1
|
Allouche R, Hafeez Z, Dary-Mourot A, Genay M, Miclo L. Streptococcus thermophilus: A Source of Postbiotics Displaying Anti-Inflammatory Effects in THP 1 Macrophages. Molecules 2024; 29:1552. [PMID: 38611831 PMCID: PMC11013757 DOI: 10.3390/molecules29071552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
In addition to traditional use in fermented dairy products, S. thermophilus also exhibits anti-inflammatory properties both in live and heat-inactivated form. Recent studies have highlighted that some hydrolysates from surface proteins of S. thermophilus could be responsible partially for overall anti-inflammatory activity of this bacterium. It was hypothesized that anti-inflammatory activity could also be attributed to peptides resulting from the digestion of intracellular proteins of S. thermophilus. Therefore, total intracellular proteins (TIP) from two phenotypically different strains, LMD-9 and CNRZ-21N, were recovered by sonication followed by ammonium sulphate precipitation. The molecular masses of the TIP of both strains were very close to each other as observed by SDS-PAGE. The TIP were fractionated by size exclusion fast protein liquid chromatography to obtain a 3-10 kDa intracellular protein (IP) fraction, which was then hydrolysed with pancreatic enzyme preparation, Corolase PP. The hydrolysed IP fraction from each strain exhibited anti-inflammatory activity by modulating pro-inflammatory mediators, particularly IL-1β in LPS-stimulated THP-1 macrophages. However, a decrease in IL-8 secretion was only observed with hydrolysed IP fraction from CNRZ-21N, indicating that strain could be an important parameter in obtaining active hydrolysates. Results showed that peptides from the 3-10 kDa IP fraction of S. thermophilus could therefore be considered as postbiotics with potential beneficial effects on human health. Thus, it can be used as a promising bioactive ingredient for the development of functional foods to prevent low-grade inflammation.
Collapse
Affiliation(s)
| | - Zeeshan Hafeez
- CALBINOTOX, Université de Lorraine, F-54000 Nancy, France; (R.A.); (A.D.-M.); (M.G.); (L.M.)
| | | | | | | |
Collapse
|
2
|
Miller I, Gianazza E. Proteomic methods for the study of porcine acute phase proteins - anything new to detect? Vet Res Commun 2023; 47:1801-1815. [PMID: 37452983 DOI: 10.1007/s11259-023-10170-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Acute phase proteins (APPs) reflect the health status of individuals and are important tools in diagnostics, as their altered levels are a sign of disturbed homeostasis. While, in most cases, quantitation of known serum APPs is routinely performed by immunoassays, proteomics is helpful in discovery of new biomarker candidates, especially in samples other than body fluids. Besides putting APP regulation into an overall context of differentially abundant proteins, this approach can detect further details or outright new features in protein structure or specific modifications, and help understand better their function. Thus, it can show up ways to make present diagnostic assays more sensitive and/or specific, or correlate regulations of disease-specific proteins. The APP repertoire is dependent on the species. The pig is both, an important farm animal and a model animal for human diseases, due to similarities in physiology. Besides reviewing existing literature, yet unpublished examples for two-dimensional electrophoresis in connection with pig APPs highlight some of the benefits of proteomics. Of further help would be the emerging targeted proteomics, offering the possibility to determine particular isoforms or proteoforms, without the need of specific antibodies, but this method is presently scarcely used in veterinary medicine.
Collapse
Affiliation(s)
- Ingrid Miller
- Institut für Medizinische Biochemie, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210, Wien, Austria.
| | - Elisabetta Gianazza
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133, Milano, Italy
| |
Collapse
|
3
|
Di Stefano LH, Saba LJ, Oghbaie M, Jiang H, McKerrow W, Benitez-Guijarro M, Taylor MS, LaCava J. Affinity-Based Interactome Analysis of Endogenous LINE-1 Macromolecules. Methods Mol Biol 2023; 2607:215-256. [PMID: 36449166 DOI: 10.1007/978-1-0716-2883-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
During their proliferation and the host's concomitant attempts to suppress it, LINE-1 (L1) retrotransposons give rise to a collection of heterogeneous ribonucleoproteins (RNPs); their protein and RNA compositions remain poorly defined. The constituents of L1-associated macromolecules can differ depending on numerous factors, including, for example, position within the L1 life cycle, whether the macromolecule is productive or under suppression, and the cell type within which the proliferation is occurring. This chapter describes techniques that aid the capture and characterization of protein and RNA components of L1 macromolecules from tissues that natively express them. The protocols described have been applied to embryonal carcinoma cell lines that are popular model systems for L1 molecular biology (e.g., N2102Ep, NTERA-2, and PA-1 cells), as well as colorectal cancer tissues. N2102Ep cells are given as the use case for this chapter; the protocols should be applicable to essentially any tissue exhibiting endogenous L1 expression with minor modifications.
Collapse
|
4
|
Portilla Pulido JS, Urbina Duitama DL, Velasquez-Martinez MC, Mendez-Sanchez SC, Duque JE. Differentiation of action mechanisms between natural and synthetic repellents through neuronal electroantennogram and proteomic in Aedes aegypti (Diptera: Culicidae). Sci Rep 2022; 12:20397. [PMID: 36437275 PMCID: PMC9701785 DOI: 10.1038/s41598-022-24923-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Natural-based compounds with repellent activity arise nowadays with the possibility to replace commercial synthetic repellents wholly or partially, such as N,N-Diethyl-m-toluamide (DEET). It is due to DEET's demonstrated toxicity and cutaneous irritation for human beings. Besides, research recommends avoiding using it with kids and pregnant women. The search for a repellent product implies early stages of detailed research that resolve the modes of action against the target insect. Therefore the objective of the current study was to analyze neuronal electrophysiological signals and olfactory system protein expression when the Aedes aegypti mosquito with exposition to natural-based repellents. Adult females of Ae. aegypti of Rockefeller strain were exposed to specific concentrations of repellent compounds like geranyl acetate, α-bisabolol, nerolidol, and DEET. The neuronal effect was measured by electroantennography technique, and the effect of exposure to either DEET or a mixture of natural molecules on protein expression was determined with 2D-PAGE followed by MALDI-TOF-mass spectrometry (MS). This approach revealed that DEET affected proteins related to synapses and ATP production, whereas natural-based repellents increased transport, signaling, and detoxification proteins. The proteomic and electrophysiology experiments demonstrated that repellent exposure disrupts ionic channel activity and modifies neuronal synapse and energy production processes.
Collapse
Affiliation(s)
- Johan Sebastián Portilla Pulido
- grid.411595.d0000 0001 2105 7207Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Facultad de ciencias, Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia ,grid.411595.d0000 0001 2105 7207Departamento de Ciencias Básicas, Centro de Investigaciones en Enfermedades Tropicales-CINTROP, Facultad de Salud, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga, Santander Colombia
| | - Diana Lizeth Urbina Duitama
- grid.411595.d0000 0001 2105 7207Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Facultad de ciencias, Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia ,grid.411595.d0000 0001 2105 7207Departamento de Ciencias Básicas, Centro de Investigaciones en Enfermedades Tropicales-CINTROP, Facultad de Salud, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga, Santander Colombia
| | - María Carolina Velasquez-Martinez
- grid.411595.d0000 0001 2105 7207Departamento de Ciencias Básicas, Grupo de investigación en Neurociencias y Comportamiento UIS-UPB, Facultad de Salud, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga, Santander Colombia
| | - Stelia Carolina Mendez-Sanchez
- grid.411595.d0000 0001 2105 7207Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Facultad de ciencias, Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Jonny Edward Duque
- grid.411595.d0000 0001 2105 7207Departamento de Ciencias Básicas, Centro de Investigaciones en Enfermedades Tropicales-CINTROP, Facultad de Salud, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga, Santander Colombia
| |
Collapse
|
5
|
Rodríguez-Vázquez R, Mouzo D, Zapata C. Phosphoproteome Analysis Using Two-Dimensional Electrophoresis Coupled with Chemical Dephosphorylation. Foods 2022; 11:3119. [PMID: 36230195 PMCID: PMC9562008 DOI: 10.3390/foods11193119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/22/2022] Open
Abstract
Protein phosphorylation is a reversible post-translational modification (PTM) with major regulatory roles in many cellular processes. However, the analysis of phosphoproteins remains the most challenging barrier in the prevailing proteome research. Recent technological advances in two-dimensional electrophoresis (2-DE) coupled to mass spectrometry (MS) have enabled the identification, characterization, and quantification of protein phosphorylation on a global scale. Most research on phosphoproteins with 2-DE has been conducted using phosphostains. Nevertheless, low-abundant and low-phosphorylated phosphoproteins are not necessarily detected using phosphostains and/or MS. In this study, we report a comparative analysis of 2-DE phosphoproteome profiles using Pro-Q Diamond phosphoprotein stain (Pro-Q DPS) and chemical dephosphorylation of proteins with HF-P from longissimus thoracis (LT) muscle samples of the Rubia Gallega cattle breed. We found statistically significant differences in the number of identified phosphoproteins between methods. More specifically, we found a three-fold increase in phosphoprotein detection with the HF-P method. Unlike Pro-Q DPS, phosphoprotein spots with low volume and phosphorylation rate were identified by HF-P technique. This is the first approach to assess meat phosphoproteome maps using HF-P at a global scale. The results open a new window for 2-DE gel-based phosphoproteome analysis.
