1
|
Mossine VV, Mawhinney TP. 1-Amino-1-deoxy-d-fructose ("fructosamine") and its derivatives. Adv Carbohydr Chem Biochem 2023; 83:27-132. [PMID: 37968038 DOI: 10.1016/bs.accb.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Fructosamine has long been considered as a key intermediate of the Maillard reaction, which to a large extent is responsible for specific aroma, taste, and color formation in thermally processed or dehydrated foods. Since the 1980s, however, as a product of the Amadori rearrangement reaction between glucose and biologically significant amines such as proteins, fructosamine has experienced a boom in biomedical research, mainly due to its relevance to pathologies in diabetes and aging. In this chapter, we assess the scope of the knowledge on and applications of fructosamine-related molecules in chemistry, food, and health sciences, as reflected mostly in publications within the past decade. Methods of fructosamine synthesis and analysis, its chemical, and biological properties, and degradation reactions, together with fructosamine-modifying and -recognizing proteins are surveyed.
Collapse
Affiliation(s)
- Valeri V Mossine
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Thomas P Mawhinney
- Department of Biochemistry, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
2
|
Xiong JY, Wang JM, Zhao XL, Yang C, Jiang XS, Chen YM, Chen CQ, Li ZY. Glycated albumin as a biomarker for diagnosis of diabetes mellitus: A systematic review and meta-analysis. World J Clin Cases 2021; 9:9520-9534. [PMID: 34877286 PMCID: PMC8610850 DOI: 10.12998/wjcc.v9.i31.9520] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/04/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Glycated albumin (GA), the non-enzymatic glycation product of albumin in plasma, became a glycemic marker in the beginning of the 21st century. The assay is not affected by hemoglobin levels and reflects the glycemic status over a shorter period as compared to HbA1c measurements. Thus, GA may contributes as an intermediate glucose index in the current diabetes mellitus (DM) diagnostic system.
AIM To search and summarize the available data on glycated albumin measurements required for the diagnosis of diabetes mellitus.
METHODS Databases, including PubMed, Embase, Web of Science, and Cochrane Central Register of Controlled Trials (CENTRAL), among others, were systematically searched. The Quality Assessment of Diagnostic Accuracy Studies-2 tool was applied for the assessment of quality, and the bivariate model was used to pool the sensitivity and specificity. The hierarchical summary receiver operator characteristic curves (HSROC) model was utilized to estimate the summary receiver operating characteristics curve (SROC). Sensitivity analysis was performed to investigate the association of the study design and patient characteristics with the test accuracy and meta-regression to find the source of heterogeneity.
RESULTS Three studies regarding gestational diabetes mellitus (GDM) and a meta-analysis of 16 non-GDM studies, comprising a total sample size of 12876, were included in the work. Results reveal that the average cut-off values of GA reported for the diagnosis of GDM diagnosis was much lower than those for non-GDM. For non-GDM cases, diagnosing DM with a circulating GA cut-off of 14.0% had a sensitivity of 0.766 (95%CI: 0.539, 0.901), specificity of 0.687 (95%CI: 0.364, 0.894), and area under the curve of 0.80 (95%CI: 0.76, 0.83) for the SROC. The estimated SROC at different GA cut-off values for non-GDM exhibited that the average location parameter lambda of 16 non-GDM studies was 2.354 (95%CI: 2.002, 2.707), and the scale parameter beta was -0.163 (95%CI: -0.614, 0.288). These non-GDM studies with various thresholds had substantial heterogeneity, which may be attributed to the type of DM, age, and body mass index as possible sources.
CONCLUSION Glycated albumin in non-DM exhibits a moderate diagnostic accuracy. Further research on the diagnostic accuracy of GA for GDM and combinational measurements of GA and other assays is suggested.
Collapse
Affiliation(s)
- Jia-Yao Xiong
- Department of Endocrinology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Jun-Mei Wang
- Department of Endocrinology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Xiao-Lan Zhao
- Department of Endocrinology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Chao Yang
- Department of Endocrinology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Xian-Shu Jiang
- Department of Endocrinology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Yan-Mei Chen
- Department of Endocrinology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Chang-Qin Chen
- Department of Endocrinology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Zhi-Yong Li
- Department of Endocrinology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| |
Collapse
|
3
|
Brune KD, Liekniņa I, Sutov G, Morris AR, Jovicevic D, Kalniņš G, Kazāks A, Kluga R, Kastaljana S, Zajakina A, Jansons J, Skrastiņa D, Spunde K, Cohen AA, Bjorkman PJ, Morris HR, Suna E, Tārs K. N-Terminal Modification of Gly-His-Tagged Proteins with Azidogluconolactone. Chembiochem 2021; 22:3199-3207. [PMID: 34520613 DOI: 10.1002/cbic.202100381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Indexed: 01/07/2023]
Abstract
Site-specific protein modifications are vital for biopharmaceutical drug development. Gluconoylation is a non-enzymatic, post-translational modification of N-terminal HisTags. We report high-yield, site-selective in vitro α-aminoacylation of peptides, glycoproteins, antibodies, and virus-like particles (VLPs) with azidogluconolactone at pH 7.5 in 1 h. Conjugates slowly hydrolyse, but diol-masking with borate esters inhibits reversibility. In an example, we multimerise azidogluconoylated SARS-CoV-2 receptor-binding domain (RBD) onto VLPs via click-chemistry, to give a COVID-19 vaccine. Compared to yeast antigen, HEK-derived RBD was immunologically superior, likely due to observed differences in glycosylation. We show the benefits of ordered over randomly oriented multimeric antigen display, by demonstrating single-shot seroconversion and best virus-neutralizing antibodies. Azidogluconoylation is simple, fast and robust chemistry, and should accelerate research and development.
Collapse
Affiliation(s)
- Karl D Brune
- Genie Biotech Ltd., Lido Medical Centre, St. Saviour, JE2 7LA, United Kingdom.,Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Ilva Liekniņa
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia
| | - Grigorij Sutov
- Genie Biotech Ltd., Lido Medical Centre, St. Saviour, JE2 7LA, United Kingdom.,Lab Group LT, UAB, Vilnius, Lithuania
| | - Alexander R Morris
- Genie Biotech Ltd., Lido Medical Centre, St. Saviour, JE2 7LA, United Kingdom.,Lab Group LT, UAB, Vilnius, Lithuania.,BioPharmaSpec Ltd., Suite 3.1, Lido Medical Centre, St. Saviour, JE2 7LA, UK
| | - Dejana Jovicevic
- Genie Biotech Ltd., Lido Medical Centre, St. Saviour, JE2 7LA, United Kingdom
| | - Gints Kalniņš
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia
| | - Andris Kazāks
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia
| | - Rihards Kluga
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006, Riga, Latvia.,University of Latvia, Jelgavas 1, 1004, Riga, Latvia
| | - Sabine Kastaljana
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006, Riga, Latvia.,University of Latvia, Jelgavas 1, 1004, Riga, Latvia
| | - Anna Zajakina
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia
| | - Juris Jansons
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia
| | - Dace Skrastiņa
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia
| | - Karīna Spunde
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia
| | - Alexander A Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Howard R Morris
- BioPharmaSpec Ltd., Suite 3.1, Lido Medical Centre, St. Saviour, JE2 7LA, UK.,Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Edgars Suna
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006, Riga, Latvia.,University of Latvia, Jelgavas 1, 1004, Riga, Latvia
| | - Kaspars Tārs
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia.,University of Latvia, Jelgavas 1, 1004, Riga, Latvia
| |
Collapse
|
4
|
Qiu HY, Hou NN, Shi JF, Liu YP, Kan CX, Han F, Sun XD. Comprehensive overview of human serum albumin glycation in diabetes mellitus. World J Diabetes 2021; 12:1057-1069. [PMID: 34326954 PMCID: PMC8311477 DOI: 10.4239/wjd.v12.i7.1057] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/06/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
The presence of excess glucose in blood is regarded as a sweet hurt for patients with diabetes. Human serum albumin (HSA) is the most abundant protein in human plasma, which undergoes severe non-enzymatic glycation with glucose in patients with diabetes; this modifies the structure and function of HSA. Furthermore, the advanced glycation end products produced by glycated HSA can cause pathological damage to the human body through various signaling pathways, eventually leading to complications of diabetes. Many potential glycation sites on HSA have different degrees of sensitivity to glucose concentration. This review provides a comprehensive assessment of the in vivo glycation sites of HSA; it also discusses the effects of glycation on the structure and function of HSA. Moreover, it addresses the relationship between HSA glycation and diabetes complications. Finally, it focuses on the value of non-enzymatic glycation of HSA in diabetes-related clinical applications.
