1
|
Li Z, Jian C, Guo X, Tian L, Han K, Li Y, Zhang P, Kong D, Ren H, Jiaerdemulati A, Wang Z, Liu H, Huang C, Su W. Effects of different ratios of nitrogen base fertilizer to topdressing on soil nitrogen form and enzyme activity in sugar beet under shallow drip irrigation. PeerJ 2024; 12:e18219. [PMID: 39421416 PMCID: PMC11485128 DOI: 10.7717/peerj.18219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Sugar beets account for 30% of global sugar production each year, and their byproducts are an important source of bioethanol and animal feed. Sugar beet is an important cash crop in Inner Mongolia, China. To achieve high yields and sugar content, it is essential to supply nitrogen fertilizer in accordance with the growth characteristics of sugar beet, thereby enhancing the efficiency of nitrogen fertilizer utilization. A two-year experiment was carried out in the experimental field of the Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences. The impact of varying ratios of nitrogen-based fertilizer to topdressing on nitrate nitrogen and ammonium nitrogen levels in the 20-60 cm soil layer, as well as the activities of protease, urease, catalase, and sucrose in the 20-40 cm soil layer were investigated during the rapid leaf growth period and root and sugar growth period. Results indicated that different ratios of nitrogen-based fertilizer to topdressing significantly influenced the levels of nitrate nitrogen and ammonium nitrogen, and the activities of protease and urease in the 0-20 cm soil layer, with these effects diminishing as soil depth increased. The activities of catalase and sucrose were minimally impacted. Nitrogen was applied at 150 kg/ha during the growth period of sugar beet, according to the growth characteristics of sugar beet to maximize nitrogen utilization efficiency. Topdressing was completed with irrigation at the rapid growth stage. The nitrogen-based fertilizer to topdressing ratio of 6:4 resulted in optimal crop yield and sugar yield of sugar beet under shallow drip irrigation. Additionally, the activities of protease and urease in different soil treatments were significantly different, and the activities of protease and urease in the 0-40 cm soil layer were identified as useful soil physiological indicators for nitrogen utilization in sugar beet.
Collapse
Affiliation(s)
- Zhi Li
- Special Crops Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| | - Caiyuan Jian
- Special Crops Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| | - Xiaoxia Guo
- Special Crops Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| | - Lu Tian
- Special Crops Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| | - Kang Han
- Special Crops Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| | - Yinghao Li
- Special Crops Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| | - Peng Zhang
- Ulanqab Institute of Agriculture and Forestry Science, Jining, Inner Mongolia, China
| | - Dejuan Kong
- Ulanqab Institute of Agriculture and Forestry Science, Jining, Inner Mongolia, China
| | - Huimin Ren
- Special Crops Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| | - Alehesi Jiaerdemulati
- Xinjiang Ili Kazakh Autonomous Prefecture Agricultural Science Research Institute, Ili, Xinjiang, China
| | - Zhenzhen Wang
- Ulanqab Institute of Agriculture and Forestry Science, Jining, Inner Mongolia, China
| | - Huiyu Liu
- Ulanqab Institute of Agriculture and Forestry Science, Jining, Inner Mongolia, China
| | - Chunyan Huang
- Special Crops Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| | - Wenbin Su
- Special Crops Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| |
Collapse
|
2
|
Mayer S, Rolletschek H, Radchuk V, Wagner S, Ortleb S, Gündel A, Dehmer KJ, Gutjahr FT, Jakob PM, Borisjuk L. Metabolic imaging in living plants: A promising field for chemical exchange saturation transfer (CEST) MRI. SCIENCE ADVANCES 2024; 10:eadq4424. [PMID: 39292788 PMCID: PMC11409970 DOI: 10.1126/sciadv.adq4424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/15/2024] [Indexed: 09/20/2024]
Abstract
Magnetic resonance imaging (MRI) is a versatile technique in the biomedical field, but its application to the study of plant metabolism in vivo remains challenging because of magnetic susceptibility problems. In this study, we report the establishment of chemical exchange saturation transfer (CEST) for plant MRI. This method enables noninvasive access to the metabolism of sugars and amino acids in complex sink organs (seeds, fruits, taproots, and tubers) of major crops (maize, barley, pea, potato, sugar beet, and sugarcane). Because of its high signal detection sensitivity and low susceptibility to magnetic field inhomogeneities, CEST analyzes heterogeneous botanical samples inaccessible to conventional magnetic resonance spectroscopy. The approach provides unprecedented insight into the dynamics and distribution of sugars and amino acids in intact, living plant tissue. The method is validated by chemical shift imaging, infrared microscopy, chromatography, and mass spectrometry. CEST is a versatile and promising tool for studying plant metabolism in vivo, with many applications in plant science and crop improvement.