Collapse
Affiliation(s)
- Raquel Rodríguez-Vázquez
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain
| | | | | |
Collapse
|
6
|
Kwiatkowski M, Hotze M, Schumacher J, Asif AR, Pittol JMR, Brenig B, Ramljak S, Zischler H, Herlyn H. Protein speciation is likely to increase the chance of proteins to be determined in 2‐DE/MS. Electrophoresis 2022; 43:1203-1214. [DOI: 10.1002/elps.202000393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 11/30/2021] [Accepted: 02/02/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Marcel Kwiatkowski
- Department of Biochemistry and Center for Molecular Biosciences Innsbruck University of Innsbruck Innsbruck Austria
| | - Madlen Hotze
- Department of Biochemistry and Center for Molecular Biosciences Innsbruck University of Innsbruck Innsbruck Austria
| | | | - Abdul R. Asif
- Department of Clinical Chemistry/UMG‐Laboratories University Medical Center Göttingen Germany
| | - Jose Miguel Ramos Pittol
- Department of Biochemistry and Center for Molecular Biosciences Innsbruck University of Innsbruck Innsbruck Austria
| | - Bertram Brenig
- Department of Molecular Biology of Livestock Institute of Veterinary Medicine University of Göttingen Göttingen Germany
| | | | - Hans Zischler
- Institute of Organismic and Molecular Evolution, Anthropology University of Mainz Mainz Germany
| | - Holger Herlyn
- Institute of Organismic and Molecular Evolution, Anthropology University of Mainz Mainz Germany
| |
Collapse
|
7
|
García-Descalzo L, García-López E, Cid C. Comparative Proteomic Analysis of Psychrophilic vs. Mesophilic Bacterial Species Reveals Different Strategies to Achieve Temperature Adaptation. Front Microbiol 2022; 13:841359. [PMID: 35591995 PMCID: PMC9111180 DOI: 10.3389/fmicb.2022.841359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
The old debate of nature (genes) vs. nurture (environmental variables) is once again topical concerning the effect of climate change on environmental microorganisms. Specifically, the Polar Regions are experiencing a drastic increase in temperature caused by the rise in greenhouse gas emissions. This study, in an attempt to mimic the molecular adaptation of polar microorganisms, combines proteomic approaches with a classical microbiological analysis in three bacterial species Shewanella oneidensis, Shewanella frigidimarina, and Psychrobacter frigidicola. Both shewanellas are members of the same genus but they live in different environments. On the other hand, Shewanella frigidimarina and Psychrobacter frigidicola share the same natural environment but belong to a different genus. The comparison of the strategies employed by each bacterial species estimates the contribution of genome vs. environmental variables in the adaptation to temperature. The results show a greater versatility of acclimatization for the genus Shewanella with respect to Psychrobacter. Besides, S. frigidimarina was the best-adapted species to thermal variations in the temperature range 4–30°C and displayed several adaptation mechanisms common with the other two species. Regarding the molecular machinery used by these bacteria to face the consequences of temperature changes, chaperones have a pivoting role. They form complexes with other proteins in the response to the environment, establishing cooperation with transmembrane proteins, elongation factors, and proteins for protection against oxidative damage.
Collapse
Affiliation(s)
- Laura García-Descalzo
- Centro de Astrobiología, Department of Planetology and Habitability, CSIC-INTA, Madrid, Spain
| | - Eva García-López
- Centro de Astrobiología, Department of Molecular Ecology, CSIC-INTA, Madrid, Spain
| | - Cristina Cid
- Centro de Astrobiología, Department of Molecular Ecology, CSIC-INTA, Madrid, Spain
| |
Collapse
|
8
|
Kassem S, van der Pan K, de Jager AL, Naber BAE, de Laat IF, Louis A, van Dongen JJM, Teodosio C, Díez P. Proteomics for Low Cell Numbers: How to Optimize the Sample Preparation Workflow for Mass Spectrometry Analysis. J Proteome Res 2021; 20:4217-4230. [PMID: 34328739 PMCID: PMC8419858 DOI: 10.1021/acs.jproteome.1c00321] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Indexed: 12/20/2022]
Abstract
Nowadays, massive genomics and transcriptomics data can be generated at the single-cell level. However, proteomics in this setting is still a big challenge. Despite the great improvements in sensitivity and performance of mass spectrometry instruments and the better knowledge on sample preparation processing, it is widely acknowledged that multistep proteomics workflows may lead to substantial sample loss, especially when working with paucicellular samples. Still, in clinical fields, frequently limited sample amounts are available for downstream analysis, thereby hampering comprehensive characterization at protein level. To aim at better protein and peptide recoveries, we compare existing and novel approaches in the multistep sample preparation protocols for mass spectrometry studies, from sample collection, cell lysis, protein quantification, and electrophoresis/staining to protein digestion, peptide recovery, and LC-MS/MS instruments. From this critical evaluation, we conclude that the recent innovations and technologies, together with high quality management of samples, make proteomics on paucicellular samples possible, which will have immediate impact for the proteomics community.
Collapse
Affiliation(s)
- Sara Kassem
- Department
of Immunology, Leiden University Medical
Center (LUMC), Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Kyra van der Pan
- Department
of Immunology, Leiden University Medical
Center (LUMC), Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Anniek L. de Jager
- Department
of Immunology, Leiden University Medical
Center (LUMC), Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Brigitta A. E. Naber
- Department
of Immunology, Leiden University Medical
Center (LUMC), Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Inge F. de Laat
- Department
of Immunology, Leiden University Medical
Center (LUMC), Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Alesha Louis
- Department
of Immunology, Leiden University Medical
Center (LUMC), Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Jacques J. M. van Dongen
- Department
of Immunology, Leiden University Medical
Center (LUMC), Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Cristina Teodosio
- Department
of Immunology, Leiden University Medical
Center (LUMC), Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Paula Díez
- Department
of Immunology, Leiden University Medical
Center (LUMC), Albinusdreef 2, 2333ZA Leiden, Netherlands
| |
Collapse
|
9
|
Obermaier C, Griebel A, Westermeier R. Principles of Protein Labeling Techniques. Methods Mol Biol 2021; 2261:549-562. [PMID: 33421014 DOI: 10.1007/978-1-0716-1186-9_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Protein labeling methods prior to separation and analysis have become indispensable approaches for proteomic profiling. Basically, three different types of tags are employed: stable isotopes, mass tags, and fluorophores. While proteins labeled with stable isotopes and mass tags are measured and differentiated by mass spectrometry, fluorescent labels are detected with fluorescence imagers. The major purposes for protein labeling are monitoring of biological processes, reliable quantification of compounds and specific detection of protein modifications and isoforms in multiplexed samples, enhancement of detection sensitivity, and simplification of detection workflows. Proteins can be labeled during cell growth by incorporation of amino acids containing different isotopes, or in biological fluids, cells or tissue samples by attaching specific groups to the ε-amino group of lysine, the N-terminus, or the cysteine residues. The principles and the modifications of the different labeling approaches on the protein level are described; benefits and shortcomings of the methods are discussed.
Collapse
|
10
|
Abstract
Two-dimensional gel electrophoresis has been instrumental in the development of proteomics. Although it is no longer the exclusive scheme used for proteomics, its unique features make it a still highly valuable tool, especially when multiple quantitative comparisons of samples must be made, and even for large samples series. However, quantitative proteomics using two-dimensional gels is critically dependent on the performances of the protein detection methods used after the electrophoretic separations. This chapter therefore examines critically the various detection methods, (radioactivity, dyes, fluorescence, and silver) as well as the data analysis issues that must be taken into account when quantitative comparative analysis of two-dimensional gels is performed.
Collapse
|
11
|
Herzog R, Bartosova M, Tarantino S, Wagner A, Unterwurzacher M, Sacnun JM, Lichtenauer AM, Kuster L, Schaefer B, Alper SL, Aufricht C, Schmitt CP, Kratochwill K. Peritoneal Dialysis Fluid Supplementation with Alanyl-Glutamine Attenuates Conventional Dialysis Fluid-Mediated Endothelial Cell Injury by Restoring Perturbed Cytoprotective Responses. Biomolecules 2020; 10:biom10121678. [PMID: 33334074 PMCID: PMC7765520 DOI: 10.3390/biom10121678] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 12/18/2022] Open
Abstract
Long-term clinical outcome of peritoneal dialysis (PD) depends on adequate removal of small solutes and water. The peritoneal endothelium represents the key barrier and peritoneal transport dysfunction is associated with vascular changes. Alanyl-glutamine (AlaGln) has been shown to counteract PD-induced deteriorations but the effect on vascular changes has not yet been elucidated. Using multiplexed proteomic and bioinformatic analyses we investigated the molecular mechanisms of vascular pathology in-vitro (primary human umbilical vein endothelial cells, HUVEC) and ex-vivo (arterioles of patients undergoing PD) following exposure to PD-fluid. An overlap of 1813 proteins (40%) of over 3100 proteins was identified in both sample types. PD-fluid treatment significantly altered 378 in endothelial cells and 192 in arterioles. The HUVEC proteome resembles the arteriolar proteome with expected sample specific differences of mainly immune system processes only present in arterioles and extracellular region proteins primarily found in HUVEC. AlaGln-addition to PD-fluid revealed 359 differentially abundant proteins and restored the molecular process landscape altered by PD fluid. This study provides evidence on validity and inherent limitations of studying endothelial pathomechanisms in-vitro compared to vascular ex-vivo findings. AlaGln could reduce PD-associated vasculopathy by reducing endothelial cellular damage, restoring perturbed abundances of pathologically important proteins and enriching protective processes.
