1
|
Cisterna B, Lofaro FD, Lacavalla MA, Boschi F, Malatesta M, Quaglino D, Zancanaro C, Boraldi F. Aged gastrocnemius muscle of mice positively responds to a late onset adapted physical training. Front Cell Dev Biol 2023; 11:1273309. [PMID: 38020923 PMCID: PMC10679468 DOI: 10.3389/fcell.2023.1273309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: A regular physical training is known to contribute to preserve muscle mass and strength, maintaining structure and function of neural and vascular compartments and preventing muscle insulin resistance and inflammation. However, physical activity is progressively reduced during aging causing mobility limitations and poor quality of life. Although physical exercise for rehabilitation purposes (e.g., after fractures or cardiovascular events) or simply aiming to counteract the development of sarcopenia is frequently advised by physicians, nevertheless few data are available on the targets and the global effects on the muscle organ of adapted exercise especially if started at old age. Methods: To contribute answering this question for medical translational purposes, the proteomic profile of the gastrocnemius muscle was analyzed in 24-month-old mice undergoing adapted physical training on a treadmill for 12 weeks or kept under a sedentary lifestyle condition. Proteomic data were implemented by morphological and morphometrical ultrastructural evaluations. Results and Discussion: Data demonstrate that muscles can respond to adapted physical training started at old age, positively modulating their morphology and the proteomic profile fostering protective and saving mechanisms either involving the extracellular compartment as well as muscle cell components and pathways (i.e., mitochondrial processes, cytoplasmic translation pathways, chaperone-dependent protein refolding, regulation of skeletal muscle contraction). Therefore, this study provides important insights on the targets of adapted physical training, which can be regarded as suitable benchmarks for future in vivo studies further exploring the effects of this type of physical activity by functional/metabolic approaches.
Collapse
Affiliation(s)
- Barbara Cisterna
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Maria Assunta Lacavalla
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federico Boschi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Manuela Malatesta
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Zancanaro
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
2
|
Chung T, Bopp T, Ward C, Notarangelo FM, Schwarcz R, Westbrook R, Xue Q, Walston J, Hoke A. Deletion of quinolinate phosphoribosyltransferase gene accelerates frailty phenotypes and neuromuscular decline with aging in a sex-specific pattern. Aging Cell 2023; 22:e13849. [PMID: 37078472 PMCID: PMC10352574 DOI: 10.1111/acel.13849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/21/2023] Open
Abstract
Decline in neuromuscular function with aging is known to be a major determinant of disability and all-cause mortality in late life. Despite the importance of the problem, the neurobiology of age-associated muscle weakness is poorly understood. In a previous report, we performed untargeted metabolomics on frail older adults and discovered prominent alteration in the kynurenine pathway, the major route of dietary tryptophan degradation that produces neurotoxic intermediate metabolites. We also showed that neurotoxic kynurenine pathway metabolites are correlated with increased frailty score. For the present study, we sought to further examine the neurobiology of these neurotoxic intermediates by utilizing a mouse model that has a deletion of the quinolinate phosphoribosyltransferase (QPRT) gene, a rate-limiting step of the kynurenine pathway. QPRT-/- mice have elevated neurotoxic quinolinic acid level in the nervous system throughout their lifespan. We found that QPRT-/- mice have accelerated declines in neuromuscular function in an age- and sex-specific manner compared to control strains. In addition, the QPRT-/- mice show premature signs of frailty and body composition changes that are typical for metabolic syndrome. Our findings suggest that the kynurenine pathway may play an important role in frailty and age-associated muscle weakness.
Collapse
Affiliation(s)
- Tae Chung
- Department of Physical Medicine and RehabilitationJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyNeuromuscular DivisionJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Taylor Bopp
- Department of Physical Medicine and RehabilitationJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Chris Ward
- Department of OrthopedicsUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Francesca M. Notarangelo
- Maryland Psychiatric Research CenterDepartment of PsychiatryUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Robert Schwarcz
- Maryland Psychiatric Research CenterDepartment of PsychiatryUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Reyhan Westbrook
- Department of Geriatric Medicine and GerontologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Qian‐Li Xue
- Department of Geriatric Medicine and GerontologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jeremy Walston
- Department of Geriatric Medicine and GerontologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Ahmet Hoke
- Department of NeurologyNeuromuscular DivisionJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
3
|
Dowling P, Gargan S, Swandulla D, Ohlendieck K. Fiber-Type Shifting in Sarcopenia of Old Age: Proteomic Profiling of the Contractile Apparatus of Skeletal Muscles. Int J Mol Sci 2023; 24:2415. [PMID: 36768735 PMCID: PMC9916839 DOI: 10.3390/ijms24032415] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The progressive loss of skeletal muscle mass and concomitant reduction in contractile strength plays a central role in frailty syndrome. Age-related neuronal impairments are closely associated with sarcopenia in the elderly, which is characterized by severe muscular atrophy that can considerably lessen the overall quality of life at old age. Mass-spectrometry-based proteomic surveys of senescent human skeletal muscles, as well as animal models of sarcopenia, have decisively improved our understanding of the molecular and cellular consequences of muscular atrophy and associated fiber-type shifting during aging. This review outlines the mass spectrometric identification of proteome-wide changes in atrophying skeletal muscles, with a focus on contractile proteins as potential markers of changes in fiber-type distribution patterns. The observed trend of fast-to-slow transitions in individual human skeletal muscles during the aging process is most likely linked to a preferential susceptibility of fast-twitching muscle fibers to muscular atrophy. Studies with senescent animal models, including mostly aged rodent skeletal muscles, have confirmed fiber-type shifting. The proteomic analysis of fast versus slow isoforms of key contractile proteins, such as myosin heavy chains, myosin light chains, actins, troponins and tropomyosins, suggests them as suitable bioanalytical tools of fiber-type transitions during aging.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
4
|
Abstract
The gradual loss of skeletal muscle mass during aging and associated decline in contractile strength can result in reduced fitness, frailty, and loss of independence. In order to better understand the molecular and cellular mechanisms that underlie sarcopenia of old age and the frailty syndrome, as well as identify novel therapeutic targets to treat age-related fiber wasting, it is crucial to develop a comprehensive biomarker signature of muscle aging. Fluorescence two-dimensional gel electrophoresis (2D-DIGE) in combination with sensitive mass spectrometry presents an ideal bioanalytical tool for biomarker discovery in biogerontology. This chapter outlines the application of the 2D-DIGE method for the comparative analysis of human biopsy specimens from middle-aged versus senescent individuals using a two-CyDye-based method.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
5
|
Deane CS, Phillips BE, Willis CRG, Wilkinson DJ, Smith K, Higashitani N, Williams JP, Szewczyk NJ, Atherton PJ, Higashitani A, Etheridge T. Proteomic features of skeletal muscle adaptation to resistance exercise training as a function of age. GeroScience 2022:10.1007/s11357-022-00658-5. [PMID: 36161583 PMCID: PMC10400508 DOI: 10.1007/s11357-022-00658-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/03/2022] [Indexed: 12/29/2022] Open
Abstract
Resistance exercise training (RET) can counteract negative features of muscle ageing but older age associates with reduced adaptive capacity to RET. Altered muscle protein networks likely contribute to ageing RET adaptation; therefore, associated proteome-wide responses warrant exploration. We employed quantitative sarcoplasmic proteomics to compare age-related proteome and phosphoproteome responses to RET. Thigh muscle biopsies were collected from eight young (25 ± 1.1 years) and eight older (67.5 ± 2.6 years) adults before and after 20 weeks supervised RET. Muscle sarcoplasmic fractions were pooled for each condition and analysed using Isobaric Tags for Relative and Absolute Quantification (iTRAQ) labelling, tandem mass spectrometry and network-based hub protein identification. Older adults displayed impaired RET-induced adaptations in whole-body lean mass, body fat percentage and thigh lean mass (P > 0.05). iTRAQ identified 73 differentially expressed proteins with age and/or RET. Despite possible proteomic stochasticity, RET improved ageing profiles for mitochondrial function and glucose metabolism (top hub; PYK (pyruvate kinase)) but failed to correct altered ageing expression of cytoskeletal proteins (top hub; YWHAZ (14-3-3 protein zeta/delta)). These ageing RET proteomic profiles were generally unchanged or oppositely regulated post-RET in younger muscle. Similarly, RET corrected expression of 10 phosphoproteins altered in ageing, but these responses were again different vs. younger adults. Older muscle is characterised by RET-induced metabolic protein profiles that, whilst not present in younger muscle, improve untrained age-related proteomic deficits. Combined with impaired cytoskeletal adhesion responses, these results provide a proteomic framework for understanding and optimising ageing muscle RET adaptation.
Collapse
Affiliation(s)
- Colleen S Deane
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Exeter, EX1 2LU, UK
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
- Human Development & Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Bethan E Phillips
- School of Medicine, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Derby, UK
| | - Craig R G Willis
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, USA
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Daniel J Wilkinson
- School of Medicine, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Derby, UK
| | - Ken Smith
- School of Medicine, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Derby, UK
| | - Nahoko Higashitani
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - John P Williams
- School of Medicine, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Derby, UK
- University Hospitals Derby & Burton NHS Foundation Trust, Royal Derby Hospital, Derby, UK
| | - Nathaniel J Szewczyk
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, USA
| | - Philip J Atherton
- School of Medicine, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Derby, UK
| | - Atsushi Higashitani
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Timothy Etheridge
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Exeter, EX1 2LU, UK.
| |
Collapse
|
6
|
Polo-Like Kinase 2 Plays an Essential Role in Cytoprotection against MG132-Induced Proteasome Inhibition via Phosphorylation of Serine 19 in HSPB5. Int J Mol Sci 2022; 23:ijms231911257. [PMID: 36232565 PMCID: PMC9569985 DOI: 10.3390/ijms231911257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/27/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
Protein homeostasis, including protein folding, refolding, and degradation, is thought to decline with aging. HSPB5 (also known as αB-crystallin) prevents target protein aggregation as a molecular chaperone and exhibits a cytoprotective function against various cell stresses. To elucidate the effect of HSPB5 on endoplasmic reticulum (ER) stress, we searched for novel binding proteins of HSPB5 using the proximity-dependent biotin labeling method. Proteins presumed to interact with HSPB5 in cells treated with the proteasome inhibitor MG132 were identified by a reversible biotin-binding capacity method combining tamavidin2-REV magnetic beads and mass spectrometry. We discovered a new binding protein for HSPB5, polo-like kinase 2 (PLK2), which is an apoptosis-related enzyme. The expression of PLK2 was upregulated by MG132 treatment, and it was co-localized with HSPB5 near the ER in L6 muscle cells. Inhibition of PLK2 decreased ER stress-induced phosphorylation of serine 19 in HSPB5 and increased apoptosis by activation of caspase 3 under ER stress. Overexpression of HSPB5 (WT) suppressed the ER stress-induced caspase 3 activity, but this was not observed with phospho-deficient HSPB5 (3A) mutants. These results clarify the role of HSPB5 phosphorylation during ER stress and suggest that the PLK2/HSPB5 pathway plays an essential role in cytoprotection against proteasome inhibition-induced ER stress.
