1
|
Ramirez-Sagredo A, Sunny AT, Cupp-Sutton KA, Chowdhury T, Zhao Z, Wu S, Chiao YA. Characterizing age-related changes in intact mitochondrial proteoforms in murine hearts using quantitative top-down proteomics. Clin Proteomics 2024; 21:57. [PMID: 39343872 PMCID: PMC11440756 DOI: 10.1186/s12014-024-09509-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are the leading cause of death worldwide, and the prevalence of CVDs increases markedly with age. Due to the high energetic demand, the heart is highly sensitive to mitochondrial dysfunction. The complexity of the cardiac mitochondrial proteome hinders the development of effective strategies that target mitochondrial dysfunction in CVDs. Mammalian mitochondria are composed of over 1000 proteins, most of which can undergo post-translational modifications (PTMs). Top-down proteomics is a powerful technique for characterizing and quantifying proteoform sequence variations and PTMs. However, there are still knowledge gaps in the study of age-related mitochondrial proteoform changes using this technique. In this study, we used top-down proteomics to identify intact mitochondrial proteoforms in young and old hearts and determined changes in protein abundance and PTMs in cardiac aging. METHODS Intact mitochondria were isolated from the hearts of young (4-month-old) and old (24-25-month-old) mice. The mitochondria were lysed, and mitochondrial lysates were subjected to denaturation, reduction, and alkylation. For quantitative top-down analysis, there were 12 runs in total arising from 3 biological replicates in two conditions, with technical duplicates for each sample. The collected top-down datasets were deconvoluted and quantified, and then the proteoforms were identified. RESULTS From a total of 12 LC-MS/MS runs, we identified 134 unique mitochondrial proteins in the different sub-mitochondrial compartments (OMM, IMS, IMM, matrix). 823 unique proteoforms in different mass ranges were identified. Compared to cardiac mitochondria of young mice, 7 proteoforms exhibited increased abundance and 13 proteoforms exhibited decreased abundance in cardiac mitochondria of old mice. Our analysis also detected PTMs of mitochondrial proteoforms, including N-terminal acetylation, lysine succinylation, lysine acetylation, oxidation, and phosphorylation. Data are available via ProteomeXchange with the identifier PXD051505. CONCLUSION By combining mitochondrial protein enrichment using mitochondrial fractionation with quantitative top-down analysis using ultrahigh-pressure liquid chromatography (UPLC)-MS and label-free quantitation, we successfully identified and quantified intact proteoforms in the complex mitochondrial proteome. Using this approach, we detected age-related changes in abundance and PTMs of mitochondrial proteoforms in the heart.
Collapse
Affiliation(s)
- Andrea Ramirez-Sagredo
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, MS21, 825 NE 13th St, Oklahoma City, OK, 73104, USA
| | - Anju Teresa Sunny
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry ln, Tuscaloosa, AL, 35487, USA
| | - Kellye A Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry ln, Tuscaloosa, AL, 35487, USA
| | - Trishika Chowdhury
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry ln, Tuscaloosa, AL, 35487, USA
| | - Zhitao Zhao
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019-5251, USA
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry ln, Tuscaloosa, AL, 35487, USA.
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019-5251, USA.
| | - Ying Ann Chiao
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, MS21, 825 NE 13th St, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
2
|
Erazo-Oliveras A, Muñoz-Vega M, Salinas ML, Wang X, Chapkin RS. Dysregulation of cellular membrane homeostasis as a crucial modulator of cancer risk. FEBS J 2024; 291:1299-1352. [PMID: 36282100 PMCID: PMC10126207 DOI: 10.1111/febs.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Cellular membranes serve as an epicentre combining extracellular and cytosolic components with membranous effectors, which together support numerous fundamental cellular signalling pathways that mediate biological responses. To execute their functions, membrane proteins, lipids and carbohydrates arrange, in a highly coordinated manner, into well-defined assemblies displaying diverse biological and biophysical characteristics that modulate several signalling events. The loss of membrane homeostasis can trigger oncogenic signalling. More recently, it has been documented that select membrane active dietaries (MADs) can reshape biological membranes and subsequently decrease cancer risk. In this review, we emphasize the significance of membrane domain structure, organization and their signalling functionalities as well as how loss of membrane homeostasis can steer aberrant signalling. Moreover, we describe in detail the complexities associated with the examination of these membrane domains and their association with cancer. Finally, we summarize the current literature on MADs and their effects on cellular membranes, including various mechanisms of dietary chemoprevention/interception and the functional links between nutritional bioactives, membrane homeostasis and cancer biology.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Michael L. Salinas
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
- Center for Environmental Health Research; Texas A&M University; College Station, Texas, 77843; USA
| |
Collapse
|
3
|
Ramirez-Sagredo A, Sunny A, Cupp-Sutton K, Chowdhury T, Zhao Z, Wu S, Ann Chiao Y. Characterizing Age-related Changes in Intact Mitochondrial Proteoforms in Murine Hearts using Quantitative Top-Down Proteomics. RESEARCH SQUARE 2024:rs.3.rs-3868218. [PMID: 38313302 PMCID: PMC10836115 DOI: 10.21203/rs.3.rs-3868218/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide, and the prevalence of CVDs increases markedly with age. Due to the high energetic demand, the heart is highly sensitive to mitochondrial dysfunction. The complexity of the cardiac mitochondrial proteome hinders the development of effective strategies that target mitochondrial dysfunction in CVDs. Mammalian mitochondria are composed of over 1000 proteins, most of which can undergo post-translational protein modifications (PTMs). Top-down proteomics is a powerful technique for characterizing and quantifying all protein sequence variations and PTMs. However, there are still knowledge gaps in the study of age-related mitochondrial proteoform changes using this technique. In this study, we used top-down proteomics to identify intact mitochondrial proteoforms in young and old hearts and determined changes in protein abundance and PTMs in cardiac aging. METHODS Intact mitochondria were isolated from the hearts of young (4-month-old) and old (24-25-month-old) mice. The mitochondria were lysed, and mitochondrial lysates were subjected to denaturation, reduction, and alkylation. For quantitative top-down analysis, there were 12 runs in total arising from 3 biological replicates in two conditions, with technical duplicates for each sample. The collected top-down datasets were deconvoluted and quantified, and then the proteoforms were identified. RESULTS From a total of 12 LC-MS/MS runs, we identified 134 unique mitochondrial proteins in the different sub-mitochondrial compartments (OMM, IMS, IMM, matrix). 823 unique proteoforms in different mass ranges were identified. Compared to cardiac mitochondria of young mice, 7 proteoforms exhibited increased abundance and 13 proteoforms exhibited decreased abundance in cardiac mitochondria of old mice. Our analysis also detected PTMs of mitochondrial proteoforms, including N-terminal acetylation, lysine succinylation, lysine acetylation, oxidation, and phosphorylation. CONCLUSION By combining mitochondrial protein enrichment using mitochondrial fractionation with quantitative top-down analysis using ultrahigh-pressure liquid chromatography (UPLC)-MS and label-free quantitation, we successfully identified and quantified intact proteoforms in the complex mitochondrial proteome. Using this approach, we detected age-related changes in abundance and PTMs of mitochondrial proteoforms in the heart.
