1
|
Zhang H, Tian Y, Ma S, Ji Y, Wang Z, Xiao P, Xu Y. Chaperone-Mediated Autophagy in Brain Injury: A Double-Edged Sword with Therapeutic Potentials. Mol Neurobiol 2024; 61:10671-10683. [PMID: 38775879 DOI: 10.1007/s12035-024-04230-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/10/2024] [Indexed: 11/24/2024]
Abstract
Autophagy is an intracellular recycling process that maintains cellular homeostasis by degrading excess or defective macromolecules and organelles. Chaperone-mediated autophagy (CMA) is a highly selective form of autophagy in which a substrate containing a KFERQ-like motif is recognized by a chaperone protein, delivered to the lysosomal membrane, and then translocated to the lysosome for degradation with the assistance of lysosomal membrane protein 2A. Normal CMA activity is involved in the regulation of cellular proteostasis, metabolism, differentiation, and survival. CMA dysfunction disturbs cellular homeostasis and directly participates in the pathogenesis of human diseases. Previous investigations on CMA in the central nervous system have primarily focus on neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. Recently, mounting evidence suggested that brain injuries involve a wider range of types and severities, making the involvement of CMA in the bidirectional processes of damage and repair even more crucial. In this review, we summarize the basic processes of CMA and its associated regulatory mechanisms and highlight the critical role of CMA in brain injury such as cerebral ischemia, traumatic brain injury, and other specific brain injuries. We also discuss the potential of CMA as a therapeutic target to treat brain injury and provide valuable insights into clinical strategies.
Collapse
Affiliation(s)
- Huiyi Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Tian
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuai Ma
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yichen Ji
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhihang Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peilun Xiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Xu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Martínez-Alonso E, Escobar-Peso A, Guerra-Pérez N, Roca M, Masjuan J, Alcázar A. Dihydropyrimidinase-Related Protein 2 Is a New Partner in the Binding between 4E-BP2 and eIF4E Related to Neuronal Death after Cerebral Ischemia. Int J Mol Sci 2023; 24:ijms24098246. [PMID: 37175950 PMCID: PMC10179276 DOI: 10.3390/ijms24098246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/23/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Transient cerebral ischemia induces neuronal degeneration, followed in time by secondary delayed neuronal death that is strongly correlated with a permanent inhibition of protein synthesis in vulnerable brain regions, while protein translational rates are recovered in resistant areas. In the translation-regulation initiation step, the eukaryotic initiation factor (eIF) 4E is a key player regulated by its association with eIF4E-binding proteins (4E-BPs), mostly 4E-BP2 in brain tissue. In a previous work, we identified dihydropyrimidinase-related protein 2 (DRP2) as a 4E-BP2-interacting protein. Here, using a proteomic approach in a model of transient cerebral ischemia, a detailed study of DRP2 was performed in order to address the challenge of translation restoration in vulnerable regions. In this report, several DRP2 isoforms that have a specific interaction with both 4E-BP2 and eIF4E were identified, showing significant and opposite differences in this association, and being differentially detected in resistant and vulnerable regions in response to ischemia reperfusion. Our results provide the first evidence of DRP2 isoforms as potential regulators of the 4E-BP2-eIF4E association that would have consequences in the delayed neuronal death under ischemic-reperfusion stress. The new knowledge reported here identifies DRP2 as a new target to promote neuronal survival after cerebral ischemia.
Collapse
Affiliation(s)
- Emma Martínez-Alonso
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
- Proteomics Unit, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
| | - Alejandro Escobar-Peso
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
| | - Natalia Guerra-Pérez
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Marcel Roca
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
| | - Jaime Masjuan
- Department of Neurology, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
- Department of Neurology, Facultad de Medicina, Universidad de Alcalá, 28871 Alcalá de Henares, Spain
| | - Alberto Alcázar
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
- Proteomics Unit, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
| |
Collapse
|
3
|
Abstract
Stroke remains a leading cause of death and disability, with limited therapeutic options and suboptimal tools for diagnosis and prognosis. High throughput technologies such as proteomics generate large volumes of experimental data at once, thus providing an advanced opportunity to improve the status quo by facilitating identification of novel therapeutic targets and molecular biomarkers. Proteomics studies in animals are largely designed to decipher molecular pathways and targets altered in brain tissue after stroke, whereas studies in human patients primarily focus on biomarker discovery in biofluids and, more recently, in thrombi and extracellular vesicles. Here, we offer a comprehensive review of stroke proteomics studies conducted in both animal and human specimen and present our view on limitations, challenges, and future perspectives in the field. In addition, as a unique resource for the scientific community, we provide extensive lists of all proteins identified in proteomic studies as altered by stroke and perform postanalysis of animal data to reveal stroke-related cellular processes and pathways.
Collapse
Affiliation(s)
- Karin Hochrainer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY (K.H.)
| | - Wei Yang
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University School of Medicine, Durham, NC (W.Y.)
| |
Collapse
|
4
|
Martínez-Alonso E, Guerra-Pérez N, Escobar-Peso A, Regidor I, Masjuan J, Alcázar A. Differential Association of 4E-BP2-Interacting Proteins Is Related to Selective Delayed Neuronal Death after Ischemia. Int J Mol Sci 2021; 22:ijms221910327. [PMID: 34638676 PMCID: PMC8509075 DOI: 10.3390/ijms221910327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/30/2022] Open
Abstract
Cerebral ischemia induces an inhibition of protein synthesis and causes cell death and neuronal deficits. These deleterious effects do not occur in resilient areas of the brain, where protein synthesis is restored. In cellular stress conditions, as brain ischemia, translational repressors named eukaryotic initiation factor (eIF) 4E-binding proteins (4E-BPs) specifically bind to eIF4E and are critical in the translational control. We previously described that 4E-BP2 protein, highly expressed in brain, can be a molecular target for the control of cell death or survival in the reperfusion after ischemia in an animal model of transient cerebral ischemia. Since these previous studies showed that phosphorylation would not be the regulation that controls the binding of 4E-BP2 to eIF4E under ischemic stress, we decided to investigate the differential detection of 4E-BP2-interacting proteins in two brain regions with different vulnerability to ischemia-reperfusion (IR) in this animal model, to discover new potential 4E-BP2 modulators and biomarkers of cerebral ischemia. For this purpose, 4E-BP2 immunoprecipitates from the resistant cortical region and the vulnerable hippocampal cornu ammonis 1 (CA1) region were analyzed by two-dimensional (2-D) fluorescence difference in gel electrophoresis (DIGE), and after a biological variation analysis, 4E-BP2-interacting proteins were identified by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry. Interestingly, among the 4E-BP2-interacting proteins identified, heat shock 70 kDa protein-8 (HSC70), dihydropyrimidinase-related protein-2 (DRP2), enolase-1, ubiquitin carboxyl-terminal hydrolase isozyme-L1 (UCHL1), adenylate kinase isoenzyme-1 (ADK1), nucleoside diphosphate kinase-A (NDKA), and Rho GDP-dissociation inhibitor-1 (Rho-GDI), were of notable interest, showing significant differences in their association with 4E-BP2 between resistant and vulnerable regions to ischemic stress. Our data contributes to the first characterization of the 4E-BP2 interactome, increasing the knowledge in the molecular basis of the protection and vulnerability of the ischemic regions and opens the way to detect new biomarkers and therapeutic targets for diagnosis and treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Emma Martínez-Alonso
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. Colmenar km 9.1, 28034 Madrid, Spain; (E.M.-A.); (N.G.-P.); (A.E.-P.)