Collapse
Affiliation(s)
- Hong-Yan Qiu
- Department of Endocrinology, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Ning-Ning Hou
- Department of Endocrinology, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Jun-Feng Shi
- Department of Endocrinology, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Yong-Ping Liu
- Department of Endocrinology, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Cheng-Xia Kan
- Department of Endocrinology, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Fang Han
- Department of Pathology, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Xiao-Dong Sun
- Department of Endocrinology, The Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| |
Collapse
|
5
|
Abstract
A hydrogel is a solid form of polymer network absorbed in a substantial amount of aqueous solution. In electrophoresis, hydrogels play versatile roles including as support media, sieving matrixes, affinity scaffolds, and compositions of molecularly imprinting polymers. Recently, the study of hydrogels has been advancing with unprecedented speed, and the application of hydrogels in separation science has brought new opportunities and possible breakthroughs. A good understanding about the roles and effects of the material is essential for hydrogel applications. This review summarizes the hydrogels that has been described in various modes of electrophoretic separations, including isoelectric focusing gel electrophoresis (IEFGE), isotachophoresis (ITP), gel electrophoresis and affinity gel electrophoresis (AGE). As microchip electrophoresis (ME) is one of the future trends in electrophoresis, thought provoking studies related to hydrogels in ME are also introduced. Novel hydrogels and methods that improve separation performance, facilitate the experimental operation process, allow for rapid analysis, and promote the integration to microfluidic devices are highlighted.
Collapse
Affiliation(s)
- Chenchen Liu
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University
| | - Takuya Kubo
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University
| | - Koji Otsuka
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University
| |
Collapse
|
6
|
The impact of technical failures on recombinant production of soluble proteins in Escherichia coli: a case study on process and protein robustness. Bioprocess Biosyst Eng 2021; 44:1049-1061. [PMID: 33491129 PMCID: PMC8144139 DOI: 10.1007/s00449-021-02514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/26/2020] [Indexed: 11/09/2022]
Abstract
Technical failures lead to deviations in process parameters that can exceed studied process boundaries. The impact on cell and target protein is often unknown. However, investigations on common technical failures might yield interesting insights into process and protein robustness. Recently, we published a study on the impact of technical failures on an inclusion body process that showed high robustness due to the inherent stability of IBs. In this follow-up study, we investigated the influence of technical failures during production of two soluble, cytosolic proteins in E. coli BL21(DE3). Cell physiology, productivity and protein quality were analyzed, after technical failures in aeration, substrate supply, temperature and pH control had been triggered. In most cases, cell physiology and productivity recovered during a subsequent regeneration phase. However, our results highlight that some technical failures lead to persistent deviations and affect the quality of purified protein.
Collapse
|
7
|
Zhang CY, Flor S, Ruiz P, Dhakal R, Hu X, Teesch LM, Ludewig G, Lehmler HJ. 3,3'-Dichlorobiphenyl Is Metabolized to a Complex Mixture of Oxidative Metabolites, Including Novel Methoxylated Metabolites, by HepG2 Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12345-12357. [PMID: 32910851 PMCID: PMC7544623 DOI: 10.1021/acs.est.0c03476] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
3,3'-Dichlorobiphenyl (PCB 11) is a byproduct of industrial processes and detected in environmental samples. PCB 11 and its metabolites are present in human serum, and emerging evidence demonstrates that PCB 11 is a developmental neurotoxicant. However, little is known about the metabolism of PCB 11 in humans. Here, we investigated the metabolism of PCB 11 and the associated metabolomics changes in HepG2 cells using untargeted high-resolution mass spectrometry. HepG2 cells were exposed for 24 h to PCB 11 in DMSO or DMSO alone. Cell culture media were analyzed with ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry. Thirty different metabolites were formed by HepG2 cells exposed to 10 μM PCB 11, including monohydroxylated, dihydroxylated, methoxylated-hydroxylated, and methoxylated-dihydroxylated metabolites and the corresponding sulfo and glucuronide conjugates. The methoxylated PCB metabolites were observed for the first time in a human-relevant model. 4-OH-PCB 11 (3,3'-dichlorobiphenyl-4-ol) and the corresponding catechol metabolite, 4,5-di-OH-PCB 11 (3',5-dichloro-3,4-dihydroxybiphenyl), were unambiguously identified based on liquid and gas chromatographic analyses. PCB 11 also altered several metabolic pathways, in particular vitamin B6 metabolism. These results demonstrate that complex PCB 11 metabolite profiles are formed in HepG2 cells that warrant further toxicological investigation, particularly since catechol metabolites are likely reactive and toxic.
Collapse
Affiliation(s)
- Chun-Yun Zhang
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Susanne Flor
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Patricia Ruiz
- Divison of Toxicology and Human Health Sciences, Computational Toxicology and Methods Development Lab, Agency for Toxic Substances and Disease Registry, Atlanta, Georgia 30333, United States
| | - Ram Dhakal
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Xin Hu
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30303, United States
| | - Lynn M. Teesch
- High Resolution Mass Spectrometry Facility, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Gabriele Ludewig
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
8
|
Peri-Naor R, Pode Z, Lahav-Mankovski N, Rabinkov A, Motiei L, Margulies D. Glycoform Differentiation by a Targeted, Self-Assembled, Pattern-Generating Protein Surface Sensor. J Am Chem Soc 2020; 142:15790-15798. [PMID: 32786755 DOI: 10.1021/jacs.0c05644] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A method for generating targeted, pattern-generating, protein surface sensors via the self-assembly of modified oligodeoxynucleotides (ODNs) is described. The simplicity by which these systems can be created enabled the development of a sensor that can straightforwardly discriminate between distinct glycoform populations. By using this sensor to identify glycosylation states of a therapeutic protein, we demonstrate the diagnostic potential of this approach as well as the feasibility of integrating a wealth of supramolecular receptors and sensors into higher-order molecular analytical devices with advanced properties. For example, the facile device integration was used to attach the well-known anthracene-boronic acid (An-BA) probe to a biomimetic DNA scaffold and consequently, to use the unique photophysical properties of An-BA to improve glycoform differentiation. In addition, the noncovalent assembly enabled us to modify the sensor with a trinitrilotriacetic acid (tri-NTA)-Ni2+ complex, which endows it with selectivity toward a hexa-histidine tag (His-tag). The selective responses of the system to diverse His-tag-labeled proteins further demonstrate the potential applicability of such sensors and validate the mechanism underlying their function.