Collapse
|
7
|
Li X, Bi H, Xie S, Cui W. MiR-208b Regulates the Conversion of Skeletal Muscle Fiber Types by Inhibiting Mettl8 Expression. Front Genet 2022; 13:820464. [PMID: 35281804 PMCID: PMC8905228 DOI: 10.3389/fgene.2022.820464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/09/2022] [Indexed: 01/02/2023] Open
Abstract
Skeletal muscle, the main source of animal meat products, contains muscle fiber as a key unit. It is well known that transformation takes place between different types of muscle fibers, however, the conversion mechanism is not clear. In a previous study, our lab has demonstrated that there is a decrease in type I muscle fibers and an increase in type IIB muscle fibers in skeletal muscle of myostatin gene-edited Meishan pigs. Very interestingly, we observed the down regulation of miR-208b expression and an increase in expression the predicted target gene Mettl8 (Methyltransferase like 8) in skeletal muscle of MSTN gene-edited Meishan pigs. These results reveal that there is a potential connection between the conversion of skeletal muscle fiber types and miR-208b and Mettl8 expression. In this study, we first explored the expression patterns of miR-208b and Mettl8 in skeletal muscle in Meishan pigs; and then C2C12 cells were used to simulate the development and maturation of muscle fibers. Our results indicated that Myh4 expression level decreased and Myh7 expression level increased following overexpression of miR-208b in C2C12 cells. We therefore speculate that miR-208b can promote the conversion of fast-twitch fibers to slow-twitch fibers. The targeting relationship between Mettl8 and miR-208b was confirmed by results obtained using dual luciferase assay, RT-qPCR, and WB analysis. Following the transfection of Mettl8 siRNA into C2C12 cells, we observed that Mettl8 expression decreased significantly while Myh7 expression increased and Myh4 expression decreased, indicating that Mettl8 promotes the conversion of slow muscle fibers to fast muscle fibers. Additionally, changes in skeletal muscle fiber types are observed in those mice where miR-208b and Mettl8 genes are knocked out. The miR-208b knockout inhibits the formation of slow muscle fibers, and the Mettl8 knockout inhibits the formation of fast muscle fibers. In conclusion, our research results show that miR-208b regulates the conversion of different muscle fiber types by inhibiting Mettl8 expression.
Collapse
Affiliation(s)
- Xiang Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hanfang Bi
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shanshan Xie
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wentao Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Lee HJ, Hong SJ, Kim SS, Kwon YY, Choi BH, Choi KM, Sheen SH, Lee MJ, Hwang SY, Park K, Joo Y, Song H, Lee CK. CD4+/CD8+ Ratio and Growth Differentiation Factor 8 Levels in Peripheral Blood of Large Canine Males Are Useful Parameters to Build an Age Prediction Model. World J Mens Health 2022; 40:316-329. [PMID: 35021315 PMCID: PMC8987144 DOI: 10.5534/wjmh.210003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 09/14/2021] [Accepted: 10/08/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose To build an age prediction model, we measured CD4+ and CD8+ cells, and humoral components in canine peripheral blood. Materials and Methods Large Belgian Malinois (BGM) and German Shepherd Dog (GSD) breeds (n=27), aged from 1 to 12 years, were used for this study. Peripheral bloods were obtained by venepuncture, then plasma and peripheral blood mononuclear cells (PBMCs) were separated immediately. Six myokines, including interleukin (IL)-6, IL-8, IL-15, leukemia inhibitory factor (LIF), growth differentiation factor 8 (GDF8), and GDF11 were measured from plasma and CD4+/CD8+ T-lymphocytes ratio were measured from PBMC. These parameters were then tested with age prediction models to find the best fit model. Results We found that the T-lymphocyte ratio (CD4+/CD8+) was significantly correlated with age (r=0.46, p=0.016). Among the six myokines, only GDF8 showed a significant correlation with age (r=0.52, p=0.005). Interestingly, these two markers showed better correlations in male dogs than females, and BGM breed than GSD. Using these two age biomarkers, we could obtain the best fit in a quadratic linear mixed model (r=0.77, p=3×10-6). Conclusions Age prediction is a challenging task because of complication with biological age. Our quadratic linear mixed model using CD4+/CD8+ ratio and GDF8 level showed a meaningful age prediction.
Collapse
Affiliation(s)
- Han-Jun Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Seok-Jin Hong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Seung-Soo Kim
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, Korea
| | - Young-Yon Kwon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Bong-Hwan Choi
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, Korea
| | - Kyung-Mi Choi
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, Korea
| | - Seo-Hyeong Sheen
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Myung-Jin Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Sun-Young Hwang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | | | - Younghun Joo
- Military Working Dog Training Center, Chuncheon, Korea
| | - Hwayoung Song
- Military Working Dog Training Center, Chuncheon, Korea
| | - Cheol-Koo Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea.,Institute of Animal Molecular Biotechnology, Korea University, Seoul, Korea.
| |
Collapse
|
9
|
Shembel AC, Kanshin E, Ueberheide B, Johnson AM. Proteomic Characterization of Senescent Laryngeal Adductor and Plantaris Hindlimb Muscles. Laryngoscope 2022; 132:148-155. [PMID: 34115877 PMCID: PMC9118136 DOI: 10.1002/lary.29683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/23/2021] [Accepted: 06/01/2021] [Indexed: 01/03/2023]
Abstract
OBJECTIVES The goals of this study were to 1) compare global protein expression in muscles of the larynx and hindlimb and 2) investigate differences in protein expression between aged and nonaged muscle using label-free global proteomic profiling methods. METHODS Liquid chromatography-mass spectrometry (LC-MS/MS) analysis was performed on thyroarytenoid intrinsic laryngeal muscle and plantaris hindlimb muscle from 10 F344xBN F1 male rats (5 old and 5 young). Protein expression was compared and pathway enrichment analysis performed for each muscle type (larynx and limb) and age group (old and young muscle). RESULTS Over 1,000 proteins were identified in common across both muscle types and age groups using LC-MS/MS analysis. Significant age-related differences were seen across 107 proteins in plantaris hindlimb and in 19 proteins in thyroarytenoid laryngeal muscle. Bioinformatic and enrichment analysis demonstrated protein differences between the hindlimb and larynx may relate to immune and stress redox responses and RNA repair. CONCLUSION There are clear differences in protein expressions between the laryngeal and hindlimb skeletal muscles. Initial analysis suggests differences between the two muscle groups may relate to stress responses and repair mechanisms. Age-related changes in the thyroarytenoid appear to be less obvious than in the plantaris. Further in-depth study is needed to elucidate how aging affects protein expression in the laryngeal muscles. LEVEL OF EVIDENCE NA Laryngoscope, 132:148-155, 2022.
Collapse
Affiliation(s)
- Adrianna C Shembel
- Department of Speech, Language and Hearing, University of Texas at Dallas, Dallas, Texas, U.S.A
- Department of Otolaryngology-Head and Neck Surgery, University of Texas at Southwestern Medical Center, Dallas, Texas, U.S.A
| | - Evgeny Kanshin
- Proteomics Laboratory, Division of Advanced Research Technologies, NYU Grossman School of Medicine, New York, New York, U.S.A
| | - Beatrix Ueberheide
- Proteomics Laboratory, Division of Advanced Research Technologies, NYU Grossman School of Medicine, New York, New York, U.S.A
- Department of Biochemistry and Molecular Pharmacology and Department of Neurology, New York University Grossman School of Medicine, New York, New York, U.S.A
| | - Aaron M Johnson
- Department of Otolaryngology-Head and Neck Surgery, New York University Grossman School of Medicine, New York, New York, U.S.A
| |
Collapse
|
10
|
Dowling P, Gargan S, Zweyer M, Sabir H, Swandulla D, Ohlendieck K. Proteomic profiling of carbonic anhydrase CA3 in skeletal muscle. Expert Rev Proteomics 2021; 18:1073-1086. [PMID: 34890519 DOI: 10.1080/14789450.2021.2017776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Carbonic anhydrase (CA) is a key enzyme that mediates the reversible hydration of carbon dioxide. Skeletal muscles contain high levels of the cytosolic isoform CA3. This enzyme has antioxidative function and plays a crucial role in the maintenance of intracellular pH homeostasis. AREAS COVERED Since elevated levels of serum CA3, often in combination with other muscle-specific proteins, are routinely used as a marker of general muscle damage, it was of interest to examine recent analyses of this enzyme carried out by modern proteomics. This review summarizes the mass spectrometry-based identification and evaluation of CA3 in normal, adapting, dystrophic, and aging skeletal muscle tissues. EXPERT OPINION The mass spectrometric characterization of CA3 confirmed this enzyme as a highly useful marker of both physiological and pathophysiological alterations in skeletal muscles. Cytosolic CA3 is clearly enriched in slow-twitching type I fibers, which makes it an ideal marker for studying fiber type shifting and muscle adaptations. Importantly, neuromuscular diseases feature distinct alterations in CA3 in skeletal muscle tissues versus biofluids, such as serum. Characteristic changes of CA3 in age-related muscle wasting and dystrophinopathy established this enzyme as a suitable biomarker candidate for differential diagnosis and monitoring of disease progression and therapeutic impact.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Margit Zweyer
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Hemmen Sabir
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| |
Collapse
|
11
|
Marini M, Tani A, Manetti M, Sgambati E. Overview of sialylation status in human nervous and skeletal muscle tissues during aging. Acta Histochem 2021; 123:151813. [PMID: 34753032 DOI: 10.1016/j.acthis.2021.151813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
Sialic acids (Sias) are a large and heterogeneous family of electronegatively charged nine-carbon monosaccharides containing a carboxylic acid and are mostly found as terminal residues in glycans of glycoproteins and glycolipids such as gangliosides. They are linked to galactose or N-acetylgalactosamine via α2,3 or α2,6 linkage, or to other Sias via α2,8 or more rarely α2,9 linkage, resulting in mono, oligo and polymeric forms. Given their characteristics, Sias play a crucial role in a multitude of human tissue biological processes in physiological and pathological conditions, ranging from development and growth to adult life until aging. Here, we review the sialylation status in human adult life focusing on the nervous and skeletal muscle tissues, which both display significant structural and functional changes during aging, strongly impacting on the whole human body and, therefore, on the quality of life. In particular, this review highlights the fundamental roles played by different types of glycoconjugates Sias in several cellular biological processes in the nervous and skeletal muscle tissues during adult life, also discussing how changes in Sia content during aging may contribute to the physiological decline of physical and nervous functions and to the development of age-related degenerative pathologies. Based on our current knowledge, further in-depth investigations could help to develop novel prophylactic strategies and therapeutic approaches that, by maintaining and/or restoring the correct sialylation status in the nervous and skeletal muscle tissues, could contribute to aging slowing and the prevention of age-related pathologies.
Collapse
|
12
|
Lofaro FD, Cisterna B, Lacavalla MA, Boschi F, Malatesta M, Quaglino D, Zancanaro C, Boraldi F. Age-Related Changes in the Matrisome of the Mouse Skeletal Muscle. Int J Mol Sci 2021; 22:10564. [PMID: 34638903 PMCID: PMC8508832 DOI: 10.3390/ijms221910564] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Aging is characterized by a progressive decline of skeletal muscle (SM) mass and strength which may lead to sarcopenia in older persons. To date, a limited number of studies have been performed in the old SM looking at the whole, complex network of the extracellular matrix (i.e., matrisome) and its aging-associated changes. In this study, skeletal muscle proteins were isolated from whole gastrocnemius muscles of adult (12 mo.) and old (24 mo.) mice using three sequential extractions, each one analyzed by liquid chromatography with tandem mass spectrometry. Muscle sections were investigated using fluorescence- and transmission electron microscopy. This study provided the first characterization of the matrisome in the old SM demonstrating several statistically significantly increased matrisome proteins in the old vs. adult SM. Several proteomic findings were confirmed and expanded by morphological data. The current findings shed new light on the mutually cooperative interplay between cells and the extracellular environment in the aging SM. These data open the door for a better understanding of the mechanisms modulating myocellular behavior in aging (e.g., by altering mechano-sensing stimuli as well as signaling pathways) and their contribution to age-dependent muscle dysfunction.