Collapse
Affiliation(s)
- Rebecca Herzog
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (R.H.); (S.T.); (J.M.S.); (A.M.L.); (L.K.); (C.A.)
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Medical University of Vienna, 1090 Vienna, Austria; (A.W.); (M.U.)
| | - Maria Bartosova
- Center for Pediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany; (M.B.); (B.S.); (C.P.S.)
| | - Silvia Tarantino
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (R.H.); (S.T.); (J.M.S.); (A.M.L.); (L.K.); (C.A.)
- Zytoprotec GmbH, 1090 Vienna, Austria
| | - Anja Wagner
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (R.H.); (S.T.); (J.M.S.); (A.M.L.); (L.K.); (C.A.)
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Medical University of Vienna, 1090 Vienna, Austria; (A.W.); (M.U.)
| | - Markus Unterwurzacher
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (R.H.); (S.T.); (J.M.S.); (A.M.L.); (L.K.); (C.A.)
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Medical University of Vienna, 1090 Vienna, Austria; (A.W.); (M.U.)
| | - Juan Manuel Sacnun
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (R.H.); (S.T.); (J.M.S.); (A.M.L.); (L.K.); (C.A.)
- Zytoprotec GmbH, 1090 Vienna, Austria
| | - Anton M. Lichtenauer
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (R.H.); (S.T.); (J.M.S.); (A.M.L.); (L.K.); (C.A.)
| | - Lilian Kuster
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (R.H.); (S.T.); (J.M.S.); (A.M.L.); (L.K.); (C.A.)
| | - Betti Schaefer
- Center for Pediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany; (M.B.); (B.S.); (C.P.S.)
| | - Seth L. Alper
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA;
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Christoph Aufricht
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (R.H.); (S.T.); (J.M.S.); (A.M.L.); (L.K.); (C.A.)
| | - Claus Peter Schmitt
- Center for Pediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany; (M.B.); (B.S.); (C.P.S.)
| | - Klaus Kratochwill
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (R.H.); (S.T.); (J.M.S.); (A.M.L.); (L.K.); (C.A.)
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Medical University of Vienna, 1090 Vienna, Austria; (A.W.); (M.U.)
- Correspondence: ; Tel.: +43-140400-80
| |
Collapse
|
12
|
Babak MV, Le Faouder P, Trivelli X, Venkatesan G, Bezzubov SI, Kajjout M, Gushchin AL, Hanif M, Poizat O, Vezin H, Rolando C. Heteroleptic Ruthenium(II) Complexes with Bathophenanthroline and Bathophenanthroline Disulfonate Disodium Salt as Fluorescent Dyes for In-Gel Protein Staining. Inorg Chem 2020; 59:4527-4535. [DOI: 10.1021/acs.inorgchem.9b03679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maria V. Babak
- Univ. Lille, CNRS, USR 3290, MSAP, Miniaturisation pour la Synthèse l’Analyse et la Protèomique, F-59 000 Lille, France
| | - Pauline Le Faouder
- Univ. Lille, CNRS, USR 3290, MSAP, Miniaturisation pour la Synthèse l’Analyse et la Protèomique, F-59 000 Lille, France
| | - Xavier Trivelli
- Univ. Lille, CNRS, INRA, Centrale Lille, ENSCL, Univ. Artois, FR 2638 – IMEC - Institut Michel-Eugène Chevreul, F-59000 Lille, France
| | - Gopalakrishnan Venkatesan
- Department of Pharmacy, National University of Singapore, Lower Kent Ridge Road, 18 Science Drive 2, Singapore 119260
| | - Stanislav I. Bezzubov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia
| | - Mohammed Kajjout
- Univ. Lille, CNRS, USR 3290, MSAP, Miniaturisation pour la Synthèse l’Analyse et la Protèomique, F-59 000 Lille, France
| | - Artem L. Gushchin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogov Street, 630090 Novosibirsk, Russia
| | - Muhammad Hanif
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Olivier Poizat
- Univ. Lille, CNRS, UMR 8516 - LASIRe - Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l’Environnement, F-59000 Lille, France
| | - Hervé Vezin
- Univ. Lille, CNRS, UMR 8516 - LASIRe - Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l’Environnement, F-59000 Lille, France
| | - Christian Rolando
- Univ. Lille, CNRS, USR 3290, MSAP, Miniaturisation pour la Synthèse l’Analyse et la Protèomique, F-59 000 Lille, France
| |
Collapse
|
13
|
Towards Understanding Non-Infectious Growth-Rate Retardation in Growing Pigs. Proteomes 2019; 7:proteomes7030031. [PMID: 31514421 PMCID: PMC6789591 DOI: 10.3390/proteomes7030031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/30/2019] [Accepted: 09/10/2019] [Indexed: 01/03/2023] Open
Abstract
For growth-rate retardation in commercial growing pigs suffering from non-infectious diseases, no biomarker is available for early detection and prevention of the condition or for the diagnosis of affected animals. The point in question is that the underlying pathological pathway of the condition is still unknown and multiple nutritional or management issues could be the cause of the disease. Common health status markers such as acute phase proteins, adenosine deaminase activity or total antioxidant capacity did not show any alteration in the saliva of animals with growth-rate retardation, so other pathways should be affected. The present study investigates saliva samples from animals with the same commercial crossbreed, sex and age, comparing control pigs and pigs with growth-rate retardation. A proteomics approach based on two-dimensional gel electrophoresis including mass spectrometry together with validation experiments was applied for the search of proteins that could help understand disease mechanisms and be used for early disease detection. Two proteins were detected as possible markers of growth-rate retardation, specifically S100A12 and carbonic anhydrase VI. A decrease in innate immune response was confirmed in pigs with growth-rate retardation, however further studies should be necessary to understand the role of the different CA VI proteoforms observed.
Collapse
|
14
|
Dowling P, Zweyer M, Swandulla D, Ohlendieck K. Characterization of Contractile Proteins from Skeletal Muscle Using Gel-Based Top-Down Proteomics. Proteomes 2019; 7:proteomes7020025. [PMID: 31226838 PMCID: PMC6631179 DOI: 10.3390/proteomes7020025] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/22/2022] Open
Abstract
The mass spectrometric analysis of skeletal muscle proteins has used both peptide-centric and protein-focused approaches. The term 'top-down proteomics' is often used in relation to studying purified proteoforms and their post-translational modifications. Two-dimensional gel electrophoresis, in combination with peptide generation for the identification and characterization of intact proteoforms being present in two-dimensional spots, plays a critical role in specific applications of top-down proteomics. A decisive bioanalytical advantage of gel-based and top-down approaches is the initial bioanalytical focus on intact proteins, which usually enables the swift identification and detailed characterisation of specific proteoforms. In this review, we describe the usage of two-dimensional gel electrophoretic top-down proteomics and related approaches for the systematic analysis of key components of the contractile apparatus, with a special focus on myosin heavy and light chains and their associated regulatory proteins. The detailed biochemical analysis of proteins belonging to the thick and thin skeletal muscle filaments has decisively improved our biochemical understanding of structure-function relationships within the contractile apparatus. Gel-based and top-down proteomics has clearly established a variety of slow and fast isoforms of myosin, troponin and tropomyosin as excellent markers of fibre type specification and dynamic muscle transition processes.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Ireland.
- MU Human Health Research Institute, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Ireland.
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn, D-53115 Bonn, Germany.
| | - Dieter Swandulla
- Institute of Physiology II, University of Bonn, D-53115 Bonn, Germany.
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Ireland.
- MU Human Health Research Institute, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Ireland.
| |
Collapse
|
15
|
Satake H, Saito A, Sakata T. Elucidation of interfacial pH behaviour at the cell/substrate nanogap for in situ monitoring of cellular respiration. NANOSCALE 2018; 10:10130-10136. [PMID: 29781490 DOI: 10.1039/c8nr02950d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In situ monitoring of cellular metabolism is useful for elucidating dynamic functions of living cells. In our previous studies, cellular respiration was continuously monitored as a change in pH at the cell/electrode nanoscale interface (i.e., interfacial pH) using an ion-sensitive field-effect transistor (ISFET). However, such interfacial pH behaviour on the nanoscale has not been confirmed using other methods such as fluorescence imaging. In this study, we have clarified the interfacial pH behaviour at a cell/substrate nanogap using a laser scanning confocal fluorescence microscope. The phospholipid fluorescein used as a pH indicator was fixed to the plasma membrane on the external side of a cell by inserting its lipophilic alkyl chain into the membrane, and used to observe the change in interfacial pH. As a result, hydrogen ions generated by cellular respiration were gradually accumulated at the cell/substrate nanogap, resulting in a decrease in pH. Moreover, the interfacial pH between the plasma membrane and the substrate became lower than the pH near the surface of cells not in contact with the substrate. The data obtained in this study support the idea that potentiometric ion sensors such as ISFETs can detect a cellular-metabolism-induced change in pH at a cell/electrode nanogap in real time.