- Proteomics Unit, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. Colmenar km 9.1, 28034 Madrid, Spain
| | - Natalia Guerra-Pérez
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. Colmenar km 9.1, 28034 Madrid, Spain; (E.M.-A.); (N.G.-P.); (A.E.-P.)
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Av. Complutense, 28040 Madrid, Spain
| | - Alejandro Escobar-Peso
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. Colmenar km 9.1, 28034 Madrid, Spain; (E.M.-A.); (N.G.-P.); (A.E.-P.)
| | - Ignacio Regidor
- Department of Neurophysiology, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. Colmenar km 9.1, 28034 Madrid, Spain;
| | - Jaime Masjuan
- Department of Neurology, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. Colmenar km 9.1, 28034 Madrid, Spain;
- Department of Neurology, Facultad de Medicina, Universidad de Alcalá, Ctra. Madrid-Barcelona km 33.6, 28871 Alcalá de Henares, Spain
| | - Alberto Alcázar
- Department of Research, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. Colmenar km 9.1, 28034 Madrid, Spain; (E.M.-A.); (N.G.-P.); (A.E.-P.)
- Proteomics Unit, Hospital Universitario Ramón y Cajal, IRYCIS, Ctra. Colmenar km 9.1, 28034 Madrid, Spain
- Correspondence:
| |
Collapse
|
5
|
Li S, Ren C, Stone C, Chandra A, Xu J, Li N, Han C, Ding Y, Ji X, Shao G. Hamartin: An Endogenous Neuroprotective Molecule Induced by Hypoxic Preconditioning. Front Genet 2020; 11:582368. [PMID: 33193709 PMCID: PMC7556298 DOI: 10.3389/fgene.2020.582368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/08/2020] [Indexed: 11/23/2022] Open
Abstract
Hypoxic/ischemic preconditioning (HPC/IPC) is an innate neuroprotective mechanism in which a number of endogenous molecules are known to be involved. Tuberous sclerosis complex 1 (TSC1), also known as hamartin, is thought to be one such molecule. It is also known that hamartin is involved as a target in the rapamycin (mTOR) signaling pathway, which functions to integrate a variety of environmental triggers in order to exert control over cellular metabolism and homeostasis. Understanding the role of hamartin in ischemic/hypoxic neuroprotection will provide a novel target for the treatment of hypoxic-ischemic disease. Therefore, the proposed molecular mechanisms of this neuroprotective role and its preconditions are reviewed in this paper, with emphases on the mTOR pathway and the relationship between the expression of hamartin and DNA methylation.
Collapse
Affiliation(s)
- Sijie Li
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
| | - Christopher Stone
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Ankush Chandra
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jiali Xu
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ning Li
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Cong Han
- Department of Neurosurgery, The Fifth Medical Centre of PLA General Hospital, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guo Shao
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China.,Public Health Department, Biomedicine Research Center, Basic Medical College, Baotou, China.,Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, China
| |
Collapse
|
6
|
Proteomic analysis of plasma proteins of high-flux haemodialysis and on-line haemodiafiltration patients reveals differences in transthyretin levels related with anaemia. Sci Rep 2020; 10:16029. [PMID: 32994444 PMCID: PMC7524835 DOI: 10.1038/s41598-020-72104-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 08/26/2020] [Indexed: 11/08/2022] Open
Abstract
A large proportion of end-stage renal disease (ESRD) patients under long-term haemodialysis, have persistent anaemia and require high doses of recombinant human erythropoietin (rhEPO). However, the underlying mechanisms of renal anaemia have not been fully elucidated in these patients. In this study, we will be focusing on anaemia and plasma proteins in ESRD patients on high-flux haemodialysis (HF) and on-line haemodiafiltration (HDF), to investigate using two proteomic approaches if patients undergoing these treatments develop differences in their plasma protein composition and how this could be related to their anaemia. The demographic and biochemical data revealed that HDF patients had lower anaemia and much lower rhEPO requirements than HF patients. Regarding their plasma proteomes, HDF patients had increased levels of a protein highly similar to serotransferrin, trypsin-1 and immunoglobulin heavy constant chain alpha-1, and lower levels of alpha-1 antitrypsin, transthyretin, apolipoproteins E and C-III, and haptoglobin-related protein. Lower transthyretin levels in HDF patients were further confirmed by transthyretin-peptide quantification and western blot detection. Since ESRD patients have increased transthyretin, a protein that can aggregate and inhibit transferrin endocytosis and erythropoiesis, our finding that HDF patients have lower transthyretin and lower anaemia suggests that the decrease in transthyretin plasma levels would allow an increase in transferrin endocytosis, contributing to erythropoiesis. Thus, transthyretin could be a critical actor for anaemia in ESRD patients and a novel player for haemodialysis adequacy.
Collapse
|
7
|
HOXA2 activity regulation by cytoplasmic relocation, protein stabilization and post-translational modification. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194404. [PMID: 31323436 DOI: 10.1016/j.bbagrm.2019.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/19/2019] [Accepted: 07/07/2019] [Indexed: 11/22/2022]
Abstract
HOX proteins are homeodomain transcription factors critically involved in patterning animal embryos and controlling organogenesis. While the functions of HOX proteins and the processes under their control begin to be well documented, the modalities of HOX protein activity regulation remain poorly understood. Here we show that HOXA2 interacts with PPP1CB, a catalytic subunit of the Ser/Thr PP1 phosphatase complex. This interaction co-localizes in the cytoplasm with a previously described HOXA2 interactor, KPC2, which belongs to the KPC E3 ubiquitin ligase complex. We provide evidence that HOXA2, PPP1CB and KPC2 define a molecularly and functionally interacting complex. Collectively, our experiments support that PPP1CB and KPC2 together inhibit the activity of HOXA2 by activating its nuclear export, but favored HOXA2 de-ubiquitination and stabilization thereby establishing a store of HOXA2 in the cytoplasm.