Collapse
Affiliation(s)
- Francesco Demetrio Lofaro
- Department of Life Sciences, University of Modena and Reggio Emilia, I-44100 Modena, Italy; (F.D.L.); (D.Q.)
| | - Barbara Cisterna
- Department of Neurological and Movement Sciences, University of Verona, I-37100 Verona, Italy; (B.C.); (M.A.L.); (M.M.)
| | - Maria Assunta Lacavalla
- Department of Neurological and Movement Sciences, University of Verona, I-37100 Verona, Italy; (B.C.); (M.A.L.); (M.M.)
| | - Federico Boschi
- Department of Computer Science, University of Verona, I-37100 Verona, Italy;
| | - Manuela Malatesta
- Department of Neurological and Movement Sciences, University of Verona, I-37100 Verona, Italy; (B.C.); (M.A.L.); (M.M.)
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, I-44100 Modena, Italy; (F.D.L.); (D.Q.)
| | - Carlo Zancanaro
- Department of Neurological and Movement Sciences, University of Verona, I-37100 Verona, Italy; (B.C.); (M.A.L.); (M.M.)
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, I-44100 Modena, Italy; (F.D.L.); (D.Q.)
| |
Collapse
|
13
|
A Plasma Proteomic Signature of Skeletal Muscle Mitochondrial Function. Int J Mol Sci 2020; 21:ijms21249540. [PMID: 33333910 PMCID: PMC7765442 DOI: 10.3390/ijms21249540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/29/2022] Open
Abstract
Although mitochondrial dysfunction has been implicated in aging, physical function decline, and several age-related diseases, an accessible and affordable measure of mitochondrial health is still lacking. In this study we identified the proteomic signature of muscular mitochondrial oxidative capacity in plasma. In 165 adults, we analyzed the association between concentrations of plasma proteins, measured using the SOMAscan assay, and skeletal muscle maximal oxidative phosphorylation capacity assessed as post-exercise phosphocreatine recovery time constant (τPCr) by phosphorous magnetic resonance spectroscopy. Out of 1301 proteins analyzed, we identified 87 proteins significantly associated with τPCr, adjusting for age, sex, and phosphocreatine depletion. Sixty proteins were positively correlated with better oxidative capacity, while 27 proteins were correlated with poorer capacity. Specific clusters of plasma proteins were enriched in the following pathways: homeostasis of energy metabolism, proteostasis, response to oxidative stress, and inflammation. The generalizability of these findings would benefit from replication in an independent cohort and in longitudinal analyses.
Collapse
|
14
|
Russ DW, Dimova K, Morris E, Pacheco M, Garvey SM, Scordilis SP. Dietary fish oil supplement induces age-specific contractile and proteomic responses in muscles of male rats. Lipids Health Dis 2020; 19:165. [PMID: 32646455 PMCID: PMC7350698 DOI: 10.1186/s12944-020-01333-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023] Open
Abstract
Background Dietary fish oil (DFO) has been identified as a micronutrient supplement with the potential to improve musculoskeletal health in old age. Few data are available for effects of DFO on muscle contractility, despite the significant negative impact of muscle weakness on age-related health outcomes. Accordingly, the effects of a DFO intervention on the contractile function and proteomic profile of adult and aged in an animal model of aging were investigated. Methods This preliminary study evaluated 14 adult (8 months) and 12 aged (22 months) male, Sprague-Dawley rats consuming a DFO-supplemented diet or a control diet for 8 weeks (7 adult and 6 aged/dietary group). Animal weight, food intake and grip strength were assessed at the start and end of the FO intervention. In situ force and contractile properties were measured in the medial gastrocnemius muscle following the intervention and muscles were processed for 2-D gel electrophoresis and proteomic analysis via liquid chromatography with tandem mass spectrometry, confirmed by immunoblotting. Effects of age, diet and age x diet interaction were evaluated by 2-way ANOVA. Results A significant (P = 0.022) main effect for DFO to increase (~ 15%) muscle contractile force was observed, without changes in muscle mass. Proteomic analysis revealed a small number of proteins that differed across age and dietary groups at least 2-fold, most of which related to metabolism and oxidative stress. In seven of these proteins (creatine kinase, triosephosphate isomerase, pyruvate kinase, parvalbumin, beta-enolase, NADH dehydrogenase and Parkin7/DJ1), immunoblotting corroborated these findings. Parvalbumin showed only an effect of diet (increased with DFO) (P = 0.003). Significant age x diet interactions were observed in the other proteins, generally demonstrating increased expression in adult and decreased expression aged rats consuming DFO (all P > 0.011). However, correlational analyses revealed no significant associations between contractile parameters and protein abundances. Conclusions Results of this preliminary study support the hypothesis that DFO can enhance musculoskeletal health in adult and aged muscles, given the observed improvement in contractile function. The fish oil supplement also alters protein expression in an age-specific manner, but the relationship between proteomic and contractile responses remains unclear. Further investigation to better understand the magnitude and mechanisms muscular effects of DFO in aged populations is warranted.
Collapse
Affiliation(s)
- David W Russ
- School of Physical Therapy & Rehabilitation Sciences, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL, MDC77, USA. .,Ohio Musculoskeletal and Neurological Institute (OMNI), Heritage College of Osteopathic Medicine, Athens, OH, USA.
| | - Kalina Dimova
- Center for Proteomics, Smith College, Northampton, MA, USA.,Program in Biochemistry, Smith College, Northampton, MA, USA
| | - Emily Morris
- Program in Biochemistry, Smith College, Northampton, MA, USA
| | | | - Sean M Garvey
- Abbott Nutrition R&D, 3300 Stelzer Road, Columbus, OH, USA.,Present address: BIO-CAT, 9117 3 Notch Rd, Troy, VA, 22974, USA
| | - Stylianos P Scordilis
- Center for Proteomics, Smith College, Northampton, MA, USA.,Program in Biochemistry, Smith College, Northampton, MA, USA
| |
Collapse
|
15
|
Ubaida-Mohien C, Lyashkov A, Gonzalez-Freire M, Tharakan R, Shardell M, Moaddel R, Semba RD, Chia CW, Gorospe M, Sen R, Ferrucci L. Discovery proteomics in aging human skeletal muscle finds change in spliceosome, immunity, proteostasis and mitochondria. eLife 2019; 8:49874. [PMID: 31642809 PMCID: PMC6810669 DOI: 10.7554/elife.49874] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/16/2019] [Indexed: 12/19/2022] Open
Abstract
A decline of skeletal muscle strength with aging is a primary cause of mobility loss and frailty in older persons, but the molecular mechanisms of such decline are not understood. Here, we performed quantitative proteomic analysis from skeletal muscle collected from 58 healthy persons aged 20 to 87 years. In muscle from older persons, ribosomal proteins and proteins related to energetic metabolism, including those related to the TCA cycle, mitochondria respiration, and glycolysis, were underrepresented, while proteins implicated in innate and adaptive immunity, proteostasis, and alternative splicing were overrepresented. Consistent with reports in animal models, older human muscle was characterized by deranged energetic metabolism, a pro-inflammatory environment and increased proteolysis. Changes in alternative splicing with aging were confirmed by RNA-seq analysis. We propose that changes in the splicing machinery enables muscle cells to respond to a rise in damage with aging. As humans age, their muscles become weaker, making it increasingly harder for them to move, a condition known as sarcopenia. Analyzing old muscles in other animals revealed that they produce energy inefficiently, they destroy more proteins than younger muscles, and they have high levels of molecules that cause inflammation. These characteristics may be involved in causing muscle weakness. Proteomics is the study of proteins, the molecules that play many roles in keeping the body working: for example, they accelerate chemical reactions, participate in copying DNA and help cells respond to stimuli. Using proteomics, it is possible to examine a large number of the different proteins in a tissue, which can provide information about the state of that tissue. Ubaida-Mohien et al. used this approach to answer the question of why muscles become weaker with age. First, they analyzed the levels of all the proteins found in skeletal muscle collected from 58 healthy volunteers between 20 and 87 years of age. This revealed that the muscles of older people have fewer copies of the proteins that make up ribosomes – the cellular machines that produce new proteins – and fewer proteins involved in providing the cell with chemical energy. In contrast, proteins implicated in the immune system, in the maintenance of existing proteins, and in processing other molecules called RNAs were more abundant in older muscles. Ubaida-Mohien et al. then looked more closely at changes involving RNA processing. Cells make proteins by copying DNA sequences into an RNA template and using this template to instruct the ribosomes on how to make the specific protein. Before the RNA can be ‘read’ by a ribosome, however, some parts must be cut out and others added, which can lead to different versions of the final RNA, also known as alternative transcripts. In order to check whether the difference in the levels of proteins that process RNAs was affecting the RNAs being produced, Ubaida-Mohien et al. extracted the RNAs from older and younger muscles and compared them. This showed that the RNA in older people had more alternative transcripts, confirming that the change in protein levels was having downstream effects. Currently, it is not possible to prevent or delay the loss of muscle strength associated with aging. Understanding how the protein make-up of muscles changes as humans grow older may help find new ways to prevent and perhaps even reverse this decline.
Collapse
Affiliation(s)
- Ceereena Ubaida-Mohien
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, United States
| | - Alexey Lyashkov
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, United States
| | - Marta Gonzalez-Freire
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, United States
| | - Ravi Tharakan
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, United States
| | - Michelle Shardell
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, United States
| | - Ruin Moaddel
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, United States
| | | | - Chee W Chia
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, United States
| | - Myriam Gorospe
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, United States
| | - Ranjan Sen
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, United States
| | - Luigi Ferrucci
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, United States
| |
Collapse
|
16
|
Dowling P, Zweyer M, Swandulla D, Ohlendieck K. Characterization of Contractile Proteins from Skeletal Muscle Using Gel-Based Top-Down Proteomics. Proteomes 2019; 7:proteomes7020025. [PMID: 31226838 PMCID: PMC6631179 DOI: 10.3390/proteomes7020025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/22/2022] Open
Abstract
The mass spectrometric analysis of skeletal muscle proteins has used both peptide-centric and protein-focused approaches. The term 'top-down proteomics' is often used in relation to studying purified proteoforms and their post-translational modifications. Two-dimensional gel electrophoresis, in combination with peptide generation for the identification and characterization of intact proteoforms being present in two-dimensional spots, plays a critical role in specific applications of top-down proteomics. A decisive bioanalytical advantage of gel-based and top-down approaches is the initial bioanalytical focus on intact proteins, which usually enables the swift identification and detailed characterisation of specific proteoforms. In this review, we describe the usage of two-dimensional gel electrophoretic top-down proteomics and related approaches for the systematic analysis of key components of the contractile apparatus, with a special focus on myosin heavy and light chains and their associated regulatory proteins. The detailed biochemical analysis of proteins belonging to the thick and thin skeletal muscle filaments has decisively improved our biochemical understanding of structure-function relationships within the contractile apparatus. Gel-based and top-down proteomics has clearly established a variety of slow and fast isoforms of myosin, troponin and tropomyosin as excellent markers of fibre type specification and dynamic muscle transition processes.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Ireland.