Collapse
Affiliation(s)
- Hiroto Satake
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan 113-8656.
| | | | | |
Collapse
|
16
|
Xie S, Wong AYH, Kwok RTK, Li Y, Su H, Lam JWY, Chen S, Tang BZ. Fluorogenic Ag + -Tetrazolate Aggregation Enables Efficient Fluorescent Biological Silver Staining. Angew Chem Int Ed Engl 2018; 57:5750-5753. [PMID: 29575702 PMCID: PMC5969303 DOI: 10.1002/anie.201801653] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Indexed: 01/08/2023]
Abstract
Silver staining, which exploits the special bioaffinity and the chromogenic reduction of silver ions, is an indispensable visualization method in biology. It is a most popular method for in-gel protein detection. However, it is limited by run-to-run variability, background staining, inability for protein quantification, and limited compatibility with mass spectroscopic (MS) analysis; limitations that are largely attributed to the tricky chromogenic visualization. Herein, we reported a novel water-soluble fluorogenic Ag+ probe, the sensing mechanism of which is based on an aggregation-induced emission (AIE) process driven by tetrazolate-Ag+ interactions. The fluorogenic sensing can substitute the chromogenic reaction, leading to a new fluorescence silver staining method. This new staining method offers sensitive detection of total proteins in polyacrylamide gels with a broad linear dynamic range and robust operations that rival the silver nitrate stain and the best fluorescent stains.
Collapse
Affiliation(s)
- Sheng Xie
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsState Key Laboratory of NeuroscienceDivision of Biomedical Engineering, and Division of Life Science.The Hong Kong University of Science and TechnologyKowloonHong KongChina
- Ming Wai Lau Centre for Reparative MedicineKarolinska InstitutetHong KongChina
| | - Alex Y. H. Wong
- Ming Wai Lau Centre for Reparative MedicineKarolinska InstitutetHong KongChina
| | - Ryan T. K. Kwok
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsState Key Laboratory of NeuroscienceDivision of Biomedical Engineering, and Division of Life Science.The Hong Kong University of Science and TechnologyKowloonHong KongChina
| | - Ying Li
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsState Key Laboratory of NeuroscienceDivision of Biomedical Engineering, and Division of Life Science.The Hong Kong University of Science and TechnologyKowloonHong KongChina
| | - Huifang Su
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsState Key Laboratory of NeuroscienceDivision of Biomedical Engineering, and Division of Life Science.The Hong Kong University of Science and TechnologyKowloonHong KongChina
| | - Jacky W. Y. Lam
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsState Key Laboratory of NeuroscienceDivision of Biomedical Engineering, and Division of Life Science.The Hong Kong University of Science and TechnologyKowloonHong KongChina
| | - Sijie Chen
- Ming Wai Lau Centre for Reparative MedicineKarolinska InstitutetHong KongChina
| | - Ben Zhong Tang
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionInstitute of Molecular Functional MaterialsState Key Laboratory of NeuroscienceDivision of Biomedical Engineering, and Division of Life Science.The Hong Kong University of Science and TechnologyKowloonHong KongChina
- Guangdong Provincial Key Laboratory of Brain ScienceDisease and Drug DevelopmentHKUST-Shenzhen Research InstituteNanshanShenzhenChina
- Guangdong Innovative Research Team, SCUT-HKUST Joint Research LaboratoryState Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhouChina
| |
Collapse
|
17
|
Xie S, Wong AYH, Kwok RTK, Li Y, Su H, Lam JWY, Chen S, Tang BZ. Fluorogenic Ag+
-Tetrazolate Aggregation Enables Efficient Fluorescent Biological Silver Staining. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Sheng Xie
- Department of Chemistry; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction; Institute of Molecular Functional Materials; State Key Laboratory of Neuroscience; Division of Biomedical Engineering, and Division of Life Science.; The Hong Kong University of Science and Technology; Kowloon Hong Kong China
- Ming Wai Lau Centre for Reparative Medicine; Karolinska Institutet; Hong Kong China
| | - Alex Y. H. Wong
- Ming Wai Lau Centre for Reparative Medicine; Karolinska Institutet; Hong Kong China
| | - Ryan T. K. Kwok
- Department of Chemistry; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction; Institute of Molecular Functional Materials; State Key Laboratory of Neuroscience; Division of Biomedical Engineering, and Division of Life Science.; The Hong Kong University of Science and Technology; Kowloon Hong Kong China
| | - Ying Li
- Department of Chemistry; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction; Institute of Molecular Functional Materials; State Key Laboratory of Neuroscience; Division of Biomedical Engineering, and Division of Life Science.; The Hong Kong University of Science and Technology; Kowloon Hong Kong China
| | - Huifang Su
- Department of Chemistry; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction; Institute of Molecular Functional Materials; State Key Laboratory of Neuroscience; Division of Biomedical Engineering, and Division of Life Science.; The Hong Kong University of Science and Technology; Kowloon Hong Kong China
| | - Jacky W. Y. Lam
- Department of Chemistry; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction; Institute of Molecular Functional Materials; State Key Laboratory of Neuroscience; Division of Biomedical Engineering, and Division of Life Science.; The Hong Kong University of Science and Technology; Kowloon Hong Kong China
| | - Sijie Chen
- Ming Wai Lau Centre for Reparative Medicine; Karolinska Institutet; Hong Kong China
| | - Ben Zhong Tang
- Department of Chemistry; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction; Institute of Molecular Functional Materials; State Key Laboratory of Neuroscience; Division of Biomedical Engineering, and Division of Life Science.; The Hong Kong University of Science and Technology; Kowloon Hong Kong China
- Guangdong Provincial Key Laboratory of Brain Science; Disease and Drug Development; HKUST-Shenzhen Research Institute; Nanshan Shenzhen China
- Guangdong Innovative Research Team, SCUT-HKUST Joint Research Laboratory; State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou China
| |
Collapse
|
18
|
Abstract
The most commonly used types of gels for separating proteins are SDS gels, either in a 1-D format or as the second dimension of various 2-D separations, and the most common methods of visualizing proteins in these gels use protein binding dyes after fixing the proteins in the gel matrix. In recent years, there has been a continuing trend away from preparing staining solutions in the laboratory to using commercially available kits, which are convenient, save time, have defined shelf lives, and may provide greater reproducibility than stains formulated in research laboratories. In general, when using commercial kits, satisfactory results can be readily obtained by following the manufacturer's protocols. This unit reviews commonly used fixation-based stains and provides a number of manual formulations with staining protocols for those who prefer such staining methods. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Lynn A Beer
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - David W Speicher
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Moritz CP. Tubulin or Not Tubulin: Heading Toward Total Protein Staining as Loading Control in Western Blots. Proteomics 2018; 17. [PMID: 28941183 DOI: 10.1002/pmic.201600189] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/13/2017] [Indexed: 12/30/2022]
Abstract
Western blotting is an analytical method widely used for detecting and (semi-)quantifying specific proteins in given samples. Western blots are continuously applied and developed by the protein community. This review article focuses on a significant, but not yet well-established, improvement concerning the internal loading control as a prerequisite to accurately quantifying Western blots. Currently, housekeeping proteins (HKPs) like actin, tubulin, or GAPDH are often used to check for equal loading or to compensate potential loading differences. However, this loading control has multiple drawbacks. Staining of the total protein on the blotting membrane has emerged as a better loading control. Total protein staining (TPS) represents the actual loading amount more accurately than HKPs due to minor technical and biological variation. Further, the broad dynamic range of TPS solves the issue of HKPs that commonly fail to show loading differences above small loading amounts of 0.5-10 μg. Although these and further significant advantages have been demonstrated over the past 10 years, only a small percentage of laboratories take advantage of it. The objective of this review article is to collect and compare information about TPS options and to invite users to reconsider their applied loading control. Nine benefits of TPS are discussed and seven different variants are critically evaluated by comparing technical details. Consequently, this review article offers an orientation in selecting the appropriate staining type. I conclude that TPS should be the preferred loading control in future Western blot approaches.
Collapse
Affiliation(s)
- Christian P Moritz
- Synaptopathies and Autoantibodies, Faculty of Medicine, University Jean Monnet, Saint-Étienne, France.,Institut NeuroMyoGène, Team Synaptopathies and Autoantibodies, Lyon/Saint-Étienne, France
| |
Collapse
|
20
|
Abstract
Certain transition metal complexes show intensive fluorescence when bound to proteins. They can be used to stain gels after electrophoresis with a sensitivity approaching that of silver staining, but in a much simpler and more reproducible procedure. Stains can be prepared easily and at a fraction of the cost of commercially available reagents. Hydrophobic dyes can be used to stain gels without fixing; they do not interfere with later blotting or electroelution.
Collapse
|
21
|
Abstract
Staining of proteins separated on gels provides the basis for determination of the critical properties of these biopolymers, such as their molecular weight and/or charge. Detection of proteins on gels and blots require stains. These stains vary in sensitivity, ease of use, color, stability, versatility, and specificity. This review discusses different stains and applications with details on how to use the stains, and advantages and disadvantages of each stain. It also compiles some important points to be considered in imaging and evaluation. Commonly used colorimetric and fluorescent dyes for general protein staining, and stains that detect posttranslational modification-specific detection methods are also discussed.
