1
|
Ohshima K, Hara E, Takimoto M, Bai Y, Hirata M, Zeng W, Uomoto S, Todoroki M, Kobayashi M, Kozono T, Kigata T, Shibutani M, Yoshida T. Peroxisome Proliferator Activator α Agonist Clofibrate Induces Pexophagy in Coconut Oil-Based High-Fat Diet-Fed Rats. BIOLOGY 2024; 13:1027. [PMID: 39765694 PMCID: PMC11673738 DOI: 10.3390/biology13121027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/03/2025]
Abstract
Peroxisomes are crucial for fatty acid β-oxidation in steatosis, but the role of pexophagy-the selective autophagy of peroxisomes-remains unclear. This study investigated the effects of the peroxisome proliferator-activated receptor-α (PPARα) agonist clofibrate on pexophagy in a coconut oil-based high-fat diet (HFD)-induced hepatocarcinogenesis model. Rats were divided into four groups: control, clofibrate, HFD, and HFD with clofibrate. The HFD induced steatosis, along with a 2.4-fold increase in pexophagy receptor NBR1-positive granules in hepatocytes. Clofibrate significantly inhibited HFD-induced steatosis, increasing p62-, LAMP2-, and Pex5-positive granules by 7.5-, 7.2-, and 71.4-fold, respectively, while decreasing NBR1 expression. The effects were associated with peroxisome proliferation and pexophagy in ultrastructural observations and increased levels of Lc3, p62, Pex2, Pex14, Acox1, and Scd1 in gene expression analysis. The results suggested that clofibrate effectively reduced steatosis through combined peroxisome proliferation and pexophagy, though it had a marginal impact on hepatocarcinogenesis in coconut oil-based HFD-fed rats. These findings highlight the utility of PPARα agonists in studying mammalian pexophagy.
Collapse
Affiliation(s)
- Kanami Ohshima
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan (M.S.)
| | - Emika Hara
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan (M.S.)
| | - Mio Takimoto
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan (M.S.)
| | - Yidan Bai
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan (M.S.)
| | - Mai Hirata
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan (M.S.)
| | - Wen Zeng
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan (M.S.)
| | - Suzuka Uomoto
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan (M.S.)
| | - Mai Todoroki
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan (M.S.)
- Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan
| | - Mio Kobayashi
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan (M.S.)
- Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan
| | - Takuma Kozono
- Smart-Core-Facility Promotion Organization, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan;
| | - Tetsuhito Kigata
- Laboratory of Veterinary Anatomy, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan;
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan (M.S.)
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan (M.S.)
| |
Collapse
|
2
|
Krupenko SA, Sharma J. Is ALDH1L1 Elevated in Lung Cancer? Comment on: Lee, S.-H.; et al. "The Combination of Loss of ALDH1L1 Function and Phenformin Treatment Decreases Tumor Growth in KRAS-Driven Lung Cancer" Cancers 2020, 12, 1382. Cancers (Basel) 2021; 13:cancers13071691. [PMID: 33918472 PMCID: PMC8038273 DOI: 10.3390/cancers13071691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
We read with interest the article by Lee et al [...].
Collapse
|
3
|
Loss of ALDH1L1 folate enzyme confers a selective metabolic advantage for tumor progression. Chem Biol Interact 2019; 302:149-155. [PMID: 30794800 DOI: 10.1016/j.cbi.2019.02.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/14/2019] [Indexed: 12/13/2022]
Abstract
ALDH1L1 (cytosolic 10-formyltetrahydrofolate dehydrogenase) is the enzyme in folate metabolism commonly downregulated in human cancers. One of the mechanisms of the enzyme downregulation is methylation of the promoter of the ALDH1L1 gene. Recent studies underscored ALDH1L1 as a candidate tumor suppressor and potential marker of aggressive cancers. In agreement with the ALDH1L1 loss in cancer, its re-expression leads to inhibition of proliferation and to apoptosis, but also affects migration and invasion of cancer cells through a specific folate-dependent mechanism involved in invasive phenotype. A growing body of literature evaluated the prognostic value of ALDH1L1 expression for cancer disease, the regulatory role of the enzyme in cellular proliferation, and associated metabolic and signaling cellular responses. Overall, there is a strong indication that the ALDH1L1 silencing provides metabolic advantage for tumor progression at a later stage when unlimited proliferation and enhanced motility become critical processes for the tumor expansion. Whether the ALDH1L1 loss is involved in tumor initiation is still an open question.
Collapse
|
4
|
Krupenko SA, Krupenko NI. ALDH1L1 and ALDH1L2 Folate Regulatory Enzymes in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1032:127-143. [PMID: 30362096 DOI: 10.1007/978-3-319-98788-0_10] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Epidemiological studies implicate excess ethanol ingestion as a risk factor for several cancers and support the concept of a synergistic effect of chronic alcohol consumption and folate deficiency on carcinogenesis. Alcohol consumption affects folate-related genes and enzymes including two major folate-metabolizing enzymes, ALDH1L1 and ALDH1L2. ALDH1L1 (cytosolic 10-formyltetrahydrofolate dehydrogenase) is a regulatory enzyme in folate metabolism that controls the overall flux of one-carbon groups in folate-dependent biosynthetic pathways. It is strongly and ubiquitously down-regulated in malignant tumors via promoter methylation, and recent studies underscored this enzyme as a candidate tumor suppressor and potential marker of aggressive cancers. A related enzyme, ALDH1L2, is the mitochondrial homolog of ALDH1L1 encoded by a separate gene. In contrast to its cytosolic counterpart, ALDH1L2 is expressed in malignant tumors and cancer cell lines and was implicated in metastasis regulation. This review discusses the link between folate and cancer, modifying effects of alcohol consumption on folate-associated carcinogenesis, and putative roles of ALDH1L1 and ALDH1L2 in this process.