- MU Human Health Research Institute, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Ireland.
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn, D-53115 Bonn, Germany.
| | - Dieter Swandulla
- Institute of Physiology II, University of Bonn, D-53115 Bonn, Germany.
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Ireland.
- MU Human Health Research Institute, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Ireland.
| |
Collapse
|
17
|
Ubaida-Mohien C, Gonzalez-Freire M, Lyashkov A, Moaddel R, Chia CW, Simonsick EM, Sen R, Ferrucci L. Physical Activity Associated Proteomics of Skeletal Muscle: Being Physically Active in Daily Life May Protect Skeletal Muscle From Aging. Front Physiol 2019; 10:312. [PMID: 30971946 PMCID: PMC6443906 DOI: 10.3389/fphys.2019.00312] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/07/2019] [Indexed: 01/18/2023] Open
Abstract
Muscle strength declines with aging and increasing physical activity is the only intervention known to attenuate this decline. In order to adequately investigate both preventive and therapeutic interventions against sarcopenia, a better understanding of the biological changes that are induced by physical activity in skeletal muscle is required. To determine the effect of physical activity on the skeletal muscle proteome, we utilized liquid-chromatography mass spectrometry to obtain quantitative proteomics data on human skeletal muscle biopsies from 60 well-characterized healthy individuals (20-87 years) who reported heterogeneous levels of physical activity (not active, active, moderately active, and highly active). Over 4,000 proteins were quantified, and higher self-reported physical activity was associated with substantial overrepresentation of proteins associated with mitochondria, TCA cycle, structural and contractile muscle, and genome maintenance. Conversely, proteins related to the spliceosome, transcription regulation, immune function, and apoptosis, DNA damage, and senescence were underrepresented with higher self-reported activity. These differences in observed protein expression were related to different levels of physical activity in daily life and not intense competitive exercise. In most instances, differences in protein levels were directly opposite to those reported in the literature observed with aging. These data suggest that being physically active in daily life has strong and biologically detectable beneficial effects on muscle.
Collapse
Affiliation(s)
- Ceereena Ubaida-Mohien
- Intramural Research Program, National Institute on Aging - National Institutes of Health, Baltimore, MD, United States
| | - Marta Gonzalez-Freire
- Intramural Research Program, National Institute on Aging - National Institutes of Health, Baltimore, MD, United States
| | - Alexey Lyashkov
- Intramural Research Program, National Institute on Aging - National Institutes of Health, Baltimore, MD, United States
| | - Ruin Moaddel
- Intramural Research Program, National Institute on Aging - National Institutes of Health, Baltimore, MD, United States
| | - Chee W Chia
- Intramural Research Program, National Institute on Aging - National Institutes of Health, Baltimore, MD, United States
| | - Eleanor M Simonsick
- Intramural Research Program, National Institute on Aging - National Institutes of Health, Baltimore, MD, United States
| | - Ranjan Sen
- Intramural Research Program, National Institute on Aging - National Institutes of Health, Baltimore, MD, United States
| | - Luigi Ferrucci
- Intramural Research Program, National Institute on Aging - National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
18
|
Murphy S, Zweyer M, Mundegar RR, Swandulla D, Ohlendieck K. Proteomic serum biomarkers for neuromuscular diseases. Expert Rev Proteomics 2018; 15:277-291. [DOI: 10.1080/14789450.2018.1429923] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland
| | - Margit Zweyer
- Department of Physiology II, University of Bonn, Bonn, Germany
| | | | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland
| |
Collapse
|
19
|
Ebhardt HA, Degen S, Tadini V, Schilb A, Johns N, Greig CA, Fearon KCH, Aebersold R, Jacobi C. Comprehensive proteome analysis of human skeletal muscle in cachexia and sarcopenia: a pilot study. J Cachexia Sarcopenia Muscle 2017; 8:567-582. [PMID: 28296247 PMCID: PMC5566647 DOI: 10.1002/jcsm.12188] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/03/2017] [Accepted: 01/10/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cancer cachexia (cancer-induced muscle wasting) is found in a subgroup of cancer patients leaving the patients with a poor prognosis for survival due to a lower tolerance of the chemotherapeutic drug. The cause of the muscle wasting in these patients is not fully understood, and no predictive biomarker exists to identify these patients early on. Skeletal muscle loss is an inevitable consequence of advancing age. As cancer frequently occurs in old age, identifying and differentiating the molecular mechanisms mediating muscle wasting in cancer cachexia vs. age-related sarcopenia are a challenge. However, the ability to distinguish between them is critical for early intervention, and simple measures of body weight may not be sufficiently sensitive to detect cachexia early. METHODS We used a range of omics approaches: (i) undepleted proteome was quantified using advanced high mass accuracy mass spectrometers in SWATH-MS acquisition mode; (ii) phospho epitopes were quantified using protein arrays; and (iii) morphology was assessed using fluorescent microscopy. RESULTS We quantified the soluble proteome of muscle biopsies from cancer cachexia patients and compared them with cohorts of cancer patients and healthy individuals with and without age-related muscle loss (aka age-related sarcopenia). Comparing the proteomes of these cohorts, we quantified changes in muscle contractile myosins and energy metabolism allowing for a clear identification of cachexia patients. In an in vitro time lapse experiment, we mimicked cancer cachexia and identified signal transduction pathways governing cell fusion to play a pivotal role in preventing muscle regeneration. CONCLUSIONS The work presented here lays the foundation for further understanding of muscle wasting diseases and holds the promise of overcoming ambiguous weight loss as a measure for defining cachexia to be replaced by a precise protein signature.
Collapse
Affiliation(s)
- H Alexander Ebhardt
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland.,Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Simone Degen
- Novartis Institutes for BioMedical Research Basel, Novartis Pharma AG, Basel, Switzerland
| | - Valentina Tadini
- Novartis Institutes for BioMedical Research Basel, Novartis Pharma AG, Basel, Switzerland
| | - Alain Schilb
- Novartis Institutes for BioMedical Research Basel, Novartis Pharma AG, Basel, Switzerland
| | - Neil Johns
- Clinical Sciences (Surgery), University of Edinburgh, Edinburgh, Scotland, UK
| | - Carolyn A Greig
- School of Sport, Exercise, and Rehabilitation Sciences and MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | - Kenneth C H Fearon
- Clinical Sciences (Surgery), University of Edinburgh, Edinburgh, Scotland, UK
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland.,Faculty of Science, University of Zürich, Zürich, Switzerland
| | - Carsten Jacobi
- Novartis Institutes for BioMedical Research Basel, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
20
|
Murphy S, Dowling P, Ohlendieck K. Comparative Skeletal Muscle Proteomics Using Two-Dimensional Gel Electrophoresis. Proteomes 2016; 4:proteomes4030027. [PMID: 28248237 PMCID: PMC5217355 DOI: 10.3390/proteomes4030027] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/31/2016] [Accepted: 09/07/2016] [Indexed: 12/16/2022] Open
Abstract
The pioneering work by Patrick H. O’Farrell established two-dimensional gel electrophoresis as one of the most important high-resolution protein separation techniques of modern biochemistry (Journal of Biological Chemistry1975, 250, 4007–4021). The application of two-dimensional gel electrophoresis has played a key role in the systematic identification and detailed characterization of the protein constituents of skeletal muscles. Protein changes during myogenesis, muscle maturation, fibre type specification, physiological muscle adaptations and natural muscle aging were studied in depth by the original O’Farrell method or slightly modified gel electrophoretic techniques. Over the last 40 years, the combined usage of isoelectric focusing in the first dimension and sodium dodecyl sulfate polyacrylamide slab gel electrophoresis in the second dimension has been successfully employed in several hundred published studies on gel-based skeletal muscle biochemistry. This review focuses on normal and physiologically challenged skeletal muscle tissues and outlines key findings from mass spectrometry-based muscle proteomics, which was instrumental in the identification of several thousand individual protein isoforms following gel electrophoretic separation. These muscle-associated protein species belong to the diverse group of regulatory and contractile proteins of the acto-myosin apparatus that forms the sarcomere, cytoskeletal proteins, metabolic enzymes and transporters, signaling proteins, ion-handling proteins, molecular chaperones and extracellular matrix proteins.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| | - Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
21
|
Dowling P, Murphy S, Ohlendieck K. Proteomic profiling of muscle fibre type shifting in neuromuscular diseases. Expert Rev Proteomics 2016; 13:783-99. [DOI: 10.1080/14789450.2016.1209416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Li Y, Hassinger L, Thomson T, Ding B, Ashley J, Hassinger W, Budnik V. Lamin Mutations Accelerate Aging via Defective Export of Mitochondrial mRNAs through Nuclear Envelope Budding. Curr Biol 2016; 26:2052-2059. [PMID: 27451905 DOI: 10.1016/j.cub.2016.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/09/2016] [Accepted: 06/03/2016] [Indexed: 11/18/2022]
Abstract
Defective RNA metabolism and transport are implicated in aging and degeneration [1, 2], but the underlying mechanisms remain poorly understood. A prevalent feature of aging is mitochondrial deterioration [3]. Here, we link a novel mechanism for RNA export through nuclear envelope (NE) budding [4, 5] that requires A-type lamin, an inner nuclear membrane-associated protein, to accelerated aging observed in Drosophila LaminC (LamC) mutations. These LamC mutations were modeled after A-lamin (LMNA) mutations causing progeroid syndromes (PSs) in humans. We identified mitochondrial assembly regulatory factor (Marf), a mitochondrial fusion factor (mitofusin), as well as other transcripts required for mitochondrial integrity and function, in a screen for RNAs that exit the nucleus through NE budding. PS-modeled LamC mutations induced premature aging in adult flight muscles, including decreased levels of specific mitochondrial protein transcripts (RNA) and progressive mitochondrial degradation. PS-modeled LamC mutations also induced the accelerated appearance of other phenotypes associated with aging, including a progressive accumulation of polyubiquitin aggregates [6, 7] and myofibril disorganization [8, 9]. Consistent with these observations, the mutants had progressive jumping and flight defects. Downregulating marf alone induced the above aging defects. Nevertheless, restoring marf was insufficient for rescuing the aging phenotypes in PS-modeled LamC mutations, as other mitochondrial RNAs are affected by inhibition of NE budding. Analysis of NE budding in dominant and recessive PS-modeled LamC mutations suggests a mechanism by which abnormal lamina organization prevents the egress of these RNAs via NE budding. These studies connect defects in RNA export through NE budding to progressive loss of mitochondrial integrity and premature aging.
