metal-Free Heterogeneous Photocatalysts. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15108-15114. [PMID: 32138517 DOI: 10.1021/acsami.9b22419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This paper reports a simple approach for the preparation of new photo-active conjugated porous polymers (CPPs) based on phenanthrene building blocks with a high Brunauer-Emmett-Teller (BET) surface area. Starting from 2,7-diiodophenanthrene-9,10-dione and its bis-dioxolane derivative with different alkynyl comonomers, we prepared a series of CPPs by C-C Sonogashira-Hagihara coupling activated by microwaves. Moreover, we demonstrated that these functionalized CPPs after hydrolysis to the corresponding diketones show much higher BET surface areas than those obtained directly from the phenanthrene-9,10-dione monomer. Reaction of diketone-hydrolyzed polymers with 2,4-difluoro-6-hydroxybenzaldehyde yields phenantroimidazole derivatives. Indeed, these structurally robust polymers result in efficient, recyclable, heterogeneous photo-organocatalysts for the aza-Henry reaction (C-H functionalization) induced by visible-light irradiation.
Collapse
Affiliation(s)
- Cristina Monterde
- Instituto de Ciencia de Materiales de Madrid, CSIC, C/ Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
- Instituto de Química Orgánica General, CSIC, C/ Juan de la Cierva, 3, Madrid 28006, Spain
- Escuela Internacional de Doctorado, C/ Bravo Murillo, 38, Madrid 28015, Spain
| | | | - Rodrigo Navarro
- Instituto de Ciencia y Tecnología de Polímeros, CSIC, C/ Juan de la Cierva, 3, Madrid 28006, Spain
| | - Félix Sánchez
- Instituto de Química Orgánica General, CSIC, C/ Juan de la Cierva, 3, Madrid 28006, Spain
| | - Marta Iglesias
- Instituto de Ciencia de Materiales de Madrid, CSIC, C/ Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| |
Collapse
|
36
|
Stepacheva AA, Markova ME, Manaenkov OV, Gavrilenko AV, Sidorov AI, Sulman MG, Kosivtsov YY, Matveeva VG, Sulman EM. Modification of the hypercrosslinked polystyrene surface. New approaches to the synthesis of polymer-stabilized catalysts. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2824-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
37
|
Non-Energy Valorization of Residual Biomasses via HTC: CO2 Capture onto Activated Hydrochars. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10051879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study aims to investigate the CO2 sorption capacity of hydrochar, obtained via hydrothermal carbonization (HTC). Silver fir sawdust was used as a model material. The batch runs went at 200 °C and up to 120 min. The hydrochar was activated with potassium hydroxide impregnation and subsequent thermal treatment (600 °C, 1 h). CO2 capture was assayed using a pressure swing adsorption (PSA) process. The morphology and porosity of hydrochar, characterized through Brunauer-Emmett-Teller, Barrett-Joyner-Halenda (BET-BJH) and scanning electron microscopy (SEM) analyses, were reported and the sorbent capacity was compared with traditional sorbents. The hydrochar recovered immediately after the warm-up of the HTC reactor had better performances. The Langmuir equilibrium isotherm fits the experimental data satisfactorily. Selectivity tests performed with a model biogas mixture indicated a possible use of hydrochar for sustainable upgrading of biogas to bio-methane. It is conceivably a new, feasible, and promising option for CO2 capture with low cost, environmentally friendly materials.
Collapse
|
38
|
Taylor D, Dalgarno SJ, Xu Z, Vilela F. Conjugated porous polymers: incredibly versatile materials with far-reaching applications. Chem Soc Rev 2020; 49:3981-4042. [DOI: 10.1039/c9cs00315k] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review discusses conjugated porous polymers and focuses on relating design principles and synthetic methods to key properties and applications such as (photo)catalysis, gas storage, chemical sensing, energy storage and environmental remediation.