Collapse
Affiliation(s)
- Pazhani Sundaram
- Recombinant Technologies LLC, 1090 Meriden Waterbury Turnpike, Suite 1, Cheshire, CT 06410, USA.
| |
Collapse
|
22
|
Gutiérrez A, Cerón JJ, Razzazi-Fazeli E, Schlosser S, Tecles F. Influence of different sample preparation strategies on the proteomic identification of stress biomarkers in porcine saliva. BMC Vet Res 2017; 13:375. [PMID: 29202764 PMCID: PMC5716369 DOI: 10.1186/s12917-017-1296-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/22/2017] [Indexed: 02/06/2023] Open
Abstract
Background The influence of two different sample treatments comprising the enrichment of glycoproteins by boronic acid and dynamic range compression by hexapeptide libraries, on the detection of stress markers in saliva of pigs was evaluated in this study. For this purpose, saliva samples collected before and after the application of an acute stress model consisting of nasal restraining in pigs were processed without any treatment and with the two different treatments mentioned above. Protein separation by two-dimensional gel electrophoresis (2-DE) followed by identification of proteins using MALDI-TOF/TOF mass spectrometry (MS) was used as proteomic technique. Results The application of each of the two different sample treatment protocols allowed the identification of unique proteins that could be potential salivary acute stress markers in pigs: lipocalin 1, protein S100-A8 and immunoglobulin M by enrichment of glycoproteins; protein S100-A9, double headed protease inhibitor submandibular gland, and haemoglobin by dynamic range compression; and protein S100-A12 by both protocols. Salivary lipocalin, prolactin inducible protein, light chain of immunoglobulins, adenosine deaminase and carbonic anhydrase VI were identified as potential markers in untreated saliva as well as one of the other treatments. Conclusion The use of different procedures allowed the detection of different potential stress markers. Although from a practical point of view, the use of saliva without further treatment as well as the enrichment of glycoproteins are less expensive and easy to do procedures.
Collapse
Affiliation(s)
- Ana Gutiérrez
- Department of Animal Medicine and Surgery, Regional Campus of International Excellence "Campus Mare Nostrum", Hospital Veterinario 4 planta, University of Murcia, 30100, Espinardo, Murcia, Spain
| | - José Joaquín Cerón
- Department of Animal Medicine and Surgery, Regional Campus of International Excellence "Campus Mare Nostrum", Hospital Veterinario 4 planta, University of Murcia, 30100, Espinardo, Murcia, Spain
| | - Ebrahim Razzazi-Fazeli
- VetCore Facility for Research, University of Veterinary Medicine Vienna, Veterinaerplatz 1, A-1210, Vienna, Austria
| | - Sarah Schlosser
- VetCore Facility for Research, University of Veterinary Medicine Vienna, Veterinaerplatz 1, A-1210, Vienna, Austria
| | - Fernando Tecles
- Department of Animal Medicine and Surgery, Regional Campus of International Excellence "Campus Mare Nostrum", Hospital Veterinario 4 planta, University of Murcia, 30100, Espinardo, Murcia, Spain.
| |
Collapse
|
23
|
Gutiérrez AM, Montes A, Gutiérrez-Panizo C, Fuentes P, De La Cruz-Sánchez E. Gender influence on the salivary protein profile of finishing pigs. J Proteomics 2017; 178:107-113. [PMID: 29199151 DOI: 10.1016/j.jprot.2017.11.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/20/2017] [Accepted: 11/25/2017] [Indexed: 12/30/2022]
Abstract
A study on gender differences in the normal range of biomarkers in porcine saliva samples has the scope for further attention. In the present study, the salivary protein profiles of age-matched healthy male and female finishing pigs were compared. The levels of salivary adenosine deaminase (ADA) activity, haptoglobin (Hp) and C-reactive protein (CRP) have been quantified in 32 male and 32 female pigs to ensure the presence of gender effect on the median levels of salivary biomarkers. Moreover, the total salivary protein content was quantified and compared. The overall salivary protein distribution was compared with SDS-PAGE in 14 male and 14 female pigs and the possible gender influence in the salivary protein profile was analysed by 2DE in 6 male and 6 female pigs. Statistically significant differences were observed in the median values of Hp, CRP, and ADA between male and female pigs (p<0.005). Although the total salivary protein content was not different between the sexes, the salivary protein distribution and profile showed specific gender differences in three proteins of the lipocalin family: the odorant-binding protein, salivary lipocalin and lipocalin 1. These proteins have been related to animal immune status and should be further explored as possible porcine salivary biomarkers. SIGNIFICANCE The biological relevance of the reported research is based on the possible gender influence on the discovery of salivary biomarkers in porcine production. As differences have been reported in the salivary protein distribution in male pigs in comparison to that of female pigs, the normal-range values, according to gender, of the newly discovered biomarkers should be explored and defined prior to its application in the porcine production system. A hormonal sexual influence is highly hypothesized.
Collapse
Affiliation(s)
- Ana M Gutiérrez
- Department of Animal Medicine and Surgery, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain.
| | - Ana Montes
- Department of Animal Medicine and Surgery, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Cándido Gutiérrez-Panizo
- Department of Animal Medicine and Surgery, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | | | - Ernesto De La Cruz-Sánchez
- Department of Physical Activity and Sport, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, San Javier, Murcia, Spain
| |
Collapse
|
24
|
Zavialova MG, Zgoda VG, Nikolaev EN. [Analysis of contribution of protein phosphorylation in the development of the diseases]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 63:101-114. [PMID: 28414281 DOI: 10.18097/pbmc20176302101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent decades, studies in the molecular origins of socially significant diseases have made a big step forward with the development and using of high-performance methods in genomics and proteomics. Numerous studies in the framework of the global program "Human Proteome" were aimed at the identification of all possible proteins in various cell cultures and tissues, including cancer. One of the objectives was to identify biomarkers - proteins with high specificity to certain pathologies. However, in many cases, it is shown that the development of the disease is not associated with the appearance of new proteins, but depends on the level of gene expression or forming of proteoforms - splice variants, single amino acid substitutions (SAP variants), and post-translational modifications (PTM) of proteins. PTM may play a key role in the development of pathology because they activate a variety of regulatory or structural proteins in the majority of cell physiological processes. Phosphorylation is among the most significant of these protein modifications.This review will describe methods for analysis of protein phosphorylation used in the studies of such diseases as cancer and neurodegenerative diseases, as well as examples of cases when the modified proteins are involved directly to their development, and screening such significant PTM is used for the diagnosis and choice of treatment.
Collapse
Affiliation(s)
| | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| | - E N Nikolaev
- Institute of Biomedical Chemistry, Moscow, Russia; Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia
| |
Collapse
|
25
|
Snelling TJ, Wallace RJ. The rumen microbial metaproteome as revealed by SDS-PAGE. BMC Microbiol 2017; 17:9. [PMID: 28061817 PMCID: PMC5219685 DOI: 10.1186/s12866-016-0917-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/16/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Ruminal digestion is carried out by large numbers of bacteria, archaea, protozoa and fungi. Understanding the microbiota is important because ruminal fermentation dictates the efficiency of feed utilisation by the animal and is also responsible for major emissions of the greenhouse gas, methane. Recent metagenomic and metatranscriptomic studies have helped to elucidate many features of the composition and activity of the microbiota. The metaproteome provides complementary information to these other -omics technologies. The aim of this study was to explore the metaproteome of bovine and ovine ruminal digesta using 2D SDS-PAGE. RESULTS Digesta samples were taken via ruminal fistulae and by gastric intubation, or at slaughter, and stored in glycerol at -80 °C. A protein extraction protocol was developed to maximise yield and representativeness of the protein content. The proteome of ruminal digesta taken from dairy cows fed a high concentrate diet was dominated by a few very highly expressed proteins, which were identified by LC-MS/MS to be structural proteins, such as actin and α- and β-tubulins, derived from ciliate protozoa. Removal of protozoa from digesta before extraction of proteins revealed the prokaryotic metaproteome, which was dominated by enzymes involved in glycolysis, such as glyceraldehyde-3-phosphate dehydrogenase, phosphoenolpyruvate carboxykinase, phosphoglycerate kinase and triosephosphate isomerase. The enzymes were predominantly from the Firmicutes and Bacteroidetes phyla. Enzymes from methanogenic archaea were also abundant, consistent with the importance of methane formation in the rumen. Gels from samples from dairy cows fed a high proportion of grass silage were consistently obscured by co-staining of humic compounds. Samples from beef cattle and fattening lambs receiving a predominantly concentrate diet produced clearer gels, but the pattern of spots was inconsistent between samples, making comparisons difficult. CONCLUSION This work demonstrated for the first time that 2D-PAGE reveals key structural proteins and enzymes in the rumen microbial community, despite its high complexity, and that taxonomic information can be deduced from the analysis. However, technical issues associated with feed material contamination, which affects the reproducibility of electrophoresis of different samples, limits its value.