Collapse
Affiliation(s)
- Ronny Peri-Naor
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Zohar Pode
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Naama Lahav-Mankovski
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Aharon Rabinkov
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Leila Motiei
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Margulies
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
9
|
Potential antiglycation, antioxidant and antiproliferative activities of Vicia faba peptides. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00462-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Hu X, Dong D, Xia M, Yang Y, Wang J, Su J, Sun L, Yu H. Oxidative stress and antioxidant capacity: development and prospects. NEW J CHEM 2020. [DOI: 10.1039/d0nj02041a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Signaling pathways regulating redox reactions are activated to balance the redox status and maintain the normal function of cells.
Collapse
Affiliation(s)
- Xiaoqing Hu
- Key Laboratory of Pathobiology
- Ministry of Education
- Department of Pathophysiology
- College of Basic Medical Sciences
- Jilin University
| | - Delu Dong
- Key Laboratory of Pathobiology
- Ministry of Education
- Department of Pathophysiology
- College of Basic Medical Sciences
- Jilin University
| | - Meihui Xia
- The First Hospital of Jilin University
- Changchun 130021
- P. R. China
| | - Yimeng Yang
- Key Laboratory of Pathobiology
- Ministry of Education
- Department of Pathophysiology
- College of Basic Medical Sciences
- Jilin University
| | - Jiabin Wang
- Key Laboratory of Pathobiology
- Ministry of Education
- Department of Pathophysiology
- College of Basic Medical Sciences
- Jilin University
| | - Jing Su
- Key Laboratory of Pathobiology
- Ministry of Education
- Department of Pathophysiology
- College of Basic Medical Sciences
- Jilin University
| | - Liankun Sun
- Key Laboratory of Pathobiology
- Ministry of Education
- Department of Pathophysiology
- College of Basic Medical Sciences
- Jilin University
| | - Huimei Yu
- Key Laboratory of Pathobiology
- Ministry of Education
- Department of Pathophysiology
- College of Basic Medical Sciences
- Jilin University
| |
Collapse
|
11
|
Taylor ER, Cavuoto S, Beal DM, Caujolle S, Podoleanu A, Serpell CJ. Development of Gold-PAGE: towards the electrophoretic analysis of sulphurous biopolymers. J Mater Chem B 2019; 7:5156-5160. [PMID: 31364683 DOI: 10.1039/c9tb00665f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The prevalence, distinctive reactivity and biological significance of sulphur-based groups in proteins and nucleic acids means that analysis of sulphur is of prime importance in biochemistry, biotechnology, and medicine. We report steps in the development of a method to aid in the detection of these moieties using gold nanoparticles as adjuncts in polyacrylamide gel electrophoresis (Gold-PAGE).
Collapse
Affiliation(s)
- Emerald R Taylor
- School of Physical Sciences, University of Kent, Ingram Building, Canterbury, Kent CT2 7NH, UK.
| | - Silvia Cavuoto
- School of Physical Sciences, University of Kent, Ingram Building, Canterbury, Kent CT2 7NH, UK.
| | - David M Beal
- School of Biosciences, University of Kent, Stacey Building, Canterbury, Kent CT2 7NJ, UK
| | - Sophie Caujolle
- School of Physical Sciences, University of Kent, Ingram Building, Canterbury, Kent CT2 7NH, UK.
| | - Adrian Podoleanu
- School of Physical Sciences, University of Kent, Ingram Building, Canterbury, Kent CT2 7NH, UK.
| | - Christopher J Serpell
- School of Physical Sciences, University of Kent, Ingram Building, Canterbury, Kent CT2 7NH, UK.
| |
Collapse
|
12
|
Bunyarataphan S, Dharakul T, Fucharoen S, Paiboonsukwong K, Japrung D. Glycated Albumin Measurement Using an Electrochemical Aptasensor for Screening and Monitoring of Diabetes Mellitus. ELECTROANAL 2019. [DOI: 10.1002/elan.201900264] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sasinee Bunyarataphan
- National Nanotechnology Center (NANOTEC)National Science and Technology Development Agency (NSTDA) Pathumthani 12120 Thailand
| | - Tararaj Dharakul
- Department of ImmunologyFaculty of Medicine Siriraj Hospital, Mahidol University Bangkok Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular BiosciencesMahidol University Nakhon Pathom Thailand
| | - Kittiphong Paiboonsukwong
- Thalassemia Research Center, Institute of Molecular BiosciencesMahidol University Nakhon Pathom Thailand
| | - Deanpen Japrung
- National Nanotechnology Center (NANOTEC)National Science and Technology Development Agency (NSTDA) Pathumthani 12120 Thailand
| |
Collapse
|
13
|
Soboleva A, Mavropulo-Stolyarenko G, Karonova T, Thieme D, Hoehenwarter W, Ihling C, Stefanov V, Grishina T, Frolov A. Multiple Glycation Sites in Blood Plasma Proteins as an Integrated Biomarker of Type 2 Diabetes Mellitus. Int J Mol Sci 2019; 20:ijms20092329. [PMID: 31083443 PMCID: PMC6539793 DOI: 10.3390/ijms20092329] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/14/2019] [Accepted: 05/07/2019] [Indexed: 12/15/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most widely spread metabolic diseases. Because of its asymptomatic onset and slow development, early diagnosis and adequate glycaemic control are the prerequisites for successful T2DM therapy. In this context, individual amino acid residues might be sensitive indicators of alterations in blood glycation levels. Moreover, due to a large variation in the half-life times of plasma proteins, a generalized biomarker, based on multiple glycation sites, might provide comprehensive control of the glycemic status across any desired time span. Therefore, here, we address the patterns of glycation sites in highly-abundant blood plasma proteins of T2DM patients and corresponding age- and gender-matched controls by comprehensive liquid chromatography-mass spectrometry (LC-MS). The analysis revealed 42 lysyl residues, significantly upregulated under hyperglycemic conditions. Thereby, for 32 glycation sites, biomarker behavior was demonstrated here for the first time. The differentially glycated lysines represented nine plasma proteins with half-lives from 2 to 21 days, giving access to an integrated biomarker based on multiple protein-specific Amadori peptides. The validation of this biomarker relied on linear discriminant analysis (LDA) with random sub-sampling of the training set and leave-one-out cross-validation (LOOCV), which resulted in an accuracy, specificity, and sensitivity of 92%, 100%, and 85%, respectively.
Collapse
Affiliation(s)
- Alena Soboleva
- Department of Biochemistry, St. Petersburg State University, 199034 Saint Petersburg, Russia.
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany.
| | | | - Tatiana Karonova
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia.