Collapse
|
8
|
Martínez-Ulloa PL, Vallejo M, Corral I, García-Barragán N, Alcazar A, Martínez-Alonso E, Martínez-Poles J, Pian H, Jiménez-Escrig A. A novel ATTR L32V mutation causes familial amyloid polyneuropathy in a Bolivian family. J Peripher Nerv Syst 2017. [PMID: 28646538 DOI: 10.1111/jns.12227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We report a new transthyretin (ATTR) gene c.272C>G mutation and variant protein, p.Leu32Val, in a kindred of Bolivian origin with a rapid progressive peripheral neuropathy and cardiomyopathy. Three individuals from a kindred with peripheral nerve and cardiac amyloidosis were examined. Analysis of the TTR gene was performed by Sanger direct sequencing. Neuropathologic examination was obtained on the index patient with mass spectrometry study of the ATTR deposition. Direct DNA sequence analysis of exons 2, 3, and 4 of the TTR gene demonstrated a c.272 C>G mutation in exon 2 (p.L32V). Sural nerve biopsy revealed massive amyloid deposition in the perineurium, endoneurium and vasa nervorum. Mass spectrometric analyses of ATTR immunoprecipitated from nerve biopsy showed the presence of both wild-type and variant proteins. The observed mass results for the wild-type and variant proteins were consistent with the predicted values calculated from the genetic analysis data. The ATTR L32V is associated with a severe course. This has implications for treatment of affected individuals and counseling of family members.
Collapse
Affiliation(s)
| | - Manuela Vallejo
- Neurobiología, IRYCIS, Hospital Ramón y Cajal, Madrid, Spain
| | - Iñigo Corral
- Department of Neurology, Hospital Ramón y Cajal, Madrid, Spain
| | | | - Alberto Alcazar
- Departmento de Investigación, IRYCIS, Hospital Ramón y Cajal, Madrid, Spain
| | | | | | - Hector Pian
- Department of Pathology, Hospital Ramón y Cajal, Madrid, Spain
| | | |
Collapse
|
9
|
Nemethova M, Talian I, Danielisova V, Tkacikova S, Bonova P, Bober P, Matiasova M, Sabo J, Burda J. Delayed bradykinin postconditioning modulates intrinsic neuroprotective enzyme expression in the rat CA1 region after cerebral ischemia: a proteomic study. Metab Brain Dis 2016; 31:1391-1403. [PMID: 27393013 DOI: 10.1007/s11011-016-9859-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
Abstract
Pyramidal cells in the CA1 brain region exhibit an ischemic tolerance after delayed postconditioning; therefore, this approach seems to be a promising neuroprotective procedure in cerebral postischemic injury improvement. However, little is known about the effect of postconditioning on protein expression patterns in the brain, especially in the affected hippocampal neurons after global cerebral ischemia. This study is focused on the examination of the ischemia-vulnerable CA1 neuronal layer and on the acquisition of protection from delayed neuronal death after ischemia. Ischemic-reperfusion injury was induced in Wistar rats and bradykinin was applied 2 days after the ischemic insult in an attempt to overcome delayed cell death. Analysis of complex peptide CA1 samples was performed by automated two dimensional liquid chromatography (2D-LC) fractionation coupled to tandem matrix assisted laser desorption/ionization time-of-flight (MALDI TOF/TOF) mass spectrometry instrumentation. We devoted our attention to differences in protein expression mapping in ischemic injured CA1 neurons in comparison with equally affected neurons, but with bradykinin application. Proteomic analysis identified several proteins occurring only after postconditioning and control, which could have a potentially neuroprotective influence on ischemic injured neurons. Among them, the prominent position occupies a regulator of glutamate level aspartate transaminase AATC, a scavenger of glutamate in brain neuroprotection after ischemia-reperfusion. We identified this enzyme in controls and after postconditioning, but AATC presence was not detected in the ischemic injured CA1 region. This finding was confirmed by two-dimensional differential electrophoresis followed by MALDI-TOF/TOF MS identification. Results suggest that bradykinin as delayed postconditioning may be associated with modulation of protein expression after ischemic injury and thus this procedure can be involved in neuroprotective metabolic pathways.
Collapse
Affiliation(s)
| | - Ivan Talian
- Department of Medical and Clinical Biophysics, Faculty of Medicine, P. J. Safarik University, Kosice, Slovakia
| | | | - Sona Tkacikova
- Department of Medical and Clinical Biophysics, Faculty of Medicine, P. J. Safarik University, Kosice, Slovakia
| | - Petra Bonova
- Institute of Neurobiology, SAS, Kosice, Slovakia
| | - Peter Bober
- Department of Medical and Clinical Biophysics, Faculty of Medicine, P. J. Safarik University, Kosice, Slovakia
| | | | - Jan Sabo
- Department of Medical and Clinical Biophysics, Faculty of Medicine, P. J. Safarik University, Kosice, Slovakia
| | - Jozef Burda
- Institute of Neurobiology, SAS, Kosice, Slovakia
| |
Collapse
|
10
|
Chiang DY, Heck AJR, Dobrev D, Wehrens XHT. Regulating the regulator: Insights into the cardiac protein phosphatase 1 interactome. J Mol Cell Cardiol 2016; 101:165-172. [PMID: 27663175 PMCID: PMC5154861 DOI: 10.1016/j.yjmcc.2016.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/15/2016] [Accepted: 09/18/2016] [Indexed: 11/28/2022]
Abstract
Reversible phosphorylation of proteins is a delicate yet dynamic balancing act between kinases and phosphatases, the disturbance of which underlies numerous disease processes. While our understanding of protein kinases has grown tremendously over the past decades, relatively little is known regarding protein phosphatases. This may be because protein kinases are great in number and relatively specific in function, and thereby amenable to be studied in isolation, whereas protein phosphatases are much less abundant and more nonspecific in their function. To achieve subcellular localization and substrate specificity, phosphatases depend on partnering with a large number of regulatory subunits, protein scaffolds and/or other interactors. This added layer of complexity presents a significant barrier to their study, but holds the key to unexplored opportunities for novel pharmacologic intervention. In this review we focus on serine/threonine protein phosphatase type-1 (PP1), which plays an important role in cardiac physiology and pathophysiology. Although much work has been done to investigate the role of PP1 in cardiac diseases including atrial fibrillation and heart failure, most of these studies were limited to examining and manipulating the catalytic subunit(s) of PP1 without adequately considering the PP1 interactors, which give specificity to PP1's functions. To complement these studies, three unbiased methods have been developed and applied to the mapping of the PP1 interactome: bioinformatics approaches, yeast two-hybrid screens, and affinity-purification mass spectrometry. The application of these complementary methods has the potential to generate a detailed cardiac PP1 interactome, which is an important step in identifying novel and targeted pharmacological interventions.
