2
|
Tauskela JS, Bourourou M, Blondeau N. Tackling issues in the path toward clinical translation in brain conditioning: Potential offered by nutraceuticals. Brain Circ 2017; 3:78-86. [PMID: 30276308 PMCID: PMC6126266 DOI: 10.4103/bc.bc_8_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 05/23/2017] [Accepted: 05/31/2017] [Indexed: 11/21/2022] Open
Abstract
Brief periods of ischemia have been shown in many experimental setups to provide tolerance against ischemia in multiple organs including the brain, when administered before (preconditioning) or even after (postconditioning) the normally lethal ischemia. In addition to these so-called ischemic conditionings, many pharmacological and natural agents (e.g., chemicals and nutraceuticals) can also act as potent pre- and post-conditioners. Deriving from the original concept of ischemic preconditioning, these various conditioning paradigms may be promising as clinical-stage therapies for prevention of ischemic-related injury, especially stroke. As no proven experimentally identified strategy has translated into clinical success, the experimental induction of neuroprotection using these various conditioning paradigms has raised several questions, even before considering translation to clinical studies in humans. The first aim of the review is to consider key questions on preclinical studies of pre- or post-conditioning modalities including those induced by chemical or nutraceuticals. Second, we make the argument that several key issues can be addressed by a novel concept, nutraceutical preconditioning. Specifically, α-linolenic acid (alpha-linolenic acid [ALA] an omega-3 polyunsaturated fatty acid), contained in plant-derived edible products, is essential in the daily diet, and a body of work has identified ALA as a pre- and post-conditioner of the brain. Nutritional intervention and functional food development are an emerging direction for preventing stroke damage, offering the potential to improving clinical outcomes through activation of the endogenous protective mechanisms known collectively as conditioning.
Collapse
Affiliation(s)
- Joseph S Tauskela
- Department of Translational Bioscience, Human Health Therapeutics, National Research Council Canada, Ottawa, Ontario, Canada K1A 0R6
| | - Miled Bourourou
- University of Côte d'Azur, Centre National de la Recherche Scientifique, IPMC, UMR7275 Sophia Antipolis, F-06560, France
| | - Nicolas Blondeau
- University of Côte d'Azur, Centre National de la Recherche Scientifique, IPMC, UMR7275 Sophia Antipolis, F-06560, France
| |
Collapse
|
4
|
Sun L, Li J, Zhou K, Zhang M, Yang J, Li Y, Ji B, Zhang Z, Zhu H, Yang L, He G, Gao L, Wei Z, Wang K, Han X, Liu W, Tan L, Yu Y, He L, Wan C. Metabolomic analysis reveals metabolic disturbance in the cortex and hippocampus of subchronic MK-801 treated rats. PLoS One 2013; 8:e60598. [PMID: 23577129 PMCID: PMC3618452 DOI: 10.1371/journal.pone.0060598] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 02/28/2013] [Indexed: 12/22/2022] Open
Abstract
Background Although a number of proteins and genes relevant to schizophrenia have been identified in recent years, few are known about the exact metabolic pathway involved in this disease. Our previous proteomic study has revealed the energy metabolism abnormality in subchronic MK-801 treated rat, a well-established animal model for schizophrenia. This prompted us to further investigate metabolite levels in the same rat model to better delineate the metabolism dysfunctions and provide insights into the pathology of schizophrenia. Methods Metabolomics, a high-throughput investigatory strategy developed in recent years, can offer comprehensive metabolite-level insights that complement protein and genetic findings. In this study, we employed a nondestructive metabolomic approach (1H-MAS-NMR) to investigate the metabolic traits in cortex and hippocampus of MK-801 treated rats. Multivariate statistics and ingenuity pathways analyses (IPA) were applied in data processing. The result was further integrated with our previous proteomic findings by IPA analysis to obtain a systematic view on our observations. Results Clear distinctions between the MK-801 treated group and the control group in both cortex and hippocampus were found by OPLS-DA models (with R2X = 0.441, Q2Y = 0.413 and R2X = 0.698, Q2Y = 0.677, respectively). The change of a series of metabolites accounted for the separation, such as glutamate, glutamine, citrate and succinate. Most of these metabolites fell in a pathway characterized by down-regulated glutamate synthesis and disturbed Krebs cycle. IPA analysis further confirmed the involvement of energy metabolism abnormality induced by MK-801 treatment. Conclusions Our metabolomics findings reveal systematic changes in pathways of glutamate metabolism and Krebs cycle in the MK-801 treated rats’ cortex and hippocampus, which confirmed and improved our previous proteomic observation and served as a valuable reference to the etiology research of schizophrenia.
