1
|
Huertas-Abril PV, Prieto-Álamo MJ, Jurado J, Pérez J, Molina-Hernández V, García-Barrera T, Abril N. Transcriptional and biochemical changes in mouse liver following exposure to a metal/drug cocktail. Attenuating effect of a selenium-enriched diet. Food Chem Toxicol 2024; 191:114845. [PMID: 38945390 DOI: 10.1016/j.fct.2024.114845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Real-life pollution usually involves simultaneous co-exposure to different chemicals. Metals and drugs are frequently and abundantly released into the environment, where they interact and bioaccumulate. Few studies analyze potential interactions between metals and pharmaceuticals in these mixtures, although their joint effects cannot be inferred from their individual properties. We have previously demonstrated that the mixture (PC) of the metals Cd and Hg, the metalloid As and the pharmaceuticals diclofenac (DCF) and flumequine (FLQ) impairs hepatic proteostasis. To gain a deeper vision of how PC affects mouse liver homeostasis, we evaluated here the effects of PC exposure upon some biochemical and morphometric parameters, and on the transcriptional profiles of selected group of genes. We found that exposure to PC caused oxidative damage that exceeded the antioxidant capacity of cells. The excessive oxidative stress response resulted in an overabundance of reducing equivalents, which hindered the metabolism and transport of metabolites, including cholesterol and bile acids, between organs. These processes have been linked to metabolic and inflammatory disorders, cancer, and neurodegenerative diseases. Therefore, our findings suggest that unintended exposure to mixtures of environmental pollutants may underlie the etiology of many human diseases. Fortunately, we also found that a diet enriched with selenium mitigated the harmful effects of this combination of toxicants.
Collapse
Affiliation(s)
- Paula V Huertas-Abril
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014, Córdoba, Spain.
| | - María-José Prieto-Álamo
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014, Córdoba, Spain
| | - Juan Jurado
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014, Córdoba, Spain
| | - José Pérez
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Facultad de Veterinaria, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Edificio de Sanidad Animal, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014, Córdoba, Spain
| | - Verónica Molina-Hernández
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Facultad de Veterinaria, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Edificio de Sanidad Animal, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014, Córdoba, Spain
| | - Tamara García-Barrera
- Centro de Investigación de Recursos Naturales, Salud y Medio Ambiente (RENSMA). Departamento de Química, Facultad de Ciencias Experimentales, Campus El Carmen, Universidad de Huelva, Avda. Fuerzas Armadas, 21007, Huelva, Spain
| | - Nieves Abril
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014, Córdoba, Spain.
| |
Collapse
|
2
|
Ma Z, Yan XM, Geng J, Gao L, Du W, Li HB, Yuan LX, Zhou ZY, Zhang JS, Zhang Y, Chen L. Genome-wide identification and analysis of TMT-based proteomes in longissimus dorsi tissue from Kazakh cattle and Xinjiang brown cattle. Anim Biotechnol 2023; 34:1261-1272. [PMID: 34965845 DOI: 10.1080/10495398.2021.2019756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
With the gradual completion of the human genome project, proteomes have gained extremely important value in the fields of human disease and biological process research. In our previous research, we performed transcriptomic analyses of longissimus dorsi tissue from Kazakh cattle and Xinjiang brown cattle and conducted in-depth studies on the muscles of both species through epigenetics. However, it is unclear whether differentially expressed proteins in Kazakh cattle and Xinjiang brown cattle regulate muscle production and development. In this study, a proteomic analysis was performed on Xinjiang brown cattle and Kazakh cattle by using TMT markers, HPLC classification, LC/MS and bioinformatics analysis. A total of 13,078 peptides were identified, including 11,258 unique peptides. We identified a total of 1874 proteins, among which 1565 were quantifiable. Compared to Kazakh cattle, Xinjiang brown cattle exhibited 75 upregulated proteins and 44 downregulated proteins. These differentially expressed proteins were enriched for the functions of adrenergic signaling in cardiomyocytes, fatty acid degradation and glutathione metabolism. In our research, we found differentially expressed proteins in longissimus dorsi tissue between Kazakh cattle and Xinjiang brown cattle. We predict that these proteins regulate muscle production and development through select enriched signaling pathways. This study provides novel insights into the roles of proteomes in cattle genetics and breeding.
Collapse
Affiliation(s)
- Zhen Ma
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Xiang-Min Yan
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Juan Geng
- Xinjiang Animal Husbandry General Station, Urumqi, China
| | - Liang Gao
- Yili Vocational and Technical College, Yili, China
| | - Wei Du
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Hong-Bo Li
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Li-Xing Yuan
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Zhen-Yong Zhou
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Jin-Shan Zhang
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Yang Zhang
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Lei Chen
- School of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
3
|
Rodríguez-Moro G, Ramírez-Acosta S, Callejón-Leblic B, Arias-Borrego A, García-Barrera T, Gómez-Ariza JL. Environmental metal toxicity assessment by the combined application of metallomics and metabolomics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25014-25034. [PMID: 33782823 DOI: 10.1007/s11356-021-13507-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
The growing interest of our society for the environment, climate change, and the assurance of the quality of life and health has been the motor of new methodological proposals that allow a more comprehensive knowledge of the problems to be solved. In this sense, the potential of omic methodologies to study these problems from a global perspective represents a milestone in environmental studies. Therefore, the study of essential and toxic metals has a special interest, particularly in relation to toxicity issues and their association to biological interactions, transport, binding to biomolecules, and behavior in biological interfaces. These studies have promoted new instrumental platforms and methodological approaches that allow addressing these problems. Furthermore, to encompass the reality of molecule-atoms interactions in their completeness, combinations of omics have been tried, focusing on environment, food, and health issues. In this sense, the present work is situated, with the objective of reviewing the most recent methodological proposals in the field of the environment and their applications, considering not only the analytical approaches but also how they have to be applied, the use of bioindicators' exposure experiments in the laboratory, and the potential transfer of the findings from the laboratory to the field. This latter point is a true touchstone, which makes these new analytical methodologies in the necessary tools for understanding the environment and the consequences of its imbalance.
Collapse
Affiliation(s)
- Gema Rodríguez-Moro
- Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Huelva, Spain
- International Agrofood Campus of Excellence International ceiA3, University of Huelva, Huelva, Spain
- Research Center of Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain
| | - Sara Ramírez-Acosta
- Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Huelva, Spain
- International Agrofood Campus of Excellence International ceiA3, University of Huelva, Huelva, Spain
- Research Center of Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain
| | - Belén Callejón-Leblic
- Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Huelva, Spain
- International Agrofood Campus of Excellence International ceiA3, University of Huelva, Huelva, Spain
- Research Center of Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain
| | - Ana Arias-Borrego
- Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Huelva, Spain
- International Agrofood Campus of Excellence International ceiA3, University of Huelva, Huelva, Spain
- Research Center of Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain
| | - Tamara García-Barrera
- Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Huelva, Spain.
- International Agrofood Campus of Excellence International ceiA3, University of Huelva, Huelva, Spain.
- Research Center of Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain.
| | - José-Luis Gómez-Ariza
- Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Huelva, Spain.
- International Agrofood Campus of Excellence International ceiA3, University of Huelva, Huelva, Spain.
- Research Center of Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva, Spain.
| |
Collapse
|
4
|
Madeira C, Costa PM. Proteomics in systems toxicology. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 127:55-91. [PMID: 34340774 DOI: 10.1016/bs.apcsb.2021.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteins are the ultimate product of gene expression. As they hinge between gene transcription and phenotype, they offer a more realistic perspective of toxicopathic effects, responses and even susceptibility to insult than targeting genes and mRNAs while dodging some inter-individual variability that hinders measuring downstream endpoints like metabolites or enzyme activity. Toxicologists have long focused on proteins as biomarkers but the advent of proteomics shifted risk assessment from narrow single-endpoint analyses to whole-proteome screening, enabling deriving protein-centric adverse outcome pathways (AOPs), which are pivotal for the derivation of Systems Biology informally named Systems Toxicology. Especially if coupled pathology, the identification of molecular initiating events (MIEs) and AOPs allow predictive modeling of toxicological pathways, which now stands as the frontier for the next generation of toxicologists. Advances in mass spectrometry, bioinformatics, protein databases and top-down proteomics create new opportunities for mechanistic and effects-oriented research in all fields, from ecotoxicology to pharmacotoxicology.