- Department of Faculty Therapy, The First Pavlov St. Petersburg State Medical University, 197022 Saint Petersburg, Russia.
| | - Domenika Thieme
- Proteome Analytics Research Group, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany.
| | - Wolfgang Hoehenwarter
- Proteome Analytics Research Group, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany.
| | - Christian Ihling
- Institute of Pharmacy, Martin Luther University of Halle-Wittenberg, D-06120 Halle (Saale), Germany.
| | - Vasily Stefanov
- Department of Biochemistry, St. Petersburg State University, 199034 Saint Petersburg, Russia.
| | - Tatiana Grishina
- Department of Biochemistry, St. Petersburg State University, 199034 Saint Petersburg, Russia.
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University, 199034 Saint Petersburg, Russia.
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany.
| |
Collapse
|
14
|
Pereira Morais MP, Kassaar O, Flower SE, Williams RJ, James TD, van den Elsen JMH. Analysis of Protein Glycation Using Phenylboronate Acrylamide Gel Electrophoresis. Methods Mol Biol 2019; 1855:161-175. [PMID: 30426417 DOI: 10.1007/978-1-4939-8793-1_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Carbohydrate modification of proteins adds complexity and diversity to the proteome. However, undesired carbohydrate modifications also occur in the form of glycation, which have been implicated in diseases such as diabetes, Alzheimer's disease, autoimmune diseases, and cancer. The analysis of glycated proteins is challenging due to their complexity and variability. Numerous analytical techniques have been developed that require expensive specialized equipment and complex data analysis. In this chapter, we describe two easy-to-use electrophoresis-based methods that will enable researchers to detect, identify, and analyze these posttranslational modifications. This new cost-effective methodology will aid the detection of unwanted glycation products in processed foods and may lead to new diagnostics and therapeutics for age-related chronic diseases.
Collapse
Affiliation(s)
| | - Omar Kassaar
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | | | - Robert J Williams
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, UK
| | | |
Collapse
|
15
|
Greer SM, Sidoli S, Coradin M, Schack Jespersen M, Schwämmle V, Jensen ON, Garcia BA, Brodbelt JS. Extensive Characterization of Heavily Modified Histone Tails by 193 nm Ultraviolet Photodissociation Mass Spectrometry via a Middle-Down Strategy. Anal Chem 2018; 90:10425-10433. [PMID: 30063333 PMCID: PMC6383154 DOI: 10.1021/acs.analchem.8b02320] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The ability to map combinatorial patterns of post-translational modifications (PTMs) of proteins remains challenging for traditional bottom-up mass spectrometry workflows. There are also hurdles associated with top-down approaches related to limited data analysis options for heavily modified proteoforms. These shortcomings have accelerated interest in middle-down MS methods that focus on analysis of large peptides generated by specific proteases in conjunction with validated bioinformatics strategies to allow quantification of isomeric histoforms. Mapping multiple PTMs simultaneously requires the ability to obtain high sequence coverage to allow confident localization of the modifications, and 193 nm ultraviolet photodissociation (UVPD) has been shown to cause extensive fragmentation for large peptides and proteins. Histones are an ideal system to test the ability of UVPD to characterize multiple modifications, as the combinations of PTMs are the underpinning of the biological significance of histones and at the same time create an imposing challenge for characterization. The present study focuses on applying 193 nm UVPD to the identification and localization of PTMs on histones by UVPD and comparison to a popular alternative, electron-transfer dissociation (ETD), via a high-throughput middle-down LC/MS/MS strategy. Histone Coder and IsoScale, bioinformatics tools for verification of PTM assignments and quantification of histone peptides, were adapted for UVPD data and applied in the present study. In total, over 300 modified forms were identified, and the distributions of PTMs were quantified between UVPD and ETD. Significant differences in patterns of PTMs were found for histones from HeLa cells prior to and after treatment with a deacetylase inhibitor. Additional fragment ion types generated by UVPD proved essential for extensive characterization of the most heavily modified forms (>5 PTMs).
Collapse
Affiliation(s)
- Sylvester M Greer
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Simone Sidoli
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Mariel Coradin
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Malena Schack Jespersen
- Department of Biochemistry and Molecular Biology , University of Southern Denmark , DK-5230 Odense , Denmark
| | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology , University of Southern Denmark , DK-5230 Odense , Denmark
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology , University of Southern Denmark , DK-5230 Odense , Denmark
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Jennifer S Brodbelt
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
16
|
Maciążek-Jurczyk M, Szkudlarek A, Chudzik M, Pożycka J, Sułkowska A. Alteration of human serum albumin binding properties induced by modifications: A review. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 188:675-683. [PMID: 28526195 DOI: 10.1016/j.saa.2017.05.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/23/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
Albumin, a major transporting protein in the blood, is the main target of modification that affects the binding of drugs to Sudlow's site I and II. These modification of serum protein moderates its physiological function, and works as a biomarker of some diseases. The main goal of the paper was to explain the possible alteration of human serum albumin binding properties induced by modifications such as glycation, oxidation and ageing, their origin, methods of evaluation and positive and negative meaning described by significant researchers.
Collapse
Affiliation(s)
- Małgorzata Maciążek-Jurczyk
- School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Chair and Department of Physical Pharmacy, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Agnieszka Szkudlarek
- School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Chair and Department of Physical Pharmacy, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Mariola Chudzik
- School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Chair and Department of Physical Pharmacy, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Jadwiga Pożycka
- School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Chair and Department of Physical Pharmacy, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Anna Sułkowska
- Silesian Medical College in Katowice, Mickiewicza 29, 40-085 Katowice, Poland
| |
Collapse
|
17
|
Ex vivo instability of glycated albumin: A role for autoxidative glycation. Arch Biochem Biophys 2017; 629:36-42. [PMID: 28712850 DOI: 10.1016/j.abb.2017.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 11/23/2022]
Abstract
Ex vivo protein modifications occur within plasma and serum (P/S) samples due to prolonged exposure to the thawed state-which includes temperatures above -30 °C. Herein, the ex vivo glycation of human serum albumin from healthy and diabetic subjects was monitored in P/S samples stored for hours to months at -80 °C, -20 °C, and room temperature, as well as in samples subjected to multiple freeze-thaw cycles, incubated at different surface area-to-volume ratios or under different atmospheric compositions. A simple dilute-and-shoot method utilizing trap-and-elute LC-ESI-MS was employed to determine the relative abundances of the glycated forms of albumin-including forms of albumin bearing more than one glucose molecule. Significant increases in glycated albumin were found to occur within hours at room temperature, and within days at -20 °C. These increases continued over a period of 1-2 weeks at room temperature and over 200 days at -20 °C, ultimately resulting in a doubling of glycated albumin in both healthy and diabetic patients. It was also shown that samples stored at lower surface area-to-volume ratios or incubated under a nitrogen atmosphere experienced less rapid glucose adduction of albumin-suggesting a role for oxidative glycation in the ex vivo glycation of albumin.