Collapse
Affiliation(s)
- David Y Chiang
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Dobromir Dobrev
- Institute of Pharmacology, University Duisburg/Essen, Essen, Germany
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA; Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA; Department of Medicine (Cardiology), Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics (Cardiology), Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
11
|
Kobeissy FH, Guingab-Cagmat JD, Zhang Z, Moghieb A, Glushakova OY, Mondello S, Boutté AM, Anagli J, Rubenstein R, Bahmad H, Wagner AK, Hayes RL, Wang KKW. Neuroproteomics and Systems Biology Approach to Identify Temporal Biomarker Changes Post Experimental Traumatic Brain Injury in Rats. Front Neurol 2016; 7:198. [PMID: 27920753 PMCID: PMC5118702 DOI: 10.3389/fneur.2016.00198] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/28/2016] [Indexed: 01/15/2023] Open
Abstract
Traumatic brain injury (TBI) represents a critical health problem of which diagnosis, management, and treatment remain challenging. TBI is a contributing factor in approximately one-third of all injury-related deaths in the United States. The Centers for Disease Control and Prevention estimate that 1.7 million people suffer a TBI in the United States annually. Efforts continue to focus on elucidating the complex molecular mechanisms underlying TBI pathophysiology and defining sensitive and specific biomarkers that can aid in improving patient management and care. Recently, the area of neuroproteomics–systems biology is proving to be a prominent tool in biomarker discovery for central nervous system injury and other neurological diseases. In this work, we employed the controlled cortical impact (CCI) model of experimental TBI in rat model to assess the temporal–global proteome changes after acute (1 day) and for the first time, subacute (7 days), post-injury time frame using the established cation–anion exchange chromatography-1D SDS gel electrophoresis LC–MS/MS platform for protein separation combined with discrete systems biology analyses to identify temporal biomarker changes related to this rat TBI model. Rather than focusing on any one individual molecular entity, we used in silico systems biology approach to understand the global dynamics that govern proteins that are differentially altered post-injury. In addition, gene ontology analysis of the proteomic data was conducted in order to categorize the proteins by molecular function, biological process, and cellular localization. Results show alterations in several proteins related to inflammatory responses and oxidative stress in both acute (1 day) and subacute (7 days) periods post-TBI. Moreover, results suggest a differential upregulation of neuroprotective proteins at 7 days post-CCI involved in cellular functions such as neurite growth, regeneration, and axonal guidance. Our study is among the first to assess temporal neuroproteome changes in the CCI model. Data presented here unveil potential neural biomarkers and therapeutic targets that could be used for diagnosis, for treatment and, most importantly, for temporal prognostic assessment following brain injury. Of interest, this work relies on in silico bioinformatics approach to draw its conclusion; further work is conducted for functional studies to validate and confirm the omics data obtained.
Collapse
Affiliation(s)
- Firas H Kobeissy
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | | | - Zhiqun Zhang
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Ahmed Moghieb
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Olena Y Glushakova
- Department of Neurosurgery, Virginia Commonwealth University School of Medicine , Richmond, VA , USA
| | - Stefania Mondello
- Department of Neurosciences, University of Messina , Messina , Italy
| | - Angela M Boutté
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, MD , USA
| | - John Anagli
- NeuroTheranostics Inc., Detroit, MI, USA; Henry Ford Health System, Detroit, MI, USA
| | - Richard Rubenstein
- Department of Neurology, SUNY Downstate Medical Center, Brooklyn, NY, USA; Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Hisham Bahmad
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon; Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Amy K Wagner
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ronald L Hayes
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Neurosurgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
12
|
Adam MG, Matt S, Christian S, Hess-Stumpp H, Haegebarth A, Hofmann TG, Algire C. SIAH ubiquitin ligases regulate breast cancer cell migration and invasion independent of the oxygen status. Cell Cycle 2016; 14:3734-47. [PMID: 26654769 PMCID: PMC4825722 DOI: 10.1080/15384101.2015.1104441] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Seven-in-absentia homolog (SIAH) proteins are evolutionary conserved RING type E3 ubiquitin ligases responsible for the degradation of key molecules regulating DNA damage response, hypoxic adaptation, apoptosis, angiogenesis, and cell proliferation. Many studies suggest a tumorigenic role for SIAH2. In breast cancer patients SIAH2 expression levels correlate with cancer aggressiveness and overall patient survival. In addition, SIAH inhibition reduced metastasis in melanoma. The role of SIAH1 in breast cancer is still ambiguous; both tumorigenic and tumor suppressive functions have been reported. Other studies categorized SIAH ligases as either pro- or antimigratory, while the significance for metastasis is largely unknown. Here, we re-evaluated the effects of SIAH1 and SIAH2 depletion in breast cancer cell lines, focusing on migration and invasion. We successfully knocked down SIAH1 and SIAH2 in several breast cancer cell lines. In luminal type MCF7 cells, this led to stabilization of the SIAH substrate Prolyl Hydroxylase Domain protein 3 (PHD3) and reduced Hypoxia-Inducible Factor 1α (HIF1α) protein levels. Both the knockdown of SIAH1 or SIAH2 led to increased apoptosis and reduced proliferation, with comparable effects. These results point to a tumor promoting role for SIAH1 in breast cancer similar to SIAH2. In addition, depletion of SIAH1 or SIAH2 also led to decreased cell migration and invasion in breast cancer cells. SIAH knockdown also controlled microtubule dynamics by markedly decreasing the protein levels of stathmin, most likely via p27(Kip1). Collectively, these results suggest that both SIAH ligases promote a migratory cancer cell phenotype and could contribute to metastasis in breast cancer.
Collapse
Affiliation(s)
- M Gordian Adam
- a Cellular Senescence Group ; German Cancer Research Center DKFZ ; Heidelberg , Germany.,b GTRG Oncology II; GDD; Bayer Pharma AG ; Berlin , Germany
| | - Sonja Matt
- a Cellular Senescence Group ; German Cancer Research Center DKFZ ; Heidelberg , Germany
| | - Sven Christian
- b GTRG Oncology II; GDD; Bayer Pharma AG ; Berlin , Germany
| | | | | | - Thomas G Hofmann
- a Cellular Senescence Group ; German Cancer Research Center DKFZ ; Heidelberg , Germany
| | - Carolyn Algire
- b GTRG Oncology II; GDD; Bayer Pharma AG ; Berlin , Germany
| |
Collapse
|
13
|
Stockwell J, Chen Z, Niazi M, Nosib S, Cayabyab FS. Protein phosphatase role in adenosine A1 receptor-induced AMPA receptor trafficking and rat hippocampal neuronal damage in hypoxia/reperfusion injury. Neuropharmacology 2015; 102:254-65. [PMID: 26626486 DOI: 10.1016/j.neuropharm.2015.11.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/19/2015] [Accepted: 11/21/2015] [Indexed: 12/19/2022]
Abstract
Adenosine signaling via A1 receptor (A1R) and A2A receptor (A2AR) has shown promise in revealing potential targets for neuroprotection in cerebral ischemia. We recently showed a novel mechanism by which A1R activation with N(6)-cyclopentyl adenosine (CPA) induced GluA1 and GluA2 AMPA receptor (AMPAR) endocytosis and adenosine-induced persistent synaptic depression (APSD) in rat hippocampus. This study further investigates the mechanism of A1R-mediated AMPAR internalization and hippocampal slice neuronal damage through activation of protein phosphatase 1 (PP1), 2A (PP2A), and 2B (PP2B) using electrophysiological, biochemical and imaging techniques. Following prolonged A1R activation, GluA2 internalization was selectively blocked by PP2A inhibitors (okadaic acid and fostriecin), whereas inhibitors of PP2A, PP1 (tautomycetin), and PP2B (FK506) all prevented GluA1 internalization. Additionally, GluA1 phosphorylation at Ser831 and Ser845 was reduced after prolonged A1R activation in hippocampal slices. PP2A inhibitors nullified A1R-mediated downregulation of pSer845-GluA1, while PP1 and PP2B inhibitors prevented pSer831-GluA1 downregulation. Each protein phosphatase inhibitor also blunted CPA-induced synaptic depression and APSD. We then tested whether A1R-mediated changes in AMPAR trafficking and APSD contribute to hypoxia-induced neuronal injury. Hypoxia (20 min) induced A1R-mediated internalization of both AMPAR subunits, and subsequent normoxic reperfusion (45 min) increased GluA1 but persistently reduced GluA2 surface expression. Neuronal damage after hypoxia-reperfusion injury was significantly blunted by pre-incubation with the above protein phosphatase inhibitors. Together, these data suggest that A1R-mediated protein phosphatase activation causes persistent synaptic depression by downregulating GluA2-containing AMPARs; this previously undefined role of A1R stimulation in hippocampal neuronal damage represents a novel therapeutic target in cerebral ischemic damage.