Collapse
Affiliation(s)
- Carolina Madeira
- UCIBIO-Applied Molecular Biosciences Unit, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Caparica, Portugal
| | - Pedro M Costa
- UCIBIO-Applied Molecular Biosciences Unit, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Caparica, Portugal.
| |
Collapse
|
5
|
Rodríguez-Moro G, Abril N, Jara-Biedma R, Ramírez-Acosta S, Gómez-Ariza JL, García-Barrera T. Metabolic Impairments Caused by a "Chemical Cocktail" of DDE and Selenium in Mice Using Direct Infusion Triple Quadrupole Time-of-Flight and Gas Chromatography-Mass Spectrometry. Chem Res Toxicol 2019; 32:1940-1954. [PMID: 31532635 DOI: 10.1021/acs.chemrestox.9b00102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Among organic contaminants, pesticides are one of the most important groups of chemicals due to their persistent character and toxicity. However, the biological systems are exposed to a complex environment in which the contaminants can interact in a synergistic/antagonistic fashion, and for this reason, the study of "chemical cocktails" is of great interest to fully understand the final biological effect. In this way, selenium is known for its antagonistic action against several toxicants. In this paper, metabolic impairments caused by the joint exposure of p,p'-dichloro diphenyl trichloroethane (DDE) and selenium (Se) have been issued for the first time. A metabolomic workflow was applied to mice fed DDE and DDE with Se diet, on the basis of the complementary use of two organic mass spectrometric techniques, combining direct infusion mass spectrometry (DI-ESI-QqQ-TOF MS) and gas chromatography-mass spectrometry (GC-MS). The results show a good classification between the studied groups caused by about 70 altered metabolites in the liver, kidney, or brain, including the pathways of energy metabolism, degradation of phospholipidic membrane, β-oxidation, and oxidative stress, which confirm the potential of combined metabolomic platforms in environmental studies.
Collapse
Affiliation(s)
| | - Nieves Abril
- Department of Biochemistry and Molecular Biology, International Agrofood Campus of Excellence International ceiA3 , University of Córdoba , Campus de Rabanales, Edificio Severo Ochoa , E-14071 Córdoba , Spain
| | | | | | | | | |
Collapse
|
6
|
Michán C, Chicano-Gálvez E, Fuentes-Almagro CA, Alhama J. Redox and global interconnected proteome changes in mice exposed to complex environmental hazards surrounding Doñana National Park. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:427-439. [PMID: 31158671 DOI: 10.1016/j.envpol.2019.05.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/30/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Natural environments are receiving an increasing number of contaminants. Therefore, the evaluation and identification of early responses to pollution in these complex habitats is an urgent and challenging task. Doñana National Park (DNP, SW Spain) has been widely used as a model area for environmental studies because, despite its strictly protected core, it is surrounded by numerous threat sources from agricultural, mining and industrial activities. Since many pollutants often induce oxidative stress, redox proteomics was used to detect redox-based variations within the proteome of Mus spretus mice captured in DNP and the surrounding areas. Functional analysis showed that most differentially oxidized proteins are involved in the maintenance of homeostasis, by eliciting mechanisms to respond to toxic substances and oxidative stress, such as antioxidant and biotransformation processes, immune and inflammatory responses, and blood coagulation. Furthermore, changes in the overall protein abundance were also analysed by label-free quantitative proteomics. The upregulation of phase I and II biotransformation enzymes in mice from Lucio del Palacio may be an alert for organic pollution in the area located at the heart of DNP. Metabolic processes involved in protein turnover (proteolysis, amino acid catabolism, new protein biosynthesis and folding) were activated in response to oxidative damage to these biomolecules. Consequently, aerobic respiratory metabolism increased to address the greater ATP demands. Alterations of cholesterol metabolism that could cause hepatic steatosis were also detected. The proteomic detection of globally altered metabolic and physiological processes offers a complete view of the main biological changes caused by environmental pollution in complex habitats.
Collapse
Affiliation(s)
- Carmen Michán
- Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | | | | | - José Alhama
- Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain.
| |
Collapse
|
7
|
Quina AS, Durão AF, Muñoz-Muñoz F, Ventura J, da Luz Mathias M. Population effects of heavy metal pollution in wild Algerian mice (Mus spretus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:414-424. [PMID: 30639867 DOI: 10.1016/j.ecoenv.2018.12.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/13/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Heavy metal mining is one of the largest sources of environmental pollution. The analysis of different types of biomarkers in sentinel species living in contaminated areas provides a measure of the degree of the ecological impact of pollution and is thus a valuable tool for human and environmental risk assessments. In previous studies we found that specimens from two populations of the Algerian mice (Mus spretus) living in two abandoned heavy metal mines (Aljustrel and Preguiça, Portugal) had higher body burdens of heavy metals, which led to alterations in enzymatic activities and in haematological, histological and genotoxic parameters, than mice from a nearby reference population. We have now analysed individuals from the same sites at the biometric and genetic levels to get a broader portrayal of the impact of heavy metal pollution on biodiversity, from molecules to populations. Size and shape variations of the mouse mandible were searched by implementing the geometric morphometric method. Population genetic differentiation and diversity parameters (φST estimates; nucleotide and haplotype diversities) were studied using the mitochondrial cytochrome b gene (Cytb) and the control region (CR). The morphometric analyses revealed that animals from the three sites differed significantly in the shape of the mandible, but mandibular shape varied in a more resembling way within individuals of both mine sites, which is highly suggestive for an effect of environmental quality on normal development pathways in Algerian mice. Also, antisymmetry in mandible size and shape was detected in all populations, making these traits not reliable indicators of developmental instability. Overall little genetic differentiation was found among the three populations, although pairwise φST comparisons revealed that the Aljustrel and the Preguiça populations were each differentiated from the other two populations in Cytb and in CR, respectively. Genetic diversity parameters revealed higher genetic diversity for Cytb in the population from Aljustrel, while in the population from Preguiça diversity of the two markers changed in opposite directions, higher genetic diversity in CR and lower in Cytb, compared to the reference population. Demographic changes and increased mutation rates may explain these findings. We show that developmental patterns and genetic composition of wild populations of a small mammal can be affected by chronic heavy metal exposure within a relatively short time. Anthropogenic stress may thus influence the evolutionary path of natural populations, with largely unpredictable ecological costs.
Collapse
Affiliation(s)
- Ana Sofia Quina
- Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa (FCUL), Lisboa, Portugal; Centro de Estudos do Ambiente e do Mar - Lisboa (CESAM; FCUL), Lisboa, Portugal.
| | - Ana Filipa Durão
- Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa (FCUL), Lisboa, Portugal
| | - Francesc Muñoz-Muñoz
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Spain
| | - Jacint Ventura
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Spain
| | - Maria da Luz Mathias
- Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa (FCUL), Lisboa, Portugal; Centro de Estudos do Ambiente e do Mar - Lisboa (CESAM; FCUL), Lisboa, Portugal
| |
Collapse
|
8
|
Alhama J, Fuentes-Almagro CA, Abril N, Michán C. Alterations in oxidative responses and post-translational modification caused by p,p´-DDE in Mus spretus testes reveal Cys oxidation status in proteins related to cell-redox homeostasis and male fertility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:656-669. [PMID: 29723838 DOI: 10.1016/j.scitotenv.2018.04.305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
The major derivate of DDT, 1,1-dichloro-2,2-bis (p-chlorophenyl) ethylene (p,p´-DDE), is a persistent pollutant previously associated with oxidative stress. Additionally, p,p´-DDE has been linked to several metabolic alterations related to sexual function in rodents. In this study, we analysed the effects of a non-lethal p,p´-DDE dose to Mus spretus mice in testes, focusing on oxidative damage to biomolecules, defence mechanisms against oxidative stress and post-translational protein modifications. No increase in lipid or DNA oxidation was observed, although antioxidative enzymatic defences and redox status of glutathione were altered in several ways. Global protein carbonylation and phosphorylation were significantly reduced in testes from p,p´-DDE-exposed mice; however, the total redox state of Cys thiols did not exhibit a defined pattern. We analysed the reversible redox state of specific Cys residues in detail with differential isotopic labelling and a shotgun labelling-based MS/MS proteomic approach for identification and quantification of altered peptides. Our results show that Cys residues are significantly affected by p,p´-DDE in several proteins related to oxidative stress and/or male fertility, particularly those participating in fertilization, sperm capacitation and blood coagulation. These molecular changes could explain the sexual abnormalities previously described in p,p´-DDE exposed organisms.