Collapse
|
18
|
Kassaar O, Pereira Morais M, Xu S, Adam EL, Chamberlain RC, Jenkins B, James TD, Francis PT, Ward S, Williams RJ, van den Elsen J. Macrophage Migration Inhibitory Factor is subjected to glucose modification and oxidation in Alzheimer's Disease. Sci Rep 2017; 7:42874. [PMID: 28230058 PMCID: PMC5322340 DOI: 10.1038/srep42874] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/16/2017] [Indexed: 01/04/2023] Open
Abstract
Glucose and glucose metabolites are able to adversely modify proteins through a non-enzymatic reaction called glycation, which is associated with the pathology of Alzheimer's Disease (AD) and is a characteristic of the hyperglycaemia induced by diabetes. However, the precise protein glycation profile that characterises AD is poorly defined and the molecular link between hyperglycaemia and AD is unknown. In this study, we define an early glycation profile of human brain using fluorescent phenylboronate gel electrophoresis and identify early glycation and oxidation of macrophage migration inhibitory factor (MIF) in AD brain. This modification inhibits MIF enzyme activity and ability to stimulate glial cells. MIF is involved in immune response and insulin regulation, hyperglycaemia, oxidative stress and glycation are all implicated in AD. Our study indicates that glucose modified and oxidised MIF could be a molecular link between hyperglycaemia and the dysregulation of the innate immune system in AD.
Collapse
Affiliation(s)
- Omar Kassaar
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, U.K
| | | | - Suying Xu
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, U.K
| | - Emily L Adam
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, U.K
| | | | - Bryony Jenkins
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, U.K
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, U.K
| | - Paul T Francis
- Institute of Psychiatry, Psychology &Neuroscience, Wolfson Centre for Age Related Diseases, King's College London, London, SE1 1UL, U.K
| | - Stephen Ward
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, U.K
| | - Robert J Williams
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, U.K
| | - Jean van den Elsen
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, U.K
| |
Collapse
|
19
|
Soboleva A, Modzel M, Didio A, Płóciennik H, Kijewska M, Grischina T, Karonova T, Bilova T, Stefanov V, Stefanowicz P, Frolov A. Quantification of prospective type 2 diabetes mellitus biomarkers by stable isotope dilution with bi-labeled standard glycated peptides. ANALYTICAL METHODS 2017; 9:409-418. [DOI: 10.1039/c6ay02483a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
A new analytical approach is proposed for quantification of multiple glycated peptides in human plasma tryptic digests.
Collapse
Affiliation(s)
- Alena Soboleva
- Department of Biochemistry
- St. Petersburg State University
- Russian Federation
- Department of Bioorganic Chemistry
- Leibniz Institute of Plant Biochemistry
| | | | - Anna Didio
- Department of Biochemistry
- St. Petersburg State University
- Russian Federation
- Department of Bioorganic Chemistry
- Leibniz Institute of Plant Biochemistry
| | | | | | - Tatiana Grischina
- Department of Biochemistry
- St. Petersburg State University
- Russian Federation
| | - Tatiana Karonova
- Federal Almazov North-West Medical Research Centre
- Russian Federation
- The First Pavlov St. Petersburg State Medical University
- Russian Federation
| | - Tatiana Bilova
- Department of Plant Physiology and Biochemistry
- St. Petersburg State University
- Russian Federation
| | - Vasily Stefanov
- Department of Biochemistry
- St. Petersburg State University
- Russian Federation
| | | | - Andrej Frolov
- Department of Bioorganic Chemistry
- Leibniz Institute of Plant Biochemistry
- Halle/Saale
- Germany
| |
Collapse
|
20
|
Nübel G, Sorgenfrei FA, Jäschke A. Boronate affinity electrophoresis for the purification and analysis of cofactor-modified RNAs. Methods 2016; 117:14-20. [PMID: 27645507 DOI: 10.1016/j.ymeth.2016.09.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/07/2016] [Accepted: 09/15/2016] [Indexed: 12/25/2022] Open
Abstract
RNA modifications are widely distributed in Nature, and their thorough analysis helps answering fundamental biological questions. Nowadays, mass spectrometry or deep-sequencing methods are often used for the analysis. With the raising number of newly discovered RNA modifications, such as the 5'-NAD cap in Escherichia coli, there is an important need for new, less complex and fast analytical tools to analyze the occurrence, amount, and distribution of modified RNAs in cells. To accomplish this task, we have revisited the previously developed affinity gel electrophoresis principles and copolymerized acryloylaminophenyl boronic acid (APB) in standard denaturing polyacrylamide gels to retard the NAD- or FAD-modified RNAs compared to the unmodified RNAs in the gels. The boronyl groups inside the gel form relatively stable complexes with 1,2-cis diols, occurring naturally at the 3'-end of RNA, and also in the nicotinamide riboside of NAD-modified RNA at the 5'-end. The transient formation of diesters between the immobilized boronic acid and the diols causes lower mobility of the modified RNAs, compared to unmodified RNAs, resulting in two distinct bands for one RNA sequence. We used APB affinity gel electrophoresis to preparatively purify in vitro transcribed NAD-RNA from triphosphorylated RNA, to study the enzyme kinetics of the NAD-RNA decapping enzyme NudC, and to determine the NAD modification ratios of various cellular sRNAs. In summary, APB affinity gels can be used to study cofactor-modified RNAs with low amounts of material, and to rapidly screen for their occurrence in total RNA while avoiding complex sample treatments.
Collapse
Affiliation(s)
- Gabriele Nübel
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, 69120 Heidelberg, Germany.
| | - Frieda A Sorgenfrei
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, 69120 Heidelberg, Germany.
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
21
|
James TD. Self and directed assembly: people and molecules. Beilstein J Org Chem 2016; 12:391-405. [PMID: 27340435 PMCID: PMC4902004 DOI: 10.3762/bjoc.12.42] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/07/2016] [Indexed: 11/23/2022] Open
Abstract
Self-assembly and directed-assembly are two very important aspects of supramolecular chemistry. As a young postgraduate student working in Canada with Tom Fyles my introduction to Supramolecular Chemistry was through the self-assembly of phospholipid membranes to form vesicles for which we were developing unimolecular and self-assembling transporter molecules. The next stage of my development as a scientist was in Japan with Seiji Shinkai where in a “Eureka” moment, the boronic acid templating unit (directed-assembly) of Wulff was combined with photoinduced electron transfer systems pioneered by De Silva. The result was a turn-on fluorescence sensor for saccharides; this simple result has continued to fuel my research to the present day. Throughout my career as well as assembling molecules, I have enjoyed bringing together researchers in order to develop collaborative networks. This is where molecules meet people resulting in assemblies worth more than the individual “molecule” or “researcher”. My role in developing networks with Japan was rewarded by the award of a Daiwa-Adrian Prize in 2013 and I was recently rewarded for developing networks with China with an Inaugural CASE Prize in 2015.
Collapse
Affiliation(s)
- Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY UK
| |
Collapse
|
22
|
Ensemble Modeling and Intracellular Aggregation of an Engineered Immunoglobulin-Like Domain. J Mol Biol 2016; 428:1365-1374. [DOI: 10.1016/j.jmb.2016.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/28/2016] [Accepted: 02/12/2016] [Indexed: 11/21/2022]
|
23
|
Sun X, Zhai W, Fossey JS, James TD. Boronic acids for fluorescence imaging of carbohydrates. Chem Commun (Camb) 2016; 52:3456-69. [DOI: 10.1039/c5cc08633g] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbohydrate biomarkers are particularly important targets for fluorescence imaging given their pivotal role in numerous important biological events. This review highlights the development of fluorescence imaging agents based on boronic acids.