Collapse
Affiliation(s)
- Sergey A Krupenko
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA. .,UNC Nutrition Research Institute, Chapel Hill, NC, USA.
| | - Natalia I Krupenko
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA.,UNC Nutrition Research Institute, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Chuppa S, Liang M, Liu P, Liu Y, Casati MC, Cowley AW, Patullo L, Kriegel AJ. MicroRNA-21 regulates peroxisome proliferator-activated receptor alpha, a molecular mechanism of cardiac pathology in Cardiorenal Syndrome Type 4. Kidney Int 2017; 93:375-389. [PMID: 28760335 DOI: 10.1016/j.kint.2017.05.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 04/27/2017] [Accepted: 05/04/2017] [Indexed: 12/30/2022]
Abstract
Cardiovascular events are the leading cause of death in patients with chronic kidney disease (CKD), although the pathological mechanisms are poorly understood. Here we longitudinally characterized left ventricle pathology in a 5/6 nephrectomy rat model of CKD and identify novel molecular mediators. Next-generation sequencing of left ventricle mRNA and microRNA (miRNA) was performed at physiologically distinct points in disease progression, identifying alterations in genes in numerous immune, lipid metabolism, and inflammatory pathways, as well as several miRNAs. MiRNA miR-21-5p was increased in our dataset and has been reported to regulate many identified pathways. Suppression of miR-21-5p protected rats with 5/6 nephrectomy from developing left ventricle hypertrophy and improved left ventricle function. Next-generation mRNA sequencing revealed that miR-21-5p suppression altered gene expression in peroxisome proliferator-activated receptor alpha (PPARα) regulated pathways in the left ventricle. PPARα, a miR-21-5p target, is the primary PPAR isoform in the heart, importantly involved in regulating fatty acid metabolism. Therapeutic delivery of low-dose PPARα agonist (clofibrate) to rats with 5/6 nephrectomy improved cardiac function and prevented left ventricle dilation. Thus, comprehensive characterization of left ventricle molecular changes highlights the involvement of numerous signaling pathways not previously explored in CKD models and identified PPARα as a potential therapeutic target for CKD-related cardiac dysfunction.
Collapse
Affiliation(s)
- Sandra Chuppa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Pengyuan Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Yong Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Marc C Casati
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Leah Patullo
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
6
|
Integrated physiology and systems biology of PPARα. Mol Metab 2014; 3:354-71. [PMID: 24944896 PMCID: PMC4060217 DOI: 10.1016/j.molmet.2014.02.002] [Citation(s) in RCA: 436] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 12/23/2022] Open
Abstract
The Peroxisome Proliferator Activated Receptor alpha (PPARα) is a transcription factor that plays a major role in metabolic regulation. This review addresses the functional role of PPARα in intermediary metabolism and provides a detailed overview of metabolic genes targeted by PPARα, with a focus on liver. A distinction is made between the impact of PPARα on metabolism upon physiological, pharmacological, and nutritional activation. Low and high throughput gene expression analyses have allowed the creation of a comprehensive map illustrating the role of PPARα as master regulator of lipid metabolism via regulation of numerous genes. The map puts PPARα at the center of a regulatory hub impacting fatty acid uptake, fatty acid activation, intracellular fatty acid binding, mitochondrial and peroxisomal fatty acid oxidation, ketogenesis, triglyceride turnover, lipid droplet biology, gluconeogenesis, and bile synthesis/secretion. In addition, PPARα governs the expression of several secreted proteins that exert local and endocrine functions.
Collapse
|
7
|
Profiling of hepatocellular carcinoma cell cycle regulating genes targeted by calycosin. BIOMED RESEARCH INTERNATIONAL 2013; 2013:317926. [PMID: 24455688 PMCID: PMC3884961 DOI: 10.1155/2013/317926] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/18/2013] [Accepted: 12/02/2013] [Indexed: 02/06/2023]
Abstract
We cocultured calycosin with human hepatocellular carcinoma cell line (BEL-7402) to investigate the effect on cell proliferation. Calycosin can markedly block the cell growth in G1 phase (P < 0.01) on the IC50 concentration. There were seventeen genes involved in cell-cycle regulation showing differentially expressed in treated cells detected by gene chip. Eight genes were upregulated and nine genes were downregulated. Downregulated TFDP-1, CDKN2D, and SPK2 and upregulated CDC2 and CCNB1 might affect cell cycle of tumor cells. Furthermore, we checked the transcription pattern using 2D gel method to find different expression of proteins in human hepatocellular carcinoma cells after exposure to calycosin. Fourteen proteins were identified by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). Twelve proteins expression were increased such as transgelin 2, pyridoxine 5′-phosphate, stress-induced-phosphoprotein 1, peroxiredoxin 1, endoplasmic reticulum protein 29, and phosphoglycerate mutase 1. Only thioredoxin peroxidase and high-mobility group box1 proteins' expression decreased. Both genes and proteins changes might be relate to the mechanism of antitumor effect under treatment of calycosin. In conclusion, calycosin has a potential effect to inhibit the BEL-7402 cell growth by inhibiting some oncogene expression and increasing anticancer genes expression, what is more, by blocking cell cycle.