Collapse
Affiliation(s)
- Dominic Taylor
- School of Engineering and Physical Science
- Heriot-Watt University
- Riccarton
- UK
| | - Scott J. Dalgarno
- School of Engineering and Physical Science
- Heriot-Watt University
- Riccarton
- UK
| | - Zhengtao Xu
- Department of Chemistry
- City University of Hong Kong
- Kowloon
- Hong Kong
| | - Filipe Vilela
- School of Engineering and Physical Science
- Heriot-Watt University
- Riccarton
- UK
| |
Collapse
|
39
|
Senthilkumaran M, Saravanan C, Eswaran L, Puthiaraj P, Mareeswaran PM. Selective Carbon Dioxide Capture Using Silica‐Supported Polyaminals. ChemistrySelect 2019. [DOI: 10.1002/slct.201901581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Chokalingam Saravanan
- Department of Industrial ChemistryAlagappa University, Karaikudi Tamilnadu India – 630 003
| | - Lakshmanan Eswaran
- Department of Industrial ChemistryAlagappa University, Karaikudi Tamilnadu India – 630 003
| | - Pillaiyar Puthiaraj
- Department of Chemistry and Chemical EngineeringInha University Incheon 402-751 South Korea
| | | |
Collapse
|
40
|
Kong X, Li S, Strømme M, Xu C. Synthesis of Porous Organic Polymers with Tunable Amine Loadings for CO 2 Capture: Balanced Physisorption and Chemisorption. NANOMATERIALS 2019; 9:nano9071020. [PMID: 31319470 PMCID: PMC6669882 DOI: 10.3390/nano9071020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 11/18/2022]
Abstract
The cross-coupling reaction of 1,3,5-triethynylbenzene with terephthaloyl chloride gives a novel ynone-linked porous organic polymer. Tethering alkyl amine species on the polymer induces chemisorption of CO2 as revealed by the studies of ex situ infrared spectroscopy. By tuning the amine loading content on the polymer, relatively high CO2 adsorption capacities, high CO2-over-N2 selectivity, and moderate isosteric heat (Qst) of adsorption of CO2 can be achieved. Such amine-modified polymers with balanced physisorption and chemisorption of CO2 are ideal sorbents for post-combustion capture of CO2 offering both high separation and high energy efficiencies.
Collapse
Affiliation(s)
- Xueying Kong
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211800, China
- Division of Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University, SE-75121 Uppsala, Sweden
| | - Shangsiying Li
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211800, China
| | - Maria Strømme
- Division of Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University, SE-75121 Uppsala, Sweden
| | - Chao Xu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211800, China.
- Division of Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University, SE-75121 Uppsala, Sweden.
| |
Collapse
|
41
|
Fabrication of ultramicroporous triphenylamine-based polyaminal networks for low-pressure carbon dioxide capture. J Colloid Interface Sci 2019; 548:265-274. [DOI: 10.1016/j.jcis.2019.04.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 11/22/2022]
|
42
|
|
43
|
Liu Y, Jia X, Liu J, Fan X, Zhang B, Zhang A, Zhang Q. Synthesis and evaluation of N, O‐doped hypercrosslinked polymers and their performance in CO
2
capture. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yin Liu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Department of Applied Chemistry, School of Nature and Applied ScienceNorthwestern Polytechnical University Xi'an 710072 China
| | - Xiangkun Jia
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Department of Applied Chemistry, School of Nature and Applied ScienceNorthwestern Polytechnical University Xi'an 710072 China
| | - Jin Liu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Department of Applied Chemistry, School of Nature and Applied ScienceNorthwestern Polytechnical University Xi'an 710072 China
| | - Xinlong Fan
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Department of Applied Chemistry, School of Nature and Applied ScienceNorthwestern Polytechnical University Xi'an 710072 China
| | - Baoliang Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Department of Applied Chemistry, School of Nature and Applied ScienceNorthwestern Polytechnical University Xi'an 710072 China
| | - Aibo Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Department of Applied Chemistry, School of Nature and Applied ScienceNorthwestern Polytechnical University Xi'an 710072 China
| | - Qiuyu Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Department of Applied Chemistry, School of Nature and Applied ScienceNorthwestern Polytechnical University Xi'an 710072 China
| |
Collapse
|
44
|
Siegelman RL, Milner PJ, Kim EJ, Weston SC, Long JR. Challenges and opportunities for adsorption-based CO 2 capture from natural gas combined cycle emissions. ENERGY & ENVIRONMENTAL SCIENCE 2019; 12:2161-2173. [PMID: 33312228 PMCID: PMC7731587 DOI: 10.1039/c9ee00505f] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In recent years, the power sector has shown a growing reliance on natural gas, a cleaner-burning fuel than coal that emits approximately half as much CO2 per kWh of energy produced. This rapid growth in the consumption of natural gas has led to increased CO2 emissions from gas-fired power plants. To limit the contribution of fossil fuel combustion to atmospheric CO2 levels, carbon capture and sequestration has been proposed as a potential emission mitigation strategy. However, despite extensive exploration of solid adsorbents for CO2 capture, few studies have examined the performance of adsorbents in post-combustion capture processes specific to natural gas flue emissions. In this perspective, we emphasize the importance of considering gas-fired power plants alongside coal-fired plants in future analyses of carbon capture materials. We address specific challenges and opportunities related to adsorptive carbon capture from the emissions of gas-fired plants and discuss several promising candidate materials. Finally, we suggest experiments to determine the viability of new CO2 capture materials for this separation. This broadening in the scope of current carbon capture research is urgently needed to accelerate the deployment of transformational carbon capture technologies.