Collapse
|
4
|
Murphy S, Henry M, Meleady P, Ohlendieck K. Utilization of dried and long-term stored polyacrylamide gels for the advanced proteomic profiling of mitochondrial contact sites from rat liver. Biol Methods Protoc 2018; 3:bpy008. [PMID: 32161802 PMCID: PMC6994098 DOI: 10.1093/biomethods/bpy008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/07/2018] [Accepted: 07/24/2018] [Indexed: 11/25/2022] Open
Abstract
Following subcellular fractionation, the complexity of proteins derived from a particular cellular compartment is often evaluated by gel electrophoretic analysis. For the proteomic cataloguing of these distinct protein populations and their biochemical characterization, gel electrophoretic protein separation can be conveniently combined with liquid chromatography mass spectrometry. Here we describe a gel-enhanced liquid chromatography mass spectrometry (GeLC-MS)/MS approach with a new bioanalytical focus on the proteomic profiling of mitochondrial contact sites from rat liver using the highly sensitive Orbitrap Fusion Tribrid mass spectrometer for optimum protein identification following extraction from dried and long-term stored gels. Mass spectrometric analysis identified 964 protein species in the mitochondrial contact site fraction, whereby 459 proteins were identified by ≥3 unique peptides. This included mitochondrial components of the supramolecular complexes that form the ATP synthase, the respiratory chain, ribosomal subunits and the cytochrome P450 system, as well as crucial components of the translocase complexes translocase of the inner membrane (TIM) and translocase of the outer membrane (TOM) of the two mitochondrial membranes. Proteomics also identified contact site markers, such as glutathione transferase, monoamine oxidase and the pore protein voltage dependent anion channel (VDAC)-1. Hence, this report demonstrates that the GeLC-MS/MS method can be used to study complex mixtures of proteins that have been embedded and stored in dried polyacrylamide gels for a long period of time. Careful re-swelling and standard in-gel digestion is suitable to produce peptide profiles from old gels that can be used to extract sophisticated proteomic maps and enable the subsequent bioinformatics analysis of the distribution of protein function and the determination of potential protein clustering within the contact site system.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
5
|
Shepherd DL, Hathaway QA, Nichols CE, Durr AJ, Pinti MV, Hughes KM, Kunovac A, Stine SM, Hollander JM. Mitochondrial proteome disruption in the diabetic heart through targeted epigenetic regulation at the mitochondrial heat shock protein 70 (mtHsp70) nuclear locus. J Mol Cell Cardiol 2018; 119:104-115. [PMID: 29733819 DOI: 10.1016/j.yjmcc.2018.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 01/17/2023]
Abstract
>99% of the mitochondrial proteome is nuclear-encoded. The mitochondrion relies on a coordinated multi-complex process for nuclear genome-encoded mitochondrial protein import. Mitochondrial heat shock protein 70 (mtHsp70) is a key component of this process and a central constituent of the protein import motor. Type 2 diabetes mellitus (T2DM) disrupts mitochondrial proteomic signature which is associated with decreased protein import efficiency. The goal of this study was to manipulate the mitochondrial protein import process through targeted restoration of mtHsp70, in an effort to restore proteomic signature and mitochondrial function in the T2DM heart. A novel line of cardiac-specific mtHsp70 transgenic mice on the db/db background were generated and cardiac mitochondrial subpopulations were isolated with proteomic evaluation and mitochondrial function assessed. MicroRNA and epigenetic regulation of the mtHsp70 gene during T2DM were also evaluated. MtHsp70 overexpression restored cardiac function and nuclear-encoded mitochondrial protein import, contributing to a beneficial impact on proteome signature and enhanced mitochondrial function during T2DM. Further, transcriptional repression at the mtHsp70 genomic locus through increased localization of H3K27me3 during T2DM insult was observed. Our results suggest that restoration of a key protein import constituent, mtHsp70, provides therapeutic benefit through attenuation of mitochondrial and contractile dysfunction in T2DM.
Collapse
Affiliation(s)
- Danielle L Shepherd
- Division of Exercise Physiology, Mitochondrial, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV 26505, United States
| | - Quincy A Hathaway
- Division of Exercise Physiology, Mitochondrial, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV 26505, United States
| | - Cody E Nichols
- Division of Exercise Physiology, Mitochondrial, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV 26505, United States
| | - Andrya J Durr
- Division of Exercise Physiology, Mitochondrial, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV 26505, United States
| | - Mark V Pinti
- Division of Exercise Physiology, Mitochondrial, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV 26505, United States
| | - Kristen M Hughes
- Division of Exercise Physiology, Mitochondrial, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV 26505, United States
| | - Amina Kunovac
- Division of Exercise Physiology, Mitochondrial, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV 26505, United States
| | - Seth M Stine
- Division of Exercise Physiology, Mitochondrial, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV 26505, United States
| | - John M Hollander
- Division of Exercise Physiology, Mitochondrial, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV 26505, United States.
| |
Collapse
|
6
|
Malhotra K, Alder NN. Reconstitution of Mitochondrial Membrane Proteins into Nanodiscs by Cell-Free Expression. Methods Mol Biol 2017; 1567:155-178. [PMID: 28276018 DOI: 10.1007/978-1-4939-6824-4_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The isolation and characterization of mitochondrial membrane proteins is technically challenging because they natively reside within the specialized environment of the lipid bilayer, an environment that must be recapitulated to some degree during reconstitution to ensure proper folding, stability, and function. Here we describe protocols for the assembly of a membrane protein into lipid bilayer nanodiscs in a series of cell-free reactions. Cell-free expression of membrane proteins circumvents problems attendant with in vivo expression such as cytotoxicity, low expression levels, and the formation of inclusion bodies. Nanodiscs are artificial membrane systems comprised of discoidal lipid bilayer particles bound by annuli of amphipathic scaffold protein that shield lipid acyl chains from water. They are therefore excellent platforms for membrane protein reconstitution and downstream solution-based biochemical and biophysical analysis. This chapter details the procedures for the reconstitution of a mitochondrial membrane protein into nanodiscs using two different types of approaches: cotranslational and posttranslational assembly. These strategies are broadly applicable for different mitochondrial membrane proteins. They are also applicable for the use of nanodiscs with distinct lipid compositions that are biomimetic for different mitochondrial membranes and that recapitulate lipid profiles associated with pathological disorders in lipid metabolism.
Collapse
Affiliation(s)
- Ketan Malhotra
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT, 06269, USA.,Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, Sterling Hall of Medicine, New Haven, CT, 06520, USA
| | - Nathan N Alder
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT, 06269, USA.
| |
Collapse
|
7
|
Patil V, Pal J, Somasundaram K. Elucidating the cancer-specific genetic alteration spectrum of glioblastoma derived cell lines from whole exome and RNA sequencing. Oncotarget 2016; 6:43452-71. [PMID: 26496030 PMCID: PMC4791243 DOI: 10.18632/oncotarget.6171] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 10/05/2015] [Indexed: 01/22/2023] Open
Abstract
Cell lines derived from tumor tissues have been used as a valuable system to study gene regulation and cancer development. Comprehensive characterization of the genetic background of cell lines could provide clues on novel genes responsible for carcinogenesis and help in choosing cell lines for particular studies. Here, we have carried out whole exome and RNA sequencing of commonly used glioblastoma (GBM) cell lines (U87, T98G, LN229, U343, U373 and LN18) to unearth single nucleotide variations (SNVs), indels, differential gene expression, gene fusions and RNA editing events. We obtained an average of 41,071 SNVs out of which 1,594 (3.88%) were potentially cancer-specific. The cell lines showed frequent SNVs and indels in some of the genes that are known to be altered in GBM- EGFR, TP53, PTEN, SPTA1 and NF1. Chromatin modifying genes- ATRX, MLL3, MLL4, SETD2 and SRCAP also showed alterations. While no cell line carried IDH1 mutations, five cell lines showed hTERT promoter activating mutations with a concomitant increase in hTERT transcript levels. Five significant gene fusions were found of which NUP93-CYB5B was validated. An average of 18,949 RNA editing events was also obtained. Thus we have generated a comprehensive catalogue of genetic alterations for six GBM cell lines.