Collapse
|
8
|
Lu Y, Boekschoten MV, Wopereis S, Müller M, Kersten S. Comparative transcriptomic and metabolomic analysis of fenofibrate and fish oil treatments in mice. Physiol Genomics 2011; 43:1307-18. [DOI: 10.1152/physiolgenomics.00100.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Elevated circulating triglycerides, which are considered a risk factor for cardiovascular disease, can be targeted by treatment with fenofibrate or fish oil. To gain insight into underlying mechanisms, we carried out a comparative transcriptomics and metabolomics analysis of the effect of 2 wk treatment with fenofibrate and fish oil in mice. Plasma triglycerides were significantly decreased by fenofibrate (−49.1%) and fish oil (−21.8%), whereas plasma cholesterol was increased by fenofibrate (+29.9%) and decreased by fish oil (−32.8%). Levels of various phospholipid species were specifically decreased by fish oil, while levels of Krebs cycle intermediates were increased specifically by fenofibrate. Plasma levels of many amino acids were altered by fenofibrate and to a lesser extent by fish oil. Both fenofibrate and fish oil upregulated genes involved in fatty acid metabolism and downregulated genes involved in blood coagulation and fibrinolysis. Significant overlap in gene regulation by fenofibrate and fish oil was observed, reflecting their property as high or low affinity agonist for peroxisome proliferator-activated receptor-α, respectively. Fenofibrate specifically downregulated genes involved in complement cascade and inflammatory response. Fish oil specifically downregulated genes involved in cholesterol and fatty acid biosynthesis and upregulated genes involved in amino acid and arachidonic acid metabolism. Taken together, the data indicate that despite being similarly potent toward modulating plasma free fatty acids, cholesterol, and triglyceride levels, fish oil causes modest changes in gene expression likely via activation of multiple mechanistic pathways, whereas fenofibrate causes pronounced gene expression changes via a single pathway, reflecting the key difference between nutritional and pharmacological intervention.
Collapse
Affiliation(s)
- Yingchang Lu
- Nutrition, Metabolism and Genomics group, Division of Human Nutrition, Wageningen University, Wageningen
- National Institute for Public Health and the Environment, Bilthoven
| | - Mark V. Boekschoten
- Nutrition, Metabolism and Genomics group, Division of Human Nutrition, Wageningen University, Wageningen
- The Netherlands Nutrigenomics Centre, TI Food and Nutrition, Wageningen; and
| | - Suzan Wopereis
- The Netherlands Nutrigenomics Centre, TI Food and Nutrition, Wageningen; and
- TNO Innovation for life, Earth, Environmental and Life Sciences, Zeist, the Netherlands
| | - Michael Müller
- Nutrition, Metabolism and Genomics group, Division of Human Nutrition, Wageningen University, Wageningen
- The Netherlands Nutrigenomics Centre, TI Food and Nutrition, Wageningen; and
| | - Sander Kersten
- Nutrition, Metabolism and Genomics group, Division of Human Nutrition, Wageningen University, Wageningen
- The Netherlands Nutrigenomics Centre, TI Food and Nutrition, Wageningen; and
| |
Collapse
|
9
|
Hwang PH, Lian L, Zavras AI. Alcohol intake and folate antagonism via CYP2E1 and ALDH1: effects on oral carcinogenesis. Med Hypotheses 2011; 78:197-202. [PMID: 22100631 DOI: 10.1016/j.mehy.2011.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 10/15/2011] [Accepted: 10/21/2011] [Indexed: 12/18/2022]
Abstract
The interaction of folate and alcohol consumption has been shown to have an antagonistic effect on the risk of oral cancer. Studies have demonstrated that increased intake of folate decreases the risk of oral cancer, while greater alcohol consumption has an opposite effect. However, what is poorly understood is the biological interaction of these two dietary factors in relation to carcinogenesis. We hypothesize that cytochrome P450 2E1 (CYP2E1) and the family of aldehyde dehydrogenase 1 (ALDH1) enzymes may play a causal role in the occurrence of oral cancer. Chronic and high alcohol use has been implicated in the induction of CYP2E1, which oxidizes ethanol to acetaldehyde. Acetaldehyde is a known carcinogen. As the first metabolite of ethanol, it has been shown to interfere with DNA methylation, synthesis and repair, as well as bind to protein and DNA to form stable adducts, which lead to the eventual formation of damaged DNA and cell proliferation. Studies using liver cells have demonstrated that S-adenosyl methionine (SAM), which is a product of folate metabolism, regulates the expression and catalytic activity of CYP2E1. Our first hypothesis is that as increased levels of folate lead to higher concentrations of SAM, SAM antagonizes the expression of CYP2E1, which results in decreased conversion of ethanol into acetaldehyde. Thus, the lower levels of acetaldehyde may lower risk of oral cancer. There are also two enzymes within the ALDH1 family that play an important role both in ethanol metabolism and the folate one-carbon pathway. The first, ALDH1A1, converts acetaldehyde into its non-carcinogenic byproduct, acetate, as part of the second step in the ethanol metabolism pathway. The second, ALDH1L1, also known as FDH, is required for DNA nucleotide biosynthesis, and is upregulated at high concentrations of folate. ALDH1L1 appears to be a chief regulator of cellular metabolism as it is strongly downregulated at certain physiological and pathological conditions, while its upregulation can produce drastic antiproliferative effects. ALDH1 has three known response elements that regulate gene expression (NF-Y, C/EBPβ, and RARα). Our second hypothesis is that folate interacts with one of these response elements to upregulate ALDH1A1 and ALDH1L1 expression in order to decrease acetaldehyde concentrations and promote DNA stability, thereby decreasing cancer susceptibility. Conducting future metabolic and biochemical human studies in order to understand this biological mechanism will serve to support evidence from epidemiologic studies, and ultimately promote the intake of folate to at-risk populations.