Collapse
Affiliation(s)
- José Alhama
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain
| | - Carlos A Fuentes-Almagro
- Servicio Central de Apoyo a la Investigación (SCAI), Unidad de Proteómica, Universidad de Córdoba, Campus de Rabanales, Edificio Ramón y Cajal, E-14071 Córdoba, Spain
| | - Nieves Abril
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain
| | - Carmen Michán
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain.
| |
Collapse
|
9
|
Rodríguez-Moro G, Ramírez-Acosta S, Arias-Borrego A, García-Barrera T, Gómez-Ariza JL. Environmental Metallomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1055:39-66. [DOI: 10.1007/978-3-319-90143-5_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Fernández-Cisnal R, García-Sevillano MA, Gómez-Ariza JL, Pueyo C, López-Barea J, Abril N. 2D-DIGE as a proteomic biomarker discovery tool in environmental studies with Procambarus clarkii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 584-585:813-827. [PMID: 28159302 DOI: 10.1016/j.scitotenv.2017.01.125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 06/06/2023]
Abstract
UNLABELLED A 2D-DIGE/MS approach was used to assess protein abundance differences in the red swamp crayfish Procambarus clarkii from polluted aquatic ecosystems of Doñana National Park and surrounding areas with different pollution loads. Procambarus clarkii accumulated metals in the digestive glands and gills reflecting sediment concentrations. We first stated that, probably related to elements accumulation, pollution increased oxidative damage in P. clarkii tissues, as shown by the thiol oxidation status of proteins and MDA levels. In these animals, the altered redox status might be responsible for the deregulated abundance of proteins involved in cellular responses to oxidative stress including protein folding, mitochondrial imbalance and inflammatory processes. Interestingly, polluted P. clarkii crayfish also displayed a metabolic shift to enhanced aerobic glycolysis, most likely aimed at generating ATP and reduction equivalents in an oxidative stress situation that alters mitochondrial integrity. The deregulated proteins define the physiological processes affected by pollutants in DNP and its surrounding areas and may help us to unravel the molecular mechanisms underlying the toxicity of environmental pollutants. In addition, these proteins might be used as exposure biomarkers in environmental risk assessment. The results obtained might be extrapolated to many other locations all over the world and have the added value of providing information about the molecular responses of this environmentally and economically interesting animal. SIGNIFICANCE Metal content in digestive gland and gills of P. clarkii crayfish reflects their contents in sediments at sites of Doñana National Park and its surroundings. Accumulation of essential and toxic transition metals is paralleled by clear signs of oxidative stress to lipids and proteins and by significant deregulation of many proteins involved in protein folding, mitochondrial respiratory imbalance and inflammatory response. These results indicate that P. clarkii is an excellent bioindicator to be used in aquatic ecosystems quality monitoring. Additionally, results evidence that the anthropogenic activities carried out around Doñana National Park represent an extremely serious threat to this unique Biosphere Reserve and pose a risk to the environment and their inhabitants health. The identified deregulated proteins provide information about the metabolic pathways and/or physiological processes affected by pollutant-elicited oxidative stress, may also be useful as biomarkers of environmental pollution and have the added value of providing information about the molecular responses of this environmentally and economically interesting animal.
Collapse
Affiliation(s)
- Ricardo Fernández-Cisnal
- Department of Biochemistry and Molecular Biology and Agrifood Campus of International Excellence (ceiA3), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071 Córdoba, Spain
| | - Miguel A García-Sevillano
- Department of Chemistry and Materials Science, Faculty of Experimental Science and Agrifood Campus of International Excellence (ceiA3), University of Huelva, El Carmen Campus, 21007 Huelva, Spain
| | - José L Gómez-Ariza
- Department of Chemistry and Materials Science, Faculty of Experimental Science and Agrifood Campus of International Excellence (ceiA3), University of Huelva, El Carmen Campus, 21007 Huelva, Spain
| | - Carmen Pueyo
- Department of Biochemistry and Molecular Biology and Agrifood Campus of International Excellence (ceiA3), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071 Córdoba, Spain
| | - Juan López-Barea
- Department of Biochemistry and Molecular Biology and Agrifood Campus of International Excellence (ceiA3), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071 Córdoba, Spain
| | - Nieves Abril
- Department of Biochemistry and Molecular Biology and Agrifood Campus of International Excellence (ceiA3), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071 Córdoba, Spain..
| |
Collapse
|
11
|
Ruiz-Laguna J, Vélez JM, Pueyo C, Abril N. Global gene expression profiling using heterologous DNA microarrays to analyze alterations in the transcriptome of Mus spretus mice living in a heavily polluted environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:5853-5867. [PMID: 26590064 DOI: 10.1007/s11356-015-5824-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/16/2015] [Indexed: 06/05/2023]
Abstract
Microarray platforms are a good approach for assessing biological responses to pollution as they enable the simultaneous analyses of changes in the expression of thousands of genes. As an omic and non-targeted methodology, this technique is open to unforeseen responses under particular environmental conditions. In this study, we successfully apply a commercial oligonucleotide microarray containing Mus musculus whole-genome probes to compare and assess the biological effects of living in a heavily polluted settlement, the Domingo Rubio stream (DRS), at the Huelva Estuary (SW Spain), on inhabitant free-living Mus spretus mice. Our microarray results show that mice living in DRS suffer dramatic changes in gene and protein expression compared with reference specimens. DRS mice showed alteration in the oxidative status of hepatocytes, with activation of both the innate and the acquired immune responses and the induction of chronic inflammation, accompanied by metabolic alterations that imply the accumulation of lipids in the liver (hepatic steatosis). The identified deregulated genes may be useful as biomarkers of environmental pollution.
Collapse
Affiliation(s)
- Julia Ruiz-Laguna
- Department of Biochemistry and Molecular Biology and Agrifood Campus of International Excellence (ceiA3-UCO), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071, Córdoba, Spain
| | - José M Vélez
- Department of Biochemistry and Molecular Biology and Agrifood Campus of International Excellence (ceiA3-UCO), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071, Córdoba, Spain
| | - Carmen Pueyo
- Department of Biochemistry and Molecular Biology and Agrifood Campus of International Excellence (ceiA3-UCO), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071, Córdoba, Spain
| | - Nieves Abril
- Department of Biochemistry and Molecular Biology and Agrifood Campus of International Excellence (ceiA3-UCO), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071, Córdoba, Spain.
| |
Collapse
|
12
|
Abril N, Chicano-Gálvez E, Michán C, Pueyo C, López-Barea J. iTRAQ analysis of hepatic proteins in free-living Mus spretus mice to assess the contamination status of areas surrounding Doñana National Park (SW Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 523:16-27. [PMID: 25847312 DOI: 10.1016/j.scitotenv.2015.03.116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/26/2015] [Accepted: 03/26/2015] [Indexed: 05/22/2023]
Abstract
This work aims to develop and integrate new -omics tools that would be applicable to different ecosystem types for a technological updating of environmental evaluations. We used a 2nd-generation (iTRAQ-8plex) proteomic approach to identify/quantify proteins differentially expressed in the liver of free-living Mus spretus mice from Doñana National Park or its proximities. Mass spectrometry was performed in an LTQ Orbitrap system for iTRAQ reporter ion quantitation and protein identification using a Mus musculus database as reference. A prior IEF step improved the separation of the complex peptide mixture. Over 2000 identified proteins were altered, of which 118 changed by ≥2.5-fold in mice from at least two problem sites. Part of the results obtained with the iTRAQ analysis was confirmed by Western blot. Over 75% of the 118 proteins were upregulated in animals captured at polluted sites and only 16 proteins were downregulated. Upregulated proteins were involved in stress response; cell proliferation and apoptosis; signal transduction; metastasis or tumour suppression; xenobiotic export or vesicular trafficking; and metabolism. The downregulated proteins, all potentially harmful, were classified as oncoproteins and proteins favouring genome instability. The iTRAQ results presented here demonstrated that the survival of hepatic cells is compromised in animals living at polluted sites, which showed deep alterations in metabolism and the signalling pathways. The identified proteins may be useful as biomarkers of environmental pollution and provide insight about the metabolic pathways and/or physiological processes affected by pollutants in DNP and its surrounding areas.