Collapse
Affiliation(s)
- Jocelyn Stockwell
- Department of Surgery, Neuroscience Research Group, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Zhicheng Chen
- Department of Surgery, Neuroscience Research Group, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Mina Niazi
- Department of Surgery, Neuroscience Research Group, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Siddarth Nosib
- Department of Surgery, Neuroscience Research Group, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Francisco S Cayabyab
- Department of Surgery, Neuroscience Research Group, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
14
|
Dissociation of eIF4E-binding protein 2 (4E-BP2) from eIF4E independent of Thr37/Thr46 phosphorylation in the ischemic stress response. PLoS One 2015; 10:e0121958. [PMID: 25822952 PMCID: PMC4379021 DOI: 10.1371/journal.pone.0121958] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 02/10/2015] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic initiation factor (eIF) 4E-binding proteins (4E-BPs) are translational repressors that bind specifically to eIF4E and are critical in the control of protein translation. 4E-BP2 is the predominant 4E-BP expressed in the brain, but their role is not well known. Here, we characterized four forms of 4E-BP2 detected by two-dimensional gel electrophoresis (2-DGE) in brain. The form with highest electrophoretic mobility was the main form susceptible to phosphorylation at Thr37/Thr46 sites, phosphorylation that was detected in acidic spots. Cerebral ischemia and subsequent reperfusion induced dephosphorylation and phosphorylation of 4E-BP2 at Thr37/Thr46, respectively. The induced phosphorylation was in parallel with the release of 4E-BP2 from eIF4E, although two of the phosphorylated 4E-BP2 forms were bound to eIF4E. Upon long-term reperfusion, there was a decrease in the binding of 4E-BP2 to eIF4E in cerebral cortex, demonstrated by cap binding assays and 4E-BP2-immunoprecipitation experiments. The release of 4E-BP2 from eIF4E was without changes in 4E-BP2 phosphorylation or other post-translational modification recognized by 2-DGE. These findings demonstrated specific changes in 4E-BP2/eIF4E association dependent and independent of 4E-BP2 phosphorylation. The last result supports the notion that phosphorylation may not be the uniquely regulation for the binding of 4E-BP2 to eIF4E under ischemic stress.
Collapse
|
15
|
Monici M, Cialdai F, Ranaldi F, Paoli P, Boscaro F, Moneti G, Caselli A. Effect of IR laser on myoblasts: a proteomic study. MOLECULAR BIOSYSTEMS 2014; 9:1147-61. [PMID: 23364335 DOI: 10.1039/c2mb25398d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Laser therapy is used in physical medicine and rehabilitation to accelerate muscle recovery and in sports medicine to prevent damages produced by metabolic disturbances and inflammatory reactions after heavy exercise. The aim of this research was to get insight into possible benefits deriving from the application of an advanced IR laser system to counteract deficits of muscle energy metabolism and stimulate the recovery of hypotrophic tissue. We studied the effect of IR laser treatment on proliferation, differentiation, cytoskeleton organization and global protein expression in C2C12 myoblasts. We found that laser treatment induced a decrease in the cell proliferation rate without affecting cell viability, while leading to cytoskeletal rearrangement and expression of the early differentiation marker MyoD. The differential proteome analysis revealed the up-regulation and/or modulation of many proteins known to be involved in cell cycle regulation, cytoskeleton organization and differentiation.
Collapse
Affiliation(s)
- Monica Monici
- ASAcampus Joint Laboratory, ASA Res. Div., Dept. Clinical Physiopathology, University of Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Van Elzen R, Moens L, Dewilde S. Expression profiling of the cerebral ischemic and hypoxic response. Expert Rev Proteomics 2014; 5:263-82. [DOI: 10.1586/14789450.5.2.263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Kim-Kaneyama JR, Miyauchi A, Lei XF, Arita S, Mino T, Takeda N, Kou K, Eto K, Yoshida T, Miyazaki T, Shioda S, Miyazaki A. Identification of Hic-5 as a novel regulatory factor for integrin αIIbβ3 activation and platelet aggregation in mice. J Thromb Haemost 2012; 10:1867-74. [PMID: 22812543 DOI: 10.1111/j.1538-7836.2012.04856.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Integrin αIIbβ3 plays key roles in platelet aggregation and subsequent thrombus formation. Hydrogen peroxide-inducible clone-5 (Hic-5), a member of the paxillin family, serves as a focal adhesion adaptor protein associated with αIIbβ3 at its cytoplasmic strand. OBJECTIVES Hic-5 function in αIIbβ3 activation and subsequent platelet aggregation remains unknown. To address this question, platelets from Hic-5(-/-) mice were analyzed. METHODS AND RESULTS Hic-5(-/-) mice displayed a significant hemostatic defect and resistance to thromboembolism, which were explained in part by weaker thrombin-induced aggregation in Hic-5(-/-) platelets. Mechanistically, Hic-5(-/-) platelets showed limited activation of αIIbβ3 upon thrombin treatment. Morphological alteration in Hic-5(-/-) platelets after thrombin stimulation on fibrinogen plates was also limited. As a direct consequence, the quantity of actin co-immunoprecipitating with the activated αIIbβ3 was smaller in Hic-5(-/-) platelets than in wild-type platelets. CONCLUSION We identified Hic-5 as a novel and specific regulatory factor for thrombin-induced αIIbβ3 activation and subsequent platelet aggregation in mice.