Collapse
Affiliation(s)
- Phillip H Hwang
- Division of Oral Epidemiology and Biostatistics, Columbia College of Dental Medicine, 622 West 168th Street, Suite PH17-306R, New York, NY 10032, USA
| | | | | |
Collapse
|
10
|
Oleinik NV, Krupenko NI, Krupenko SA. Epigenetic Silencing of ALDH1L1, a Metabolic Regulator of Cellular Proliferation, in Cancers. Genes Cancer 2011; 2:130-9. [PMID: 21779486 DOI: 10.1177/1947601911405841] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 02/17/2011] [Accepted: 02/27/2011] [Indexed: 12/11/2022] Open
Abstract
FDH (10-formyltetrahydrofolate dehydrogenase, the product of the ALDH1L1 gene), a major folate-metabolizing enzyme in the cytosol, is involved in the regulation of cellular proliferation. We have previously demonstrated that FDH is strongly and ubiquitously down-regulated in malignant human tumors and cancer cell lines. Here, we report that promoter methylation is a major mechanism controlling FDH levels in human cancers. A computational analysis has identified an extensive CpG island in the ALDH1L1 promoter region. It contains 96 CpG pairs and covers the region between -525 and +918 bp of the ALDH1L1 gene including the promoter, the entire exon 1, and a part of intron 1 immediately downstream of the exon. Bisulfite sequencing analysis revealed extensive methylation of the island (76%-95% of CpGs) in cancer cell lines. In agreement with these findings, treatment of FDH-deficient A549 cells with the methyltransferase inhibitor 5-aza-2'-deoxycytidine restored FDH expression. Analysis of the samples from patients with lung adenocarcinomas demonstrated methylation of the ALDH1L1 CpG island in tumor samples and a total lack of methylation in respective normal tissues. The same phenomenon was observed in liver tissues: the CpG island was methylation free in DNA extracted from normal hepatocytes but was extensively methylated in a hepatocellular carcinoma. Levels of ALDH1L1 mRNA and protein correlated with the methylation status of the island, with tumor samples demonstrating down-regulation of expression or even complete silencing of the gene. Our studies have also revealed that exon 1 significantly increases transcriptional activity of ALDH1L1 promoter in a luciferase reporter assay. Interestingly, the exon is extensively methylated in samples with a strongly down-regulated or silenced ALDH1L1 gene.
Collapse
Affiliation(s)
- Natalia V Oleinik
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | | | | |
Collapse
|
11
|
Alvergnas M, Rouleau A, Lucchi G, Heyd B, Ducoroy P, Richert L, Martin H. Proteomic mapping of bezafibrate-treated human hepatocytes in primary culture using two-dimensional liquid chromatography. Toxicol Lett 2011; 201:123-9. [DOI: 10.1016/j.toxlet.2010.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 12/17/2010] [Accepted: 12/21/2010] [Indexed: 10/25/2022]
|
12
|
Com E, Gruhler A, Courcol M, Gautier JC. Protocols of two-dimensional difference gel electrophoresis to investigate mechanisms of toxicity. Methods Mol Biol 2011; 691:187-203. [PMID: 20972754 DOI: 10.1007/978-1-60761-849-2_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
In recent years, several global omics technologies have been increasingly used to better understand the molecular mechanisms of drug toxicity. Two-dimensional difference gel electrophoresis (2D-DIGE) is a large-scale proteomics high-resolution gel-based quantitative method widely used to detect protein expression alterations after drug treatment. The 2D-DIGE technology is based on the labeling of proteins with different fluorescent dyes, allowing the separation of different samples on the same gel with the use of an internal standard, thus reducing the complexity of spot pattern comparison and providing a reliable method applied to toxicology studies for the detection of modulated proteins in targeted organs.
Collapse
Affiliation(s)
- Emmanuelle Com
- Disposition, Safety and Animal Research, sanofi-aventis R&D, Vitry-sur-Seine, France.
| | | | | | | |
Collapse
|
13
|
Banasik K, Justesen JM, Hornbak M, Krarup NT, Gjesing AP, Sandholt CH, Jensen TS, Grarup N, Andersson A, Jørgensen T, Witte DR, Sandbæk A, Lauritzen T, Thorens B, Brunak S, Sørensen TIA, Pedersen O, Hansen T. Bioinformatics-driven identification and examination of candidate genes for non-alcoholic fatty liver disease. PLoS One 2011; 6:e16542. [PMID: 21339799 PMCID: PMC3029374 DOI: 10.1371/journal.pone.0016542] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 01/04/2011] [Indexed: 02/07/2023] Open
Abstract
Objective Candidate genes for non-alcoholic fatty liver disease (NAFLD) identified by a bioinformatics approach were examined for variant associations to quantitative traits of NAFLD-related phenotypes. Research Design and Methods By integrating public database text mining, trans-organism protein-protein interaction transferal, and information on liver protein expression a protein-protein interaction network was constructed and from this a smaller isolated interactome was identified. Five genes from this interactome were selected for genetic analysis. Twenty-one tag single-nucleotide polymorphisms (SNPs) which captured all common variation in these genes were genotyped in 10,196 Danes, and analyzed for association with NAFLD-related quantitative traits, type 2 diabetes (T2D), central obesity, and WHO-defined metabolic syndrome (MetS). Results 273 genes were included in the protein-protein interaction analysis and EHHADH, ECHS1, HADHA, HADHB, and ACADL were selected for further examination. A total of 10 nominal statistical significant associations (P<0.05) to quantitative metabolic traits were identified. Also, the case-control study showed associations between variation in the five genes and T2D, central obesity, and MetS, respectively. Bonferroni adjustments for multiple testing negated all associations. Conclusions Using a bioinformatics approach we identified five candidate genes for NAFLD. However, we failed to provide evidence of associations with major effects between SNPs in these five genes and NAFLD-related quantitative traits, T2D, central obesity, and MetS.