Collapse
Affiliation(s)
- Liya Sun
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Institutes for Nutritional Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Juan Li
- East China Normal University, Department of Physics, Shanghai, People’s Republic of China
- CSIRO Animal, Food and Health Sciences, Queensland Bioscience Precinct, St. Lucia, Brisbane, Queensland, Australia
| | - Kejun Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Institutes for Nutritional Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Ming Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Institutes for Nutritional Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Jinglei Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Institutes for Nutritional Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Yang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Institutes for Nutritional Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Baohu Ji
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Institutes for Nutritional Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Zhao Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Institutes for Nutritional Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Hui Zhu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Institutes for Nutritional Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Lun Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Institutes for Nutritional Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Institutes for Nutritional Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Linghan Gao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Institutes for Nutritional Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Zhiyun Wei
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Institutes for Nutritional Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Kejian Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Institutes for Nutritional Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Xue Han
- Second Xiangya Hospital, Central South University, Institute of Mental Health, Changsha, People’s Republic of China
| | - Weiqing Liu
- Second Xiangya Hospital, Central South University, Institute of Mental Health, Changsha, People’s Republic of China
| | - Liwen Tan
- Second Xiangya Hospital, Central South University, Institute of Mental Health, Changsha, People’s Republic of China
| | - Yihua Yu
- East China Normal University, Department of Physics, Shanghai, People’s Republic of China
- * E-mail: (YY); (LH); (CW)
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Institutes for Nutritional Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
- * E-mail: (YY); (LH); (CW)
| | - Chunling Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Institutes for Nutritional Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
- * E-mail: (YY); (LH); (CW)
| |
Collapse
|
9
|
Sun Y, Deng X, Li W, Yan Y, Wei H, Jiang Y, He F. Liver proteome analysis of adaptive response in rat immediately after partial hepatectomy. Proteomics 2008; 7:4398-407. [PMID: 17979177 DOI: 10.1002/pmic.200600913] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The extraordinary ability of the liver to regenerate after resection continues to be an important fascination to mammalian liver researchers. However, at present, there are still several central questions regarding the process of liver regeneration that are not clear. In our study, we try to clarify how the liver is able to maintain its functions as well as to initiate liver regeneration after a significant loss of two-thirds. Here differentially expressed proteins in rat livers at 1 h after partial hepatectomy (PHx) and sham operation were analyzed using 2-DE combined with MALDI-TOF/TOF MS. After the analysis, 24 significantly changed spots (ratio> or =2, p<0.05) were identified. Those proteins are involved in important liver functions such as metabolism, detoxification, and inflammation. Based on the changes in the protein levels found in our data, we identified two aspects of remnant liver immediately after PHx, which focused on the hepatic adaptation and the inflammatory response associated with the initiation of liver regeneration after PHx. For the first time, the differential expression of pyruvate dehydrogenase complex (PDHX), paraoxonase 1 (PON1), thyroid hormone receptor beta, GAP43 (where GAP stands for growth-associated protein), and interleukin-2 (IL2), after PHx, were validated by Western blot.
Collapse
Affiliation(s)
- Yanwei Sun
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Meloni BP, Tilbrook PA, Boulos S, Arthur PG, Knuckey NW. Erythropoietin preconditioning in neuronal cultures: signaling, protection from in vitro ischemia, and proteomic analysis. J Neurosci Res 2006; 83:584-93. [PMID: 16435392 DOI: 10.1002/jnr.20755] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study we confirmed the presence of the erythropoietin (EPO) receptor on both cultured cortical neurons and PC12 cells and showed that EPO can induce changes in p38, ERK, and JNK signaling molecules in these cells. We induced EPO preconditioning in cortical neuronal cultures that protected neurons from a subsequent in vitro ischemic insult (transient oxygen-glucose deprivation). To investigate downstream changes in protein expression in EPO-preconditioned cortical neuronal cultures, we used two-dimensional gel electrophoresis. Overall, EPO preconditioning resulted in protein up-regulation, and, from 84 of the most differentially expressed proteins selected for identification, the proteins or tentative proteins were identified in 57 cases, representing 40 different proteins. Different protein spots representing the same or closely related protein(s) occurred for 13 of the identified proteins and are likely to represent posttranslational modifications or proteolytic fragments of the protein. Two proteins (78-kD glucose-regulated protein and tropomyosin, fibroblast isoform 1) were detected in control neuronal cultures, but not following EPO preconditioning treatment, whereas one protein (40S ribosomal protein SA) was detected only following EPO preconditioning. Most of the other proteins identified had not previously been associated with EPO preconditioning and will aid in the understanding of EPO's neuroprotective response and possibly the development of new therapeutic interventions to inhibit neuronal death in acute and chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- Bruno P Meloni
- Department of Neurosurgery/Sir Charles Gairdner Hospital, Centre for Neuromuscular and Neurological Disorders/The University of Western Australia, Perth, Western Australia, Australia.
| | | | | | | | | |
Collapse
|