Collapse
Affiliation(s)
- J R Kim-Kaneyama
- Department of Biochemistry, Showa University School of Medicine, Tokyo Department of Clinical Toxicology, Showa University School of Pharmacy, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mehan ND, Strauss KI. Combined age- and trauma-related proteomic changes in rat neocortex: a basis for brain vulnerability. Neurobiol Aging 2011; 33:1857-73. [PMID: 22088680 DOI: 10.1016/j.neurobiolaging.2011.09.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 09/17/2011] [Indexed: 11/16/2022]
Abstract
This proteomic study investigates the widely observed clinical phenomenon, that after comparable brain injuries, geriatric patients fare worse and recover less cognitive and neurologic function than younger victims. Utilizing a rat traumatic brain injury model, sham surgery or a neocortical contusion was induced in 3 age groups. Geriatric (21 months) rats performed worse on behavioral measures than young adults (12-16 weeks) and juveniles (5-6 weeks). Motor coordination and certain cognitive deficits showed age-dependence both before and after injury. Brain proteins were analyzed using silver-stained two-dimensional electrophoresis gels. Spot volume changes (>2-fold change, p<0.01) were identified between age and injury groups using computer-assisted densitometry. Sequences were determined by mass spectrometry of tryptic peptides. The 19 spots identified represented 13 different genes that fell into 4 general age- and injury-dependent expression patterns. Fifteen isoforms changed differentially with respect to both age and injury (p<0.05). Further investigations into the nature and function of these isoforms may yield insights into the vulnerability of older patients and resilience of younger patients in recovery after brain injuries.
Collapse
Affiliation(s)
- Neal D Mehan
- University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0517, USA
| | | |
Collapse
|
19
|
Datta A, Jingru Q, Khor TH, Teo MT, Heese K, Sze SK. Quantitative neuroproteomics of an in vivo rodent model of focal cerebral ischemia/reperfusion injury reveals a temporal regulation of novel pathophysiological molecular markers. J Proteome Res 2011; 10:5199-213. [PMID: 21950801 DOI: 10.1021/pr200673y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cerebral ischemia or stroke, an acute neurological injury lacking an effective therapy, is the second leading cause of death globally. The unmet need in stroke research is to identify viable targets and to understand their interplay during the temporal evolution of ischemia/reperfusion (I/R) injury. Here we report a temporal signature of the ischemic hemisphere revealed by the isobaric tag for relative and absolute quantification (iTRAQ)-based 2D-LC-MS/MS strategy in an in vivo middle cerebral artery occlusion (MCAO) model of focal cerebral I/R injury. To recapitulate clinical stroke, two hours of MCAO was followed by 0, 4, and 24 h of reperfusion to capture ischemia with an acute and subacute durations of reperfusion injury. The subsequent iTRAQ experiment identified 2242 proteins from the ischemic hemisphere with <1.0% false discovery rate. Data mining revealed that (1) about 2.7% of detected proteins were temporally perturbed having an involvement in the energy metabolism (Pygb, Atp5b), glutamate excitotoxicity (Slc1a3, Glud1), neuro-inflammation (Tf, C3, Alb), and cerebral plasticity (Gfap, Vim, Gap43); (2) astrocytes participated actively in the neurometabolic coupling underlining the importance of a cerebro-protective rather than a neuro-protective approach; and (3) hyper-acute yet progressive opening of the blood brain barrier (BBB), accompanied by stimulation of an innate immune response and late activation of a regenerative response, which provides an extended therapeutic window for intervention. Several regulated proteins (Caskin1, Shank3, Kpnb1, Uchl1, Mtap6, Epb4.1l1, Apba1, and Ube1x) novel in the context of stroke were also discovered. In conclusion, our result supports a dynamic multitarget therapy rather than the traditional approach of a unilateral and sustained modulation of a single target to address the phasic regulation of an ischemic proteome.
Collapse
Affiliation(s)
- Arnab Datta
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | | | | | | | | |
Collapse
|
20
|
Viganò A, Vasso M, Caretti A, Bravatà V, Terraneo L, Fania C, Capitanio D, Samaja M, Gelfi C. Protein modulation in mouse heart under acute and chronic hypoxia. Proteomics 2011; 11:4202-17. [PMID: 21948614 DOI: 10.1002/pmic.201000804] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 07/08/2011] [Accepted: 08/08/2011] [Indexed: 11/10/2022]
Abstract
Exploring cellular mechanisms underlying beneficial and detrimental responses to hypoxia represents the object of the present study. Signaling molecules controlling adaptation to hypoxia (HIF-1α), energy balance (AMPK), mitochondrial biogenesis (PGC-1α), autophagic/apoptotic processes regulation and proteomic dysregulation were assessed. Responses to acute hypoxia (AH) and chronic hypoxia (CH) in mouse heart proteome were detected by 2-D DIGE, mass spectrometry and antigen-antibody reactions. Both in AH and CH, the results indicated a deregulation of proteins related to sarcomere stabilization and muscle contraction. Neither in AH nor in CH the HIF-1α stabilization was observed. In AH, the metabolic adaptation to lack of oxygen was controlled by AMPK activation and sustained by an up-regulation of adenosylhomocysteinase and acetyl-CoA synthetase. AH was characterized by the mitophagic protein Bnip 3 increment. PGC-1α, a master regulator of mitochondrial biogenesis, was down-regulated. CH was characterized by the up-regulation of enzymes involved in antioxidant defense, in aldehyde bio-product detoxification and in misfolded protein degradation. In addition, a general down-regulation of enzymes controlling anaerobic metabolism was observed. After 10 days of hypoxia, cardioprotective molecules were substantially decreased whereas pro-apoptotic molecules increased accompained by down-regulation of specific target proteins.
Collapse
Affiliation(s)
- Agnese Viganò
- Dipartimento di Scienze e Tecnologie Biomediche, Università degli Studi di Milano, Segrate (MI), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Effect of pre-ischaemic conditioning on hypoxic depolarization of dopamine efflux in the rat caudate brain slice measured in real-time with fast cyclic voltammetry. Neurochem Int 2011; 59:714-21. [PMID: 21762742 DOI: 10.1016/j.neuint.2011.06.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 06/23/2011] [Accepted: 06/27/2011] [Indexed: 11/20/2022]
Abstract
Fast cyclic voltammetry can be used to measure dopamine release after oxygen and glucose deprivation (OGD) induced anoxic depolarization in vitro. Here we measure dopamine efflux with 1s time resolution, which is appropriate to measure OGD-evoked dopamine efflux accurately. In the present study, we examined whether OGD-evoked dopamine efflux could be used to show pre-ischaemic conditioning in the rat caudate brain slice. Caudate slices were exposed to 0, 2, or 10 min OGD pre-ischaemic conditioning, then 60 min later exposed to a second OGD event of 15 min duration. We measured the OGD-evoked dopamine efflux using fast cyclic voltammetry and in some experiments caudate dopamine and DOPAC tissue levels were measured using HPLC and 20 μm cryostat sections were Nissl stained to indicate neuronal loss. We found that 10 but not 2 min OGD pre-ischaemic conditioning resulted in a longer time to onset of OGD-evoked dopamine efflux on the main OGD event (475 ± 31 and 287 ± 30 s for 10 Vs 0 min pre-ischaemic conditioning respectively). Further, 10 min OGD pre-ischaemic conditioning resulted in less dopamine efflux on the second OGD event (4.23 ± 1.12 and 8.14 ± 0.82 μM for 10 Vs 0 min pre-ischaemic conditioning respectively), despite these slices having similar tissue dopamine content and DOPAC/DA ratio, and the rate of dopamine release was slower in the main OGD event (21 ± 5 and 74 ± 8 nM/s for 10 Vs 0 min pre-ischaemic conditioning respectively). These data suggest that 10 min OGD pre-ischaemic conditioning can evoke tolerance to a second OGD event and that voltammetric recording of OGD-evoked dopamine efflux is a useful model of pre-ischaemic conditioning in neuronal tissue.