Collapse
Affiliation(s)
- Nieves Abril
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3-UCO), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071 Córdoba, Spain
| | - Eduardo Chicano-Gálvez
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3-UCO), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071 Córdoba, Spain
| | - Carmen Michán
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3-UCO), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071 Córdoba, Spain
| | - Carmen Pueyo
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3-UCO), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071 Córdoba, Spain
| | - Juan López-Barea
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3-UCO), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071 Córdoba, Spain.
| |
Collapse
|
13
|
Jurado J, Fuentes-Almagro CA, Guardiola FA, Cuesta A, Esteban MÁ, Prieto-Álamo MJ. Proteomic profile of the skin mucus of farmed gilthead seabream (Sparus aurata). J Proteomics 2015; 120:21-34. [DOI: 10.1016/j.jprot.2015.02.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 02/09/2015] [Accepted: 02/20/2015] [Indexed: 01/24/2023]
|
14
|
García-Sevillano MA, García-Barrera T, Gómez-Ariza JL. Application of metallomic and metabolomic approaches in exposure experiments on laboratory mice for environmental metal toxicity assessment. Metallomics 2014; 6:237-48. [PMID: 24407108 DOI: 10.1039/c3mt00302g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metals have a central role in biological systems, regulating numerous cellular processes, and in other cases having toxic or deleterious effects on the metabolism. Hence, the study of metal-induced changes in cellular metabolic pathways is crucial to understanding the biological response associated with environmental issues. In this context, the finding of biomarkers has great interest, representing -omics techniques, such as metallomics and metabolomics, powerful tools for this purpose. The present work evaluates the exposure of mice Mus musculus to toxic metals (As, Cd and Hg), considering the changes induced in both the metallome and metabolome as a consequence of the high genetic homology between Mus musculus/Mus spretus mice, which allows the use of the database from M. musculus to identify the proteins and metabolites expressed by M. spretus. For this purpose a metallomic approach based on size exclusion chromatography (SEC) in combination with other complementary orthogonal separation techniques and heteroelement monitoring by ICP-ORS-qMS was performed, followed by identification of metallobiomolecules by organic mass spectrometry. In addition, simultaneous speciation of selenoproteins and selenometabolites in mouse plasma was accomplished by tandem (double) SEC-(dual) affinity chromatography (AF)-HPLC and online isotope dilution analysis (IDA)-ICP-ORS-qMS. Finally, the simultaneous changes in metabolic expression in mice caused by metal exposure (metabolome) were considered, using direct infusion mass spectrometry (DI-ESI-QqQ-TOF-MS) of extracts from mice plasma. Subsequently altered metabolites were identified using MS/MS experiments. The results obtained under controlled conditions were extrapolated to homologous free-living mice captured in Doñana National Park (DNP) and surroundings (southwest Spain) affected by As, Cd and Hg pollution. In summary, such studies are needed to understand the effect of heavy metal exposure and cope with heavy metal toxicity.
Collapse
Affiliation(s)
- M A García-Sevillano
- Department of Chemistry and Materials Science, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, 21007-Huelva, Spain.
| | | | | |
Collapse
|
15
|
Osuna-Jiménez I, Abril N, Vioque-Fernández A, Gómez-Ariza JL, Prieto-Álamo MJ, Pueyo C. The environmental quality of Doñana surrounding areas affects the immune transcriptional profile of inhabitant crayfish Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2014; 40:136-145. [PMID: 25003697 DOI: 10.1016/j.fsi.2014.06.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 06/03/2023]
Abstract
This study aimed to identify differentially expressed genes in Procambarus clarkii crayfish collected from locations of different environmental qualities in the Doñana National Park surrounding areas. The pollution sustained by the crayfish was confirmed by their hepatopancreatic metal concentration. We generated forward and reverse libraries by suppression subtractive hybridization (SSH) to analyze the transcriptional profiles of crayfish from moderately and highly polluted zones in comparison with the control site within the Doñana Biological Reserve. Forty-three differentially expressed genes were detected, and most of them were identified as genes involved in a variety of biological functions, particularly in the innate immune response. To verify the SSH results and assess interindividual variability nine transcripts (ALP, AST, BTF3, CHIT, CTS, ferritin, HC, HC2, and SPINK4) were selected for absolute quantification by real-time qRT-PCR. The qRT-PCR data revealed substantial differences in the absolute amounts of the nine transcripts and confirmed their up- or down-regulation in the polluted sites. Additionally, a positive and significant linear correlation was found between the hepatopancreatic copper concentration and the levels of the transcripts encoding hemocyanins. Finally, the transcriptomic study was complemented with a detailed analysis of SNP profiles of the selected transcripts that revealed point mutations that might underlie adaptive response to environmental stress in P. clarkii. Overall, this work provides novel insights into the molecular pathways that could mediate the response to environmental pollutants in P. clarkii emphasizing the central role of the immune function and thus, should clearly benefit further immunotoxicological research in this organism.
Collapse
Affiliation(s)
- Inmaculada Osuna-Jiménez
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071 Córdoba, Spain
| | - Nieves Abril
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071 Córdoba, Spain
| | - Amalia Vioque-Fernández
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071 Córdoba, Spain
| | - José Luis Gómez-Ariza
- Department of Chemistry and Materials Science, Faculty of Experimental Science, University of Huelva, El Carmen Campus, 21007 Huelva, Spain
| | - María-José Prieto-Álamo
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071 Córdoba, Spain.
| | - Carmen Pueyo
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071 Córdoba, Spain
| |
Collapse
|
16
|
Fernández-Cisnal R, Alhama J, Abril N, Pueyo C, López-Barea J. Redox proteomics as biomarker for assessing the biological effects of contaminants in crayfish from Doñana National Park. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 490:121-133. [PMID: 24846406 DOI: 10.1016/j.scitotenv.2014.04.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/14/2014] [Accepted: 04/28/2014] [Indexed: 06/03/2023]
Abstract
Despite its environmental relevance and sensitivity, Doñana National Park (DNP) is under high ecological pressure. In crayfish (Procambarus clarkii), the utility of redox proteomics as a novel biomarker was evaluated in the aquatic ecosystems of DNP and its surroundings, where agricultural activity is a serious concern. After fluorescence labeling of reversibly oxidized Cys and 2-DE separation, the total density of proteins with reversibly oxidized thiols was found to be much higher in animals from the Matochal (MAT) and Rocina (ROC) streams, while no difference was found in crayfish from Partido (PAR) stream compared to those from the DNP core at Lucio del Palacio (the negative control). The 2-DE analysis revealed 35 spots with significant differences in thiol oxidation, among which 19 proteins were identified via MALDI-TOF/TOF. While 3 spots, identified as ferritin, showed higher oxidation levels in ROC, other identified proteins were more intense at MAT than at ROC (superoxide dismutase, protein disulfide isomerase and actin) or were overoxidized only in MAT (nucleoside diphosphate kinase, fructose-biphosphate aldolase, fatty acid-binding protein, phosphopyruvate hydratase). For most of the identified proteins, spots corresponding to different Cys oxidized forms were detected, and the native forms, without oxidized thiol groups were also found in some of them. Evidence of reversible oxidation was found for specific Cys residues, including Cys13 in ferritin as well as Cys76 and Cys108 in nucleoside diphosphate kinase. The identified thiol-oxidized proteins provide information about the metabolic pathways and/or physiological processes affected by pollutant-elicited oxidative stress.
Collapse
Affiliation(s)
- Ricardo Fernández-Cisnal
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3), University of Córdoba, Córdoba, Spain
| | - José Alhama
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3), University of Córdoba, Córdoba, Spain
| | - Nieves Abril
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3), University of Córdoba, Córdoba, Spain
| | - Carmen Pueyo
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3), University of Córdoba, Córdoba, Spain
| | - Juan López-Barea
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3), University of Córdoba, Córdoba, Spain.
| |
Collapse
|
17
|
García-Sevillano MA, García-Barrera T, Navarro F, Abril N, Pueyo C, López-Barea J, Gómez-Ariza JL. Use of metallomics and metabolomics to assess metal pollution in Doñana National Park (SW Spain). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:7747-7755. [PMID: 24922451 DOI: 10.1021/es4057938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Monitoring organism exposure to heavy metals has acquired increased importance in the last decades. The mouse Mus spretus has been used to assess the biological response to contaminants in the relevant ecological area of Doñana National Park (DNP) and surrounding areas (SW Spain), where many migrating birds land for breeding and feeding every year. A metallomics approach, based on the characterization of metal biomolecules using size exclusion chromatography coupled with inductively coupled plasma-mass spectrometry (SEC-ICP-MS) and a metabolomics approach based on direct infusion to a mass spectrometer (DI-ESI-QTOF-MS) followed by a partial linear square-discriminant analysis (PLS-DA), were used to compare the biological responses of M. spretus living in three areas of DNP (the reference) and surrounding areas (El Partido and El Matochal). The activities of key antioxidant enzymes, such as Cu/Zn-SOD, Mn-SOD, CAT, GR, and guaiacol peroxidase, were also determined in connection with environmental contamination issues. The results show differences caused by the presence of metals in the ecosystem that affected to the levels of metals and metalloproteins, such as MT, Cu/Zn-SOD, or Mn-CA, the breakdown of membrane phospholipids, perturbations in metabolic pathways, related to energy metabolism, and oxidative stress.