Collapse
Affiliation(s)
- Simon Mayer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
- Institute of Experimental Physics 5, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Hardy Rolletschek
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
| | - Volodymyr Radchuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
| | - Steffen Wagner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
| | - Stefan Ortleb
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
| | - Andre Gündel
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Klaus J. Dehmer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
| | - Fabian T. Gutjahr
- Institute of Experimental Physics 5, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Peter M. Jakob
- Institute of Experimental Physics 5, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ljudmilla Borisjuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
| |
Collapse
|
3
|
Liu Z, Shen C, Chen R, Fu Z, Deng X, Xi R. Combination of transcriptomic, biochemical, and physiological analyses reveals sugar metabolism in Camellia drupifera fruit at different developmental stages. FRONTIERS IN PLANT SCIENCE 2024; 15:1424284. [PMID: 39193210 PMCID: PMC11347353 DOI: 10.3389/fpls.2024.1424284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/05/2024] [Indexed: 08/29/2024]
Abstract
Camellia drupifera, a significant woody oil crop in southern China, produces oil from its fruit seeds. Understanding sugar metabolism enzyme regulation is crucial for sugar accumulation and oil synthesis in fruit organs. This study examines the dynamic changes in sugar metabolism across four developmental stages of C. drupifera fruits, from rapid fruit enlargement to oil conversion. We analyzed sugar content, enzyme activity, and transcriptomic data to identify key periods and mechanisms involved in sugar metabolism. Our findings indicate that photosynthetic products are rapidly transported from leaves to fruit organs after synthesis, with transport efficiency decreasing significantly after 48 hours. September was identified as a critical period for oil conversion, during which the highest sucrose levels and SuSy-II enzyme activity were detected in the kernels. A positive correlation was found between high expression of ten genes related to sugar metabolism enzymes and sugar transport proteins and sucrose content. Notably, the expression levels of c158337.graph_c0 (SPS), c166323.graph_c0 (SuSy), c159295.graph_c0 (SUC2-like), and c156402.graph_c0 (SUC2-like) significantly increased during the oil conversion phase.These findings provide a crucial theoretical foundation for elucidating the molecular mechanisms of sugar metabolism in C. drupifera fruits, offering insights that could enhance its economic yield.
Collapse
Affiliation(s)
- Zhen Liu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Chunhui Shen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Ruifan Chen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Zhiqiang Fu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xiaomei Deng
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Ruchun Xi
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Plunkert ML, Martínez-Gómez J, Madrigal Y, Hernández AI, Tribble CM. Tuber, or not tuber: Molecular and morphological basis of underground storage organ development. CURRENT OPINION IN PLANT BIOLOGY 2024; 80:102544. [PMID: 38759482 DOI: 10.1016/j.pbi.2024.102544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Underground storage organs occur in phylogenetically diverse plant taxa and arise from multiple tissue types including roots and stems. Thickening growth allows underground storage organs to accommodate carbohydrates and other nutrients and requires proliferation at various lateral meristems followed by cell expansion. The WOX-CLE module regulates thickening growth via the vascular cambium in several eudicot systems, but the molecular mechanisms of proliferation at other lateral meristems are not well understood. In potato, onion, and other systems, members of the phosphatidylethanolamine-binding protein (PEBP) gene family induce underground storage organ development in response to photoperiod cues. While molecular mechanisms of tuber development in potato are well understood, we lack detailed mechanistic knowledge for the extensive morphological and taxonomic diversity of underground storage organs in plants.