Collapse
Affiliation(s)
- Timothy J Snelling
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB16 5BD, UK
| | - R John Wallace
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB16 5BD, UK.
| |
Collapse
|
26
|
Protein Quantification and Quantitative Phosphorylation Analysis by the Determination of Hetero Atoms (S and P) by Means of nanoHPLC-ICPMS. Metallomics 2017. [DOI: 10.1007/978-4-431-56463-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Detection and first characterization of an uncommon haptoglobin in porcine saliva of pigs with rectal prolapse by using boronic acid sample enrichment. Animal 2017; 11:845-853. [DOI: 10.1017/s1751731116002159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
28
|
Serebryany E, Folta-Stogniew E, Liu J, Yan ECY. Homodimerization enhances both sensitivity and dynamic range of the ligand-binding domain of type 1 metabotropic glutamate receptor. FEBS Lett 2016; 590:4308-4317. [PMID: 27800613 PMCID: PMC5154874 DOI: 10.1002/1873-3468.12473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/01/2016] [Accepted: 10/19/2016] [Indexed: 12/04/2023]
Abstract
Cooperativity in ligand binding is a key emergent property of protein oligomers. Positive cooperativity (higher affinity for subsequent binding events than for initial binding) is frequent. However, the symmetrically homodimeric ligand-binding domain (LBD) of metabotropic glutamate receptor type 1 exhibits negative cooperativity. To investigate its origin and functional significance, we measured the response to glutamate in vitro of wild-type and C140S LBD as a function of the extent of dimerization. Our results indicate that homodimerization enhances the affinity of the first, but not the second, binding site, relative to the monomer, giving the dimeric receptor both greater sensitivity and a broader dynamic range.
Collapse
Affiliation(s)
- Eugene Serebryany
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Ewa Folta-Stogniew
- W. M. Keck Foundation Biotechnology Resource Laboratory, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Jian Liu
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Elsa C. Y. Yan
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
29
|
Naryzhny S. Towards the Full Realization of 2DE Power. Proteomes 2016; 4:proteomes4040033. [PMID: 28248243 PMCID: PMC5260966 DOI: 10.3390/proteomes4040033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 11/03/2016] [Accepted: 11/09/2016] [Indexed: 01/29/2023] Open
Abstract
Here, approaches that allow disclosure of the information hidden inside and outside of two-dimensional gel electrophoresis (2DE) are described. Experimental identification methods, such as mass spectrometry of high resolution and sensitivity (MALDI-TOF MS and ESI LC-MS/MS) and immunodetection (Western and Far-Western) in combination with bioinformatics (collection of all information about proteoforms), move 2DE to the next level of power. The integration of these technologies will promote 2DE as a powerful methodology of proteomics technology.
Collapse
Affiliation(s)
- Stanislav Naryzhny
- Institute of Biomedical Chemistry, Pogodinskaya 10, Moscow 119121, Russia.
- B. P. Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Leningrad region, Gatchina 188300, Russia.
| |
Collapse
|
30
|
Murphy S, Dowling P, Ohlendieck K. Comparative Skeletal Muscle Proteomics Using Two-Dimensional Gel Electrophoresis. Proteomes 2016; 4:proteomes4030027. [PMID: 28248237 PMCID: PMC5217355 DOI: 10.3390/proteomes4030027] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/31/2016] [Accepted: 09/07/2016] [Indexed: 12/16/2022] Open
Abstract
The pioneering work by Patrick H. O’Farrell established two-dimensional gel electrophoresis as one of the most important high-resolution protein separation techniques of modern biochemistry (Journal of Biological Chemistry1975, 250, 4007–4021). The application of two-dimensional gel electrophoresis has played a key role in the systematic identification and detailed characterization of the protein constituents of skeletal muscles. Protein changes during myogenesis, muscle maturation, fibre type specification, physiological muscle adaptations and natural muscle aging were studied in depth by the original O’Farrell method or slightly modified gel electrophoretic techniques. Over the last 40 years, the combined usage of isoelectric focusing in the first dimension and sodium dodecyl sulfate polyacrylamide slab gel electrophoresis in the second dimension has been successfully employed in several hundred published studies on gel-based skeletal muscle biochemistry. This review focuses on normal and physiologically challenged skeletal muscle tissues and outlines key findings from mass spectrometry-based muscle proteomics, which was instrumental in the identification of several thousand individual protein isoforms following gel electrophoretic separation. These muscle-associated protein species belong to the diverse group of regulatory and contractile proteins of the acto-myosin apparatus that forms the sarcomere, cytoskeletal proteins, metabolic enzymes and transporters, signaling proteins, ion-handling proteins, molecular chaperones and extracellular matrix proteins.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| | - Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
31
|
Odriozola L, Corrales FJ. Discovery of nutritional biomarkers: future directions based on omics technologies. Int J Food Sci Nutr 2016; 66 Suppl 1:S31-40. [PMID: 26241009 DOI: 10.3109/09637486.2015.1038224] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Understanding the interactions between food and human biology is of utmost importance to facilitate the development of more efficient nutritional interventions that might improve our wellness status and future health outcomes by reducing risk factors for non-transmittable chronic diseases, such as cardiovascular diseases, cancer, obesity and metabolic syndrome. Dissection of the molecular mechanisms that mediate the physiological effects of diets and bioactive compounds is one of the main goals of current nutritional investigation and the food industry as might lead to the discovery of novel biomarkers. It is widely recognized that the availability of robust nutritional biomarkers represents a bottleneck that delays the innovation process of the food industry. In this regard, omics sciences have opened up new avenues of research and opportunities in nutrition. Advances in mass spectrometry, nuclear magnetic resonance, next generation sequencing and microarray technologies allow massive genome, gene expression, proteomic and metabolomic profiling, obtaining a global and in-depth analysis of physiological/pathological scenarios. For this reason, omics platforms are most suitable for the discovery and characterization of novel nutritional markers that will define the nutritional status of both individuals and populations in the near future, and to identify the nutritional bioactive compounds responsible for the health outcomes.
Collapse
Affiliation(s)
- Leticia Odriozola
- Proteomics Laboratory, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| | | |
Collapse
|
32
|
Abstract
The LINE-1 retrotransposon (L1) encodes two proteins, ORF1p and ORF2p, which bind to the L1 RNA in cis, forming a ribonucleoprotein (RNP) complex that is critical for retrotransposition. Interactions with both permissive and repressive host factors pervade every step of the L1 life cycle. Until recently, limitations in detection and production precluded in-depth characterization of L1 RNPs. Inducible expression and recombinant engineering of epitope tags have made detection of both L1 ORFs routine. Here, we describe large-scale production of L1-expressing HEK-293T cells in suspension cell culture, cryomilling and affinity capture of L1 RNP complexes, sample preparation for analysis by mass spectrometry, and assay using the L1 element amplification protocol (LEAP) and qRT-PCR.
Collapse
|
33
|
A Novel Gaussian Extrapolation Approach for 2-D Gel Electrophoresis Saturated Protein Spots. Methods Mol Biol 2015; 1384:203-11. [PMID: 26611417 DOI: 10.1007/978-1-4939-3255-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Analysis of images obtained from two-dimensional gel electrophoresis (2-D GE) is a topic of utmost importance in bioinformatics research, since commercial and academic software currently available have proven to be neither completely effective nor fully automatic, often requiring manual revision and refinement of computer generated matches. In this chapter, we present an effective technique for the detection and the reconstruction of over-saturated protein spots. Firstly, the algorithm reveals overexposed areas, where spots may be truncated, and plateau regions caused by smeared and overlapping spots. Next, it reconstructs the correct distribution of pixel values in these overexposed areas and plateau regions, using a two-dimensional least-squares fitting based on a generalized Gaussian distribution. Pixel correction in saturated and smeared spots allows more accurate proteins quantification, providing more reliable image analysis results. The method is validated for processing highly exposed 2-D GE images, comparing reconstructed spots with the corresponding non-saturated image. The results demonstrate that the algorithm enables correct spot quantification.
Collapse
|
34
|
Atasaral-Şahin Ş, Romero MR, Cueto R, González-Lavín N, Marcos M, Diz AP. Subtle tissue and sex-dependent proteome variation in mussel (Mytilus galloprovincialis) populations of the Galician coast (NW Spain) raised in a common environment. Proteomics 2015; 15:3993-4006. [PMID: 26449374 DOI: 10.1002/pmic.201500241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/21/2015] [Accepted: 10/02/2015] [Indexed: 12/11/2022]
Abstract
The mussel Mytilus galloprovincialis is one of the most important marine resources for aquaculture in Europe, and Galicia (NW Spain) is the EU's leading region for production. Variation in environmental and ecological factors exists in Northern and Southern estuaries of this region, and natural selection could have modulated genetic variation among populations with adaptation to local conditions as the driving force. Results from a previous genetic study using neutral markers suggested subtle genetic differentiation between mussel populations from both estuarine areas. In this new study, mussel samples from Northern and Southern estuaries were brought into a common environment to test for proteome differences due to genetic and permanent non-genetic effects in populations from both estuarine areas, using both foot and mantle border tissues. Because the sex of the mussels was determined through histological tests, sex-specific effects were also examined. Evidence of subtle differences in the foot proteome, dependent on mussel sex, were detected between populations from both estuaries. These differences were more marked for female samples. No evidence of proteome differences was found for the factors estuaries and sex in mantle border tissue. Candidate proteins with a potential role in local adaptation were identified and point to molecular functions that might be involved in responses to different stressors.