Collapse
Affiliation(s)
- M A García-Sevillano
- Department of Chemistry and Materials Science, Experimental Sciences Faculty, Research Center on Health and Environment (CYSMA), International Campus of Excellence on Agrofood (CEIA3), Huelva University , El Carmen Campus, 21007 Huelva, Spain
| | | | | | | | | | | | | |
Collapse
|
18
|
Demartini DR, Schilling LP, da Costa JC, Carlini CR. Alzheimer's and Parkinson's diseases: an environmental proteomic point of view. J Proteomics 2014; 104:24-36. [PMID: 24751585 DOI: 10.1016/j.jprot.2014.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/07/2014] [Accepted: 04/10/2014] [Indexed: 11/25/2022]
Abstract
Alzheimer's and Parkinson's diseases are severe neurodegenerative conditions triggered by complex biochemical routes. Many groups are currently pursuing the search for valuable biomarkers to either perform early diagnostic or to follow the disease's progress. Several studies have reported relevant findings regarding environmental issues and the progression of such diseases. Here the etiology and mechanisms of these diseases are briefly reviewed. Approaches that might reveal candidate biomarkers and environmental stressors associated to the diseases were analyzed under a proteomic perspective. This article is part of a Special Issue entitled: Environmental and structural proteomics.
Collapse
Affiliation(s)
- Diogo Ribeiro Demartini
- Center of Biotechnology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, Prédio 43431, Sala 214, 91501-970 Porto Alegre, RS, Brazil.
| | - Lucas Porcello Schilling
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, 90610-000 Porto Alegre, RS, Brazil
| | - Jaderson Costa da Costa
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, 90610-000 Porto Alegre, RS, Brazil.
| | - Célia Regina Carlini
- Center of Biotechnology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, Prédio 43431, Sala 214, 91501-970 Porto Alegre, RS, Brazil; Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, 90610-000 Porto Alegre, RS, Brazil
| |
Collapse
|
19
|
García-Sevillano MÁ, García-Barrera T, Abril N, Pueyo C, López-Barea J, Gómez-Ariza JL. Omics technologies and their applications to evaluate metal toxicity in mice M. spretus as a bioindicator. J Proteomics 2014; 104:4-23. [PMID: 24631825 DOI: 10.1016/j.jprot.2014.02.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/09/2014] [Accepted: 02/25/2014] [Indexed: 11/29/2022]
Abstract
UNLABELLED Metals are important components of living organisms since many biological functions critically depend on their interaction with some metal in the cell. However, human activities have increased toxic metal levels in the terrestrial and aquatic ecosystems affecting living organisms. The impact of metals on cellular metabolism and global homeostasis has been traditionally assessed in free-living organisms by using conventional biomarkers; however, to obtain a global vision of metal toxicity mechanisms and the responses that metals elicit in the organisms, new analytical methodologies are needed. We review the use of omics approaches to assess the response of living organisms under metal stress illustrating the possibilities of different methodologies on the basis of our previous results. Most of this research has been based on free-living mice Mus spretus, a conventional bioindicator used to monitor metal pollution in Doñana National Park (DNP) (SW Spain), which is an important European biological reserve for migrating birds affected by agricultural, mining and industrial activities. The benefits of using omic techniques such as heterologous microarrays, proteomics methodologies (2-DE, iTRAQ®), metallomics, ionomics or metabolomics has been remarked; however, the complexity of these areas requires the integration of omics to achieve a comprehensive assessment of their environmental status. This article is part of a Special Issue entitled: Environmental and structural proteomics. BIOLOGICAL SIGNIFICANCE This work presents new contributions in the study of environmental metal pollution in terrestrial ecosystems using Mus spretus mice as bioindicator in Doñana National Park (SW Spain) and surroundings. In addition, it has been demonstrated that the integration of omics multi-analytical approaches provides a very suitable approach for the study of the biological response and metal interactions in exposed and free-living mice (Mus musculus and Mus spretus, respectively) under metal pollution.
Collapse
Affiliation(s)
- Miguel Ángel García-Sevillano
- Department of Chemistry and Materials Science, Faculty of Experimental Science, University of Huelva, Campus de El Carmen, 21007 Huelva, Spain; International Agrofood Campus of Excellence International ceiA3, University of Huelva, Spain; Research Center of Health and Environment (CYSMA), University of Huelva, Campus de El Carmen, 21007 Huelva, Spain
| | - Tamara García-Barrera
- Department of Chemistry and Materials Science, Faculty of Experimental Science, University of Huelva, Campus de El Carmen, 21007 Huelva, Spain; International Agrofood Campus of Excellence International ceiA3, University of Huelva, Spain; Research Center of Health and Environment (CYSMA), University of Huelva, Campus de El Carmen, 21007 Huelva, Spain
| | - Nieves Abril
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3), Severo Ochoa Building, University of Córdoba, Rabanales Campus, 14071 Córdoba, Spain
| | - Carmen Pueyo
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3), Severo Ochoa Building, University of Córdoba, Rabanales Campus, 14071 Córdoba, Spain
| | - Juan López-Barea
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3), Severo Ochoa Building, University of Córdoba, Rabanales Campus, 14071 Córdoba, Spain
| | - José Luis Gómez-Ariza
- Department of Chemistry and Materials Science, Faculty of Experimental Science, University of Huelva, Campus de El Carmen, 21007 Huelva, Spain; International Agrofood Campus of Excellence International ceiA3, University of Huelva, Spain; Research Center of Health and Environment (CYSMA), University of Huelva, Campus de El Carmen, 21007 Huelva, Spain.
| |
Collapse
|
20
|
Abril N, Ruiz-Laguna J, García-Sevillano MÁ, Mata AM, Gómez-Ariza JL, Pueyo C. Heterologous microarray analysis of transcriptome alterations in Mus spretus mice living in an industrial settlement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:2183-2192. [PMID: 24460498 DOI: 10.1021/es4053973] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This work demonstrates the successful application of a commercial oligonucleotide microarray containing Mus musculus whole-genome probes to assess the biological effects of an industrial settlement on inhabitant Mus spretus mice. The transcriptomes of animals in the industrial settlement contrasted with those of specimens collected from a nearby protected ecosystem. Proteins encoded by the differentially expressed genes were broadly categorized into six main functional classes. Immune-associated genes were mostly induced and related to innate and acquired immunity and inflammation. Genes sorted into the stress-response category were mainly related to oxidative-stress tolerance and biotransformation. Metabolism-associated genes were mostly repressed and related to lipid metabolic pathways; these included genes that encoded 11 of the 20 cholesterol biosynthetic pathway enzymes. Crosstalk between members of different functional categories was also revealed, including the repression of serine-protease genes and the induction of protease-inhibitor genes to control the inflammatory response. Absolute quantification of selected transcripts was performed via RT-PCR to verify the microarray results and assess interindividual variability. Microarray data were further validated by immunoblotting and by cholesterol and protein-thiol oxidation level determinations. Reported data provide a broad impression of the biological consequences of residing in an industrial area.