Collapse
|
22
|
Zhang N, Yin Y, Han S, Jiang J, Yang W, Bu X, Li J. Hypoxic preconditioning induced neuroprotection against cerebral ischemic injuries and its cPKCγ-mediated molecular mechanism. Neurochem Int 2011; 58:684-92. [DOI: 10.1016/j.neuint.2011.02.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 02/09/2011] [Indexed: 10/18/2022]
|
23
|
García-Descalzo L, Alcazar A, Baquero F, Cid C. Identification of in vivo HSP90-interacting proteins reveals modularity of HSP90 complexes is dependent on the environment in psychrophilic bacteria. Cell Stress Chaperones 2011; 16:203-18. [PMID: 20890740 PMCID: PMC3059794 DOI: 10.1007/s12192-010-0233-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 12/29/2022] Open
Abstract
Heat shock protein 90 (HSP90) is a conserved molecular chaperone that functions as part of complexes in which different client proteins target it to diverse sets of substrates. In this paper, HSP90 complexes were investigated in γ-proteobacteria from mild (Shewanella oneidensis) and cold environments (Shewanella frigidimarina and Psychrobacter frigidicola), to determine changes in HSP90 interactions with client proteins in response to the adaptation to cold environments. HSP90 participation in cold adaptation was determined using the specific inhibitor 17-allylamino-geldanamycin. Then, HSP90 was immunoprecipitated from bacterial cultures, and the proteins in HSP90 complexes were analyzed by two-dimensional gel electrophoresis and identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. According to HSP90-associated protein analysis, only 15 common proteins were found in both species from the same genus, S. oneidensis and S. frigidimarina, whereas a significant higher number of common proteins were found in both psychrophilic species S. frigidimarina and P. frigidicola 21 (p < 0.001). Only two HSP90-interacting proteins, the chaperone proteins DnaK and GroEL, were common to the three species. Interestingly, some proteins related to energy metabolism (isocitrate lyase, succinyl-CoA synthetase, alcohol dehydrogenase, NAD(+) synthase, and malate dehydrogenase) and some translation factors only interacted with HSP90 in psychrophilic bacteria. We can conclude that HSP90 and HSP90-associated proteins might take part in the mechanism of adaptation to cold environments, and interestingly, organisms living in similar environments conserve similar potential HSP90 interactors in opposition to phylogenetically closely related organisms of the same genus but from different environments.
Collapse
Affiliation(s)
- Laura García-Descalzo
- Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir, km 4, Torrejón de Ardoz, 28850 Madrid, Spain
| | - Alberto Alcazar
- Department of Investigation, Hospital Ramon y Cajal, 28034 Madrid, Spain
| | - Fernando Baquero
- Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir, km 4, Torrejón de Ardoz, 28850 Madrid, Spain
- Department of Microbiology, Hospital Ramon y Cajal, 28034 Madrid, Spain
| | - Cristina Cid
- Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir, km 4, Torrejón de Ardoz, 28850 Madrid, Spain
| |
Collapse
|
24
|
Ottens AK, Bustamante L, Golden EC, Yao C, Hayes RL, Wang KKW, Tortella FC, Dave JR. Neuroproteomics: a biochemical means to discriminate the extent and modality of brain injury. J Neurotrauma 2010; 27:1837-52. [PMID: 20698760 DOI: 10.1089/neu.2010.1374] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Diagnosis and treatment of stroke and traumatic brain injury remain significant health care challenges to society. Patient care stands to benefit from an improved understanding of the interactive biochemistry underlying neurotrauma pathobiology. In this study, we assessed the power of neuroproteomics to contrast biochemical responses following ischemic and traumatic brain injuries in the rat. A middle cerebral artery occlusion (MCAO) model was employed in groups of 30-min and 2-h focal neocortical ischemia with reperfusion. Neuroproteomes were assessed via tandem cation-anion exchange chromatography-gel electrophoresis, followed by reversed-phase liquid chromatography-tandem mass spectrometry. MCAO results were compared with those from a previous study of focal contusional brain injury employing the same methodology to characterize homologous neocortical tissues at 2 days post-injury. The 30-min MCAO neuroproteome depicted abridged energy production involving pentose phosphate, modulated synaptic function and plasticity, and increased chaperone activity and cell survival factors. The 2-h MCAO data indicated near complete loss of ATP production, synaptic dysfunction with degraded cytoarchitecture, more conservative chaperone activity, and additional cell survival factors than those seen in the 30-min MCAO model. The TBI group exhibited disrupted metabolism, but with retained malate shuttle functionality. Synaptic dysfunction and cytoarchitectural degradation resembled the 2-h MCAO group; however, chaperone and cell survival factors were more depressed following TBI. These results underscore the utility of neuroproteomics for characterizing interactive biochemistry for profiling and contrasting the molecular aspects underlying the pathobiological differences between types of brain injuries.