Collapse
Affiliation(s)
- Vikas Patil
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Jagriti Pal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Kumaravel Somasundaram
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
8
|
Lee CP, Millar AH. The Plant Mitochondrial Transportome: Balancing Metabolic Demands with Energetic Constraints. TRENDS IN PLANT SCIENCE 2016; 21:662-676. [PMID: 27162080 DOI: 10.1016/j.tplants.2016.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/25/2016] [Accepted: 04/04/2016] [Indexed: 06/05/2023]
Abstract
In plants, mitochondrial function is associated with hundreds of metabolic reactions. To facilitate these reactions, charged substrates and cofactors move across the charge-impermeable inner mitochondrial membrane via specialized transporters and must work cooperatively with the electrochemical gradient which is essential for mitochondrial function. The regulatory framework for mitochondrial metabolite transport is expected to be more complex in plants than in mammals owing to the close metabolic association between mitochondrial, plastids, and peroxisome metabolism, as well as to the major diurnal fluctuations in plant metabolic function. We propose here how recent advances can be integrated towards defining the mitochondrial transportome in plants. We also discuss what this reveals about sustaining cooperativity between bioenergetics, metabolism, and transport in typical and challenging environments.
Collapse
Affiliation(s)
- Chun Pong Lee
- Australian Reseach Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia
| | - A Harvey Millar
- Australian Reseach Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia.
| |
Collapse
|
9
|
Murphy S, Dowling P, Zweyer M, Mundegar RR, Henry M, Meleady P, Swandulla D, Ohlendieck K. Proteomic analysis of dystrophin deficiency and associated changes in the aged mdx-4cv heart model of dystrophinopathy-related cardiomyopathy. J Proteomics 2016; 145:24-36. [DOI: 10.1016/j.jprot.2016.03.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/19/2016] [Accepted: 03/02/2016] [Indexed: 12/27/2022]
|
10
|
Wang J, Yang J, Mao S, Chai X, Hu Y, Hou X, Tang Y, Bi C, Li X. MitProNet: A knowledgebase and analysis platform of proteome, interactome and diseases for mammalian mitochondria. PLoS One 2014; 9:e111187. [PMID: 25347823 PMCID: PMC4210245 DOI: 10.1371/journal.pone.0111187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 09/26/2014] [Indexed: 12/18/2022] Open
Abstract
Mitochondrion plays a central role in diverse biological processes in most eukaryotes, and its dysfunctions are critically involved in a large number of diseases and the aging process. A systematic identification of mitochondrial proteomes and characterization of functional linkages among mitochondrial proteins are fundamental in understanding the mechanisms underlying biological functions and human diseases associated with mitochondria. Here we present a database MitProNet which provides a comprehensive knowledgebase for mitochondrial proteome, interactome and human diseases. First an inventory of mammalian mitochondrial proteins was compiled by widely collecting proteomic datasets, and the proteins were classified by machine learning to achieve a high-confidence list of mitochondrial proteins. The current version of MitProNet covers 1124 high-confidence proteins, and the remainders were further classified as middle- or low-confidence. An organelle-specific network of functional linkages among mitochondrial proteins was then generated by integrating genomic features encoded by a wide range of datasets including genomic context, gene expression profiles, protein-protein interactions, functional similarity and metabolic pathways. The functional-linkage network should be a valuable resource for the study of biological functions of mitochondrial proteins and human mitochondrial diseases. Furthermore, we utilized the network to predict candidate genes for mitochondrial diseases using prioritization algorithms. All proteins, functional linkages and disease candidate genes in MitProNet were annotated according to the information collected from their original sources including GO, GEO, OMIM, KEGG, MIPS, HPRD and so on. MitProNet features a user-friendly graphic visualization interface to present functional analysis of linkage networks. As an up-to-date database and analysis platform, MitProNet should be particularly helpful in comprehensive studies of complicated biological mechanisms underlying mitochondrial functions and human mitochondrial diseases. MitProNet is freely accessible at http://bio.scu.edu.cn:8085/MitProNet.
Collapse
Affiliation(s)
- Jiabin Wang
- College of Life Sciences, Sichuan University, Ministry of Education Key Laboratory for Bio-resource and Eco-environment, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Chengdu, People’s Republic of China
| | - Jian Yang
- College of Life Sciences, Sichuan University, Ministry of Education Key Laboratory for Bio-resource and Eco-environment, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Chengdu, People’s Republic of China
| | - Song Mao
- College of Life Sciences, Sichuan University, Ministry of Education Key Laboratory for Bio-resource and Eco-environment, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Chengdu, People’s Republic of China
| | - Xiaoqiang Chai
- College of Life Sciences, Sichuan University, Ministry of Education Key Laboratory for Bio-resource and Eco-environment, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Chengdu, People’s Republic of China
| | - Yuling Hu
- College of Life Sciences, Sichuan University, Ministry of Education Key Laboratory for Bio-resource and Eco-environment, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Chengdu, People’s Republic of China
| | - Xugang Hou
- College of Life Sciences, Sichuan University, Ministry of Education Key Laboratory for Bio-resource and Eco-environment, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Chengdu, People’s Republic of China
| | - Yiheng Tang
- College of Life Sciences, Sichuan University, Ministry of Education Key Laboratory for Bio-resource and Eco-environment, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Chengdu, People’s Republic of China
| | - Cheng Bi
- College of Life Sciences, Sichuan University, Ministry of Education Key Laboratory for Bio-resource and Eco-environment, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Chengdu, People’s Republic of China
| | - Xiao Li
- College of Life Sciences, Sichuan University, Ministry of Education Key Laboratory for Bio-resource and Eco-environment, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Chengdu, People’s Republic of China
| |
Collapse
|
11
|
Abstract
Oxidative stress and inflammation underpin most diseases; their mechanisms are inextricably linked. Chronic inflammation is associated with oxidation, anti-inflammatory cascades are linked to decreased oxidation, increased oxidative stress triggers inflammation, and redox balance inhibits the inflammatory cellular response. Whether or not oxidative stress and inflammation represent the cause or consequence of cellular pathology, they contribute significantly to the pathogenesis of noncommunicable diseases (NCD). The incidence of obesity and other related metabolic disturbances are increasing, as are age-related diseases due to a progressively aging population. Relationships between oxidative stress, inflammatory signaling, and metabolism are, in the broad sense of energy transformation, being increasingly recognized as part of the problem in NCD. In this chapter, we summarize the pathologic consequences of an imbalance between circulating and cellular paraoxonases, the system for scavenging excessive reactive oxygen species and circulating chemokines. They act as inducers of migration and infiltration of immune cells in target tissues as well as in the pathogenesis of disease that perturbs normal metabolic function. This disruption involves pathways controlling lipid and glucose homeostasis as well as metabolically driven chronic inflammatory states that encompass several response pathways. Dysfunction in the endoplasmic reticulum and/or mitochondria represents an important feature of chronic disease linked to oxidation and inflammation seen as self-reinforcing in NCD. Therefore, correct management requires a thorough understanding of these relationships and precise interpretation of laboratory test results.
Collapse
|
12
|
Neuronal process structure and growth proteins are targets of heavy PTM regulation during brain development. J Proteomics 2014; 101:77-87. [DOI: 10.1016/j.jprot.2014.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/05/2014] [Accepted: 02/09/2014] [Indexed: 11/30/2022]
|
13
|
Lin F, Tan HJ, Guan JS, Lim YP. Divide and conquer: subproteomic approaches toward gastric cancer biomarker and drug target discovery. Expert Rev Proteomics 2014; 11:515-30. [PMID: 24684179 DOI: 10.1586/14789450.2014.904751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The discovery of biomarkers for early detection and treatment for gastric cancer are two important gaps that proteomics have the potential to fill. Advancements in mass spectrometry, sample preparation and separation strategies are crucial to proteomics-based discoveries and subsequent translations from bench to bedside. A great number of studies exploiting various subproteomic approaches have emerged for higher-resolution analysis (compared with shotgun proteomics) that permit interrogation of different post-translational and subcellular compartmentalized forms of the same proteins as determinants of disease phenotypes. This is a unique and key strength of proteomics over genomics. In this review, the salient features, competitive edges and pitfalls of various subproteomic approaches are discussed. We also highlight valuable insights from several subproteomic studies that have increased our understanding of the molecular etiology of gastric cancer and the findings that led to the discovery of potential biomarkers/drug targets that were otherwise not revealed by conventional shotgun expression proteomics.