Collapse
Affiliation(s)
- Nieves Abril
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence (ceiA3), Severo Ochoa Building, University of Córdoba , Rabanales Campus, 14071 Córdoba, Spain
| | | | | | | | | | | |
Collapse
|
21
|
Metal interactions in mice under environmental stress. Biometals 2013; 26:651-66. [DOI: 10.1007/s10534-013-9642-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 06/03/2013] [Indexed: 11/25/2022]
|
22
|
Metal Species in Biology: Bottom-Up and Top-Down LC Approaches in Applied Toxicological Research. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/801840] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Since the inception of liquid chromatography (LC) more than 100 years ago this separation technique has been developed into a powerful analytical tool that is frequently applied in life science research. To this end, unique insights into the interaction of metal species (throughout this manuscript “metal species” refers to “toxic metals, metalloid compounds, and metal-based drugs” and “toxic metals” to “toxic metals and metalloid compounds”) with endogenous ligands can be obtained by using LC approaches that involve their hyphenation with inductively coupled plasma-based element specific detectors. This review aims to provide a synopsis of the different LC approaches which may be employed to advance our understanding of these interactions either in a “bottom-up” or a “top-down” manner. In the “bottom-up” LC-configuration, endogenous ligands are introduced into a physiologically relevant mobile phase buffer, and the metal species of interest is injected. Subsequent “interrogation” of the on-column formed complex(es) by employing a suitable separation mechanism (e.g., size exclusion chromatography or reversed-phase LC) while changing the ligand concentration(s), the column temperature or the pH can provide valuable insight into the formation of complexes under near physiological conditions. This approach allows to establish the relative stability and hydrophobicity of metal-ligand complexes as well as the dynamic coordination of a metal species (injected) to two ligands (dissolved in the mobile phase). Conversely, the “top-down” analysis of a biological fluid (e.g., blood plasma) by LC (e.g., using size exclusion chromatography) can be used to determine the size distribution of endogenous metalloproteins which are collectively referred to as the “metalloproteome”. This approach can provide unique insight into the metabolism and the plasma protein binding of metal species, and can simultaneously visualize the dose-dependent perturbation of the metalloproteome by a particular metal species. The concerted application of these LC approaches is destined to provide new insight into biochemical processes which represent an important starting point to advance human health in the 21st century.
Collapse
|
23
|
Ben-Khedher S, Jebali J, Kamel N, Banni M, Rameh M, Jrad A, Boussetta H. Biochemical effects in crabs (Carcinus maenas) and contamination levels in the Bizerta Lagoon: an integrated approach in biomonitoring of marine complex pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:2616-2631. [PMID: 22976048 DOI: 10.1007/s11356-012-1156-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/27/2012] [Indexed: 06/01/2023]
Abstract
The biochemical effects in Carcinus maenas and contamination levels in seawater and sediments of Bizerta Lagoon (northeast of Tunisia) were investigated. The levels of metals and hydrocarbons were higher in seawater and sediments in Menzel Bourguiba and Cimentery in February and July than in the other sampling sites. Differences among sites for glutathione S-transferase, catalase, acetylcholinesterase activities, and the content of lipid peroxidation and metallothioneins in two important organs which accumulated contaminants (the gills and the digestive gland) of the C. maenas were found and possibly related to differences in metal and hydrocarbon levels. The seasonal variation of biomarkers was possibly associated with chemical contamination and also with the high fluctuation of physico-chemical characteristics of the sites. The integrated biomarker response values found in the five sites is in good agreement with hydrocarbon and trace metal concentrations detected in the water and sediments of the stressful places where crabs are living.
Collapse
Affiliation(s)
- Sana Ben-Khedher
- Laboratory of Biochemical and Environmental Toxicology, Higher Institute of Agriculture, Chott-Mariem, 4042 Sousse, Tunisia
| | | | | | | | | | | | | |
Collapse
|
24
|
Aguilar-Melero P, Prieto-Álamo MJ, Jurado J, Holmgren A, Pueyo C. Proteomics in HepG2 hepatocarcinoma cells with stably silenced expression of PRDX1. J Proteomics 2012; 79:161-71. [PMID: 23277276 DOI: 10.1016/j.jprot.2012.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/12/2012] [Accepted: 12/08/2012] [Indexed: 12/13/2022]
Abstract
Peroxiredoxin 1 (PRDX1) is a member of the peroxiredoxin family. Aberrant expression of PRDX1 has been described in various cancers. We investigated the significance of this up-regulation in non-challenged hepatocellularcarcinoma (HCC) cells by establishing a HepG2 cell line stably expressing a Prdx1 shRNA. Prdx1 silencing reversed, at least partially, the tumoural phenotype of HepG2 cells, resulting in morphological changes, delayed cell growth, down-regulation of transcripts for AFP, osteopontin and β-catenin and decreased γ-glutamyl transpeptidase activity, and oppositely up-regulation of transcripts for E-cadherin and proapoptotic proteins (BAX, CASP3) and increased alkaline phosphatase and CASP3 activities. Proteomic profiling identified 16 spots differentially expressed in Prdx1-silenced cells. Most of the variations involved the down-regulation of proteins with pivotal roles in cell proliferation and differentiation, in agreement with the observed phenotypic changes. We also investigated the effect of Prdx1 silencing on thiol protein oxidation. Proteins prone to reversible cysteine oxidation play major physiological functions. Notably, the down-regulation and altered redox status of key enzymes of carbohydrate and amino acid metabolism suggested a disturbance of the Warburg effect and glutamine utilization, two major pathways in the proliferation of tumour cells. Overall, these observations suggest that PRDX1 acts as a pro-cancer protein in HCC HepG2 cells.
Collapse
Affiliation(s)
- Patricia Aguilar-Melero
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, planta 2(a)ª, Carretera Madrid-Cádiz Km 396-a, 14071-Córdoba, Spain
| | | | | | | | | |
Collapse
|
25
|
Identification of proteins containing redox-sensitive thiols after PRDX1, PRDX3 and GCLC silencing and/or glucose oxidase treatment in Hepa 1–6 cells. J Proteomics 2012; 77:262-79. [DOI: 10.1016/j.jprot.2012.08.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/07/2012] [Accepted: 08/22/2012] [Indexed: 12/20/2022]
|
26
|
García-Sevillano MA, González-Fernández M, Jara-Biedma R, García-Barrera T, López-Barea J, Pueyo C, Gómez-Ariza JL. Biological response of free-living mouse Mus spretus from Doñana National Park under environmental stress based on assessment of metal-binding biomolecules by SEC-ICP-MS. Anal Bioanal Chem 2012; 404:1967-81. [DOI: 10.1007/s00216-012-6274-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/29/2012] [Accepted: 07/16/2012] [Indexed: 11/29/2022]
|
27
|
Abril N, Ruiz-Laguna J, Pueyo C. Differential expression of the Gstp2 gene between the aboriginal species Mus spretus and the laboratory mouse Mus musculus. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 747:53-61. [DOI: 10.1016/j.mrgentox.2012.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 01/11/2012] [Accepted: 03/28/2012] [Indexed: 11/24/2022]
|
28
|
Costa PM, Chicano-Gálvez E, Caeiro S, Lobo J, Martins M, Ferreira AM, Caetano M, Vale C, Alhama-Carmona J, Lopez-Barea J, DelValls TA, Costa MH. Hepatic proteome changes in Solea senegalensis exposed to contaminated estuarine sediments: a laboratory and in situ survey. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:1194-1207. [PMID: 22362511 DOI: 10.1007/s10646-012-0874-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/11/2012] [Indexed: 05/31/2023]
Abstract
Assessing toxicity of contaminated estuarine sediments poses a challenge to ecotoxicologists due to the complex geochemical nature of sediments and to the combination of multiple classes of toxicants. Juvenile Senegalese soles were exposed for 14 days in the laboratory and in situ (field) to sediments from three sites (a reference plus two contaminated) of a Portuguese estuary. Sediment characterization confirmed the combination of metals, polycyclic aromatic hydrocarbons and organochlorines in the two contaminated sediments. Changes in liver cytosolic protein regulation patterns were determined by a combination of two-dimensional electrophoresis with de novo sequencing by tandem mass spectrometry. From the forty-one cytosolic proteins found to be deregulated, nineteen were able to be identified, taking part in multiple cellular processes such as anti-oxidative defence, energy production, proteolysis and contaminant catabolism (especially oxidoreductase enzymes). Besides a clear distinction between animals exposed to the reference and contaminated sediments, differences were also observed between laboratory- and in situ-tested fish. Soles exposed in the laboratory to the contaminated sediments failed to induce, or even markedly down-regulated, many proteins, with the exception of a peroxiredoxin (an anti-oxidant enzyme) and a few others, when compared to reference fish. In situ exposure to the contaminated sediments revealed significant up-regulation of basal metabolism-related enzymes, comparatively to the reference condition. Down-regulation of basal metabolism enzymes, related to energy production and gene transcription, in fish exposed in the laboratory to the contaminated sediments, may be linked to sediment-bound contaminants and likely compromised the organisms' ability to deploy adequate responses against insult.