Collapse
Affiliation(s)
- Andrew K Ottens
- Department of Anatomy, Medical College of Virginia at Virginia Commonwealth University, Richmond, Virginia 23298-0709, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Ayuso MI, Hernández-Jiménez M, Martín ME, Salinas M, Alcázar A. New hierarchical phosphorylation pathway of the translational repressor eIF4E-binding protein 1 (4E-BP1) in ischemia-reperfusion stress. J Biol Chem 2010; 285:34355-63. [PMID: 20736160 PMCID: PMC2966049 DOI: 10.1074/jbc.m110.135103] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Eukaryotic initiation factor (eIF) 4E-binding protein 1 (4E-BP1) is a translational repressor that is characterized by its capacity to bind specifically to eIF4E and inhibit its interaction with eIF4G. Phosphorylation of 4E-BP1 regulates eIF4E availability, and therefore, cap-dependent translation, in cell stress. This study reports a physiological study of 4E-BP1 regulation by phosphorylation using control conditions and a stress-induced translational repression condition, ischemia-reperfusion (IR) stress, in brain tissue. In control conditions, 4E-BP1 was found in four phosphorylation states that were detected by two-dimensional gel electrophoresis and Western blotting, which corresponded to Thr69-phosphorylated alone, Thr69- and Thr36/Thr45-phosphorylated, all these plus Ser64 phosphorylation, and dephosphorylation of the sites analyzed. In control or IR conditions, no Thr36/Thr45 phosphorylation alone was detected without Thr69 phosphorylation, and neither was Ser64 phosphorylation without Thr36/Thr45/Thr69 phosphorylation detected. Ischemic stress induced 4E-BP1 dephosphorylation at Thr69, Thr36/Thr45, and Ser64 residues, with 4E-BP1 remaining phosphorylated at Thr69 alone or dephosphorylated. In the subsequent reperfusion, 4E-BP1 phosphorylation was induced at Thr36/Thr45 and Ser64, in addition to Thr69. Changes in 4E-BP1 phosphorylation after IR were according to those found for Akt and mammalian target of rapamycin (mTOR) kinases. These results demonstrate a new hierarchical phosphorylation for 4E-BP1 regulation in which Thr69 is phosphorylated first followed by Thr36/Thr45 phosphorylation, and Ser64 is phosphorylated last. Thr69 phosphorylation alone allows binding to eIF4E, and subsequent Thr36/Thr45 phosphorylation was sufficient to dissociate 4E-BP1 from eIF4E, which led to eIF4E-4G interaction. These data help to elucidate the physiological role of 4E-BP1 phosphorylation in controlling protein synthesis.
Collapse
Affiliation(s)
- María I Ayuso
- Department of Investigation, Hospital Ramón y Cajal, 28034 Madrid, Spain
| | | | | | | | | |
Collapse
|
26
|
Cid C, Garcia-Descalzo L, Casado-Lafuente V, Amils R, Aguilera A. Proteomic analysis of the response of an acidophilic strain of Chlamydomonas sp. (Chlorophyta) to natural metal-rich water. Proteomics 2010; 10:2026-36. [PMID: 20217866 DOI: 10.1002/pmic.200900592] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A proteomic approach including 2-DE and MALDI-TOF analysis has been developed to identify the soluble proteins of the unicellular photosynthetic algae Chlamydomonas sp. isolated from an extreme acidic environment, Río Tinto (southwest Spain). We have analyzed the soluble proteome obtained from whole cells growing on metal-rich natural acidic water from the river in comparison with the same strain growing in artificial BG-11 media. The most drastic effect was the decrease in the abundance of the ribulose-1,5-biphosphate carboxylase as well as other enzymes related to photosynthesis. However, phytochrome B, phosphoribulokinase, and phosphoglycerate kinase were upregulated when cells were grown in metal-rich acidic water. Besides, increased accumulation of two Hsps, Hsp70 and Hsp90 as well as other stress-related enzymes were also found in the cells growing in natural acidic water. These results suggest that naturally occurring metal-rich water induces a stress response in acidophilic Chlamydomonas forcing algal cells to reorganize their metabolic pathways as an adaptive response to these environmental conditions.
Collapse
Affiliation(s)
- Cristina Cid
- Centro de Astrobiología (INTA-CSIC), Madrid, Spain
| | | | | | | | | |
Collapse
|
27
|
Van Elzen R, Ghesquière B, Timmerman E, Vandamme S, Moens L, Gevaert K, Dewilde S. Integrated Proteomic Analysis Reveals a Substantial Enrichment of Protein Trafficking Processes in Hippocampus Tissue after Hypoxic Stress. J Proteome Res 2009; 9:204-15. [DOI: 10.1021/pr900517m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Roos Van Elzen
- Department of Biomedical Sciences, University of Antwerp, B-2610 Antwerp, Belgium, Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium, Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium, and Department of Biology, University of Antwerp, B-2610 Antwerp, Belgium
| | - Bart Ghesquière
- Department of Biomedical Sciences, University of Antwerp, B-2610 Antwerp, Belgium, Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium, Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium, and Department of Biology, University of Antwerp, B-2610 Antwerp, Belgium
| | - Evy Timmerman
- Department of Biomedical Sciences, University of Antwerp, B-2610 Antwerp, Belgium, Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium, Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium, and Department of Biology, University of Antwerp, B-2610 Antwerp, Belgium
| | - Stefaan Vandamme
- Department of Biomedical Sciences, University of Antwerp, B-2610 Antwerp, Belgium, Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium, Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium, and Department of Biology, University of Antwerp, B-2610 Antwerp, Belgium
| | - Luc Moens
- Department of Biomedical Sciences, University of Antwerp, B-2610 Antwerp, Belgium, Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium, Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium, and Department of Biology, University of Antwerp, B-2610 Antwerp, Belgium
| | - Kris Gevaert
- Department of Biomedical Sciences, University of Antwerp, B-2610 Antwerp, Belgium, Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium, Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium, and Department of Biology, University of Antwerp, B-2610 Antwerp, Belgium
| | - Sylvia Dewilde
- Department of Biomedical Sciences, University of Antwerp, B-2610 Antwerp, Belgium, Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium, Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium, and Department of Biology, University of Antwerp, B-2610 Antwerp, Belgium
| |
Collapse
|
28
|
|
29
|
Twomey E, Li Y, Lei J, Sodja C, Ribecco-Lutkiewicz M, Smith B, Fang H, Bani-Yaghoub M, McKinnell I, Sikorska M. Regulation of MYPT1 stability by the E3 ubiquitin ligase SIAH2. Exp Cell Res 2009; 316:68-77. [PMID: 19744480 DOI: 10.1016/j.yexcr.2009.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 08/25/2009] [Accepted: 09/01/2009] [Indexed: 10/20/2022]
Abstract
Myosin phosphatase target subunit 1 (MYPT1), together with catalytic subunit of type1 delta isoform (PP1cdelta) and a small 20-kDa regulatory unit (M20), form a heterotrimeric holoenzyme, myosin phosphatase (MP), which is responsible for regulating the extent of myosin light chain phosphorylation. Here we report the identification and characterization of a molecular interaction between Seven in absentia homolog 2 (SIAH2) and MYPT1 that resulted in the proteasomal degradation of the latter in mammalian cells, including neurons and glia. The interaction involved the substrate binding domain of SIAH2 (aa 116-324) and a central region of MYPT1 (aa 445-632) containing a degenerate consensus Siah-binding motif RLAYVAP (aa 493-499) evolutionally conserved from fish to humans. These findings suggest a novel mechanism whereby the ability of MP to modulate myosin light chain might be regulated by the degradation of its targeting subunit MYPT1 through the SIAH2-ubiquitin-proteasomal pathway. In this manner, the turnover of MYPT1 would serve to limit the duration and/or magnitude of MP activity required to achieve a desired physiological effect.
Collapse
Affiliation(s)
- Erin Twomey
- Neurogenesis and Brain Repair Group, Institute for Biological Sciences, National Research Council of Canada, 1200 Montreal Road, M-54, Ottawa, Canada ON K1A 0R6
| | | | | | | | | | | | | | | | | | | |
Collapse
|