Collapse
Affiliation(s)
- Madison L Plunkert
- Department of Plant Biology, Michigan State University, East Lansing, USA; Plant Resilience Institute, Michigan State University, East Lansing, USA.
| | - Jesús Martínez-Gómez
- Department of Plant and Microbial Biology, University of California, Berkeley, USA
| | - Yesenia Madrigal
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | | | - Carrie M Tribble
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, USA
| |
Collapse
|
5
|
Reyer A, Bazihizina N, Jaślan J, Scherzer S, Schäfer N, Jaślan D, Becker D, Müller TD, Pommerrenig B, Neuhaus HE, Marten I, Hedrich R. Sugar beet PMT5a and STP13 carriers suitable for proton-driven plasma membrane sucrose and glucose import in taproots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2219-2232. [PMID: 38602250 DOI: 10.1111/tpj.16740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/26/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Sugar beet (Beta vulgaris) is the major sugar-producing crop in Europe and Northern America, as the taproot stores sucrose at a concentration of around 20%. Genome sequence analysis together with biochemical and electrophysiological approaches led to the identification and characterization of the TST sucrose transporter driving vacuolar sugar accumulation in the taproot. However, the sugar transporters mediating sucrose uptake across the plasma membrane of taproot parenchyma cells remained unknown. As with glucose, sucrose stimulation of taproot parenchyma cells caused inward proton fluxes and plasma membrane depolarization, indicating a sugar/proton symport mechanism. To decipher the nature of the corresponding proton-driven sugar transporters, we performed taproot transcriptomic profiling and identified the cold-induced PMT5a and STP13 transporters. When expressed in Xenopus laevis oocytes, BvPMT5a was characterized as a voltage- and H+-driven low-affinity glucose transporter, which does not transport sucrose. In contrast, BvSTP13 operated as a high-affinity H+/sugar symporter, transporting glucose better than sucrose, and being more cold-tolerant than BvPMT5a. Modeling of the BvSTP13 structure with bound mono- and disaccharides suggests plasticity of the binding cleft to accommodate the different saccharides. The identification of BvPMT5a and BvSTP13 as taproot sugar transporters could improve breeding of sugar beet to provide a sustainable energy crop.
Collapse
Affiliation(s)
- Antonella Reyer
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| | - Nadia Bazihizina
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
- Department of Agrifood Production and Environmental Sciences, Università degli Studi di Firenze, Florence, 50019, Sesto Fiorentino, Italy
| | - Justyna Jaślan
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| | - Sönke Scherzer
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| | - Nadine Schäfer
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| | - Dawid Jaślan
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilians-Universität, 80336, Munich, Germany
| | - Dirk Becker
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| | - Thomas D Müller
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| | - Benjamin Pommerrenig
- Plant Physiology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, 06484, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Irene Marten
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| | - Rainer Hedrich
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| |
Collapse
|
6
|
Liu D, Tan W, Wang H, Li W, Fu J, Li J, Zhou Y, Lin M, Xing W. Genetic diversity and genome-wide association study of 13 agronomic traits in 977 Beta vulgaris L. germplasms. BMC Genomics 2023; 24:413. [PMID: 37488485 PMCID: PMC10364417 DOI: 10.1186/s12864-023-09522-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Sugar beet (Beta vulgaris L.) is an economically essential sugar crop worldwide. Its agronomic traits are highly diverse and phenotypically plastic, influencing taproot yield and quality. The National Beet Medium-term Gene Bank in China maintains more than 1700 beet germplasms with diverse countries of origin. However, it lacks detailed genetic background associated with morphological variability and diversity. RESULTS Here, a comprehensive genome-wide association study (GWAS) of 13 agronomic traits was conducted in a panel of 977 sugar beet accessions. Almost all phenotypic traits exhibited wide genetic diversity and high coefficient of variation (CV). A total of 170,750 high-quality single-nucleotide polymorphisms (SNPs) were obtained using the genotyping-by-sequencing (GBS). Neighbour-joining phylogenetic analysis, principal component analysis, population structure and kinship showed no obvious relationships among these genotypes based on subgroups or regional sources. GWAS was carried out using a mixed linear model, and 159 significant associations were detected for these traits. Within the 25 kb linkage disequilibrium decay of the associated markers, NRT1/PTR FAMILY 6.3 (BVRB_5g097760); nudix hydrolase 15 (BVRB_8g182070) and TRANSPORT INHIBITOR RESPONSE 1 (BVRB_8g181550); transcription factor MYB77 (BVRB_2g023500); and ethylene-responsive transcription factor ERF014 (BVRB_1g000090) were predicted to be strongly associated with the taproot traits of root groove depth (RGD); root shape (RS); crown size (CS); and flesh colour (FC), respectively. For the aboveground traits, UDP-glycosyltransferase 79B6 (BVRB_9g223780) and NAC domain-containing protein 7 (BVRB_5g097990); F-box protein At1g10780 (BVRB_6g140760); phosphate transporter PHO1 (BVRB_3g048660); F-box protein CPR1 (BVRB_8g181140); and transcription factor MYB77 (BVRB_2g023500) and alcohol acyltransferase 9 (BVRB_2g023460) might be associated with the hypocotyl colour (HC); plant type (PT); petiole length (PL); cotyledon size (C); and fascicled leaf type (FLT) of sugar beet, respectively. AP-2 complex subunit mu (BVRB_5g106130), trihelix transcription factor ASIL2 (BVRB_2g041790) and late embryogenesis abundant protein 18 (BVRB_5g106150) might be involved in pollen quantity (PQ) variation. The candidate genes extensively participated in hormone response, nitrogen and phosphorus transportation, secondary metabolism, fertilization and embryo maturation. CONCLUSIONS The genetic basis of agronomical traits is complicated in heterozygous diploid sugar beet. The putative valuable genes found in this study will help further elucidate the molecular mechanism of each phenotypic trait for beet breeding.