Collapse
|
14
|
Goodwin RJA, Lang AM, Allingham H, Borén M, Pitt AR. Stopping the clock on proteomic degradation by heat treatment at the point of tissue excision. Proteomics 2010; 10:1751-61. [PMID: 20217868 DOI: 10.1002/pmic.200900641] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effectiveness of rapid and controlled heating of intact tissue to inactivate native enzymatic activity and prevent proteome degradation has been evaluated. Mouse brains were bisected immediately following excision, with one hemisphere being heat treated followed by snap freezing in liquid nitrogen while the other hemisphere was snap frozen immediately. Sections were cut by cryostatic microtome and analyzed by MALDI-MS imaging and minimal label 2-D DIGE, to monitor time-dependent relative changes in intensities of protein and peptide signals. Analysis by MALDI-MS imaging demonstrated that the relative intensities of markers varied across a time course (0-5 min) when the tissues were not stabilized by heat treatment. However, the same markers were seen to be stabilized when the tissues were heat treated before snap freezing. Intensity profiles for proteins indicative of both degradation and stabilization were generated when samples of treated and nontreated tissues were analyzed by 2-D DIGE, with protein extracted before and after a 10-min warming of samples. Thus, heat treatment of tissues at the time of excision is shown to prevent subsequent uncontrolled degradation of tissues at the proteomic level before any quantitative analysis, and to be compatible with downstream proteomic analysis.
Collapse
Affiliation(s)
- Richard J A Goodwin
- Division of Integrative and Systems Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | |
Collapse
|
15
|
Sánchez-Quiles V, Santamaría E, Segura V, Sesma L, Prieto J, Corrales FJ. Prohibitin deficiency blocks proliferation and induces apoptosis in human hepatoma cells: molecular mechanisms and functional implications. Proteomics 2010; 10:1609-20. [PMID: 20186755 DOI: 10.1002/pmic.200900757] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prohibitin is a multifunctional protein participating in a plethora of essential cellular functions, such as cell signaling, apoptosis, survival and proliferation. In the liver, deficient prohibitin activity participates in the progression of non-alcoholic steatohepatitis and obesity, according to mechanisms that still must be elucidated. In this study, we have used a combination of transcriptomics and proteomics technologies to investigate the response of human hepatoma PLC/PRF/5 cells to prohibitin silencing to define in detail the biological function of hepatic Phb1 and to elucidate potential prohibitin-dependent mechanisms participating in the maintenance of the transformed phenotype. Abrogation of prohibitin reduced proliferation and induced apoptosis in human hepatoma cells in a mechanism dependent on NF kappaB signaling. Moreover, down-regulation of ERp29 together with down-regulation of Erlin 2 suggests ER stress. In agreement, increased C/EBP homologous protein levels, poly-ADP ribose polymerase cleavage and activation of caspase 12 and downstream caspase 7 evidenced ER stress-induced apoptosis. Down-regulation of proteasome activator complex subunit 2 and stathmin as well as accumulation of ubiquitinated proteins suggest interplay between ER stress and proteasome malfunction. Taken together, our results provide evidences for prohibitin having a central role in the maintenance of the transformed and invasive phenotype of human hepatoma cells and may further support previous studies suggesting prohibitin as a potential clinical target.
Collapse
Affiliation(s)
- Virginia Sánchez-Quiles
- Division of Hepatology and Gene Therapy, Proteomics Unit, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
16
|
Miyazaki M, Nakagawa I, Koga S, Kasahara Y, Patricelli MP. Proteomics analysis of cardiac muscle from rats with peroxisomal proliferator-activated receptor alpha (PPARalpha) stimulation. J Toxicol Sci 2010; 35:131-5. [PMID: 20118634 DOI: 10.2131/jts.35.131] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
To investigate peroxisomal proliferator-activated receptor alpha (PPARalpha) signal responses in heart muscle, we performed LC-MS/MS-based proteomics analysis of heart muscle from rats given fenofibrate or clofibrate. Fenofibrate increased the expression of ACAA2, DECR1, and ECH1 consistent with activation of PPARalpha. Fenofibrate and clofibrate reduced the expression of 10 and 12 proteins, respectively with the expression of ACSL1, SLC25A4, A1BG, HADHA, ATP2A2, BDH1, ETFDH, HADHB, and CPT2 being reduced in common with both of fibrate-treated groups. The approach adopted in this study provides an efficient method for monitoring global changes in protein expression.