Collapse
Affiliation(s)
| | - Wenlei Zhai
- School of Chemistry
- University of Birmingham
- Birmingham
- UK
| | | | | |
Collapse
|
24
|
Ashraf JM, Ahmad S, Choi I, Ahmad N, Farhan M, Tatyana G, Shahab U. Recent advances in detection of AGEs: Immunochemical, bioanalytical and biochemical approaches. IUBMB Life 2015; 67:897-913. [PMID: 26597014 DOI: 10.1002/iub.1450] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/14/2015] [Indexed: 12/15/2022]
Abstract
Advanced glycation end products (AGEs) are a cohort of heterogeneous compounds that are formed after the nonenzymatic glycation of proteins, lipids and nucleic acids. Accumulation of AGEs in the body is implicated in various pathophysiological conditions like diabetes, cardiovascular diseases and atherosclerosis. Numerous studies have reported the connecting link between AGEs and the various complications associated with diseases. Hence, detection and measurement of AGEs becomes centrally important to understand and manage the menace created by AGEs inside the body. In recent years, an increasing number of immunotechniques as well as bioanalytical techniques have been developed to efficiently measure the levels of AGEs, but most of them are still far away from being clinically consistent, as relative disparity and ambiguity masks their standardization. This article is designed to critically review the recent advances and the emerging techniques for detection of AGEs. It is an attempt to summarize the major techniques that exist currently for the detection of AGEs both qualitatively and quantitatively. This review primarily focuses on the detection and quantification of AGEs which are formed in vivo. Immunochemical approach though costly but most effective and accurate method to measure the level of AGEs. Literature review suggests that detection of autoantibody targeting AGEs is a promising way that can be utilized for detection of AGEs. Future research efforts should be dedicated to develop this method in order to push forward the clinical applications of detection of AGEs.
Collapse
Affiliation(s)
| | - Saheem Ahmad
- Laboratory of Glycation Biology and Metabolic Disorder, Integral Research Centre-I, Department of Bio-Sciences, Integral University, Lucknow, UP, India
| | - Inho Choi
- School of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Nashrah Ahmad
- Laboratory of Glycation Biology and Metabolic Disorder, Integral Research Centre-I, Department of Bio-Sciences, Integral University, Lucknow, UP, India
| | - Mohd Farhan
- Laboratory of Glycation Biology and Metabolic Disorder, Integral Research Centre-I, Department of Bio-Sciences, Integral University, Lucknow, UP, India
| | - Godovikova Tatyana
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Uzma Shahab
- Department of Biochemistry, King George Medical University, Lucknow, India
| |
Collapse
|
25
|
Affiliation(s)
- Xiaolong Sun
- Department
of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| |
Collapse
|
26
|
Baraka-Vidot J, Planesse C, Meilhac O, Militello V, van den Elsen J, Bourdon E, Rondeau P. Glycation Alters Ligand Binding, Enzymatic, and Pharmacological Properties of Human Albumin. Biochemistry 2015; 54:3051-62. [DOI: 10.1021/acs.biochem.5b00273] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jennifer Baraka-Vidot
- Inserm, UMR 1188 Diabète athérothrombose Thérapies
Réunion Océan Indien (DéTROI), plateforme CYROI, F-97490 Sainte-Clotilde, France
- Université de La Réunion, UMR 1188, F-97490 Sainte-Clotilde, France
| | - Cynthia Planesse
- Inserm, UMR 1188 Diabète athérothrombose Thérapies
Réunion Océan Indien (DéTROI), plateforme CYROI, F-97490 Sainte-Clotilde, France
- Université de La Réunion, UMR 1188, F-97490 Sainte-Clotilde, France
| | - Olivier Meilhac
- Inserm, UMR 1188 Diabète athérothrombose Thérapies
Réunion Océan Indien (DéTROI), plateforme CYROI, F-97490 Sainte-Clotilde, France
- Université de La Réunion, UMR 1188, F-97490 Sainte-Clotilde, France
- CHU de La Réunion, Centre d’Investigation
Clinique, F-97400 Saint-Denis, France
| | - Valeria Militello
- Dipartimento
di Fisica-Chimica, Università di Palermo, 90128 Palermo, Italy
| | - Jean van den Elsen
- Department
of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Emmanuel Bourdon
- Inserm, UMR 1188 Diabète athérothrombose Thérapies
Réunion Océan Indien (DéTROI), plateforme CYROI, F-97490 Sainte-Clotilde, France
- Université de La Réunion, UMR 1188, F-97490 Sainte-Clotilde, France
| | - Philippe Rondeau
- Inserm, UMR 1188 Diabète athérothrombose Thérapies
Réunion Océan Indien (DéTROI), plateforme CYROI, F-97490 Sainte-Clotilde, France
- Université de La Réunion, UMR 1188, F-97490 Sainte-Clotilde, France
| |
Collapse
|
27
|
Abbas G, Al-Harrasi AS, Hussain H, Hussain J, Rashid R, Choudhary MI. Antiglycation therapy: Discovery of promising antiglycation agents for the management of diabetic complications. PHARMACEUTICAL BIOLOGY 2015; 54:198-206. [PMID: 25853955 DOI: 10.3109/13880209.2015.1028080] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT During diabetes mellitus, non-enzymatic reaction between amino groups of protein and carbonyl of reducing sugars (Millard reaction) is responsible for the major diabetic complications. Various efforts have been made to influence the process of protein glycation. OBJECTIVES This review article provides an extensive survey of various studies published in scientific literature to understand the process of protein glycation and its measurement. Moreover, evaluation and identification of potential inhibitors (antiglycation agents) of protein glycation from natural and synthetic sources and their mechanism of action in vitro and in vivo are also addressed. METHOD In this review article, the mechanism involved in the formation of advanced glycation end products (AGEs) is discussed, while in second and third parts, promising antiglycation agents of natural and synthetic sources have been reviewed, respectively. Finally, in vivo studies have been addressed. This review is mainly compiled from important databases such as Science, Direct, Chemical Abstracts, SciFinder, and PubMed. RESULTS During the last two decades, various attempts have been made to inhibit the process of protein glycation. New potent inhibitors of protein glycation belonging to different classes such as flavonoids, alkaloids, terpenes, benzenediol Schiff bases, substituted indol, and thio compounds have been identified. CONCLUSION Antiglycation therapy will be an effective strategy in future to prevent the formation of AGEs for the management of late diabetic complications Current review article highlighted various compounds of natural and synthetic origins identified previously to inhibit the protein glycation and formation of AGEs in vitro and in vivo.