Collapse
Affiliation(s)
- Rebecca L Siegelman
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Phillip J Milner
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Eugene J Kim
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Simon C Weston
- Corporate Strategic Research, ExxonMobil Research and Engineering Company, Annandale, NJ 08801, USA
| | - Jeffrey R Long
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
45
|
Synthesis of hyper-cross-linked microporous poly(phenylacetylene)s having aldehyde and other groups and their chemisorption and physisorption ability. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.02.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
46
|
Xu Y, Cui D, Zhang S, Xu G, Su Z. Facile synthesis of conjugated microporous polymer-based porphyrin units for adsorption of CO2 and organic vapors. Polym Chem 2019. [DOI: 10.1039/c8py01476k] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two porphyrin-based CMPs as multifunctional absorbents exhibit high CO2 selectivity over N2 and CH4 and good capacity for organic vapors.
Collapse
Affiliation(s)
- Yanhong Xu
- Institute of Functional Material Chemistry
- Local United Engineering Lab for Power Batteries
- Northeast Normal University
- Changchun
- People's Republic of China
| | - Di Cui
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun
- China
| | - Shuran Zhang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun
- China
| | - Guangjuan Xu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University)
- Ministry of Education
- Changchun
- China
| | - Zhongmin Su
- Institute of Functional Material Chemistry
- Local United Engineering Lab for Power Batteries
- Northeast Normal University
- Changchun
- People's Republic of China
| |
Collapse
|
47
|
Hou S, Razzaque S, Tan B. Effects of synthesis methodology on microporous organic hyper-cross-linked polymers with respect to structural porosity, gas uptake performance and fluorescence properties. Polym Chem 2019. [DOI: 10.1039/c8py01730a] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The structural characteristics of hyper-cross-linked polymers (HCPs) make them interesting for a wide variety of applications.
Collapse
Affiliation(s)
- Shuangshuang Hou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Material Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
| | - Shumaila Razzaque
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Material Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Material Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
| |
Collapse
|
48
|
James AM, Derry MJ, Train JS, Dawson R. Dispersible microporous diblock copolymer nanoparticles via polymerisation-induced self-assembly. Polym Chem 2019. [DOI: 10.1039/c9py00596j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dispersible microporous polymer nanoparticles formed via the RAFT-PISA polymerisation of divinylbenzene and fumaronitrile using a PEG macro-CTA.
Collapse
Affiliation(s)
- Alex M. James
- Department of Chemistry
- University of Sheffield
- Sheffield
- S3 7HF UK
| | - Matthew J. Derry
- Department of Chemistry
- University of Sheffield
- Sheffield
- S3 7HF UK
| | | | - Robert Dawson
- Department of Chemistry
- University of Sheffield
- Sheffield
- S3 7HF UK
| |
Collapse
|
49
|
Jahandar Lashaki M, Khiavi S, Sayari A. Stability of amine-functionalized CO 2 adsorbents: a multifaceted puzzle. Chem Soc Rev 2019; 48:3320-3405. [PMID: 31149678 DOI: 10.1039/c8cs00877a] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review focuses on important stability issues facing amine-functionalized CO2 adsorbents, including amine-grafted and amine-impregnated silicas, zeolites, metal-organic frameworks and carbons. During the past couple of decades, major advances were achieved in understanding and improving the performance of such materials, particularly in terms of CO2 adsorptive properties such as adsorption capacity, selectivity and kinetics. Nonetheless, to pave the way toward commercialization of adsorption-based CO2 capture technologies, in addition to other attributes, adsorbent materials should be stable over many thousands of adsorption-desorption cycles. Adsorbent stability, which is of utmost importance as it determines adsorbent lifetime and operational costs of CO2 capture, is a multifaceted issue involving thermal, hydrothermal, and chemical stability. Here we discuss the impact of the adsorbent physical and chemical properties, the feed gas composition and characteristics, and the adsorption-desorption operational parameters on the long-term stability of amine-functionalized CO2 adsorbents. We also review important insights associated with the underlying deactivation pathways of the adsorbents upon exposure to high temperature, oxygen, dry CO2, sulfur-containing compounds, nitrogen oxides, oxygen and steam. Finally, specific recommendations are provided to address outstanding stability issues.
Collapse
Affiliation(s)
- Masoud Jahandar Lashaki
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.
| | | | | |
Collapse
|
50
|
Liu Y, Chen X, Jia X, Fan X, Zhang B, Zhang A, Zhang Q. Hydroxyl-Based Hyper-Cross-Linked Microporous Polymers and Their Excellent Performance for CO2 Capture. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b05004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yin Liu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Department of Applied Chemistry, School of Nature and Applied Science, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xin Chen
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Department of Applied Chemistry, School of Nature and Applied Science, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xiangkun Jia
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Department of Applied Chemistry, School of Nature and Applied Science, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xinlong Fan
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Department of Applied Chemistry, School of Nature and Applied Science, Northwestern Polytechnical University, Xi’an 710072, China
| | - Baoliang Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Department of Applied Chemistry, School of Nature and Applied Science, Northwestern Polytechnical University, Xi’an 710072, China
| | - Aibo Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Department of Applied Chemistry, School of Nature and Applied Science, Northwestern Polytechnical University, Xi’an 710072, China
| | - Qiuyu Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Department of Applied Chemistry, School of Nature and Applied Science, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|