Collapse
Affiliation(s)
- Fan Lin
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD4, level 1, 5 Science Drive 2, Singapore
| | | | | | | |
Collapse
|
14
|
Chen X, Li J, Hou J, Xie Z, Yang F. Mammalian mitochondrial proteomics: insights into mitochondrial functions and mitochondria-related diseases. Expert Rev Proteomics 2014; 7:333-45. [DOI: 10.1586/epr.10.22] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Padrão AI, Vitorino R, Duarte JA, Ferreira R, Amado F. Unraveling the phosphoproteome dynamics in mammal mitochondria from a network perspective. J Proteome Res 2013; 12:4257-67. [PMID: 23964737 DOI: 10.1021/pr4003917] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
With mitochondrion garnering more attention for its inextricable involvement in pathophysiological conditions, it seems imperative to understand the means by which the molecular pathways harbored in this organelle are regulated. Protein phosphorylation has been considered a central event in cellular signaling and, more recently, in the modulation of mitochondrial activity. Efforts have been made to understand the molecular mechanisms by which protein phosphorylation regulates mitochondrial signaling. With the advances in mass-spectrometry-based proteomics, there is a substantial hope and expectation in the increased knowledge of protein phosphorylation profile and its mode of regulation. On the basis of phosphorylation profiles, attempts have been made to disclose the kinases involved and how they control the molecular processes in mitochondria and, consequently, the cellular outcomes. Still, few studies have focused on mitochondrial phosphoproteome profiling, particularly in diseases. The present study reviews current data on protein phosphorylation profiling in mitochondria, the potential kinases involved and how pathophysiological conditions modulate the mitochondrial phosphoproteome. To integrate data from distinct research papers, we performed network analysis, with bioinformatic tools like Cytoscape, String, and PANTHER taking into consideration variables such as tissue specificity, biological processes, molecular functions, and pathophysiological conditions. For instance, data retrieved from these analyses evidence some homology in the mitochondrial phosphoproteome among liver and heart, with proteins from transport and oxidative phosphorylation clusters particularly susceptible to phosphorylation. A distinct profile was noticed for adipocytes, with proteins form metabolic processes, namely, triglycerides metabolism, as the main targets of phosphorylation. Regarding disease conditions, more phosphorylated proteins were observed in diabetics with some distinct phosphoproteins identified in type 2 prediabetic states and early type 2 diabetes mellitus. Heart-failure-related phosphorylated proteins are in much lower amount and are mainly involved in transport and metabolism. Nevertheless, technical considerations related to mitochondria isolation and protein separation should be considered in data comparison among different proteomic studies. Data from the present review will certainly open new perspectives of protein phosphorylation in mitochondria and will help to envisage future studies targeting the underlying regulatory mechanisms.
Collapse
Affiliation(s)
- Ana Isabel Padrão
- QOPNA, Department of Chemistry, University of Aveiro , 3810-193 Aveiro, Portugal
| | | | | | | | | |
Collapse
|
16
|
Yang JS, Kim J, Park S, Jeon J, Shin YE, Kim S. Spatial and functional organization of mitochondrial protein network. Sci Rep 2013; 3:1403. [PMID: 23466738 PMCID: PMC3590558 DOI: 10.1038/srep01403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 02/21/2013] [Indexed: 12/24/2022] Open
Abstract
Characterizing the spatial organization of the human mitochondrial proteome will enhance our understanding of mitochondrial functions at the molecular level and provide key insight into protein-disease associations. However, the sub-organellar location and possible association with mitochondrial diseases are not annotated for most mitochondrial proteins. Here, we characterized the functional and spatial organization of mitochondrial proteins by assessing their position in the Mitochondrial Protein Functional (MPF) network. Network position was assigned to the MPF network and facilitated the determination of sub-organellar location and functional organization of mitochondrial proteins. Moreover, network position successfully identified candidate disease genes of several mitochondrial disorders. Thus, our data support the use of network position as a novel method to explore the molecular function and pathogenesis of mitochondrial proteins.
Collapse
Affiliation(s)
- Jae-Seong Yang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang, Gyeongbuk, Korea, 790-784
| | | | | | | | | | | |
Collapse
|
17
|
Pintus F, Floris G, Rufini A. Nutrient availability links mitochondria, apoptosis, and obesity. Aging (Albany NY) 2013; 4:734-41. [PMID: 23211444 PMCID: PMC3560440 DOI: 10.18632/aging.100505] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mitochondria are the dominant source of the cellular energy requirements through oxidative phosphorylation, but they are also central players in apoptosis. Nutrient availability may have been the main evolutionary driving force behind these opposite mitochondrial functions: production of energy to sustain life and release of apoptotic proteins to trigger cell death. Here, we explore the link between nutrients, mitochondria and apoptosis with known and potential implications for age-related decline and metabolic syndromes.
Collapse
Affiliation(s)
- Francesca Pintus
- Medical Research Council, Toxicology Unit/University of Leicester, LE1 1QH, Leicester UK
| | | | | |
Collapse
|
18
|
Schey KL, Grey AC, Nicklay JJ. Mass spectrometry of membrane proteins: a focus on aquaporins. Biochemistry 2013; 52:3807-17. [PMID: 23394619 DOI: 10.1021/bi301604j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Membrane proteins are abundant, critically important biomolecules that conduct essential functions in all cells and are the targets of a significant number of therapeutic drugs. However, the analysis of their expression, modification, protein-protein interactions, and structure by mass spectrometry has lagged behind similar studies of soluble proteins. Here we review the limitations to analysis of integral membrane and membrane-associated proteins and highlight advances in sample preparation and mass spectrometry methods that have led to the successful analysis of this protein class. Advances in the analysis of membrane protein posttranslational modification, protein-protein interaction, protein structure, and tissue distributions by imaging mass spectrometry are discussed. Furthermore, we focus our discussion on the application of mass spectrometry for the analysis of aquaporins as a prototypical integral membrane protein and how advances in analytical methods have revealed new biological insights into the structure and function of this family of proteins.
Collapse
Affiliation(s)
- Kevin L Schey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States.