Collapse
Affiliation(s)
- Pedro M Costa
- Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da, IMAR-Instituto do Mar, Universidade Nova de Lisboa, Caparica, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Aguilar-Melero P, Ferrín G, Muntané J. Effects of nitric oxide synthase-3 overexpression on post-translational modifications and cell survival in HepG2 cells. J Proteomics 2011; 75:740-55. [PMID: 21968428 DOI: 10.1016/j.jprot.2011.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/01/2011] [Accepted: 09/17/2011] [Indexed: 12/01/2022]
Abstract
Hepatocarcinoma is the fifth most common neoplasm and the third cause of cancer-related death. The development of genetic- and/or molecular-based therapies is urgently required. The administration of high doses of nitric oxide (NO) promotes cell death in hepatocytes. NO contributes to cell signaling by inducing oxidative/nitrosative-dependent post-translational modifications. The aim of the present study was to investigate protein modifications and its relation with alteration of cell proliferation and death in hepatoma cells. Increased intracellular NO production was achieved by stable nitric oxide synthase-3 (NOS-3) overexpression in HepG2 cells. We assessed the pattern of nitration, nitrosylation and carbonylation of proteins by proteomic analysis. The results showed that NOS-3 cell overexpression increased oxidative stress, which affected proteins mainly involved in cell protein folding. Carbonylation also altered metabolism, as well as immune and antioxidant responses. The interaction of nitrosative and oxidative stress generated tyrosine nitration, which affected the tumor marker Serpin B3, ATP synthesis and cytoskeleton. All these effects were associated with a decrease in chaperone activity, a reduction in cell proliferation and an increased cell death. Our study showed that alteration of nitration, nitrosylation and carbonylation pattern of proteins by NO-dependent oxidative/nitrosative stress was related to a reduction of cell survival in a hepatoma cell line.
Collapse
Affiliation(s)
- P Aguilar-Melero
- Liver Research Unit, IMIBIC (Instituto Maimónides para la Investigación Biomédica de Córdoba), Reina Sofia University Hospital, Córdoba, Spain.
| | | | | |
Collapse
|
30
|
Gómez-Ariza JL, Jahromi EZ, González-Fernández M, García-Barrera T, Gailer J. Liquid chromatography-inductively coupled plasma-based metallomic approaches to probe health-relevant interactions between xenobiotics and mammalian organisms. Metallomics 2011; 3:566-77. [PMID: 21614343 DOI: 10.1039/c1mt00037c] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In mammals, the transport of essential elements from the gastrointestinal tract to organs is orchestrated by biochemical mechanisms which have evolved over millions of years. The subsequent organ-based assembly of sufficient amounts of metalloproteins is a prerequisite to maintain mammalian health and well-being. The chronic exposure of various human populations to environmentally abundant toxic metals/metalloid compounds and/or the deliberate administration of medicinal drugs, however, can adversely affect these processes which may eventually result in disease. A better understanding of the perturbation of these processes has the potential to advance human health, but their visualization poses a major problem. Nonetheless, liquid chromatography-inductively coupled plasma-based 'metallomics' methods, however, can provide much needed insight. Size-exclusion chromatography-inductively coupled plasma atomic emission spectrometry, for example, can be used to visualize changes that toxic metals/medicinal drugs exert at the metalloprotein level when they are added to plasma in vitro. In addition, size-exclusion chromatography-inductively coupled plasma mass spectrometry can be employed to analyze organs from toxic metal/medicinal drug-exposed organisms for metalloproteins to gain insight into the biochemical changes that are associated with their acute or chronic toxicity. The execution of such studies-from the selection of an appropriate model organism to the generation of accurate analytical data-is littered with potential pitfalls that may result in artifacts. Drawing on recent lessons that were learned by two research groups, this tutorial review is intended to provide relevant information with regard to the experimental design and the practical application of these aforementioned metallomics tools in applied health research.
Collapse
Affiliation(s)
- José Luis Gómez-Ariza
- Department of Chemistry and Material Sciences, Faculty of Experimental Science, University of Huelva, Campus de El Carmen, 21007 Huelva, Spain
| | | | | | | | | |
Collapse
|
31
|
Abril N, Ruiz-Laguna J, Osuna-Jiménez I, Vioque-Fernández A, Fernández-Cisnal R, Chicano-Gálvez E, Alhama J, López-Barea J, Pueyo C. Omic approaches in environmental issues. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2011; 74:1001-1019. [PMID: 21707425 DOI: 10.1080/15287394.2011.582259] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Biomonitoring requires the application of batteries of different biomarkers, as environmental contaminants induce multiple responses in organisms that are not necessarily correlated. Omic technologies were proposed as an alternative to conventional biomarkers since these techniques quantitatively monitor many biological molecules in a high-throughput manner and thus provide a general appraisal of biological responses altered by exposure to contaminants. As the studies using omic technologies increase, it is becoming clear that any single omic approach may not be sufficient to characterize the complexity of ecosystems. This work aims to provide a preliminary working scheme for the use of combined transcriptomic and proteomic methodologies in environmental biomonitoring. There are difficulties in working with nonmodel organisms as bioindicators when combining several omic approaches. As a whole, our results with heterologous microarrays in M. spretus and suppressive subtractive hybridization (SSH) in P. clarkii indicated that animals sustaining a heavy pollution burden exhibited an enhanced immune response and/or cell apoptosis. The proteomic studies, although preliminary, provide a holistic insight regarding the manner by which pollution shifts protein intensity in two-dimensional gel electrophoresis (2-DE), completing the transcriptomic approach. In our study, the sediment element concentration was in agreement with the intensity of protein expression changes in C. maenas crabs. In conclusion, omics are useful technologies in addressing environmental issues and the determination of contamination threats.
Collapse
Affiliation(s)
- Nieves Abril
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Costa PM, Chicano-Gálvez E, López Barea J, DelValls TA, Costa MH. Alterations to proteome and tissue recovery responses in fish liver caused by a short-term combination treatment with cadmium and benzo[a]pyrene. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:3338-3346. [PMID: 20719421 DOI: 10.1016/j.envpol.2010.07.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 07/18/2010] [Accepted: 07/21/2010] [Indexed: 05/29/2023]
Abstract
The livers of soles (Solea senegalensis) injected with subacute doses of cadmium (Cd), benzo[a]pyrene (B[a]P), or their combination, were screened for alterations to cytosolic protein expression patterns, complemented by cytological and histological analyses. Cadmium and B[a]P, but not combined, induced hepatocyte apoptosis and Kupfer cell hyperplasia. Proteomics, however, suggested that apoptosis was triggered through distinct pathways. Cadmium and B[a]P caused upregulation of different anti-oxidative enzymes (peroxiredoxin and glutathione peroxidase, respectively) although co-exposure impaired induction. Similarly, apoptosis was inhibited by co-exposure, to which may have contributed a synergistic upregulation of tissue metalloproteinase inhibitor, beta-actin and a lipid transport protein. The regulation factors of nine out of eleven identified proteins of different types revealed antagonistic or synergistic effects between Cd and B[a]P at the prospected doses after 24 h of exposure. The results indicate that co-exposure to Cd and B[a]P may enhance toxicity by impairing specific responses and not through cumulative damage.
Collapse
Affiliation(s)
- P M Costa
- IMAR-Instituto do Mar, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Monte de Caparica, Portugal.
| | | | | | | | | |
Collapse
|
33
|
Barba-Brioso C, Fernández-Caliani JC, Miras A, Cornejo J, Galán E. Multi-source water pollution in a highly anthropized wetland system associated with the estuary of Huelva (SW Spain). MARINE POLLUTION BULLETIN 2010; 60:1259-1269. [PMID: 20378131 DOI: 10.1016/j.marpolbul.2010.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 02/19/2010] [Accepted: 03/13/2010] [Indexed: 05/29/2023]
Abstract
Major ions, nutrients, trace elements and pesticides distribution were studied in a coastal wetland heavily impacted by human development in Spain. Past land use has altered the local hydrodynamics leading to the partitioning of the ecosystem into a tideland subject to marine influence, and an artificial freshwater reservoir created by stream impoundment. The tideland stretch is flooded twice a day with a heavy metal plume that emerges from the mine-polluted estuary of Huelva and propagates landward depicting the same dispersal trend of major seawater ions. Additionally, the tidal channel receives acid discharges from industrial point sources that contribute to metal enhancement. The impounded area and stream tributaries are affected by agrochemicals runoff (nitrate, phosphate, pendimethalin, simazine, diuron and therbuthylazine) from surrounding agricultural lands. The tidal regime plays a crucial role in the transport and dispersion of pollutants, except in the artificial reservoir where freshwater exhibits a seasonal mineralization pattern.