Collapse
Affiliation(s)
- Yihang Li
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Linda Hassinger
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Travis Thomson
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Baojin Ding
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - James Ashley
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - William Hassinger
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Vivian Budnik
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
23
|
Age- and Activity-Related Differences in the Abundance of Myosin Essential and Regulatory Light Chains in Human Muscle. Proteomes 2016; 4:proteomes4020015. [PMID: 28248225 PMCID: PMC5217348 DOI: 10.3390/proteomes4020015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 12/21/2022] Open
Abstract
Traditional methods for phenotyping skeletal muscle (e.g., immunohistochemistry) are labor-intensive and ill-suited to multixplex analysis, i.e., assays must be performed in a series. Addressing these concerns represents a largely unmet research need but more comprehensive parallel analysis of myofibrillar proteins could advance knowledge regarding age- and activity-dependent changes in human muscle. We report a label-free, semi-automated and time efficient LC-MS proteomic workflow for phenotyping the myofibrillar proteome. Application of this workflow in old and young as well as trained and untrained human skeletal muscle yielded several novel observations that were subsequently verified by multiple reaction monitoring (MRM). We report novel data demonstrating that human ageing is associated with lesser myosin light chain 1 content and greater myosin light chain 3 content, consistent with an age-related reduction in type II muscle fibers. We also disambiguate conflicting data regarding myosin regulatory light chain, revealing that age-related changes in this protein more closely reflect physical activity status than ageing per se. This finding reinforces the need to control for physical activity levels when investigating the natural process of ageing. Taken together, our data confirm and extend knowledge regarding age- and activity-related phenotypes. In addition, the MRM transitions described here provide a methodological platform that can be fine-tuned to suite multiple research needs and thus advance myofibrillar phenotyping.
Collapse
|
24
|
Gizak A, Rakus D. Will Quantitative Proteomics Redefine Some of the Key Concepts in Skeletal Muscle Physiology? Proteomes 2016; 4:proteomes4010002. [PMID: 28248211 PMCID: PMC5217361 DOI: 10.3390/proteomes4010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/21/2015] [Accepted: 01/05/2016] [Indexed: 01/28/2023] Open
Abstract
Molecular and cellular biology methodology is traditionally based on the reasoning called “the mechanistic explanation”. In practice, this means identifying and selecting correlations between biological processes which result from our manipulation of a biological system. In theory, a successful application of this approach requires precise knowledge about all parameters of a studied system. However, in practice, due to the systems’ complexity, this requirement is rarely, if ever, accomplished. Typically, it is limited to a quantitative or semi-quantitative measurements of selected parameters (e.g., concentrations of some metabolites), and a qualitative or semi-quantitative description of expression/post-translational modifications changes within selected proteins. A quantitative proteomics approach gives a possibility of quantitative characterization of the entire proteome of a biological system, in the context of the titer of proteins as well as their post-translational modifications. This enables not only more accurate testing of novel hypotheses but also provides tools that can be used to verify some of the most fundamental dogmas of modern biology. In this short review, we discuss some of the consequences of using quantitative proteomics to verify several key concepts in skeletal muscle physiology.
Collapse
Affiliation(s)
- Agnieszka Gizak
- Department of Animal Molecular Physiology, Wroclaw University, Cybulskiego 30, 50-205 Wroclaw, Poland.
| | - Dariusz Rakus
- Department of Animal Molecular Physiology, Wroclaw University, Cybulskiego 30, 50-205 Wroclaw, Poland.
| |
Collapse
|
25
|
Treaster SB, Chaudhuri AR, Austad SN. Longevity and GAPDH Stability in Bivalves and Mammals: A Convenient Marker for Comparative Gerontology and Proteostasis. PLoS One 2015; 10:e0143680. [PMID: 26619001 PMCID: PMC4664256 DOI: 10.1371/journal.pone.0143680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 11/09/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Comparative aging studies, particularly those that include species of exceptional resistance to aging processes, can potentially illuminate novel senescence-retarding mechanisms. In recent years, protein homeostasis (proteostasis) has been implicated in fundamental aging processes. Here we further evaluate the relationship between proteostasis and longevity in a selection of bivalve mollusks and mammals with maximum longevities ranging from 3 to 507 years. METHODS & RESULTS We experimentally examined proteostasis using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a reporter, as it is ubiquitously expressed, highly conserved, and conveniently assayed. The ability to maintain this enzymatic function was tested with increasing concentrations of the chaotropic agent urea, revealing a robust relationship with longevity in bivalves and mice. While our shortest-lived mollusk and mouse lost all activity by 2.5 and 3.5 M urea respectively, the longest-lived mollusk species, Arctica islandica, still preserved 45% of its basal function even at 6 M urea. To confirm that GAPDH proteostasis has a broad association with longevity, we also investigated a selection of primate species ranging in maximum longevity from 22 to 122 years. They outperformed the mouse at all concentrations, but among the primates results were variable at low urea doses. Still, at 6 M urea baboon and human samples retained 10% of their activity while both mouse and marmoset samples had no activity. MECHANISM OF EXCEPTIONAL STRESS RESISTANCE To explore possible mechanisms of the exceptional stress resistance of A. islandica GAPDH we enzymatically removed post-translational glycosylation, but observed no decrease in stability. We also removed molecules smaller than 30 kDa, which includes most small heat shock proteins, but again did not compromise the exceptional stress resistance of Arctica GAPDH. CONCLUSION While the mechanism underlying A. islandica's exceptional stress resistance remains elusive, this research identifies an experimental system that may reveal hitherto unknown mechanisms of protein homeostasis.
Collapse
Affiliation(s)
- Stephen B. Treaster
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Asish R. Chaudhuri
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Steven N. Austad
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
26
|
Ueda S, Kokaji Y, Simizu S, Honda K, Yoshino KI, Kamisoyama H, Shirai Y, Yamanoue M. Chicken heat shock protein HSPB1 increases and interacts with αB-crystallin in aged skeletal muscle. Biosci Biotechnol Biochem 2015; 79:1867-75. [DOI: 10.1080/09168451.2015.1061419] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
International trading markets of meat require the animal’s age information to prevent cross-contamination of ineligible meat products. Individual livestock age is either evaluated from physiological features or verified by breeding history. However, it remains impossible to perform age verification on meat when a suspicion of error occurred in the importing country. To investigate an age-related protein in skeletal muscle of livestock, we compared protein expression among chicken pectoralis major of different ages. Results indicated that the level of expression of chicken HSPB1, one of the small heat shock proteins, was increased in aged muscles. On the other hand, other heat shock proteins, heat shock factors, and myosin heavy chain isoform did not change the expression levels in aged chicken muscle. In addition, we identified that αB-crystallin interacted with HSPB1 in aged chicken muscle. These results suggest that HSPB1 protein forms complexes with αB-crystallin in aged chicken muscle and suppose to become the candidate of age-related bio-marker for verifying the age of chicken meat.
Collapse
Affiliation(s)
- Shuji Ueda
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Yoshito Kokaji
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Shunsaku Simizu
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Kazuhisa Honda
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Ken-ichi Yoshino
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Hiroshi Kamisoyama
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Yasuhito Shirai
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Minoru Yamanoue
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
27
|
Brinkmeier H, Ohlendieck K. Chaperoning heat shock proteins: Proteomic analysis and relevance for normal and dystrophin-deficient muscle. Proteomics Clin Appl 2014; 8:875-95. [DOI: 10.1002/prca.201400015] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/24/2014] [Accepted: 05/28/2014] [Indexed: 12/15/2022]
Affiliation(s)
| | - Kay Ohlendieck
- Department of Biology; National University of Ireland; Maynooth Co. Kildare Ireland
| |
Collapse
|
28
|
Expression of sialic acids in human adult skeletal muscle tissue. Acta Histochem 2014; 116:926-35. [PMID: 24703356 DOI: 10.1016/j.acthis.2014.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/06/2014] [Accepted: 03/11/2014] [Indexed: 12/20/2022]
Abstract
Investigations mostly in animal models have shown a role of sialic acid in the morphology and functionality of skeletal muscle during development and adult life. Several studies in humans have been performed regarding changes in sialic acid expression in a particular pathology, hereditary inclusion body myopathy, leading to muscular weakness and atrophy, with a similar phenomenon appearing also in sarcopenia of aging. In this study the expression of monomeric and polymeric sialic acids was evaluated in human skeletal muscle during adult life. Surgical biopsies of the Quadriceps femoris muscle from men aged 18-25 years (young group; n=8) and men aged 72-78 (elderly group; n=10) were collected for analysis. Expression of sialic acids was evaluated using lectin histochemistry, associated with enzymatic and chemical treatments to characterize monomeric and polymeric sialic acids. The polysialic acid expression was also evaluated by immunohistochemistry. Various types of sialic acid in the muscle tissue, in different amounts in the study groups, were detected. Monomeric sialic acids decreased in the elderly group compared with the young group, whereas polysialic acid increased. Sialic acid acetylation was present only in the young group. These findings demonstrated that changes in the expression of sialic acids in skeletal muscle tissue may be related to morphofunctional modifications occurring during aging.
Collapse
|
29
|
Fedorova M, Bollineni RC, Hoffmann R. Protein carbonylation as a major hallmark of oxidative damage: update of analytical strategies. MASS SPECTROMETRY REVIEWS 2014; 33:79-97. [PMID: 23832618 DOI: 10.1002/mas.21381] [Citation(s) in RCA: 356] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 05/23/2023]
Abstract
Protein carbonylation, one of the most harmful irreversible oxidative protein modifications, is considered as a major hallmark of oxidative stress-related disorders. Protein carbonyl measurements are often performed to assess the extent of oxidative stress in the context of cellular damage, aging and several age-related disorders. A wide variety of analytical techniques are available to detect and quantify protein-bound carbonyls generated by metal-catalyzed oxidation, lipid peroxidation or glycation/glycoxidation. Here we review current analytical approaches for protein carbonyl detection with a special focus on mass spectrometry-based techniques. The utility of several carbonyl-derivatization reagents, enrichment protocols and especially advanced mass spectrometry techniques are compared and discussed in detail. Furthermore, the mechanisms and biology of protein carbonylation are summarized based on recent high-throughput proteomics data.