| | | | | |
Collapse
|
19
|
Hernández-Aguilera A, Rull A, Rodríguez-Gallego E, Riera-Borrull M, Luciano-Mateo F, Camps J, Menéndez JA, Joven J. Mitochondrial dysfunction: a basic mechanism in inflammation-related non-communicable diseases and therapeutic opportunities. Mediators Inflamm 2013; 2013:135698. [PMID: 23533299 PMCID: PMC3603328 DOI: 10.1155/2013/135698] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/01/2013] [Accepted: 02/01/2013] [Indexed: 12/14/2022] Open
Abstract
Obesity is not necessarily a predisposing factor for disease. It is the handling of fat and/or excessive energy intake that encompasses the linkage of inflammation, oxidation, and metabolism to the deleterious effects associated with the continuous excess of food ingestion. The roles of cytokines and insulin resistance in excessive energy intake have been studied extensively. Tobacco use and obesity accompanied by an unhealthy diet and physical inactivity are the main factors that underlie noncommunicable diseases. The implication is that the management of energy or food intake, which is the main role of mitochondria, is involved in the most common diseases. In this study, we highlight the importance of mitochondrial dysfunction in the mutual relationships between causative conditions. Mitochondria are highly dynamic organelles that fuse and divide in response to environmental stimuli, developmental status, and energy requirements. These organelles act to supply the cell with ATP and to synthesise key molecules in the processes of inflammation, oxidation, and metabolism. Therefore, energy sensors and management effectors are determinants in the course and development of diseases. Regulating mitochondrial function may require a multifaceted approach that includes drugs and plant-derived phenolic compounds with antioxidant and anti-inflammatory activities that improve mitochondrial biogenesis and act to modulate the AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Anna Hernández-Aguilera
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, carrer Sant Llorenç 21, 43201 Reus, Spain
| | - Anna Rull
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, carrer Sant Llorenç 21, 43201 Reus, Spain
| | - Esther Rodríguez-Gallego
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, carrer Sant Llorenç 21, 43201 Reus, Spain
| | - Marta Riera-Borrull
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, carrer Sant Llorenç 21, 43201 Reus, Spain
| | - Fedra Luciano-Mateo
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, carrer Sant Llorenç 21, 43201 Reus, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, carrer Sant Llorenç 21, 43201 Reus, Spain
| | - Javier A. Menéndez
- Catalan Institute of Oncology and Girona Biomedical Research Institute, Avda de Francia s/n, 1707 Girona, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, carrer Sant Llorenç 21, 43201 Reus, Spain
| |
Collapse
|
20
|
Zhang J, Lin A, Powers J, Lam MP, Lotz C, Liem D, Lau E, Wang D, Deng N, Korge P, Zong NC, Cai H, Weiss J, Ping P. Perspectives on: SGP symposium on mitochondrial physiology and medicine: mitochondrial proteome design: from molecular identity to pathophysiological regulation. ACTA ACUST UNITED AC 2013; 139:395-406. [PMID: 22641634 PMCID: PMC3362520 DOI: 10.1085/jgp.201210797] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jun Zhang
- Department of Physiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Schwall CT, Alder NN. Site-specific fluorescent probe labeling of mitochondrial membrane proteins. Methods Mol Biol 2013; 1033:103-20. [PMID: 23996173 DOI: 10.1007/978-1-62703-487-6_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The complexity of biological membranes presents technical challenges for the analysis of membrane protein biogenesis and function. Here we describe an in vitro fluorescence-based experimental approach for studying the high-resolution structural features of membrane proteins within isolated mitochondria. By this strategy, membrane proteins are cotranslationally labeled with a fluorescent probe at a specific site by the inclusion of aminoacyl tRNA analogs in a cell-free translation system. Labeled proteins are then targeted to the correct subcompartment within active mitochondria by the endogenous import machinery. For each site-specifically labeled protein, a series of rigorous controls must be conducted to ensure the proper membrane integration, topology, and assembly of each labeled sample. The assays described herein serve as the basis for more sophisticated analyses by which multiple fluorescence-based measurements can render detailed information on the topology, microenvironment, and dynamic conformational changes as they occur in real time.
Collapse
Affiliation(s)
- Christine T Schwall
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | | |
Collapse
|
22
|
Shukla HD, Vaitiekunas P, Cotter RJ. Advances in membrane proteomics and cancer biomarker discovery: current status and future perspective. Proteomics 2012; 12:3085-104. [PMID: 22890602 DOI: 10.1002/pmic.201100519] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 07/05/2012] [Accepted: 07/27/2012] [Indexed: 02/06/2023]
Abstract
Membrane proteomic analysis has been proven to be a promising tool for identifying new and specific biomarkers that can be used for prognosis and monitoring of various cancers. Membrane proteins are of great interest particularly those with functional domains exposed to the extracellular environment. Integral membrane proteins represent about one-third of the proteins encoded by the human genome and assume a variety of key biological functions, such as cell-to-cell communication, receptor-mediated signal transduction, selective transport, and pharmacological actions. More than two-thirds of membrane proteins are drug targets, highlighting their immensely important pharmaceutical significance. Most plasma membrane proteins and proteins from other cellular membranes have several PTMs; for example, glycosylation, phosphorylation, and nitrosylation, and moreover, PTMs of proteins are known to play a key role in tumor biology. These modifications often cause change in stoichiometry and microheterogeneity in a protein molecule, which is apparent during electrophoretic separation. Furthermore, the analysis of glyco- and phosphoproteome of cell membrane presents a number of challenges mainly due to their low abundance, their large dynamic range, and the inherent hydrophobicity of membrane proteins. Under pathological conditions, PTMs, such as phosphorylation and glycosylation are frequently altered and have been recognized as a potential source for disease biomarkers. Thus, their accurate differential expression analysis, along with differential PTM analysis is of paramount importance. Here we summarize the current status of membrane-based biomarkers in various cancers, and future perspective of membrane biomarker research.
Collapse
Affiliation(s)
- Hem D Shukla
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | | | |
Collapse
|
23
|
Alberghina L, Gaglio D, Gelfi C, Moresco RM, Mauri G, Bertolazzi P, Messa C, Gilardi MC, Chiaradonna F, Vanoni M. Cancer cell growth and survival as a system-level property sustained by enhanced glycolysis and mitochondrial metabolic remodeling. Front Physiol 2012; 3:362. [PMID: 22988443 PMCID: PMC3440026 DOI: 10.3389/fphys.2012.00362] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/23/2012] [Indexed: 12/14/2022] Open
Abstract
Systems Biology holds that complex cellular functions are generated as system-level properties endowed with robustness, each involving large networks of molecular determinants, generally identified by “omics” analyses. In this paper we describe four basic cancer cell properties that can easily be investigated in vitro: enhanced proliferation, evasion from apoptosis, genomic instability, and inability to undergo oncogene-induced senescence. Focusing our analysis on a K-ras dependent transformation system, we show that enhanced proliferation and evasion from apoptosis are closely linked, and present findings that indicate how a large metabolic remodeling sustains the enhanced growth ability. Network analysis of transcriptional profiling gives the first indication on this remodeling, further supported by biochemical investigations and metabolic flux analysis (MFA). Enhanced glycolysis, down-regulation of TCA cycle, decoupling of glucose and glutamine utilization, with increased reductive carboxylation of glutamine, so to yield a sustained production of growth building blocks and glutathione, are the hallmarks of enhanced proliferation. Low glucose availability specifically induces cell death in K-ras transformed cells, while PKA activation reverts this effect, possibly through at least two mitochondrial targets. The central role of mitochondria in determining the two investigated cancer cell properties is finally discussed. Taken together the findings reported herein indicate that a system-level property is sustained by a cascade of interconnected biochemical pathways that behave differently in normal and in transformed cells.
Collapse
Affiliation(s)
- Lilia Alberghina
- SysBio Centre for Systems Biology Milano and Rome, Italy ; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Pathobiochemical changes in diabetic skeletal muscle as revealed by mass-spectrometry-based proteomics. J Nutr Metab 2012; 2012:893876. [PMID: 22523676 PMCID: PMC3317182 DOI: 10.1155/2012/893876] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 12/09/2011] [Accepted: 12/19/2011] [Indexed: 12/13/2022] Open
Abstract
Insulin resistance in skeletal muscle tissues and diabetes-related muscle weakness are serious pathophysiological problems of increasing medical importance. In order to determine global changes in the protein complement of contractile tissues due to diabetes mellitus, mass-spectrometry-based proteomics has been applied to the investigation of diabetic muscle. This review summarizes the findings from recent proteomic surveys of muscle preparations from patients and established animal models of type 2 diabetes. The potential impact of novel biomarkers of diabetes, such as metabolic enzymes and molecular chaperones, is critically examined. Disease-specific signature molecules may be useful for increasing our understanding of the molecular and cellular mechanisms of insulin resistance and possibly identify new therapeutic options that counteract diabetic abnormalities in peripheral organ systems. Importantly, the biomedical establishment of biomarkers promises to accelerate the development of improved diagnostic procedures for characterizing individual stages of diabetic disease progression, including the early detection of prediabetic complications.