Collapse
Affiliation(s)
- C Barba-Brioso
- Dpto. Cristalografía, Mineralogía y Química Agrícola, Facultad de Química, Universidad de Sevilla, 41072 Sevilla, Spain.
| | | | | | | | | |
Collapse
|
34
|
Jurado Gámez B, Moreno JLGC, Calero MM, Laguna JR, Cabrera LM, Povedano AC, López-Barea J. Variation in Protein Expression Depending on the Severity of Sleep Apnoea-Hypopnoea Syndrome. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1579-2129(10)70070-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
[Variation in protein expression depending on the severity of sleep apnoea-hypopnoea syndrome]. Arch Bronconeumol 2010; 46:288-93. [PMID: 20181421 DOI: 10.1016/j.arbres.2009.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 12/21/2009] [Accepted: 12/22/2009] [Indexed: 11/21/2022]
Abstract
OBJECTIVE A prospective study with a consecutive sample and a control group to determine whether protein expression in patients with sleep apnoea-hypopnoea syndrome (SAHS) is different from that of the control group (IAH < or =5). PATIENTS AND METHODS A total of 32 patients aged between 35 and 60 years who had a polysomnograph performed were included. Patients with an acute or chronic were excluded. The first dimension of the proteomic study was carried out on IPG strips (18cm, pH 4-7) and the second on SDS-PAGE gels in triplicate for each group. The gels were stained with SYPRO-Ruby (Bio-Rad((R))), the images obtained with an FX-Imager laser scanner and the spots were analysed using ProteomWeaver v. 4.0 (Bio-Rad((R))) software. Significant changes between the gels were analysed by replicates and separately, being considered a significant change if the relative intensity of the spots was three times higher or lower than that of the control and if it was observed in 2 of the 3 replicates of each group, with a coefficient of variation of <20%. RESULTS The patients were divided into 8 subjects per group (control, mild, moderate and severe). The comparison of the gels showed significant differences between the control group and the 3 clinical groups, with significant over-expression being observed in 3 spots, and under-expression in 7 spots in the control group. CONCLUSION There are significant changes in protein expression between a control group and patients in different stages of disease. The proteomic study can identify biomarkers associated with the diagnosis and severity of the SAHS.
Collapse
|
36
|
Montes Nieto R, García-Barrera T, Gómez-Ariza JL, López-Barea J. Environmental monitoring of Domingo Rubio stream (Huelva Estuary, SW Spain) by combining conventional biomarkers and proteomic analysis in Carcinus maenas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:401-408. [PMID: 19815320 DOI: 10.1016/j.envpol.2009.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 07/31/2009] [Accepted: 09/01/2009] [Indexed: 05/28/2023]
Abstract
Element load, conventional biomarkers and altered protein expression profiles were studied in Carcinus maenas crabs, to assess contamination of "Domingo Rubio" stream, an aquatic ecosystem that receives pyritic metals, industrial contaminants, and pesticides. Lower antioxidative activities - glucose-6-phosphate and 6-phosphogluconate dehydrogenases, catalase - were found in parallel to higher levels of damaged biomolecules - malondialdehyde, oxidized glutathione -, due to oxidative lesions promoted by contaminants, as the increased levels of essential - Zn, Cu, Co - and nonessential - Cr, Ni, Cd - elements. Utility of Proteomics to assess environmental quality was confirmed, especially after considering the six proteins identified by de novo sequencing through capLC-muESI-ITMS/MS and homology search on databases. They include tripartite motif-containing protein 11 and ATF7 transcription factor (upregulated), plus CBR-NHR-218 nuclear hormone receptor, two components of the ABC transporters and aldehyde dehydrogenase (downregulated). These proteins could be used as novel potential biomarkers of the deleterious effects of pollutants present in the area.
Collapse
Affiliation(s)
- Rafael Montes Nieto
- Department of Biochemistry and Molecular Biology, University of Córdoba, Severo Ochoa Building, Rabanales Campus, Highway A4 Km 396a, 14071 Córdoba, Spain
| | | | | | | |
Collapse
|
37
|
Vioque-Fernández A, de Almeida EA, López-Barea J. Biochemical and proteomic effects inProcambarus clarkiiafter chlorpyrifos or carbaryl exposure under sublethal conditions. Biomarkers 2009; 14:299-310. [DOI: 10.1080/13547500902913211] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
38
|
Vioque-Fernández A, Alves de Almeida E, López-Barea J. Assessment of Doñana National Park contamination in Procambarus clarkii: integration of conventional biomarkers and proteomic approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 407:1784-1797. [PMID: 19110296 DOI: 10.1016/j.scitotenv.2008.11.051] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 10/21/2008] [Accepted: 11/18/2008] [Indexed: 05/27/2023]
Abstract
Aquatic ecosystems of Doñana National Park (DNP) were monitored using Procambarus clarkii as bioindicator in four campaigns carried out between 2003 and 2004 to assess environmental quality possibly threatened by agrochemicals used in nearby areas. An integrated approach was carried out, by combining the responses of well-established biomarkers and the massive analysis of biological effects at the proteomic level. In sites potentially polluted, lower catalase, glucose-6-P dehydrogenase, and esterase activities, and higher malondialdehyde, metallothionein and glutathione levels were found. Two-dimensional gel electrophoresis resolved >2500 gill spots, and image analysis detected that 35 showed significant intensity differences between the reference site and the other seven sites studied. The superiority of proteomic approaches was clearly recognized in our study since four different protein expression patterns were established based in the fold-number of up-/down-regulation of the 35 differentially expressed proteins. Sites located within Doñana Biological Reserve were essentially free of contaminants and those near the DNP limits were only slightly polluted. The higher proteomic responses found at the upper "Rocina" and "Partido" courses indicate that non-persistent agrochemicals are mainly used in Doñana surroundings. The highest responses corresponded to rice growing areas placed between the Guadiamar stream and the Guadalquivir River, according to the extended and intensive use of agrochemicals in such areas.
Collapse
Affiliation(s)
- Amalia Vioque-Fernández
- Department of Biochemistry and Molecular Biology, Severo Ochoa building, Campus of Rabanales, University of Córdoba, A4 highway, Km 396a, 14071 Córdoba, Spain
| | | | | |
Collapse
|
39
|
Integrated application of transcriptomics, proteomics, and metallomics in environmental studies. PURE APPL CHEM 2008. [DOI: 10.1351/pac200880122609] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Here we report a preliminary working scheme for the integrative application of transcriptomic, proteomic, and metallomic methodologies in environmental monitoring, by using as sentinel the wildlife species Mus spretus and as reference the gene/protein sequence databases from the key model species Mus musculus. We have demonstrated that the absolute transcript expression signatures quantified by reverse transcription (RT) and real-time polymerase chain reaction (PCR) of selected key genes (e.g., those coding for biotransformation enzymes) in M. spretus is a useful and reliable novel biomonitoring end-point. The suitability of commercial M. musculus oligonucleotide arrays for genome-wide transcriptional profiling in M. spretus has been also shown. Transcriptomic studies indicate considerable gene sequence similarities between both mouse species. Based on these similarities, we have demonstrated the applicability in free-living M. spretus of high-throughput proteomic methods, based on matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry (MALDI-TOFMS) analysis of tryptic 2D electrophoresis (2-DE) spot digest and peptide matching with M. musculus database. A metallomic approach based on size exclusion chromatography inductively coupled plasma-mass spectrometry (SEC-ICP-MS) was applied to trace metal-biomolecule profiles. A preliminary integration of these three -omics has been addressed to M. musculus/M. spretus couple, two rodent species that separated 3 million years ago. The integrated application of transcriptomic and proteomic data and the bidirectional use of metallomics and proteomics for selective isolation of metal-biomolecules are covered in the working scheme MEPROTRANS-triple-OMIC reported in this study.
Collapse
|