Collapse
|
17
|
Rodríguez-Suárez E, Duce AM, Caballería J, Arrieta FM, Fernández E, Gómara C, Alkorta N, Ariz U, Martínez-Chantar ML, Lu SC, Elortza F, Mato JM. Non-alcoholic fatty liver disease proteomics. Proteomics Clin Appl 2010; 4:362-71. [PMID: 21137056 PMCID: PMC3040121 DOI: 10.1002/prca.200900119] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 01/11/2010] [Accepted: 01/18/2010] [Indexed: 12/19/2022]
Abstract
PURPOSE Non-alcoholic fatty liver disease (NAFLD) is an important cause of chronic liver injury that has gained concern in clinical hepatology. The principal aim of this study was to find differences in protein expression between patients with NAFLD and healthy controls. EXPERIMENTAL DESIGN Changes in protein expression of liver samples from each of the three groups of subjects, controls, non-alcoholic steatosis, and non-alcoholic steatohepatitis (NASH), were analyzed by DIGE combined with MALDI TOF/TOF analysis, a proteomic approach that allows to compare hundreds of proteins simultaneously. RESULTS Forty-three proteins exhibiting significant changes (ratio ≥1.5, p<0.05) were characterized, 22 comparing steatosis samples versus control samples and 21 comparing NASH versus control samples. Ten of these proteins were further analyzed by Western blot in tissue samples to confirm the observed changes of protein expression using DIGE. The proteins validated were further tested in serum samples of different cohorts of patients. CONCLUSIONS AND CLINICAL RELEVANCE Following this approach we identified two candidate markers, carbamoyl phosphate synthase 1 and 78 kDa glucose-regulated protein, differentially expressed between control and NASH. This proteomics approach demonstrates that DIGE combined with MALDI TOF/TOF and Western blot analysis of tissue and serum samples is a useful approach to identify candidate markers associated with NAFLD, resulting in proteins whose level of expression can be correlated to a disease state.
Collapse
Affiliation(s)
- Eva Rodríguez-Suárez
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed, Technology Park of Bizkaia, Derio, Bizkaia, Spain
| | - Antonio M Duce
- Departamento de Enfermería, Universidad Alcalá, Madrid, Spain
| | | | | | - Estefanía Fernández
- Metabolomics Unit, CIC bioGUNE, CIBERehd, Technology Park of Bizkaia, Derio, Bizkaia, Spain
| | - Carolina Gómara
- Metabolomics Unit, CIC bioGUNE, CIBERehd, Technology Park of Bizkaia, Derio, Bizkaia, Spain
| | - Nere Alkorta
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed, Technology Park of Bizkaia, Derio, Bizkaia, Spain
| | - Usue Ariz
- Metabolomics Unit, CIC bioGUNE, CIBERehd, Technology Park of Bizkaia, Derio, Bizkaia, Spain
| | - M Luz Martínez-Chantar
- Metabolomics Unit, CIC bioGUNE, CIBERehd, Technology Park of Bizkaia, Derio, Bizkaia, Spain
| | - Shelly C. Lu
- Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University Southern California, Los Angeles, CA
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed, Technology Park of Bizkaia, Derio, Bizkaia, Spain
| | - José M Mato
- Metabolomics Unit, CIC bioGUNE, CIBERehd, Technology Park of Bizkaia, Derio, Bizkaia, Spain
| |
Collapse
|
18
|
Ohta T, Masutomi N, Tsutsui N, Sakairi T, Mitchell M, Milburn MV, Ryals JA, Beebe KD, Guo L. Untargeted metabolomic profiling as an evaluative tool of fenofibrate-induced toxicology in Fischer 344 male rats. Toxicol Pathol 2009; 37:521-35. [PMID: 19458390 DOI: 10.1177/0192623309336152] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peroxisome proliferator-activated receptor-alpha (PPARalpha) agonists such as fenofibrate are used to treat dyslipidemia. Although fenofibrate is considered safe in humans, it is known to cause hepatocarcinogenesis in rodents. To evaluate untargeted metabolic profiling as a tool for gaining insight into the underlying pharmacology and hepatotoxicology, Fischer 344 male rats were dosed with 300 mg/kg/day of fenofibrate for 14 days and the urine and plasma were analyzed on days 2 and 14. A combination of liquid and gas chromatography mass spectrometry returned the profiles of 486 plasma and 932 urinary metabolites. Aside from known pharmacological effects, such as accelerated fatty acid beta-oxidation and reduced plasma cholesterol, new observations on the drug's impact on cellular metabolism were generated. Reductions in TCA cycle intermediates and biochemical evidence of lactic acidosis demonstrated that energy metabolism homeostasis was altered. Perturbation of the glutathione biosynthesis and elevation of oxidative stress markers were observed. Furthermore, tryptophan metabolism was up-regulated, resulting in accumulation of tryptophan metabolites associated with reactive oxygen species generation, suggesting the possibility of oxidative stress as a mechanism of nongenotoxic carcinogenesis. Finally, several metabolites related to liver function, kidney function, cell damage, and cell proliferation were altered by fenofibrate-induced toxicity at this dose.
Collapse
Affiliation(s)
- Tetsuya Ohta
- Mitsubishi Tanabe Pharma Corporation, Kisarazu, Chiba 292-0818, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Anthonio EA, Brees C, Baumgart-Vogt E, Hongu T, Huybrechts SJ, Van Dijck P, Mannaerts GP, Kanaho Y, Van Veldhoven PP, Fransen M. Small G proteins in peroxisome biogenesis: the potential involvement of ADP-ribosylation factor 6. BMC Cell Biol 2009; 10:58. [PMID: 19686593 PMCID: PMC3224584 DOI: 10.1186/1471-2121-10-58] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 08/17/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Peroxisomes execute diverse and vital functions in virtually every eukaryote. New peroxisomes form by budding from pre-existing organelles or de novo by vesiculation of the ER. It has been suggested that ADP-ribosylation factors and COPI coatomer complexes are involved in these processes. RESULTS Here we show that all viable Saccharomyces cerevisiae strains deficient in one of the small GTPases which have an important role in the regulation of vesicular transport contain functional peroxisomes, and that the number of these organelles in oleate-grown cells is significantly upregulated in the arf1 and arf3 null strains compared to the wild-type strain. In addition, we provide evidence that a portion of endogenous Arf6, the mammalian orthologue of yeast Arf3, is associated with the cytoplasmic face of rat liver peroxisomes. Despite this, ablation of Arf6 did neither influence the regulation of peroxisome abundance nor affect the localization of peroxisomal proteins in cultured fetal hepatocytes. However, co-overexpression of wild-type, GTP hydrolysis-defective or (dominant-negative) GTP binding-defective forms of Arf1 and Arf6 caused mislocalization of newly-synthesized peroxisomal proteins and resulted in an alteration of peroxisome morphology. CONCLUSION These observations suggest that Arf6 is a key player in mammalian peroxisome biogenesis. In addition, they also lend strong support to and extend the concept that specific Arf isoform pairs may act in tandem to regulate exclusive trafficking pathways.