Collapse
|
25
|
Shimada T, Toyama A, Aoki C, Aoki Y, Tanaka K, Sato TA. Direct antigen detection from immunoprecipitated beads using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry; a new method for immunobeads-mass spectrometry (iMS). RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:3521-3526. [PMID: 22095500 DOI: 10.1002/rcm.5259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
One-step detection of biological molecules is one of the principal techniques for clinical diagnosis, and the potential of mass spectrometry for biomarker detection has been a promising new approach in the field of medical sciences. We demonstrate here a new and high-sensitivity method that we termed immunobeads-mass spectrometry (iMS), which combines conventional immunoprecipitation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The key feature of iMS is the MS-compatible condition of immunoprecipitation using detergents with a monosaccaride-C8 alkyl chain or a disaccharide-C10 alkyl chain, and the minimized number of steps required for high-sensitivity detection of target peptides in serum or biological fluid. This was achieved by optimizing the wash buffer and subjecting the immunobeads directly to MALDI-TOF MS analysis. Using this method, we showed that 1 fmol of amyloid beta peptide spiked in serum was readily detectable, demonstrating the powerful tool of iMS as a biomarker detection method.
Collapse
Affiliation(s)
- Takashi Shimada
- Life Science Research Center, Shimadzu Corporation, Kanda-Nishikicho 1, Tokyo 101-8448, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Hollander JM, Baseler WA, Dabkowski ER. Proteomic remodeling of mitochondria in heart failure. ACTA ACUST UNITED AC 2011; 17:262-8. [PMID: 22103917 DOI: 10.1111/j.1751-7133.2011.00254.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Heart failure (HF) is a common disease that has been attributed, in part, to deprivation of cardiac energy. As a result, the interplay between metabolism and adenosine triphosphate production is fundamental in determining the mechanisms driving the disease progression. Due to its central role in energy production, metabolism, calcium homeostasis, and oxidative stress, the mitochondrion has been suggested to play a pivotal role in the progression of the heart to failure. Nevertheless, the mitochondrion's specific role(s) and the proteins contributing to the development and progression of HF are not entirely clear. Thus, changes in mitochondrial proteomic make-up during HF have garnered great interest. With the continued development of advanced tools for assessing proteomic make-up, characterization of mitochondrial proteomic changes during disease states such as HF are being realized. These studies have begun to identify potential biomarkers of disease progression as well as protein targets that may provide an avenue for therapeutic intervention. The goal of this review is to highlight some of the changes in mitochondrial proteomic make-up that are associated with the development of HF in an effort to identify target axes and candidate proteins contributing to disease development. Results from a number of different HF models will be evaluated to gain insight into some of the similarities and differences in mitochondrial proteomic alterations associated with morphological and functional changes that result from the disease. Congest Heart Fail.
Collapse
Affiliation(s)
- John M Hollander
- Division of Exercise Physiology and Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, USA.
| | | | | |
Collapse
|
27
|
Staunton L, O'Connell K, Ohlendieck K. Proteomic Profiling of Mitochondrial Enzymes during Skeletal Muscle Aging. J Aging Res 2011; 2011:908035. [PMID: 21437005 PMCID: PMC3062155 DOI: 10.4061/2011/908035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/17/2010] [Accepted: 01/03/2011] [Indexed: 11/20/2022] Open
Abstract
Mitochondria are of central importance for energy generation in skeletal muscles. Expression changes or functional alterations in mitochondrial enzymes play a key role during myogenesis, fibre maturation, and various neuromuscular pathologies, as well as natural fibre aging. Mass spectrometry-based proteomics suggests itself as a convenient large-scale and high-throughput approach to catalogue the mitochondrial protein complement and determine global changes during health and disease. This paper gives a brief overview of the relatively new field of mitochondrial proteomics and discusses the findings from recent proteomic surveys of mitochondrial elements in aged skeletal muscles. Changes in the abundance, biochemical activity, subcellular localization, and/or posttranslational modifications in key mitochondrial enzymes might be useful as novel biomarkers of aging. In the long term, this may advance diagnostic procedures, improve the monitoring of disease progression, help in the testing of side effects due to new drug regimes, and enhance our molecular understanding of age-related muscle degeneration.
Collapse
Affiliation(s)
- Lisa Staunton
- Department of Biology, National University of Ireland, Maynooth, County Kildare, Ireland
| | | | | |
Collapse
|
28
|
Pierleoni A, Martelli PL, Casadio R. MemLoci: predicting subcellular localization of membrane proteins in eukaryotes. Bioinformatics 2011; 27:1224-30. [DOI: 10.1093/bioinformatics/btr108] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
29
|
Egan B, Dowling P, O'Connor PL, Henry M, Meleady P, Zierath JR, O'Gorman DJ. 2-D DIGE analysis of the mitochondrial proteome from human skeletal muscle reveals time course-dependent remodelling in response to 14 consecutive days of endurance exercise training. Proteomics 2011; 11:1413-28. [PMID: 21360670 DOI: 10.1002/pmic.201000597] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 12/08/2010] [Accepted: 01/11/2011] [Indexed: 01/06/2023]
Abstract
Adaptation of skeletal muscle to repeated bouts of endurance exercise increases aerobic capacity and improves mitochondrial function. However, the adaptation of human skeletal muscle mitochondrial proteome to short-term endurance exercise training has not been investigated. Eight sedentary males cycled for 60 min at 80% of peak oxygen consumption (VO(2peak) ) each day for 14 consecutive days, resulting in an increase in VO(2peak) of 17.5±3.8% (p<0.01). Mitochondria-enriched protein fractions from skeletal muscle biopsies taken from m. vastus lateralis at baseline, and on the morning following the 7th and 14th training sessions were subjected to 2-D DIGE analysis with subsequent MS followed by database interrogation to identify the proteins of interest. Thirty-one protein spots were differentially expressed after either 7 or 14 days of training (ANOVA, p<0.05). These proteins included subunits of the electron transport chain, enzymes of the tricarboxylic acid cycle, phosphotransfer enzymes, and regulatory factors in mitochondrial protein synthesis, oxygen transport, and antioxidant capacity. Several proteins demonstrated a time course-dependent induction during training. Our results illustrate the phenomenon of skeletal muscle plasticity with the extensive remodelling of the mitochondrial proteome occurring after just 7 days of exercise training suggestive of enhanced capacity for adenosine triphosphate generation at a cellular level.
Collapse
Affiliation(s)
- Brendan Egan
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
30
|
Dimerization of Smac is crucial for its mitochondrial retention by XIAP subsequent to mitochondrial outer membrane permeabilization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:819-26. [PMID: 21354220 DOI: 10.1016/j.bbamcr.2011.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 02/12/2011] [Accepted: 02/14/2011] [Indexed: 11/20/2022]
Abstract
Following the apoptotic permeabilization of the outer mitochondrial membrane, the inter-membrane space protein second mitochondria-derived activator of caspases (Smac) is released into the cytosol. Smac efficiently promotes apoptosis by antagonizing x-linked inhibitor of apoptosis protein (XIAP), an inhibitor of caspases-9, -3, and -7, via a short NH(2)-terminal inhibitor of apoptosis protein (IAP) binding motif (AVPI). Native Smac dimerizes to form a highly stable and inflexible elongated arch, however, a functional role for this outstretched structure so far remained unknown. Using time-lapse single-cell imaging of DLD-1 and HCT-116 colon cancer cells, we here demonstrate that upon mitochondrial outer membrane permeabilization physiological expression levels of XIAP are sufficient to selectively prolong the release of dimeric but not monomeric Smac. Elevating the expression of XIAP further extended the release duration of dimeric Smac and resulted in the mitochondrial retention of a significant proportion of the Smac pool. In contrast, monomeric Smac was always fully released and the release kinetics were not affected by altered XIAP expression. Our findings therefore indicate that the dimerization of Smac is critical for the XIAP-mediated retention of Smac at or inside the mitochondria. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
|
31
|
Agnetti G, Husberg C, Van Eyk JE. Divide and conquer: the application of organelle proteomics to heart failure. Circ Res 2011; 108:512-26. [PMID: 21335433 PMCID: PMC3936251 DOI: 10.1161/circresaha.110.226910] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 11/19/2010] [Indexed: 01/16/2023]
Abstract
Chronic heart failure is a worldwide cause of mortality and morbidity and is the final outcome of a number of different etiologies. This reflects both the complexity of the disease and our incomplete understanding of its underlying molecular mechanisms. One experimental approach to address this is to study subcellular organelles and how their functions are activated and synchronized under physiological and pathological conditions. In this review, we discuss the application of proteomic technologies to organelles and how this has deepened our perception of the cellular proteome and its alterations with heart failure. The use of proteomics to monitor protein quantity and posttranslational modifications has revealed a highly intricate and sophisticated level of protein regulation. Posttranslational modifications have the potential to regulate organelle function and interplay most likely by targeting both structural and signaling proteins throughout the cell, ultimately coordinating their responses. The potentials and limitations of existing proteomic technologies are also discussed emphasizing that the development of novel methods will enhance our ability to further investigate organelles and decode intracellular communication.