Collapse
Affiliation(s)
- Ghulam Abbas
- a Department of Biological Sciences and Chemistry , University of Nizwa , Nizwa , Sultanate of Oman
- b UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of Nizwa , Nizwa , Sultanate of Oman
| | - Ahmed Sulaiman Al-Harrasi
- b UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of Nizwa , Nizwa , Sultanate of Oman
| | - Hidayat Hussain
- b UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of Nizwa , Nizwa , Sultanate of Oman
| | - Javid Hussain
- a Department of Biological Sciences and Chemistry , University of Nizwa , Nizwa , Sultanate of Oman
| | - Rehana Rashid
- c Department of Chemistry , COMSATS Institute of Information Technology , Abbottabad , Pakistan , and
| | - M Iqbal Choudhary
- d HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi , Karachi , Pakistan
| |
Collapse
|
28
|
Kinoshita E, Kinoshita-Kikuta E, Koike T. The Cutting Edge of Affinity Electrophoresis Technology. Proteomes 2015; 3:42-55. [PMID: 28248262 PMCID: PMC5302491 DOI: 10.3390/proteomes3010042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 01/26/2015] [Accepted: 03/11/2015] [Indexed: 11/16/2022] Open
Abstract
Affinity electrophoresis is an important technique that is widely used to separate and analyze biomolecules in the fields of biology and medicine. Both quantitative and qualitative information can be gained through affinity electrophoresis. Affinity electrophoresis can be applied through a variety of strategies, such as mobility shift electrophoresis, charge shift electrophoresis or capillary affinity electrophoresis. These strategies are based on changes in the electrophoretic patterns of biological macromolecules that result from interactions or complex-formation processes that induce changes in the size or total charge of the molecules. Nucleic acid fragments can be characterized through their affinity to other molecules, for example transcriptional factor proteins. Hydrophobic membrane proteins can be identified by means of a shift in the mobility induced by a charged detergent. The various strategies have also been used in the estimation of association/disassociation constants. Some of these strategies have similarities to affinity chromatography, in that they use a probe or ligand immobilized on a supported matrix for electrophoresis. Such methods have recently contributed to profiling of major posttranslational modifications of proteins, such as glycosylation or phosphorylation. Here, we describe advances in analytical techniques involving affinity electrophoresis that have appeared during the last five years.
Collapse
Affiliation(s)
- Eiji Kinoshita
- Department of Functional Molecular Science, Institute of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Hiroshima 734-8553, Japan.
| | - Emiko Kinoshita-Kikuta
- Department of Functional Molecular Science, Institute of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Hiroshima 734-8553, Japan.
| | - Tohru Koike
- Department of Functional Molecular Science, Institute of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Hiroshima 734-8553, Japan.
| |
Collapse
|
29
|
Danese E, Montagnana M, Nouvenne A, Lippi G. Advantages and pitfalls of fructosamine and glycated albumin in the diagnosis and treatment of diabetes. J Diabetes Sci Technol 2015; 9:169-76. [PMID: 25591856 PMCID: PMC4604592 DOI: 10.1177/1932296814567227] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The efficient diagnosis and accurate monitoring of diabetic patients are cornerstones for reducing the risk of diabetic complications. The current diagnostic and prognostic strategies in diabetes are mainly based on two tests, plasma (or capillary) glucose and glycated hemoglobin (HbA1c). Nevertheless, these measures are not foolproof, and their clinical usefulness is biased by a number of clinical and analytical factors. The introduction of other indices of glucose homeostasis in clinical practice such as fructosamine and glycated albumin (GA) may be regarded as an attractive alternative, especially in patients in whom the measurement of HbA1c may be biased or even unreliable. These include patients with rapid changes of glucose homeostasis and larger glycemic excursions, and patients with red blood cell disorders and renal disease. According to available evidence, the overall diagnostic efficiency of GA seems superior to that of fructosamine throughout a broad range of clinical settings. The current method for measuring GA is also better standardized and less vulnerable to preanalytical variables than those used for assessing fructosamine. Additional advantages of GA over HbA1c are represented by lower reagent cost and being able to automate the GA analysis on many conventional laboratory instruments. Although further studies are needed to definitely establish that GA can complement or even replace conventional measures of glycemic control such as HbA1c, GA may help the clinical management of patients with diabetes in whom HbA1c values might be unreliable.
Collapse
Affiliation(s)
- Elisa Danese
- Department of Life and Reproduction Sciences, Laboratory of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Martina Montagnana
- Department of Life and Reproduction Sciences, Laboratory of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Antonio Nouvenne
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Giuseppe Lippi
- Laboratory of Clinical Chemistry and Hematology, Academic Hospital of Parma, Parma, Italy
| |
Collapse
|
30
|
Havlikova M, Zatloukalova M, Ulrichova J, Dobes P, Vacek J. Electrocatalytic assay for monitoring methylglyoxal-mediated protein glycation. Anal Chem 2015; 87:1757-63. [PMID: 25539570 DOI: 10.1021/ac503705d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein glycation is a complex process that plays an important role in diabetes mellitus, aging, and the regulation of protein function in general. As a result, current methodological research on proteins is focused on the development of novel approaches for investigating glycation and the possibility of monitoring its modulation and selective inhibition. In this paper, a first sensing strategy for protein glycation is proposed, based on protein electroactivity measurement. Concretely, the label-free method proposed is based on the application of a constant-current chronopotentiometric stripping (CPS) analysis at Hg-containing electrodes. The glycation process was monitored as the decrease in the electrocatalytic protein signal, peak H, observed at highly negative potentials at around -1.8 V (vs Ag/AgCl3 M KCl), which was previously ascribed to a catalytic hydrogen evolution reaction (CHER). Using this method, a model protein bovine serum albumin was investigated over 3 days of incubation with the glycation agent methylglyoxal in the absence or presence of the glycation inhibitor aminoguanidine (pimagedine). The electrochemical methodology presented here could open up new possibilities in research on protein glycation and oxidative modification. The methodology developed also provides a new option for the analysis of protein intermolecular interactions using electrochemical sensors, which was demonstrated by the application of a silver solid amalgam electrode (AgSAE) for monitoring the glycation process in samples of bovine serum albumin, human serum albumin, and lysozyme.
Collapse
Affiliation(s)
- Marika Havlikova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University , Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | | | | | | | | |
Collapse
|
31
|
Abstract
In vivo modification of proteins by molecules with reactive carbonyl groups leads to intermediate and advanced glycation end products (AGE). Glucose is a significant glycation reagent due to its high physiological concentration and poorly controlled diabetics show increased albumin glycation. Increased levels of glycated and AGE-modified albumin have been linked to diabetic complications, neurodegeneration, and vascular disease. This review discusses glycated albumin formation, structural consequences of albumin glycation on drug binding, removal of circulating AGE by several scavenger receptors, as well as AGE-induced proinflammatory signaling through activation of the receptor for AGE. Analytical methods for quantitative detection of protein glycation and AGE formation are compared. Finally, the use of glycated albumin as a novel clinical marker to monitor glycemic control is discussed and compared to glycated hemoglobin (HbA1c) as long-term indicator of glycemic status.