Collapse
Affiliation(s)
- Dali Liu
- National Beet Medium-term Gene Bank, Heilongjiang University, Harbin, 150080, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, P. R. China
| | - Wenbo Tan
- National Beet Medium-term Gene Bank, Heilongjiang University, Harbin, 150080, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, P. R. China
| | - Hao Wang
- National Beet Medium-term Gene Bank, Heilongjiang University, Harbin, 150080, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, P. R. China
| | - Wangsheng Li
- National Beet Medium-term Gene Bank, Heilongjiang University, Harbin, 150080, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, P. R. China
| | - Jingjing Fu
- National Beet Medium-term Gene Bank, Heilongjiang University, Harbin, 150080, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, P. R. China
| | - Jiajia Li
- National Beet Medium-term Gene Bank, Heilongjiang University, Harbin, 150080, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, P. R. China
| | - Yuanhang Zhou
- Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, P. R. China
| | - Ming Lin
- Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, P. R. China
| | - Wang Xing
- National Beet Medium-term Gene Bank, Heilongjiang University, Harbin, 150080, P. R. China.
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, P. R. China.
| |
Collapse
|
7
|
Advances in molecular interactions on the Rhizoctonia solani-sugar beet pathosystem. FUNGAL BIOL REV 2023. [DOI: 10.1016/j.fbr.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Pottier D, Roitsch T, Persson S. Cell wall regulation by carbon allocation and sugar signaling. Cell Surf 2023. [DOI: 10.1016/j.tcsw.2023.100096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
9
|
Wolfgang A, Temme N, Tilcher R, Berg G. Understanding the sugar beet holobiont for sustainable agriculture. Front Microbiol 2023; 14:1151052. [PMID: 37138624 PMCID: PMC10149816 DOI: 10.3389/fmicb.2023.1151052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
The importance of crop-associated microbiomes for the health and field performance of plants has been demonstrated in the last decades. Sugar beet is the most important source of sucrose in temperate climates, and-as a root crop-yield heavily depends on genetics as well as on the soil and rhizosphere microbiomes. Bacteria, fungi, and archaea are found in all organs and life stages of the plant, and research on sugar beet microbiomes contributed to our understanding of the plant microbiome in general, especially of microbiome-based control strategies against phytopathogens. Attempts to make sugar beet cultivation more sustainable are increasing, raising the interest in biocontrol of plant pathogens and pests, biofertilization and -stimulation as well as microbiome-assisted breeding. This review first summarizes already achieved results on sugar beet-associated microbiomes and their unique traits, correlating to their physical, chemical, and biological peculiarities. Temporal and spatial microbiome dynamics during sugar beet ontogenesis are discussed, emphasizing the rhizosphere formation and highlighting knowledge gaps. Secondly, potential or already tested biocontrol agents and application strategies are discussed, providing an overview of how microbiome-based sugar beet farming could be performed in the future. Thus, this review is intended as a reference and baseline for further sugar beet-microbiome research, aiming to promote investigations in rhizosphere modulation-based biocontrol options.