Collapse
Affiliation(s)
- Şebnem Atasaral-Şahin
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain.,Department of Fisheries Technology Engineering, Faculty of Marine Sciences, Karadeniz Technical University, Surmene, Trabzon, Turkey
| | - Mónica R Romero
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain.,Toralla Marine Science Station (ECIMAT), University of Vigo, Isla de Toralla, Vigo, Spain
| | - Rosa Cueto
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain
| | - Nerea González-Lavín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain.,Toralla Marine Science Station (ECIMAT), University of Vigo, Isla de Toralla, Vigo, Spain
| | - Manuel Marcos
- Structural Determination, Proteomics and Genomics Service, CACTI, University of Vigo, Vigo, Spain
| | - Angel P Diz
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain.,Toralla Marine Science Station (ECIMAT), University of Vigo, Isla de Toralla, Vigo, Spain
| |
Collapse
|
35
|
Villumsen NS, Jensen HB, Thu Le TT, Møller HS, Nordvang RT, Nielsen LR, Nielsen SB, Sørensen J, Hammershøj M, Larsen LB. Self-assembly of caseinomacropeptide as a potential key mechanism in the formation of visible storage induced aggregates in acidic whey protein isolate dispersions. Int Dairy J 2015. [DOI: 10.1016/j.idairyj.2015.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Hakhverdyan Z, Domanski M, Hough LE, Oroskar AA, Oroskar AR, Keegan S, Dilworth DJ, Molloy KR, Sherman V, Aitchison JD, Fenyö D, Chait BT, Jensen TH, Rout MP, LaCava J. Rapid, optimized interactomic screening. Nat Methods 2015; 12:553-60. [PMID: 25938370 PMCID: PMC4449307 DOI: 10.1038/nmeth.3395] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 03/03/2015] [Indexed: 12/25/2022]
Abstract
We must reliably map the interactomes of cellular macromolecular
complexes in order to fully explore and understand biological systems. However,
there are no methods to accurately predict how to capture a given macromolecular
complex with its physiological binding partners. Here, we present a screen that
comprehensively explores the parameters affecting the stability of interactions
in affinity-captured complexes, enabling the discovery of physiological binding
partners and the elucidation of their functional interactions in unparalleled
detail. We have implemented this screen on several macromolecular complexes from
a variety of organisms, revealing novel profiles even for well-studied proteins.
Our approach is robust, economical and automatable, providing an inroad to the
rigorous, systematic dissection of cellular interactomes.
Collapse
Affiliation(s)
- Zhanna Hakhverdyan
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA
| | - Michal Domanski
- 1] Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA. [2] Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Loren E Hough
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA
| | | | | | - Sarah Keegan
- 1] Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, New York, USA. [2] Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, USA
| | - David J Dilworth
- 1] Institute for Systems Biology, Seattle, Washington, USA. [2] Seattle Biomedical Research Institute, Seattle, Washington, USA
| | - Kelly R Molloy
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York, USA
| | - Vadim Sherman
- High Energy Physics Instrument Shop, The Rockefeller University, New York, New York, USA
| | - John D Aitchison
- 1] Institute for Systems Biology, Seattle, Washington, USA. [2] Seattle Biomedical Research Institute, Seattle, Washington, USA
| | - David Fenyö
- 1] Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, New York, USA. [2] Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York, USA
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA
| |
Collapse
|
37
|
Meisrimler CN, Schwendke A, Lüthje S. Two-dimensional phos-tag zymograms for tracing phosphoproteins by activity in-gel staining. FRONTIERS IN PLANT SCIENCE 2015; 6:230. [PMID: 25926840 PMCID: PMC4396385 DOI: 10.3389/fpls.2015.00230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/23/2015] [Indexed: 06/04/2023]
Abstract
Protein phosphorylation is one of the most common post-translational modifications regulating many cellular processes. The phos-tag technology was combined with two-dimensional zymograms, which consisted of non-reducing IEF PAGE or NEPHGE in the first dimension and high resolution clear native electrophoresis (hrCNE) in the second dimension. The combination of these electrophoresis methods was mild enough to accomplish in-gel activity staining for Fe(III)-reductases by NADH/Fe(III)-citrate/ferrozine, 3,3'-Diaminobenzidine/H2O2 or TMB/H2O2 in the second dimension. The phos-tag zymograms can be used to investigate phosphorylation-dependent changes in enzyme activity. Phos-tag zymograms can be combined with further downstream analysis like mass spectrometry. Non-reducing IEF will resolve proteins with a pI of 3-10, whereas non-reducing NEPHGE finds application for alkaline proteins with a pI higher than eight. Advantages and disadvantages of these new methods will be discussed in detail.
Collapse
Affiliation(s)
- Claudia-Nicole Meisrimler
- Plant Physiology, Biocenter Klein Flottbek and Botanical Garden, University of HamburgHamburg, Germany
- Laboratoire de Biologie du Développement des Plantes, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie, Environnementale et de BiotechnologieSaint-Paul-lez-Durance, France
| | - Alexandra Schwendke
- Plant Physiology, Biocenter Klein Flottbek and Botanical Garden, University of HamburgHamburg, Germany
| | - Sabine Lüthje
- Plant Physiology, Biocenter Klein Flottbek and Botanical Garden, University of HamburgHamburg, Germany
| |
Collapse
|
38
|
Tian F, Xie ZL, Zhao LZ, Guo J, Han XB, Xie LF, Wang Y, Chang XY. Comparative secretome analysis of Fusarium sp. Q7-31T during liquid fermentation using oat straw as a carbon source. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1051-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
39
|
Abstract
Protein labeling methods prior to separation and analysis have become indispensable approaches for proteomic profiling. Basically, three different types of tags are employed: stable isotopes, mass tags, and fluorophores. While proteins labeled with stable isotopes and mass tags are measured and differentiated by mass spectrometry, fluorescent labels are detected with fluorescence imagers. The major purposes for protein labeling are monitoring of biological processes, reliable quantification of compounds and specific detection of protein modifications and isoforms in multiplexed samples, enhancement of detection sensitivity, and simplification of detection workflows. Proteins can be labeled during cell growth by incorporation of amino acids containing different isotopes, or in biological fluids, cells or tissue samples by attaching specific groups to the ε-amino group of lysine, the N-terminus, or the cysteine residues. The principles and the modifications of the different labeling approaches on the protein level are described; benefits and shortcomings of the methods are discussed.
Collapse
|
40
|
Raynal B, Lenormand P, Baron B, Hoos S, England P. Quality assessment and optimization of purified protein samples: why and how? Microb Cell Fact 2014; 13:180. [PMID: 25547134 PMCID: PMC4299812 DOI: 10.1186/s12934-014-0180-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/10/2014] [Indexed: 01/27/2023] Open
Abstract
Purified protein quality control is the final and critical check-point of any protein production process. Unfortunately, it is too often overlooked and performed hastily, resulting in irreproducible and misleading observations in downstream applications. In this review, we aim at proposing a simple-to-follow workflow based on an ensemble of widely available physico-chemical technologies, to assess sequentially the essential properties of any protein sample: purity and integrity, homogeneity and activity. Approaches are then suggested to optimize the homogeneity, time-stability and storage conditions of purified protein preparations, as well as methods to rapidly evaluate their reproducibility and lot-to-lot consistency.
Collapse
Affiliation(s)
- Bertrand Raynal
- Institut Pasteur, Biophysics of Macromolecules and their Interactions, 25 rue du Docteur Roux, 75724, Paris Cedex 15, France.
- CNRS-UMR3528, Institut Pasteur, Departement of Structural Biology and Chemistry, Paris, France.
| | - Pascal Lenormand
- Institut Pasteur, Biophysics of Macromolecules and their Interactions, 25 rue du Docteur Roux, 75724, Paris Cedex 15, France.
- CNRS-UMR3528, Institut Pasteur, Departement of Structural Biology and Chemistry, Paris, France.
| | - Bruno Baron
- Institut Pasteur, Biophysics of Macromolecules and their Interactions, 25 rue du Docteur Roux, 75724, Paris Cedex 15, France.
- CNRS-UMR3528, Institut Pasteur, Departement of Structural Biology and Chemistry, Paris, France.
| | - Sylviane Hoos
- Institut Pasteur, Biophysics of Macromolecules and their Interactions, 25 rue du Docteur Roux, 75724, Paris Cedex 15, France.
- CNRS-UMR3528, Institut Pasteur, Departement of Structural Biology and Chemistry, Paris, France.
| | - Patrick England
- Institut Pasteur, Biophysics of Macromolecules and their Interactions, 25 rue du Docteur Roux, 75724, Paris Cedex 15, France.
- CNRS-UMR3528, Institut Pasteur, Departement of Structural Biology and Chemistry, Paris, France.
| |
Collapse
|
41
|
Nkuipou-Kenfack E, Koeck T, Mischak H, Pich A, Schanstra JP, Zürbig P, Schumacher B. Proteome analysis in the assessment of ageing. Ageing Res Rev 2014; 18:74-85. [PMID: 25257180 DOI: 10.1016/j.arr.2014.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/05/2014] [Accepted: 09/15/2014] [Indexed: 12/14/2022]
Abstract
Based on demographic trends, the societies in many developed countries are facing an increasing number and proportion of people over the age of 65. The raise in elderly populations along with improved health-care will be concomitant with an increased prevalence of ageing-associated chronic conditions like cardiovascular, renal, and respiratory diseases, arthritis, dementia, and diabetes mellitus. This is expected to pose unprecedented challenges both for individuals and societies and their health care systems. An ultimate goal of ageing research is therefore the understanding of physiological ageing and the achievement of 'healthy' ageing by decreasing age-related pathologies. However, on a molecular level, ageing is a complex multi-mechanistic process whose contributing factors may vary individually, partly overlap with pathological alterations, and are often poorly understood. Proteome analysis potentially allows modelling of these multifactorial processes. This review summarises recent proteomic research on age-related changes identified in animal models and human studies. We combined this information with pathway analysis to identify molecular mechanisms associated with ageing. We identified some molecular pathways that are affected in most or even all organs and others that are organ-specific. However, appropriately powered studies are needed to confirm these findings based in in silico evaluation.