Collapse
Affiliation(s)
- Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Deutscher Platz 5, D-04103, Leipzig, Germany; Center for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Deutscher Platz 5, D-04103, Leipzig, Germany
| | | | | |
Collapse
|
30
|
Hwang CY, Kim K, Choi JY, Bahn YJ, Lee SM, Kim YK, Lee C, Kwon KS. Quantitative proteome analysis of age-related changes in mouse gastrocnemius muscle using mTRAQ. Proteomics 2014; 14:121-32. [DOI: 10.1002/pmic.201200497] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 10/07/2013] [Accepted: 11/06/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Chae Young Hwang
- Laboratory of Cell Signaling; Aging Research Center; Korea Research Institute of Bioscience and Biotechnology; Daejeon Korea
| | - Kyutae Kim
- BRI; Korea Institute of Science and Technology; Seoul Korea
- School of Life Sciences and Biotechnology; Korea University; Seoul Korea
| | - Jeong Yi Choi
- Laboratory of Cell Signaling; Aging Research Center; Korea Research Institute of Bioscience and Biotechnology; Daejeon Korea
| | - Young Jae Bahn
- Laboratory of Cell Signaling; Aging Research Center; Korea Research Institute of Bioscience and Biotechnology; Daejeon Korea
| | - Seung-Min Lee
- Laboratory of Cell Signaling; Aging Research Center; Korea Research Institute of Bioscience and Biotechnology; Daejeon Korea
| | - Yoon Ki Kim
- School of Life Sciences and Biotechnology; Korea University; Seoul Korea
| | - Cheolju Lee
- BRI; Korea Institute of Science and Technology; Seoul Korea
| | - Ki-Sun Kwon
- Laboratory of Cell Signaling; Aging Research Center; Korea Research Institute of Bioscience and Biotechnology; Daejeon Korea
| |
Collapse
|
31
|
Holland A, Ohlendieck K. Proteomic profiling of the contractile apparatus from skeletal muscle. Expert Rev Proteomics 2014; 10:239-57. [DOI: 10.1586/epr.13.20] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Malik ZA, Cobley JN, Morton JP, Close GL, Edwards BJ, Koch LG, Britton SL, Burniston JG. Label-Free LC-MS Profiling of Skeletal Muscle Reveals Heart-Type Fatty Acid Binding Protein as a Candidate Biomarker of Aerobic Capacity. Proteomes 2013; 1:290-308. [PMID: 24772389 PMCID: PMC3997170 DOI: 10.3390/proteomes1030290] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Two-dimensional gel electrophoresis provides robust comparative analysis of skeletal muscle, but this technique is laborious and limited by its inability to resolve all proteins. In contrast, orthogonal separation by SDS-PAGE and reverse-phase liquid chromatography (RPLC) coupled to mass spectrometry (MS) affords deep mining of the muscle proteome, but differential analysis between samples is challenging due to the greater level of fractionation and the complexities of quantifying proteins based on the abundances of their tryptic peptides. Here we report simple, semi-automated and time efficient (i.e., 3 h per sample) proteome profiling of skeletal muscle by 1-dimensional RPLC electrospray ionisation tandem MS. Solei were analysed from rats (n = 5, in each group) bred as either high- or low-capacity runners (HCR and LCR, respectively) that exhibited a 6.4-fold difference (1,625 ± 112 m vs. 252 ± 43 m, p < 0.0001) in running capacity during a standardized treadmill test. Soluble muscle proteins were extracted, digested with trypsin and individual biological replicates (50 ng of tryptic peptides) subjected to LC-MS profiling. Proteins were identified by triplicate LC-MS/MS analysis of a pooled sample of each biological replicate. Differential expression profiling was performed on relative abundances (RA) of parent ions, which spanned three orders of magnitude. In total, 207 proteins were analysed, which encompassed almost all enzymes of the major metabolic pathways in skeletal muscle. The most abundant protein detected was type I myosin heavy chain (RA = 5,843 ± 897) and the least abundant protein detected was heat shock 70 kDa protein (RA = 2 ± 0.5). Sixteen proteins were significantly (p < 0.05) more abundant in HCR muscle and hierarchal clustering of the profiling data highlighted two protein subgroups, which encompassed proteins associated with either the respiratory chain or fatty acid oxidation. Heart-type fatty acid binding protein (FABPH) was 1.54-fold (p = 0.0064) more abundant in HCR than LCR soleus. This discovery was verified using selective reaction monitoring (SRM) of the y5 ion (551.21 m/z) of the doubly-charged peptide SLGVGFATR (454.19 m/z) of residues 23–31 of FABPH. SRM was conducted on technical replicates of each biological sample and exhibited a coefficient of variation of 20%. The abundance of FABPH measured by SRM was 2.84-fold greater (p = 0.0095) in HCR muscle. In addition, SRM of FABPH was performed in vastus lateralis samples of young and elderly humans with different habitual activity levels (collected during a previous study) finding FABPH abundance was 2.23-fold greater (p = 0.0396) in endurance-trained individuals regardless of differences in age. In summary, our findings in HCR/LCR rats provide protein-level confirmation for earlier transcriptome profiling work and show LC-MS is a viable means of profiling the abundance of almost all major metabolic enzymes of skeletal muscle in a highly parallel manner. Moreover, our approach is relatively more time efficient than techniques relying on orthogonal separations, and we demonstrate LC-MS profiling of the HCR/LCR selection model was able to highlight biomarkers that also exhibit differences in trained and untrained human muscle.
Collapse
Affiliation(s)
- Zulezwan A. Malik
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK; E-Mails: (Z.A.M.); (J.N.C.); (J.P.M.); (G.L.C.); (B.J.E.)
| | - James N. Cobley
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK; E-Mails: (Z.A.M.); (J.N.C.); (J.P.M.); (G.L.C.); (B.J.E.)
| | - James P. Morton
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK; E-Mails: (Z.A.M.); (J.N.C.); (J.P.M.); (G.L.C.); (B.J.E.)
| | - Graeme L. Close
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK; E-Mails: (Z.A.M.); (J.N.C.); (J.P.M.); (G.L.C.); (B.J.E.)
| | - Ben J. Edwards
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK; E-Mails: (Z.A.M.); (J.N.C.); (J.P.M.); (G.L.C.); (B.J.E.)
| | - Lauren G. Koch
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109-2200, USA; E-Mails: (L.G.K.); (S.L.B.)
| | - Steven L. Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109-2200, USA; E-Mails: (L.G.K.); (S.L.B.)
| | - Jatin G. Burniston
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK; E-Mails: (Z.A.M.); (J.N.C.); (J.P.M.); (G.L.C.); (B.J.E.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-904-6265; Fax: +44-904-6283
| |
Collapse
|
33
|
|
34
|
Chaves DFS, Carvalho PC, Lima DB, Nicastro H, Lorenzeti FM, Siqueira-Filho M, Hirabara SM, Alves PHM, Moresco JJ, Yates JR, Lancha AH. Comparative proteomic analysis of the aging soleus and extensor digitorum longus rat muscles using TMT labeling and mass spectrometry. J Proteome Res 2013; 12:4532-46. [PMID: 24001182 PMCID: PMC3845496 DOI: 10.1021/pr400644x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Sarcopenia describes an age-related decline in skeletal muscle mass, strength, and function that ultimately impairs metabolism and leads to poor balance, frequent falling, limited mobility, and a reduction in quality of life. Here we investigate the pathogenesis of sarcopenia through a proteomic shotgun approach. In brief, we employed tandem mass tags to quantitate and compare the protein profiles obtained from young versus old rat slow-twitch type of muscle (soleus) and a fast-twitch type of muscle (extensor digitorum longus, EDL). Our results disclose 3452 and 1848 proteins identified from soleus and EDL muscles samples, of which 78 and 174 were found to be differentially expressed, respectively. In general, most of the proteins were structural related and involved in energy metabolism, oxidative stress, detoxification, or transport. Aging affected soleus and EDL muscles differently, and several proteins were regulated in opposite ways. For example, pyruvate kinase had its expression and activity different in both soleus and EDL muscles. We were able to verify with existing literature many of our differentially expressed proteins as candidate aging biomarkers and, most importantly, disclose several new candidate biomarkers such as the glioblastoma amplified sequence, zero β-globin, and prolargin.
Collapse
Affiliation(s)
- Daniela F S Chaves
- Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sports, University of São Paulo , Av. Prof. Mello Moraes, 65, 05508-900 São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ohlendieck K. Proteomic identification of biomarkers of skeletal muscle disorders. Biomark Med 2013; 7:169-86. [PMID: 23387498 DOI: 10.2217/bmm.12.96] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Disease-specific biomarkers play a central diagnostic and therapeutic role in muscle pathology. Serum levels of a variety of muscle-derived enzymes are routinely used for the detection of muscle damage in diagnostic procedures, as well as for the monitoring of physical training status in sports medicine. Over the last few years, the systematic application of mass spectrometry-based proteomics for studying skeletal muscle degeneration has greatly expanded the range of muscle biomarkers, including new fiber-associated proteins involved in muscle transformation, muscular atrophy, muscular dystrophy, motor neuron disease, inclusion body myositis, myotonia, hypoxia, diabetes, obesity and sarcopenia of old age. These mass spectrometric studies have clearly established skeletal muscle proteomics as a reliable method for the identification of novel indicators of neuromuscular diseases.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Muscle Biology Laboratory, Department of Biology, National University of Ireland, Maynooth, County Kildare, Ireland.
| |
Collapse
|
36
|
Matsumura CY, Menezes de Oliveira B, Durbeej M, Marques MJ. Isobaric Tagging-Based Quantification for Proteomic Analysis: A Comparative Study of Spared and Affected Muscles from mdx Mice at the Early Phase of Dystrophy. PLoS One 2013; 8:e65831. [PMID: 23823696 PMCID: PMC3688818 DOI: 10.1371/journal.pone.0065831] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/29/2013] [Indexed: 11/18/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most common childhood myopathy, characterized by muscle loss and cardiorespiratory failure. While the genetic basis of DMD is well established, secondary mechanisms associated with dystrophic pathophysiology are not fully clarified yet. In order to obtain new insights into the molecular mechanisms of muscle dystrophy during earlier stages of the disease, we performed a comparative proteomic profile of the spared extraocular muscles (EOM) vs. affected diaphragm from the mdx mice, using a label based shotgun proteomic approach. Out of the 857 identified proteins, 42 to 62 proteins had differential abundance of peptide ions. The calcium-handling proteins sarcalumenin and calsequestrin-1 were increased in control EOM compared with control DIA, reinforcing the view that constitutional properties of EOM are important for their protection against myonecrosis. The finding that galectin-1 (muscle regeneration), annexin A1 (anti-inflammatory) and HSP 47 (fibrosis) were increased in dystrophic diaphragm provides novel insights into the mechanisms through which mdx affected muscles are able to counteract dystrophy, during the early stage of the disease. Overall, the shotgun technique proved to be suitable to perform quantitative comparisons between distinct dystrophic muscles and allowed the suggestion of new potential biomarkers and drug targets for dystrophinopaties.
Collapse
Affiliation(s)
- Cintia Yuri Matsumura
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | - Madeleine Durbeej
- Muscle Biology Unit, Department of Experimental Medical Science, University of Lund, Lund, Sweden
| | - Maria Julia Marques
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
37
|
Abstract
Cellular aging is a fundamental biological process, and mass spectrometry-based proteomics has been widely used for the global identification of age-related changes in a variety of tissues. The proteomic profiling of senescent skeletal muscles has revealed a variety of alterations in proteins associated with the contractile apparatus, cell signaling, ion homeostasis, metabolism, and the cellular stress response. Here, we outline the two-dimensional gel electrophoretic separation and fluorescent labeling of the urea-soluble protein complement from aged diaphragm muscle. This chapter describes the various experimental steps involved in gel electrophoresis-based proteomics, including protein extraction, isoelectric focusing, slab gel electrophoresis, fluorescence labeling, image analysis, protein digestion, mass spectrometric identification of proteins and immunoblotting.
Collapse
Affiliation(s)
- Steven Carberry
- Department of Biology, National University of Ireland Maynooth, Maynooth, Kildare, Ireland
| | | |
Collapse
|
38
|
Profiling of age-related changes in the tibialis anterior muscle proteome of the mdx mouse model of dystrophinopathy. J Biomed Biotechnol 2012; 2012:691641. [PMID: 23093855 PMCID: PMC3471022 DOI: 10.1155/2012/691641] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 06/13/2012] [Indexed: 12/22/2022] Open
Abstract
X-linked muscular dystrophy is a highly progressive disease of childhood and characterized by primary genetic abnormalities in the dystrophin gene. Senescent mdx specimens were used for a large-scale survey of potential age-related alterations in the dystrophic phenotype, because the established mdx animal model of dystrophinopathy exhibits progressive deterioration of muscle tissue with age. Since the mdx tibialis anterior muscle is a frequently used model system in muscular dystrophy research, we employed this particular muscle to determine global changes in the dystrophic skeletal muscle proteome. The comparison of mdx mice aged 8 weeks versus 22 months by mass-spectrometry-based proteomics revealed altered expression levels in 8 distinct protein species. Increased levels were shown for carbonic anhydrase, aldolase, and electron transferring flavoprotein, while the expressions of pyruvate kinase, myosin, tropomyosin, and the small heat shock protein Hsp27 were found to be reduced in aged muscle. Immunoblotting confirmed age-dependent changes in the density of key muscle proteins in mdx muscle. Thus, segmental necrosis in mdx tibialis anterior muscle appears to trigger age-related protein perturbations due to dystrophin deficiency. The identification of novel indicators of progressive muscular dystrophy might be useful for the establishment of a muscle subtype-specific biomarker signature of dystrophinopathy.