Collapse
Affiliation(s)
- Adrian Wolfgang
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Nora Temme
- KWS SAAT SE & Co. KGaA, Einbeck, Germany
| | | | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- Microbiome Biotechnology Department, Leibniz-Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- *Correspondence: Gabriele Berg
| |
Collapse
|
10
|
Jammer A, Akhtar SS, Amby DB, Pandey C, Mekureyaw MF, Bak F, Roth PM, Roitsch T. Enzyme activity profiling for physiological phenotyping within functional phenomics: plant growth and stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5170-5198. [PMID: 35675172 DOI: 10.1093/jxb/erac215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
High-throughput profiling of key enzyme activities of carbon, nitrogen, and antioxidant metabolism is emerging as a valuable approach to integrate cell physiological phenotyping into a holistic functional phenomics approach. However, the analyses of the large datasets generated by this method represent a bottleneck, often keeping researchers from exploiting the full potential of their studies. We address these limitations through the exemplary application of a set of data evaluation and visualization tools within a case study. This includes the introduction of multivariate statistical analyses that can easily be implemented in similar studies, allowing researchers to extract more valuable information to identify enzymatic biosignatures. Through a literature meta-analysis, we demonstrate how enzyme activity profiling has already provided functional information on the mechanisms regulating plant development and response mechanisms to abiotic stress and pathogen attack. The high robustness of the distinct enzymatic biosignatures observed during developmental processes and under stress conditions underpins the enormous potential of enzyme activity profiling for future applications in both basic and applied research. Enzyme activity profiling will complement molecular -omics approaches to contribute to the mechanistic understanding required to narrow the genotype-to-phenotype knowledge gap and to identify predictive biomarkers for plant breeding to develop climate-resilient crops.
Collapse
Affiliation(s)
- Alexandra Jammer
- Institute of Biology, University of Graz, NAWI Graz, Schubertstraße 51, 8010 Graz, Austria
| | - Saqib Saleem Akhtar
- Department of Plant and Environmental Sciences, Section of Crop Science, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Buchvaldt Amby
- Department of Plant and Environmental Sciences, Section of Crop Science, University of Copenhagen, Copenhagen, Denmark
| | - Chandana Pandey
- Department of Plant and Environmental Sciences, Section of Crop Science, University of Copenhagen, Copenhagen, Denmark
| | - Mengistu F Mekureyaw
- Department of Plant and Environmental Sciences, Section of Crop Science, University of Copenhagen, Copenhagen, Denmark
| | - Frederik Bak
- Department of Plant and Environmental Sciences, Section of Microbial Ecology and Biotechnology, University of Copenhagen, Copenhagen, Denmark
| | - Peter M Roth
- Institute for Computational Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
- International AI Future Lab, Technical University of Munich, Munich, Germany
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, Section of Crop Science, University of Copenhagen, Copenhagen, Denmark
- Department of Adaptive Biotechnologies, Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
11
|
De Rocchis V, Jammer A, Camehl I, Franken P, Roitsch T. Tomato growth promotion by the fungal endophytes Serendipita indica and Serendipita herbamans is associated with sucrose de-novo synthesis in roots and differential local and systemic effects on carbohydrate metabolisms and gene expression. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153755. [PMID: 35961165 DOI: 10.1016/j.jplph.2022.153755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 05/28/2023]
Abstract
Plant growth-promoting and stress resilience-inducing root endophytic fungi represent an additional carbohydrate sink. This study aims to test if such root endophytes affect the sugar metabolism of the host plant to divert the flow of resources for their purposes. Fresh and dry weights of roots and shoots of tomato (Solanum lycopersicum) colonised by the closely related Serendipita indica and Serendipita herbamans were recorded. Plant carbohydrate metabolism was analysed by measuring sugar levels, by determining activity signatures of key enzymes of carbohydrate metabolism, and by quantifying mRNA levels of genes involved in sugar transport and turnover. During the interaction with the tomato plants, both fungi promoted root growth and shifted shoot biomass from stem to leaf tissues, resulting in increased leaf size. A common effect induced by both fungi was the inhibition of phosphofructokinase (PFK) in roots and leaves. This glycolytic-pacing enzyme shows how the glycolysis rate is reduced in plants and, eventually, how sugars are allocated to different tissues. Sucrose phosphate synthase (SPS) activity was strongly induced in colonised roots. This was accompanied by increased SPS-A1 gene expression in S. herbamans-colonised roots and by increased sucrose amounts in roots colonised by S. indica. Other enzyme activities were barely affected by S. indica, but mainly induced in leaves of S. herbamans-colonised plants and decreased in roots. This study suggests that two closely related root endophytic fungi differentially influence plant carbohydrate metabolism locally and systemically, but both induce a similar increase in plant biomass. Notably, both fungal endophytes induce an increase in SPS activity and, in the case of S. indica, sucrose resynthesis in roots. In leaves of S. indica-colonised plants, SWEET11b expression was enhanced, thus we assume that excess sucrose was exported by this transporter to the roots. .