Collapse
Affiliation(s)
- Giulio Agnetti
- The Johns Hopkins Bayview Proteomics Center, Johns Hopkins University, Baltimore, US
- INRC, Dept. of Biochemistry, University of Bologna, Italy
| | - Cathrine Husberg
- The Johns Hopkins Bayview Proteomics Center, Johns Hopkins University, Baltimore, US
- Institute for Experimental Medical Research, Oslo University Hospital - Ullevaal, Norway
| | - Jennifer E. Van Eyk
- The Johns Hopkins Bayview Proteomics Center, Johns Hopkins University, Baltimore, US
| |
Collapse
|
32
|
Ferreira R, Vitorino R, Alves RMP, Appell HJ, Powers SK, Duarte JA, Amado F. Subsarcolemmal and intermyofibrillar mitochondria proteome differences disclose functional specializations in skeletal muscle. Proteomics 2010; 10:3142-54. [PMID: 20665633 DOI: 10.1002/pmic.201000173] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Skeletal muscle is a highly specialized tissue that contains two distinct mitochondria subpopulations, the subsarcolemmal (SS) and the intermyofibrillar (IMF) mitochondria. Although it is established that these mitochondrial subpopulations differ functionally in several ways, limited information exists about the proteomic differences underlying these functional differences. Therefore, the objective of this study was to biochemically characterize the SS and IMF mitochondria isolated from rat red gastrocnemius skeletal muscle. We separated the two mitochondrial subpopulations from skeletal muscle using a refined method that provides an excellent division of these unique mitochondrial subpopulations. Using proteomics of mitochondria and its subfractions (intermembrane space, matrix and inner membrane), a total of 325 distinct proteins were identified, most of which belong to the functional clusters of oxidative phosphorylation, metabolism and signal transduction. Although more gel spots were observed in SS mitochondria, 38 of the identified proteins were differentially expressed between the SS and IMF subpopulations. Compared to the SS mitochondrial, IMF mitochondria expressed a higher level of proteins associated with oxidative phosphorylation. This observation, coupled with the finding of a higher respiratory chain complex activity in IMF mitochondria, suggests a specialization of IMF mitochondria toward energy production for contractile activity.
Collapse
Affiliation(s)
- Rita Ferreira
- QOPNA, Chemistry Department, University of Aveiro, Aveiro, Portugal
| | | | | | | | | | | | | |
Collapse
|
33
|
Gucek M, Murphy E. What can we learn about cardioprotection from the cardiac mitochondrial proteome? Cardiovasc Res 2010; 88:211-8. [PMID: 20805096 DOI: 10.1093/cvr/cvq277] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This review will summarize proteomic methods that are useful in studying the role of mitochondria in cardioprotection. The strengths and weaknesses of some of the different approaches are discussed. We focus on the cardiac mitochondrial proteome with emphasis on changes associated with cell death and protection, and we summarize how proteomic data have contributed to addressing the role of mitochondria in cardioprotection.
Collapse
Affiliation(s)
- Marjan Gucek
- NHLBI Proteomics Core, NHLBI, NIH, 10 Center Drive, Bethesda, MD 20892, USA
| | | |
Collapse
|
34
|
Koopman WJH, Nijtmans LGJ, Dieteren CEJ, Roestenberg P, Valsecchi F, Smeitink JAM, Willems PHGM. Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation. Antioxid Redox Signal 2010; 12:1431-70. [PMID: 19803744 DOI: 10.1089/ars.2009.2743] [Citation(s) in RCA: 307] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Virtually every mammalian cell contains mitochondria. These double-membrane organelles continuously change shape and position and contain the complete metabolic machinery for the oxidative conversion of pyruvate, fatty acids, and amino acids into ATP. Mitochondria are crucially involved in cellular Ca2+ and redox homeostasis and apoptosis induction. Maintenance of mitochondrial function and integrity requires an inside-negative potential difference across the mitochondrial inner membrane. This potential is sustained by the electron-transport chain (ETC). NADH:ubiquinone oxidoreductase or complex I (CI), the first and largest protein complex of the ETC, couples the oxidation of NADH to the reduction of ubiquinone. During this process, electrons can escape from CI and react with ambient oxygen to produce superoxide and derived reactive oxygen species (ROS). Depending on the balance between their production and removal by antioxidant systems, ROS may function as signaling molecules or induce damage to a variety of biomolecules or both. The latter ultimately leads to a loss of mitochondrial and cellular function and integrity. In this review, we discuss (a) the role of CI in mitochondrial functioning; (b) the composition, structure, and biogenesis of CI; (c) regulation of CI function; (d) the role of CI in ROS generation; and (e) adaptive responses to CI deficiency.
Collapse
Affiliation(s)
- Werner J H Koopman
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
X-linked inhibitor of apoptosis protein (XIAP) is a potent inhibitor of caspases 3, 7 and 9, and mitochondrial Smac (second mitochondria-derived activator of caspase) release during apoptosis inhibits the activity of XIAP. In this study we show that cytosolic XIAP also feeds back to mitochondria to impair Smac release. We constructed a fluorescent XIAP-fusion protein by labelling NH2- and COOH-termini with Cerulean fluorescent protein (C-XIAP-C). Immunoprecipitation confirmed that C-XIAP-C retained the ability to interact with Smac and impaired extrinsically and intrinsically activated apoptosis in response to tumour necrosis factor-related apoptosis-inducing ligand/cycloheximide and staurosporine. In C-XIAP-C-expressing cells, cytochrome c release from mitochondria proceeded normally, whereas Smac release was significantly prolonged and incomplete. In addition, physiological expression of native XIAP prolonged or limited Smac release in HCT-116 colon cancer cells and primary mouse cortical neurons. The Smac-binding capacity of XIAP, but not caspase inhibition, was central for mitochondrial Smac retention, as evidenced in experiments using XIAP mutants that cannot bind to Smac or effector caspases. Similarly, the release of a Smac mutant that cannot bind to XIAP was not impaired by C-XIAP-C expression. Full Smac release could however be provoked by rapid cytosolic C-XIAP-C depletion upon digitonin-induced plasma membrane permeabilization. Our findings suggest that although mitochondria may already contain pores sufficient for cytochrome c release, elevated amounts of XIAP can selectively impair and limit the release of Smac.
Collapse
|
36
|
Proteomic Profiling of the Dystrophin-Deficient MDX Heart Reveals Drastically Altered Levels of Key Metabolic and Contractile Proteins. J Biomed Biotechnol 2010; 2010:648501. [PMID: 20508850 PMCID: PMC2874991 DOI: 10.1155/2010/648501] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 02/25/2010] [Indexed: 12/13/2022] Open
Abstract
Although Duchenne muscular dystrophy is primarily classified as a neuromuscular disease, cardiac complications play an important role in the course of this X-linked inherited disorder. The pathobiochemical steps causing a progressive decline in the dystrophic heart are not well understood. We therefore carried out a fluorescence difference in-gel electrophoretic analysis of 9-month-old dystrophin-deficient versus age-matched normal heart, using the established MDX mouse model of muscular dystrophy-related cardiomyopathy. Out of 2,509 detectable protein spots, 79 2D-spots showed a drastic differential expression pattern, with the concentration of 3 proteins being increased, including nucleoside diphosphate kinase and lamin-A/C, and of 26 protein species being decreased, including ATP synthase, fatty acid binding-protein, isocitrate dehydrogenase, NADH dehydrogenase, porin, peroxiredoxin, adenylate kinase, tropomyosin, actin, and myosin light chains. Hence, the lack of cardiac dystrophin appears to trigger a generally perturbed protein expression pattern in the MDX heart, affecting especially energy metabolism and contractile proteins.