Collapse
|
39
|
Sackmann-Sala L, Berryman DE, Lubbers ER, Vesel CB, Troike KM, List EO, Munn RD, Ikeno Y, Kopchick JJ. Decreased insulin sensitivity and increased oxidative damage in wasting adipose tissue depots of wild-type mice. AGE (DORDRECHT, NETHERLANDS) 2012; 34:1225-37. [PMID: 21953241 PMCID: PMC3448990 DOI: 10.1007/s11357-011-9304-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 08/19/2011] [Indexed: 05/08/2023]
Abstract
Unintentional weight loss (wasting) in the elderly is a major health concern as it leads to increased mortality. Several studies have focused on muscle loss, but little is known about the mechanisms giving rise to loss of fat mass at old ages. To investigate potential mechanisms, white adipose tissue (WAT) characteristics and proteomic profiles were compared between adult (10-12-month-old) and aged (22-24-month-old) wild-type mice. Four individual WAT depots were analyzed to account for possible depot-specific differences. Proteomic profiles of WAT depots, along with body weights and compositions, plasma levels of insulin, leptin and adiponectin, insulin tolerance, adipocyte sizes, and products of oxidative damage in each WAT depot were determined. We found that lean mass remained constant while fat mass and insulin tolerance were decreased in old age, as were adipocyte sizes in the WAT depots. Proteomic results showed increased levels of enolase, pyruvate dehydrogenase E1β, NAD(+)-dependent isocitrate dehydrogenase α, and ATP synthase subunit β, and decreased levels of carbonic anhydrase 3 in WAT of aged mice. These data suggest increased aerobic glucose oxidation in wasting WAT, consistent with decreased insulin signaling. Also, Cu/Zn superoxide dismutase and two chaperones were increased in aged WAT depots, indicating higher stress resistance. In agreement, lipid peroxidation (HNE-His adducts) increased in old age, although protein oxidation (carbonyl groups) showed no increase. In conclusion, features of wasting WAT were similar in the four depots, including decreased adipocyte sizes and alterations in protein expression profiles that indicated decreased insulin sensitivity and increased lipid peroxidation.
Collapse
Affiliation(s)
- Lucila Sackmann-Sala
- Edison Biotechnology Institute, Ohio University, 1 Water Tower Dr., The Ridges, Athens, OH 45701 USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, 1 Water Tower Dr., The Ridges, Athens, OH 45701 USA
- Molecular and Cellular Biology Program, Ohio University, 1 Water Tower Dr., The Ridges, Athens, OH 45701 USA
| | - Darlene E. Berryman
- Edison Biotechnology Institute, Ohio University, 1 Water Tower Dr., The Ridges, Athens, OH 45701 USA
- Molecular and Cellular Biology Program, Ohio University, 1 Water Tower Dr., The Ridges, Athens, OH 45701 USA
- School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, 1 Water Tower Dr., The Ridges, Athens, OH 45701 USA
| | - Ellen R. Lubbers
- Edison Biotechnology Institute, Ohio University, 1 Water Tower Dr., The Ridges, Athens, OH 45701 USA
| | - Clare B. Vesel
- Edison Biotechnology Institute, Ohio University, 1 Water Tower Dr., The Ridges, Athens, OH 45701 USA
| | - Katie M. Troike
- Edison Biotechnology Institute, Ohio University, 1 Water Tower Dr., The Ridges, Athens, OH 45701 USA
| | - Edward O. List
- Edison Biotechnology Institute, Ohio University, 1 Water Tower Dr., The Ridges, Athens, OH 45701 USA
| | - Rachel D. Munn
- Edison Biotechnology Institute, Ohio University, 1 Water Tower Dr., The Ridges, Athens, OH 45701 USA
| | - Yuji Ikeno
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245 USA
| | - John J. Kopchick
- Edison Biotechnology Institute, Ohio University, 1 Water Tower Dr., The Ridges, Athens, OH 45701 USA
- Molecular and Cellular Biology Program, Ohio University, 1 Water Tower Dr., The Ridges, Athens, OH 45701 USA
- Department of Biomedical Sciences, College of Osteopathic Medicine, Ohio University, 1 Water Tower Dr., The Ridges, Athens, OH 45701 USA
| |
Collapse
|
40
|
de Vareilles M, Conceição LEC, Gómez-Requeni P, Kousoulaki K, Richard N, Rodrigues PM, Fladmark KE, Rønnestad I. Dietary lysine imbalance affects muscle proteome in zebrafish (Danio rerio): a comparative 2D-DIGE study. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:643-654. [PMID: 22580902 DOI: 10.1007/s10126-012-9462-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 04/28/2012] [Indexed: 05/31/2023]
Abstract
Lysine (Lys) is an indispensable amino acid (AA) and generally the first limiting AA in vegetable protein sources in fish feeds. Inadequate dietary Lys availability may limit protein synthesis, accretion and growth of fish. This experiment aimed to further elucidate the role of Lys imbalance on growth by examining the myotomal muscle proteome of juvenile zebrafish (Danio rerio). Quadruplicate groups of 8 fish were fed either a low-Lys [Lys(-), 1.34 g kg(-1)], medium/control (Lys, 2.47 g kg(-1)) or high-Lys [Lys(+), 4.63 g kg(-1)] diet. Fish growth was monitored from 33 to 49 days post-fertilization (dpf) and trunk myotomal muscle proteome of Lys(-) and Lys(+) treatments were screened by 2D-DIGE and MALDI ToF tandem mass spectrometry. Growth rate was negatively affected by diet Lys(-). Out of 527 ± 11 (mean ± S.E.M.) protein spots detected (∼10-150 kDa and 4-7 pI value), 30 were over-expressed and 22 under-expressed in Lys(-) fish (|fold-change| >1.2, p value <0.05). Higher myosin light chains abundance and other myofibrillar proteins in Lys(-) fish pointed to increased sarcomeric degradation, indicating a higher protein turnover for supplying basal energy-saving metabolism rather than growth and muscle protein accretion. The Lys deficiency also possibly induced a higher feeding activity, reflected in the over-expression of beta enolase and mitochondrial ATP synthase. Contrarily, in the faster growing fish [Lys(+)], over-expression of apolipoprotein A-I, F-actin capping protein and Pdlim7 point to increased energy storage as fat and enhanced muscle growth, particularly by mosaic hyperplasia. Thus using an exploratory approach, this study pinpoints interesting candidates for further elucidating the role of dietary Lys on growth of juvenile fish.
Collapse
|
41
|
Didier N, Hourdé C, Amthor H, Marazzi G, Sassoon D. Loss of a single allele for Ku80 leads to progenitor dysfunction and accelerated aging in skeletal muscle. EMBO Mol Med 2012; 4:910-23. [PMID: 22915554 PMCID: PMC3491824 DOI: 10.1002/emmm.201101075] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Revised: 06/25/2012] [Accepted: 06/26/2012] [Indexed: 12/12/2022] Open
Abstract
Muscle wasting is a major cause of morbidity in the elderly. Ku80 is required for DNA double strand repair and is implicated in telomere maintenance. Complete loss-of-function leads to reduced post-natal growth and severe progeria in mice. We examined the role of Ku80 in age-related skeletal muscle atrophy. While complete loss of Ku80 leads to pronounced aging in muscle as expected, accompanied by accumulation of DNA damage, loss of a single allele is sufficient to accelerate aging in skeletal muscle although post-natal growth is normal. Ku80 heterozygous muscle shows no DNA damage accumulation but undergoes premature telomere shortening that alters stem cell self-renewal through stress response pathways including p53. These data reveal an unexpected requirement for both Ku80 alleles for optimal progenitor function and prevention of early onset aging in muscle, as well as providing a useful model for therapeutic approaches.
Collapse
Affiliation(s)
- Nathalie Didier
- Myology Group, UMR S INSERM, Université Pierre et Marie Curie Paris VI, Pitié-Salpétrière, Paris, France
| | | | | | | | | |
Collapse
|
42
|
Staunton L, Zweyer M, Swandulla D, Ohlendieck K. Mass spectrometry-based proteomic analysis of middle-aged vs. aged vastus lateralis reveals increased levels of carbonic anhydrase isoform 3 in senescent human skeletal muscle. Int J Mol Med 2012; 30:723-33. [PMID: 22797148 PMCID: PMC3573712 DOI: 10.3892/ijmm.2012.1056] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 05/31/2012] [Indexed: 12/21/2022] Open
Abstract
The age-related loss of skeletal muscle mass and associated progressive decline in contractile strength is a serious pathophysiological issue in the elderly. In order to investigate global changes in the skeletal muscle proteome after the fifth decade of life, this study analysed total extracts from human vastus lateralis muscle by fluorescence difference in-gel electrophoresis. Tissue specimens were derived from middle-aged (47-62 years) vs. aged (76-82 years) individuals and potential changes in the protein expression profiles were compared between these two age groups by a comprehensive gel electrophoresis-based survey. Age-dependent alterations in the concentration of 19 protein spots were revealed and mass spectrometry identified these components as being involved in the excitation-contraction-relaxation cycle, muscle metabolism, ion handling and the cellular stress response. This indicates a generally perturbed protein expression pattern in senescent human muscle. Increased levels of mitochondrial enzymes and isoform switching of the key contractile protein, actin, support the idea of glycolytic-to-oxidative and fast-to-slow transition processes during muscle aging. Importantly, the carbonic anhydrase (CA)3 isoform displayed an increased abundance during muscle aging, which was independently verified by immunoblotting of differently aged human skeletal muscle samples. Since the CA3 isoform is relatively muscle-specific and exhibits a fibre type-specific expression pattern, this enzyme may represent an interesting new biomarker of sarcopenia. Increased levels of CA are indicative of an increased demand of CO₂-removal in senescent muscle, and also suggest age-related fibre type shifting to slower-contracting muscles during human aging.