Collapse
Affiliation(s)
- Vincenzo De Rocchis
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Alexandra Jammer
- Institute of Biology, University of Graz, NAWI Graz, Schubertstraße 51, 8010, Graz, Austria
| | - Iris Camehl
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Philipp Franken
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Adaptive Biotechnologies, Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
12
|
García-Caparrós P, Vogelsang L, Persicke M, Wirtz M, Kumar V, Dietz KJ. Differential sensitivity of metabolic pathways in sugar beet roots to combined salt, heat, and light stress. PHYSIOLOGIA PLANTARUM 2022; 174:e13786. [PMID: 36169530 DOI: 10.1111/ppl.13786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 06/16/2023]
Abstract
Plants in nature commonly encounter combined stress scenarios. The response to combined stressors is often unpredictable from the response to single stresses. To address stress interference in roots, we applied salinity, heat, and high light to hydroponically grown sugar beet. Two main patterns of metabolomic acclimation were apparent. High salt of 300 mM NaCl considerably lowered metabolite amounts, for example, those of most amino acids, γ-amino butyric acid (GABA), and glucose. Very few metabolites revealed the opposite trend with increased contents at high salts, mostly organic acids such as citric acid and isocitric acid, but also tryptophan, tyrosine, and the compatible solute proline. High temperature (31°C vs. 21°C) also frequently lowered root metabolite pools. The individual effects of salinity and heat were superimposed under combined stress. Under high light and high salt conditions, there was a significant decline in root chloride, mannitol, ribulose 5-P, cysteine, and l-aspartate contents. The results reveal the complex interaction pattern of environmental parameters and urge researchers to elaborate in much more detail and width on combinatorial stress effects to bridge work under controlled growth conditions to growth in nature, and also to better understand acclimation to the consequences of climate change.
Collapse
Affiliation(s)
- Pedro García-Caparrós
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Lara Vogelsang
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | | | - Markus Wirtz
- Heidelberg University, Centre for Organismal Studies, Heidelberg, Germany
| | - Vijay Kumar
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- CeBiTec, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
13
|
Carluccio AV, David LC, Claußen J, Sulley M, Adeoti SR, Abdulsalam T, Gerth S, Zeeman SC, Gisel A, Stavolone L. Set up from the beginning: The origin and early development of cassava storage roots. PLANT, CELL & ENVIRONMENT 2022; 45:1779-1795. [PMID: 35229892 PMCID: PMC9314696 DOI: 10.1111/pce.14300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 05/19/2023]
Abstract
Despite the importance of storage root (SR) organs for cassava and the other root crops yield, their developmental origin is poorly understood. Here we use multiple approaches to shed light on the initial stages of root development demonstrating that SR and fibrous roots (FR) follow different rhizogenic processes. Transcriptome analysis carried out on roots collected before, during and after root bulking highlighted early and specific activation of a number of functions essential for root swelling and identified root-specific genes able to effectively discriminate emerging FR and SR. Starch and sugars start to accumulate at a higher rate in SR before they swell but only after parenchyma tissue has been produced. Finally, using non-destructive computed tomography measurements, we show that SR (but not FR) contain, since their emergence from the stem, an inner channel structure in continuity with the stem secondary xylem, indicating that SR derive from a distinct rhizogenic process compared with FR.
Collapse
Affiliation(s)
- Anna Vittoria Carluccio
- International Institute of Tropical AgricultureIbadanNigeria
- Institute for Sustainable Plant Protection, CNRBariItaly
| | - Laure C. David
- Department of BiologyInstitute of Molecular Plant Biology, ETH ZurichZurichSwitzerland
| | - Joelle Claußen
- Fraunhofer‐Institut für Integrierte Schaltungen IISFürthGermany
| | - Marco Sulley
- International Institute of Tropical AgricultureIbadanNigeria
| | | | | | - Stefan Gerth
- Fraunhofer‐Institut für Integrierte Schaltungen IISFürthGermany
| | - Samuel C. Zeeman
- Department of BiologyInstitute of Molecular Plant Biology, ETH ZurichZurichSwitzerland
| | - Andreas Gisel
- International Institute of Tropical AgricultureIbadanNigeria
- Institute for Biomedical Technologies, CNRBariItaly
| | - Livia Stavolone
- International Institute of Tropical AgricultureIbadanNigeria
- Institute for Sustainable Plant Protection, CNRBariItaly
| |
Collapse
|