Collapse
Affiliation(s)
- Erin A Anthonio
- Department of Molecular Cell Biology, Catholic University of Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Krupenko SA. FDH: an aldehyde dehydrogenase fusion enzyme in folate metabolism. Chem Biol Interact 2008; 178:84-93. [PMID: 18848533 DOI: 10.1016/j.cbi.2008.09.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 09/02/2008] [Indexed: 10/21/2022]
Abstract
FDH (10-formyltetrahydrofolate dehydrogenase, Aldh1L1, EC 1.5.1.6) converts 10-formyltetrahydrofolate (10-formyl-THF) to tetrahydrofolate and CO(2) in a NADP(+)-dependent reaction. It is a tetramer of four identical 902 amino acid residue subunits. The protein subunit is a product of a natural fusion of three unrelated genes and consists of three distinct domains. The N-terminal domain of FDH (residues 1-310) carries the folate binding site and shares sequence homology and structural topology with other enzymes utilizing 10-formyl-THF as a substrate. In vitro it functions as 10-formyl-THF hydrolase, and evidence indicate that this activity is a part of the overall FDH mechanism. The C-terminal domain of FDH (residues 400-902) originated from an aldehyde dehydrogenase-related gene and is capable of oxidation of short-chain aldehydes to corresponding acids. Similar to classes 1 and 2 aldehyde dehydrogenases, this domain exists as a tetramer and defines the oligomeric structure of the full-length enzyme. The two catalytic domains are connected by an intermediate linker (residues 311-399), which is a structural and functional homolog of carrier proteins possessing a 4'-phosphopantetheine prosthetic group. In the FDH mechanism, the intermediate linker domain transfers a formyl, covalently attached to the sulfhydryl group of the phosphopantetheine arm, from the N-terminal domain to the C-terminal domain. The overall FDH mechanism is a coupling of two sequential reactions, a hydrolase and a formyl dehydrogenase, bridged by a substrate transfer step. In this mechanism, one domain provides the folate binding site and a hydrolase catalytic center to remove the formyl group from the folate substrate, another provides a transfer vehicle between catalytic centers and the third one contributes the dehydrogenase machinery further oxidizing formyl to CO(2).
Collapse
Affiliation(s)
- Sergey A Krupenko
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, United States.
| |
Collapse
|
21
|
Hannigan A, Burchmore R, Wilson JB. The optimization of protocols for proteome difference gel electrophoresis (DiGE) analysis of preneoplastic skin. J Proteome Res 2007; 6:3422-32. [PMID: 17696380 DOI: 10.1021/pr0606878] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Difference gel electrophoresis (DiGE) allows the reliable comparison of proteome differences between two or three samples within a single gel, by way of a CyDye fluorescent labeling system. This facilitates identification of protein differences avoiding the difficulties associated with gel-to-gel variation. A drawback of this approach is the necessity for high-purity protein samples, since contaminants can interfere with the labeling process, affecting subsequent analysis. Thus far, DiGE has been applied to the study of various sample types derived from relatively simple starting materials such as serum, cell lines, or primary cells. Herein, we describe optimization of protein extraction and purification from a complex tissue (the murine ear) of which a major component is skin, which is compatible with the CyDye labeling system and DiGE. Protein samples obtained by this method from preneoplastic, transgenic tissue have been effectively compared to normal tissue samples to reveal bona fide differences, verifiable by Western blotting. In total, 41 protein differences (21 up- and 20 down-regulated in the pathological samples) were identified by mass spectrometry (MS). This method can therefore form a guide for those wishing to perform DiGE on complex tissues, and is especially useful for samples with relatively insoluble components such as skin.
Collapse
Affiliation(s)
- Adele Hannigan
- Division of Molecular Genetics, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G11 6NU, United Kingdom
| | | | | |
Collapse
|
22
|
Michel C, Desdouets C, Slaoui M, Isaacs KR, Roberts RA, Boitier E. Diethylnitrosamine initiation does not alter clofibric acid-induced hepatocarcinogenesis in the rat. Toxicol Sci 2007; 99:58-69. [PMID: 17602206 DOI: 10.1093/toxsci/kfm168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Clofibric acid (CLO) is a nongenotoxic hepatocarcinogen in rodents that causes altered hepatocellular foci and/or neoplasms. Initiation by DNA-damaging agents such as diethylnitrosamine (DEN) accelerates focus and tumor appearance and could therefore significantly contribute to shortening of the regulatory 2-year rodent carcinogenicity bioassays. However, it is crucial to evaluate the histological and molecular impact of initiation with DEN on hepatocarcinogenesis promoted by CLO. Male F344 rats were given a single nonnecrogenic injection of DEN (0 or 30 mg/kg) followed by Control diet or CLO (5000 ppm) in diet for up to 20 months. Histopathology and gene expression profiling were performed in liver tumors and surrounding nontumoral liver tissues. The molecular signature of DEN was characterized and its histopathological and immunohistopathological effects on focus and tumor types were also determined. Although foci and tumors appeared earlier in the DEN+CLO-treated group compared to the group treated with CLO alone, DEN had little impact on gene expression in nontumoral tissues since the gene expression profiles were highly similar between Control and DEN-treated rats, and DEN+CLO- and CLO-treated rats. Finally, tumors obtained from DEN+CLO and CLO-treated groups displayed highly correlated gene expression profiles (r>0.83, independently of the time-point). The pathways involved in tumor development revealed by Gene Ontology functional analysis are similar when driven either by spontaneous initiation or by a chemically induced initiation step. Our work described here may contribute to the design optimization of shorter preclinical tests for the evaluation of the nongenotoxic hepatocarcinogenic potential of drugs under development.