Collapse
Affiliation(s)
- Lisa Staunton
- Department of Biology, National University of Ireland, Maynooth, Kildare, Ireland
| | | | | | | |
Collapse
|
43
|
Xu Y, Qian H, Feng X, Xiong Y, Lei M, Ren Z, Zuo B, Xu D, Ma Y, Yuan H. Differential proteome and transcriptome analysis of porcine skeletal muscle during development. J Proteomics 2012; 75:2093-108. [DOI: 10.1016/j.jprot.2012.01.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 01/04/2012] [Accepted: 01/08/2012] [Indexed: 11/26/2022]
|
44
|
Wulff T, Jokumsen A, Højrup P, Jessen F. Time-dependent changes in protein expression in rainbow trout muscle following hypoxia. J Proteomics 2012; 75:2342-51. [PMID: 22370164 DOI: 10.1016/j.jprot.2012.02.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/30/2012] [Accepted: 02/02/2012] [Indexed: 12/17/2022]
Abstract
Adaptation to hypoxia is a complex process, and individual proteins will be up- or down-regulated in order to address the main challenges at any given time. To investigate the dynamics of the adaptation, rainbow trout (Oncorhynchus mykiss) was exposed to 30% of normal oxygen tension for 1, 2, 5 and 24 h respectively, after which muscle samples were taken. The successful investigation of numerous proteins in a single study was achieved by selectively separating the sarcoplasmic proteins using 2-DE. In total 46 protein spots were identified as changing in abundance in response to hypoxia using one-way ANOVA and multivariate data analysis. Proteins of interest were subsequently identified by MS/MS following tryptic digestion. The observed regulation following hypoxia in skeletal muscle was determined to be time specific, as only a limited number of proteins were regulated in response to more than one time point. The cellular response to hypoxia included regulation of proteins involved in maintaining iron homeostasis, energy levels and muscle structure. In conclusion, this proteome-based study presents a comprehensive investigation of the expression profiles of numerous proteins at four different time points. This increases our understanding of timed changes in protein expression in rainbow trout muscle following hypoxia.
Collapse
Affiliation(s)
- Tune Wulff
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | | | | | | |
Collapse
|
45
|
Gannon J, Ohlendieck K. Subproteomic analysis of basic proteins in aged skeletal muscle following offgel pre-fractionation. Mol Med Rep 2012; 5:993-1000. [PMID: 22267262 PMCID: PMC3493040 DOI: 10.3892/mmr.2012.759] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 12/21/2011] [Indexed: 12/29/2022] Open
Abstract
The progressive loss of skeletal muscle mass is a serious pathophysiological problem in the elderly, which warrants detailed biochemical studies into the underlying mechanism of age-related fiber degeneration. Over the last few years, mass spectrometry (MS)-based proteomics has identified a considerable number of new biomarkers of muscle aging in humans and animal models of sarcopenia. However, interpretation of the proteomic findings is often complicated by technical and biological limitations. Although gel electrophoresis-based approaches represent a highly sensitive analytical way for the large-scale and high-throughput survey of global changes in skeletal muscle proteins during aging, often the presence of components with an isoelectric point in the basic range is underestimated. We, therefore, carried out a comparative subproteomic study of young versus aged rat muscle focusing on potential changes in muscle proteins with an alkaline isoelectric point, using a combination of offgel electrophoresis and two-dimensional (2D) slab gel electrophoresis. Offgel electrophoresis was successfully applied as a prefractionation step to enrich basic protein species from crude tissue extracts representing young adult versus senescent muscle specimens. Proteomics has demonstrated alterations in a small cohort of basic proteins during muscle aging. The mass spectrometric identification of altered proteins and immunoblotting revealed a decrease in the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and a concomitant increase in mitochondrial creatine kinase (CK) and ubiquinol cytochrome-c reductase. This agrees with the idea of a glycolytic-to-oxidative shift during muscle aging, which is indicative of an overall fast-to-slow transition process in senescent rat muscle. Thus, alterations in the abundance of metabolic enzymes appear to play a central role in the molecular pathogenesis of age-dependent muscle wasting.
Collapse
Affiliation(s)
- Joan Gannon
- Laboratory of Systems Medicine and Cell Biology, Department of Medicine, Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | | |
Collapse
|
46
|
Ohlendieck K. Proteomic Profiling of Fast-To-Slow Muscle Transitions during Aging. Front Physiol 2011; 2:105. [PMID: 22207852 PMCID: PMC3245893 DOI: 10.3389/fphys.2011.00105] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 12/03/2011] [Indexed: 01/19/2023] Open
Abstract
Old age is associated with a large spectrum of physical ailments, including muscle wasting. Skeletal muscle degeneration drastically increases the risk of poor balance, frequent falling and impaired mobility in the elderly. In order to identify new therapeutic targets to halt or even reverse age-dependent muscle weakness and improve diagnostic methods to properly evaluate sarcopenia as a common geriatric syndrome, there is an urgent need to establish a reliable biomarker signature of muscle aging. In this respect, mass spectrometry-based proteomics has been successfully applied for studying crude extracts and subcellular fractions from aged animal and human muscle tissues to identify novel aging marker proteins. This review focuses on key physiological and metabolic aspects of sarcopenia, i.e., age-related muscle fiber transitions and metabolic shifts in aging muscle as revealed by proteomics. Over the last decade, proteomic profiling studies have clearly confirmed the idea that sarcopenia is based on a multi-factorial pathophysiology and that a glycolytic-to-oxidative shift occurs in slower-twitching senescent muscles. Both, newly identified protein factors and confirmed alterations in crucial metabolic and contractile elements can now be employed to establish a sarcopenia-specific biomarker signature.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Department of Biology, Muscle Biology Laboratory, National University of Ireland, Maynooth County Kildare, Ireland
| |
Collapse
|
47
|
Gelfi C, Vasso M, Cerretelli P. Diversity of human skeletal muscle in health and disease: contribution of proteomics. J Proteomics 2011; 74:774-95. [PMID: 21414428 DOI: 10.1016/j.jprot.2011.02.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/22/2011] [Accepted: 02/26/2011] [Indexed: 12/25/2022]
Abstract
Muscle represents a large fraction of the human body mass. It is an extremely heterogeneous tissue featuring in its contractile structure various proportions of heavy- and light-chain slow type 1 and fast types 2A and 2X myosins, actins, tropomyosins, and troponin complexes as well as metabolic proteins (enzymes and most of the players of the so-called excitation-transcription coupling). Muscle is characterized by wide plasticity, i.e. capacity to adjust size and functional properties in response to endogenous and exogenous influences. Over the last decade, proteomics has become a crucial technique for the assessment of muscle at the molecular level and the investigation of its functional changes. Advantages and shortcomings of recent techniques for muscle proteome analysis are discussed. Data from differential proteomics applied to healthy individuals in normal and unusual environments (hypoxia and cold), in exercise, immobilization, aging and to patients with neuromuscular hereditary disorders (NMDs), inclusion body myositis and insulin resistance are summarized, critically discussed and, when required, compared with homologous data from pertinent animal models. The advantages as well as the limits of proteomics in view of the identification of new biomarkers are evaluated.
Collapse
Affiliation(s)
- Cecilia Gelfi
- Dipartimento di Scienze e Tecnologie Biomediche, Università degli Studi di Milano, Milan, Italy.
| | | | | |
Collapse
|
48
|
Staunton L, O'Connell K, Ohlendieck K. Proteomic Profiling of Mitochondrial Enzymes during Skeletal Muscle Aging. J Aging Res 2011; 2011:908035. [PMID: 21437005 PMCID: PMC3062155 DOI: 10.4061/2011/908035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/17/2010] [Accepted: 01/03/2011] [Indexed: 11/20/2022] Open
Abstract
Mitochondria are of central importance for energy generation in skeletal muscles. Expression changes or functional alterations in mitochondrial enzymes play a key role during myogenesis, fibre maturation, and various neuromuscular pathologies, as well as natural fibre aging. Mass spectrometry-based proteomics suggests itself as a convenient large-scale and high-throughput approach to catalogue the mitochondrial protein complement and determine global changes during health and disease. This paper gives a brief overview of the relatively new field of mitochondrial proteomics and discusses the findings from recent proteomic surveys of mitochondrial elements in aged skeletal muscles. Changes in the abundance, biochemical activity, subcellular localization, and/or posttranslational modifications in key mitochondrial enzymes might be useful as novel biomarkers of aging. In the long term, this may advance diagnostic procedures, improve the monitoring of disease progression, help in the testing of side effects due to new drug regimes, and enhance our molecular understanding of age-related muscle degeneration.
Collapse
Affiliation(s)
- Lisa Staunton
- Department of Biology, National University of Ireland, Maynooth, County Kildare, Ireland
| | | | | |
Collapse
|
49
|
Muscle-specific inositide phosphatase (MIP/MTMR14) is reduced with age and its loss accelerates skeletal muscle aging process by altering calcium homeostasis. Aging (Albany NY) 2011; 2:504-13. [PMID: 20817957 PMCID: PMC2954041 DOI: 10.18632/aging.100190] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have recently reported that a novel muscle-specific inositide phosphatase (MIP/MTMR14) plays a critical role in [Ca2+]i homeostasis through dephosphorylation of sn-1-stearoyl-2-arachidonoyl phosphatidylinositol (3,5) bisphosphate (PI(3,5)P2). Loss of function mutations in MIP have been identified in human centronuclear myopathy. We developed a MIP knockout (MIPKO) animal model and found that MIPKO mice were more susceptible to exercise-induced muscle damage, a trademark of muscle functional changes in older subjects. We used wild-type (Wt) mice and MIPKO mice to elucidate the roles of MIP in muscle function during aging. We found MIP mRNA expression, MIP protein levels, and MIP phosphatase activity significantly decreased in old Wt mice. The mature MIPKO mice displayed phenotypes that closely resembled those seen in old Wt mice: i) decreased walking speed, ii) decreased treadmill activity, iii) decreased contractile force, and iv) decreased power generation, classical features of sarcopenia in rodents and humans. Defective Ca2+ homeostasis is also present in mature MIPKO and old Wt mice, suggesting a putative role of MIP in the decline of muscle function during aging. Our studies offer a new avenue for the investigation of MIP roles in skeletal muscle function and as a potential therapeutic target to treat aging sarcopenia.
Collapse
|
50
|
Ohlendieck K. Skeletal muscle proteomics: current approaches, technical challenges and emerging techniques. Skelet Muscle 2011; 1:6. [PMID: 21798084 PMCID: PMC3143904 DOI: 10.1186/2044-5040-1-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 02/01/2011] [Indexed: 01/08/2023] Open
Abstract
Background Skeletal muscle fibres represent one of the most abundant cell types in mammals. Their highly specialised contractile and metabolic functions depend on a large number of membrane-associated proteins with very high molecular masses, proteins with extensive posttranslational modifications and components that exist in highly complex supramolecular structures. This makes it extremely difficult to perform conventional biochemical studies of potential changes in protein clusters during physiological adaptations or pathological processes. Results Skeletal muscle proteomics attempts to establish the global identification and biochemical characterisation of all members of the muscle-associated protein complement. A considerable number of proteomic studies have employed large-scale separation techniques, such as high-resolution two-dimensional gel electrophoresis or liquid chromatography, and combined them with mass spectrometry as the method of choice for high-throughput protein identification. Muscle proteomics has been applied to the comprehensive biochemical profiling of developing, maturing and aging muscle, as well as the analysis of contractile tissues undergoing physiological adaptations seen in disuse atrophy, physical exercise and chronic muscle transformation. Biomedical investigations into proteome-wide alterations in skeletal muscle tissues were also used to establish novel biomarker signatures of neuromuscular disorders. Importantly, mass spectrometric studies have confirmed the enormous complexity of posttranslational modifications in skeletal muscle proteins. Conclusions This review critically examines the scientific impact of modern muscle proteomics and discusses its successful application for a better understanding of muscle biology, but also outlines its technical limitations and emerging techniques to establish new biomarker candidates.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Muscle Biology Laboratory, Department of Biology, National University of Ireland, Maynooth, County Kildare, Ireland.
| |
Collapse
|