Collapse
Affiliation(s)
- Esther Nkuipou-Kenfack
- Mosaiques Diagnostics GmbH, Hannover, Germany; Hannover Medical School, Core Facility Proteomics, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | | | - Harald Mischak
- Mosaiques Diagnostics GmbH, Hannover, Germany; BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Andreas Pich
- Hannover Medical School, Core Facility Proteomics, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Joost P Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut of Cardiovascular and Metabolic Disease, Toulouse, France; Université Toulouse III Paul-Sabatier, Toulouse, France
| | | | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD) Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| |
Collapse
|
42
|
OWEN CHRISTOPHERB, HUGHES DAVIDJ, BAQUERO-PEREZ BELINDA, BERNDT ANJA, SCHUMANN SOPHIE, JACKSON BRIANR, WHITEHOUSE ADRIAN. Utilising proteomic approaches to understand oncogenic human herpesviruses (Review). Mol Clin Oncol 2014; 2:891-903. [PMID: 25279171 PMCID: PMC4179824 DOI: 10.3892/mco.2014.341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 06/10/2014] [Indexed: 12/16/2022] Open
Abstract
The γ-herpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus are successful pathogens, each infecting a large proportion of the human population. These viruses persist for the life of the host and may each contribute to a number of malignancies, for which there are currently no cures. Large-scale proteomic-based approaches provide an excellent means of increasing the collective understanding of the proteomes of these complex viruses and elucidating their numerous interactions within the infected host cell. These large-scale studies are important for the identification of the intricacies of viral infection and the development of novel therapeutics against these two important pathogens.
Collapse
Affiliation(s)
- CHRISTOPHER B. OWEN
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - DAVID J. HUGHES
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - BELINDA BAQUERO-PEREZ
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - ANJA BERNDT
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - SOPHIE SCHUMANN
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - BRIAN R. JACKSON
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - ADRIAN WHITEHOUSE
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
43
|
García-Descalzo L, García-López E, Alcázar A, Baquero F, Cid C. Proteomic analysis of the adaptation to warming in the Antarctic bacteria Shewanella frigidimarina. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:2229-40. [PMID: 25149826 DOI: 10.1016/j.bbapap.2014.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 08/06/2014] [Accepted: 08/11/2014] [Indexed: 12/27/2022]
Abstract
Antarctica is subjected to extremely variable conditions, but the importance of the temperature increase in cold adapted bacteria is still unknown. To study the molecular adaptation to warming of Antarctic bacteria, cultures of Shewanella frigidimarina were incubated at temperatures ranging from 0°C to 30°C, emulating the most extreme conditions that this strain could tolerate. A proteomic approach was developed to identify the soluble proteins obtained from cells growing at 4°C, 20°C and 28°C. The most drastic effect when bacteria were grown at 28°C was the accumulation of heat shock proteins as well as other proteins related to stress, redox homeostasis or protein synthesis and degradation, and the decrease of enzymes and components of the cell envelope. Furthermore, two main responses in the adaptation to warm temperature were detected: the presence of diverse isoforms in some differentially expressed proteins, and the composition of chaperone interaction networks at the limits of growth temperature. The abundance changes of proteins suggest that warming induces a stress situation in S. frigidimarina forcing cells to reorganize their molecular networks as an adaptive response to these environmental conditions.
Collapse
Affiliation(s)
| | - Eva García-López
- Centro de Astrobiologia (CSIC-INTA), 28850 Torrejón de Ardoz, Spain
| | - Alberto Alcázar
- Department of Investigation, Hospital Ramon y Cajal, 28034 Madrid, Spain
| | - Fernando Baquero
- Centro de Astrobiologia (CSIC-INTA), 28850 Torrejón de Ardoz, Spain; Department of Microbiology, Hospital Ramon y Cajal, 28034 Madrid, Spain
| | - Cristina Cid
- Centro de Astrobiologia (CSIC-INTA), 28850 Torrejón de Ardoz, Spain.
| |
Collapse
|
44
|
Rocha AS, Santos FM, Monteiro JP, Castro-de-Sousa JP, Queiroz JA, Tomaz CT, Passarinha LA. Trends in proteomic analysis of human vitreous humor samples. Electrophoresis 2014; 35:2495-508. [DOI: 10.1002/elps.201400049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/02/2014] [Accepted: 05/02/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Ana S. Rocha
- CICS-UBI - Health Sciences Research Centre; University of Beira Interior; Covilhã Portugal
- Chemistry Department; Faculty of Sciences, University of Beira Interior; Covilhã Portugal
| | - Fátima M. Santos
- CICS-UBI - Health Sciences Research Centre; University of Beira Interior; Covilhã Portugal
- Chemistry Department; Faculty of Sciences, University of Beira Interior; Covilhã Portugal
| | - João P. Monteiro
- CICS-UBI - Health Sciences Research Centre; University of Beira Interior; Covilhã Portugal
| | - João P. Castro-de-Sousa
- Medical Sciences Department; Faculty of Health sciences; University of Beira Interior; Covilhã Portugal
- Ophthalmology Service; Leiria-Pombal Hospital Center; Pombal Portugal
| | - João A. Queiroz
- CICS-UBI - Health Sciences Research Centre; University of Beira Interior; Covilhã Portugal
- Chemistry Department; Faculty of Sciences, University of Beira Interior; Covilhã Portugal
| | - Cândida T. Tomaz
- CICS-UBI - Health Sciences Research Centre; University of Beira Interior; Covilhã Portugal
- Chemistry Department; Faculty of Sciences, University of Beira Interior; Covilhã Portugal
| | - Luís A. Passarinha
- CICS-UBI - Health Sciences Research Centre; University of Beira Interior; Covilhã Portugal
- Medical Sciences Department; Faculty of Health sciences; University of Beira Interior; Covilhã Portugal
| |
Collapse
|
45
|
Epicocconone staining: A powerful loading control for Western blots. Proteomics 2014; 14:162-8. [DOI: 10.1002/pmic.201300089] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 11/18/2013] [Accepted: 11/25/2013] [Indexed: 02/06/2023]
|
46
|
Syzgantseva OA, Tognetti V, Boulangé A, Peixoto PA, Leleu S, Franck X, Joubert L. Evaluating Charge Transfer in Epicocconone Analogues: Toward a Targeted Design of Fluorophores. J Phys Chem A 2014; 118:757-64. [DOI: 10.1021/jp410407u] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Olga A. Syzgantseva
- Normandy University, COBRA UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesniére 76821 Mont St Aignan, Cedex, France
| | - Vincent Tognetti
- Normandy University, COBRA UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesniére 76821 Mont St Aignan, Cedex, France
| | - Agathe Boulangé
- Normandy University, COBRA UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesniére 76821 Mont St Aignan, Cedex, France
| | - Philippe A. Peixoto
- Normandy University, COBRA UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesniére 76821 Mont St Aignan, Cedex, France
| | - Stéphane Leleu
- Normandy University, COBRA UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesniére 76821 Mont St Aignan, Cedex, France
| | - Xavier Franck
- Normandy University, COBRA UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesniére 76821 Mont St Aignan, Cedex, France
| | - Laurent Joubert
- Normandy University, COBRA UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesniére 76821 Mont St Aignan, Cedex, France
| |
Collapse
|
47
|
Wong SCC, Chan CML, Ma BBY, Lam MYY, Choi GCG, Au TCC, Chan ASK, Chan ATC. Advanced proteomic technologies for cancer biomarker discovery. Expert Rev Proteomics 2014; 6:123-34. [DOI: 10.1586/epr.09.1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
|
49
|
Abstract
Two-dimensional electrophoresis has nurtured the birth of proteomics. It is however no longer the exclusive setup used in proteomics, with the development of shotgun proteomics techniques that appear more fancy and fashionable nowadays.Nevertheless, 2D gel-based proteomics still has valuable features, and sometimes unique ones, which make it often an attractive choice when a proteomics strategy must be selected. These features are detailed in this chapter, as is the rationale for selecting or not 2D gel-based proteomics as a proteomic strategy.
Collapse
|
50
|
SUZUKI Y, NOBUSAWA A, FURUTA N. Quantification of Proteins by Measuring the Sulfur Content of Their Constituent Peptides by Means of Nano HPLC-ICPMS. ANAL SCI 2014; 30:551-9. [DOI: 10.2116/analsci.30.551] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yoshinari SUZUKI
- Faculty of Science and Engineering, Department of Applied Chemistry, Chuo University
| | - Ayumi NOBUSAWA
- Faculty of Science and Engineering, Department of Applied Chemistry, Chuo University
| | - Naoki FURUTA
- Faculty of Science and Engineering, Department of Applied Chemistry, Chuo University
| |
Collapse
|