Collapse
Affiliation(s)
- Cecile Michel
- Department of Drug Safety Evaluation, sanofi aventis R&D, Centre de Recherche de Vitry/Alfortville-Evry, 94403 Vitry sur Seine, France
| | | | | | | | | | | |
Collapse
|
23
|
Styles NA, Falany JL, Barnes S, Falany CN. Quantification and regulation of the subcellular distribution of bile acid coenzyme A:amino acid N-acyltransferase activity in rat liver. J Lipid Res 2007; 48:1305-15. [PMID: 17379925 DOI: 10.1194/jlr.m600472-jlr200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bile acid coenzyme A:amino acid N-acyltransferase (BAT) is responsible for the amidation of bile acids with the amino acids glycine and taurine. To quantify total BAT activity in liver subcellular organelles, livers from young adult male and female Sprague-Dawley rats were fractionated into multiple subcellular compartments. In male and female rats, 65-75% of total liver BAT activity was found in the cytosol, 15-17% was found in the peroxisomes, and 5-10% was found in the heavy mitochondrial fraction. After clofibrate treatment, male rats displayed an increase in peroxisomal BAT specific activity and a decrease in cytosolic BAT specific activity, whereas females showed an opposite response. However, there was no overall change in BAT specific activity in whole liver homogenate. Treatment with rosiglitazone or cholestyramine had no effect on BAT activity in any subcellular compartment. These experiments indicate that the majority of BAT activity in the rat liver resides in the cytosol. Approximately 15% of BAT activity is present in the peroxisomal matrix. These data support the novel finding that clofibrate treatment does not directly regulate BAT activity but does alter the subcellular localization of BAT.
Collapse
Affiliation(s)
- Nathan A Styles
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
24
|
Yamanaka H, Yakabe Y, Saito K, Sekijima M, Shirai T. Quantitative proteomic analysis of rat liver for carcinogenicity prediction in a 28-day repeated dose study. Proteomics 2007; 7:781-95. [PMID: 17295351 DOI: 10.1002/pmic.200600235] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The potential of quantitative proteomic analysis to predict carcinogenicity of chemical compounds was investigated. Using 2D-DIGE, we analyzed the effects of 63 chemical compounds on protein expression in the rat liver after 28 daily doses. Types of carcinogens were categorized depending on the species and organ specificity. The carcinogen characteristic proteins for each classification were identified by Welch's t value. For evaluation of the predictive concordance we used support vector machines. The rat hepatic carcinogen-specific classification gave higher concordance than the other classification. The generalization performance was measured by leave-one-out cross-validation. For genotoxic and non-genotoxic compounds, a concordance of 79.3 and 76.5%, respectively, was obtained by the top 30 ranked proteins with Welch's t value. Furthermore, we found that the increase of the expression level of the stress response proteins as the common feature of poorly predicted chemical compounds in the leave-20%-out cross-validation. Quantitative proteomics could be promising technique for developing biomarker panels that can be used for carcinogenicity prediction. The list of proteins identified in this study and the zoomed gel images of the top ranked proteins in statistic analysis are provided in Supplementary Data.
Collapse
Affiliation(s)
- Hidenori Yamanaka
- Chemicals Assessment Center, Chemicals Evaluation and Research Institute, Saitama, Japan.
| | | | | | | | | |
Collapse
|
25
|
Gatzidou ET, Zira AN, Theocharis SE. Toxicogenomics: a pivotal piece in the puzzle of toxicological research. J Appl Toxicol 2007; 27:302-9. [PMID: 17429800 DOI: 10.1002/jat.1248] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Toxicogenomics, resulting from the merge of conventional toxicology with functional genomics, being the scientific field studying the complex interactions between the cellular genome, toxic agents in the environment, organ dysfunction and disease state. When an organism is exposed to a toxic agent the cells respond by altering the pattern of gene expression. Genes are transcribed into mRNA, which in turn is translated into proteins that serve in a variety of cellular functions. Toxicogenomics through microarray technology, offers large-scale detection and quantification of mRNA transcripts, related to alterations in mRNA stability or gene regulation. This may prove advantageous in toxicological research. In the present review, the applications of toxicogenomics, especially to mechanistic and predictive toxicology are reported. The limitations arising from the use of this technology are also discussed. Additionally, a brief report of other approaches, using other -omic technologies (proteomics and metabonomics) that overcome limitations and give global information related to toxicity, is included.
Collapse
Affiliation(s)
- Elisavet T Gatzidou
- Department of Forensic Medicine and Toxicology, University of Athens, Medical School, Athens, Greece
| | | | | |
Collapse
|