Collapse
|
37
|
Khanna MR, Stanley BA, Thomas GH. Towards a membrane proteome in Drosophila: a method for the isolation of plasma membrane. BMC Genomics 2010; 11:302. [PMID: 20462449 PMCID: PMC2876126 DOI: 10.1186/1471-2164-11-302] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 05/12/2010] [Indexed: 12/27/2022] Open
Abstract
Background The plasma membrane (PM) is a compartment of significant interest because cell surface proteins influence the way in which a cell interacts with its neighbours and its extracellular environment. However, PM is hard to isolate because of its low abundance. Aqueous two-phase affinity purification (2PAP), based on PEG/Dextran two-phase fractionation and lectin affinity for PM-derived microsomes, is an emerging method for the isolation of high purity plasma membranes from several vertebrate sources. In contrast, PM isolation techniques in important invertebrate genetic model systems, such as Drosophila melanogaster, have relied upon enrichment by density gradient centrifugation. To facilitate genetic investigation of activities contributing to the content of the PM sub-proteome, we sought to adapt 2PAP to this invertebrate model to provide a robust PM isolation technique for Drosophila. Results We show that 2PAP alone does not completely remove contaminating endoplasmic reticulum and mitochondrial membrane. However, a novel combination of density gradient centrifugation plus 2PAP results in a robust PM preparation. To demonstrate the utility of this technique we isolated PM from fly heads and successfully identified 432 proteins using MudPIT, of which 37% are integral membrane proteins from all compartments. Of the 432 proteins, 22% have been previously assigned to the PM compartment, and a further 34% are currently unassigned to any compartment and represent candidates for assignment to the PM. The remainder have previous assignments to other compartments. Conclusion A combination of density gradient centrifugation and 2PAP results in a robust, high purity PM preparation from Drosophila, something neither technique can achieve on its own. This novel preparation should lay the groundwork for the proteomic investigation of the PM in different genetic backgrounds in Drosophila. Our results also identify two key steps in this procedure: The optimization of membrane partitioning in the PEG/Dextran mixture, and careful choice of the correct lectin for the affinity purification step in light of variations in bulk membrane lipid composition and glycosylation patterns respectively. This points the way for further adaptations into other systems.
Collapse
Affiliation(s)
- Mansi R Khanna
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
38
|
O'Connell K, Ohlendieck K. Proteomic DIGE analysis of the mitochondria-enriched fraction from aged rat skeletal muscle. Proteomics 2010; 9:5509-24. [PMID: 19834913 DOI: 10.1002/pmic.200900472] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Skeletal muscle aging is associated with a loss in tissue mass and contractile strength, as well as fiber type shifting and bioenergetic adaptation processes. Since mitochondria represent the primary site for energy generation via oxidative phosphorylation, we investigated potential changes in the expression pattern of the mitochondrial proteome using the highly sensitive DIGE approach. The comparative analysis of the mitochondria-enriched fraction from young adult versus aged muscle revealed an age-related change in abundance for 39 protein species. MS technology identified the majority of altered proteins as constituents of muscle mitochondria. An age-dependent increase was observed for NADH dehydrogenase, the mitochondrial inner membrane protein mitofilin, peroxiredoxin isoform PRX-III, ATPase synthase, succinate dehydrogenase, mitochondrial fission protein Fis1, succinate-coenzyme A ligase, acyl-coenzyme A dehydrogenase, porin isoform VDAC2, ubiquinol-cytochrome c reductase core I protein and prohibitin. Immunoblotting, enzyme testing and confocal microscopy were used to validate proteomic findings. The DIGE-identified increase in key mitochondrial elements during aging agrees with the concept that sarcopenia is associated with a shift to a slower contractile phenotype and more pronounced aerobic-oxidative metabolism. This suggests that mitochondrial markers are reliable candidates that should be included in the future establishment of a biomarker signature of skeletal muscle aging.
Collapse
Affiliation(s)
- Kathleen O'Connell
- Department of Biology, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | | |
Collapse
|
39
|
Gubbens J, de Kroon AIPM. Proteome-wide detection of phospholipid–protein interactions in mitochondria by photocrosslinking and click chemistry. MOLECULAR BIOSYSTEMS 2010; 6:1751-9. [DOI: 10.1039/c003064n] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
40
|
Mandal N, Heegaard S, Prause JU, Honoré B, Vorum H. Ocular proteomics with emphasis on two-dimensional gel electrophoresis and mass spectrometry. Biol Proced Online 2009; 12:56-88. [PMID: 21406065 PMCID: PMC3055252 DOI: 10.1007/s12575-009-9019-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 09/28/2009] [Indexed: 01/30/2023] Open
Abstract
The intention of this review is to provide an overview of current methodologies employed in the rapidly developing field of ocular proteomics with emphasis on sample preparation, two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry (MS). Appropriate sample preparation for the diverse range of cells and tissues of the eye is essential to ensure reliable results. Current methods of protein staining for 2D-PAGE, protein labelling for two-dimensional difference gel electrophoresis, gel-based expression analysis and protein identification by MS are summarised. The uses of gel-free MS-based strategies (MuDPIT, iTRAQ, ICAT and SILAC) are also discussed. Proteomic technologies promise to shed new light onto ocular disease processes that could lead to the discovery of strong novel biomarkers and therapeutic targets useful in many ophthalmic conditions.
Collapse
Affiliation(s)
- Nakul Mandal
- Eye Pathology Section, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Medical Biochemistry, Aarhus University, Aarhus, Denmark
| | - Steffen Heegaard
- Eye Pathology Section, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Jan Ulrik Prause
- Eye Pathology Section, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Bent Honoré
- Department of Medical Biochemistry, Aarhus University, Aarhus, Denmark
| | - Henrik Vorum
- Department of Medical Biochemistry, Aarhus University, Aarhus, Denmark
- Department of Ophthalmology, Aalborg Hospital, Aarhus University Hospital, Aalborg, Denmark
| |
Collapse
|
41
|
Distler AM, Kerner J, Lee K, Hoppel CL. Post-translational modifications of mitochondrial outer membrane proteins. Methods Enzymol 2009; 457:97-115. [PMID: 19426864 DOI: 10.1016/s0076-6879(09)05006-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In recent years, a wide variety of proteomic approaches using gel electrophoresis and mass spectrometry has been developed to detect post-translational modifications. Mitochondria are often a focus of these studies due to their important role in cellular function. Many of their crucial transport and oxidative-phosphorylation functions are performed by proteins residing in the inner and outer membranes of the mitochondria. Although proteomic technologies have greatly enhanced our understanding of regulation in cellular processes, analysis of membrane proteins has lagged behind that of soluble proteins. Herein, we present techniques to facilitate the detection of post-translational modifications of mitochondrial membrane proteins including the isolation of resident membranes as well as electrophoretic and immunological-based methods for identification of post-translational modifications.
Collapse
Affiliation(s)
- Anne M Distler
- Department of Pharmacology, and Center for Mitochondrial Disease, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | |
Collapse
|
42
|
Ruiz-Romero C, Blanco FJ. Mitochondrial proteomics and its application in biomedical research. MOLECULAR BIOSYSTEMS 2009; 5:1130-42. [DOI: 10.1039/b906296n] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|