Collapse
|
32
|
Zhang Y, Zhang C, Jiang H, Yang P, Lu H. Fishing the PTM proteome with chemical approaches using functional solid phases. Chem Soc Rev 2015; 44:8260-87. [DOI: 10.1039/c4cs00529e] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Currently available chemical approaches for the enrichment and separation of a PTM proteome using functional solid phases were reviewed.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Chemistry and Institutes of Biomedical Sciences
- Fudan University
- Shanghai 200032
- P. R. China
- Key Laboratory of Glycoconjugates Research Ministry of Public Health
| | - Cheng Zhang
- Department of Chemistry and Institutes of Biomedical Sciences
- Fudan University
- Shanghai 200032
- P. R. China
| | - Hucong Jiang
- Department of Chemistry and Institutes of Biomedical Sciences
- Fudan University
- Shanghai 200032
- P. R. China
| | - Pengyuan Yang
- Department of Chemistry and Institutes of Biomedical Sciences
- Fudan University
- Shanghai 200032
- P. R. China
| | - Haojie Lu
- Department of Chemistry and Institutes of Biomedical Sciences
- Fudan University
- Shanghai 200032
- P. R. China
- Key Laboratory of Glycoconjugates Research Ministry of Public Health
| |
Collapse
|
33
|
Xu Z, Uddin KM, Kamra T, Schnadt J, Ye L. Fluorescent boronic acid polymer grafted on silica particles for affinity separation of saccharides. ACS APPLIED MATERIALS & INTERFACES 2014; 6:1406-14. [PMID: 24444898 PMCID: PMC3963438 DOI: 10.1021/am405531n] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 01/20/2014] [Indexed: 05/06/2023]
Abstract
Boronic acid affinity gels are important for effective separation of biological active cis-diols, and are finding applications both in biotech industry and in biomedical research areas. To increase the efficacy of boronate affinity separation, it is interesting to introduce repeating boronic acid units in flexible polymer chains attached on solid materials. In this work, we synthesize polymer brushes containing boronic acid repeating units on silica gels using surface-initiated atom transfer radical polymerization (ATRP). A fluorescent boronic acid monomer is first prepared from an azide-tagged fluorogenic boronic acid and an alkyne-containing acrylate by Cu(I)-catalyzed 1,3-dipolar cycloaddition reaction (the CuAAC click chemistry). The boronic acid monomer is then grafted to the surface of silica gel modified with an ATRP initiator. The obtained composite material contains boronic acid polymer brushes on surface and shows favorable saccharide binding capability under physiological pH conditions, and displays interesting fluorescence intensity change upon binding fructose and glucose. In addition to saccharide binding, the flexible polymer brushes on silica also enable fast separation of a model glycoprotein based on selective boronate affinity interaction. The synthetic approach and the composite functional material developed in this work should open new opportunities for high efficiency detection, separation, and analysis of not only simple saccharides, but also glycopeptides and large glycoproteins.
Collapse
Affiliation(s)
- Zhifeng Xu
- Division of Pure and Applied Biochemistry, Lund University, Box
124, 221 00 Lund, Sweden
- Department of Chemistry and Material Science, Hengyang Normal University, Hengyang, Hunan 421008, China
- Key Laboratory of
Functional Organometallic Materials, College
of Hunan Province, Hengyang, Hunan 421008, China
| | | | - Tripta Kamra
- Division of Pure and Applied Biochemistry, Lund University, Box
124, 221 00 Lund, Sweden
- Division of Synchrotron Radiation Research, Lund University, Box
118, 221 00 Lund, Sweden
| | - Joachim Schnadt
- Division of Synchrotron Radiation Research, Lund University, Box
118, 221 00 Lund, Sweden
| | - Lei Ye
- Division of Pure and Applied Biochemistry, Lund University, Box
124, 221 00 Lund, Sweden
| |
Collapse
|
34
|
Kulkarni MJ, Korwar AM, Mary S, Bhonsle HS, Giri AP. Glycated proteome: from reaction to intervention. Proteomics Clin Appl 2014. [PMID: 23184864 DOI: 10.1002/prca.201200101] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glycation, a nonenzymatic reaction between reducing sugars and proteins, is a proteome wide phenomenon, predominantly observed in diabetes due to hyperglycemia. Glycated proteome of plasma, kidney, lens, and brain are implicated in the pathogenesis of various diseases, including diabetic complications, neurodegenerative diseases, cancer, and aging. This review discusses the strategies to characterize protein glycation, its functional implications in different diseases, and intervention strategies to protect the deleterious effects of protein glycation.
Collapse
Affiliation(s)
- Mahesh J Kulkarni
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.
| | | | | | | | | |
Collapse
|
35
|
Arena S, Salzano AM, Renzone G, D'Ambrosio C, Scaloni A. Non-enzymatic glycation and glycoxidation protein products in foods and diseases: an interconnected, complex scenario fully open to innovative proteomic studies. MASS SPECTROMETRY REVIEWS 2014; 33:49-77. [PMID: 24114996 DOI: 10.1002/mas.21378] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/09/2013] [Accepted: 03/09/2013] [Indexed: 06/02/2023]
Abstract
The Maillard reaction includes a complex network of processes affecting food and biopharmaceutical products; it also occurs in living organisms and has been strictly related to cell aging, to the pathogenesis of several (chronic) diseases, such as diabetes, uremia, cataract, liver cirrhosis and various neurodegenerative pathologies, as well as to peritoneal dialysis treatment. Dozens of compounds are involved in this process, among which a number of protein-adducted derivatives that have been simplistically defined as early, intermediate and advanced glycation end-products. In the last decade, various bottom-up proteomic approaches have been successfully used for the identification of glycation/glycoxidation protein targets as well as for the characterization of the corresponding adducts, including assignment of the modified amino acids. This article provides an updated overview of the mass spectrometry-based procedures developed to this purpose, emphasizing their partial limits with respect to current proteomic approaches for the analysis of other post-translational modifications. These limitations are mainly related to the concomitant sheer diversity, chemical complexity, and variable abundance of the various derivatives to be characterized. Some challenges to scientists are finally proposed for future proteomic investigations to solve main drawbacks in this research field.
Collapse
Affiliation(s)
- Simona Arena
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147, Naples, Italy
| | | | | | | | | |
Collapse
|
36
|
Applications of organoboron compounds in carbohydrate chemistry and glycobiology: analysis, separation, protection, and activation. Carbohydr Res 2013; 381:112-22. [DOI: 10.1016/j.carres.2013.09.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 01/05/2023]
|
37
|
Protein glycation during aging and in cardiovascular disease. J Proteomics 2013; 92:248-59. [DOI: 10.1016/j.jprot.2013.05.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/08/2013] [Accepted: 05/12/2013] [Indexed: 01/11/2023]
|
38
|
Analysis of protein glycation using fluorescent phenylboronate gel electrophoresis. Sci Rep 2013; 3:1437. [PMID: 23531746 PMCID: PMC3609018 DOI: 10.1038/srep01437] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/04/2013] [Indexed: 11/17/2022] Open
Abstract
Glycated proteins are important biomarkers for age-related disorders, however their analysis is challenging because of the complexity of the protein-carbohydrate adducts. Here we report a method that enables the detection and identification of individual glycated proteins in complex samples using fluorescent boronic acids in gel electrophoresis. Using this method we identified glycated proteins in human serum, insect hemolymph and mouse brain homogenates, confirming this technique as a powerful proteomics tool that can be used for the identification of potential disease biomarkers.
Collapse
|
39
|
Busseron E, Ruff Y, Moulin E, Giuseppone N. Supramolecular self-assemblies as functional nanomaterials. NANOSCALE 2013; 5:7098-140. [PMID: 23832165 DOI: 10.1039/c3nr02176a] [Citation(s) in RCA: 502] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In this review, we survey the diversity of structures and functions which are encountered in advanced self-assembled nanomaterials. We highlight their flourishing implementations in three active domains of applications: biomedical sciences, information technologies, and environmental sciences. Our main objective is to provide the reader with a concise and straightforward entry to this broad field by selecting the most recent and important research articles, supported by some more comprehensive reviews to introduce each topic. Overall, this compilation illustrates how, based on the rules of supramolecular chemistry, the bottom-up approach to design functional objects at the nanoscale is currently producing highly sophisticated materials oriented towards a growing number of applications with high societal impact.
Collapse
Affiliation(s)
- Eric Busseron
- SAMS Research Group, University of Strasbourg, Institut Charles Sadron, CNRS, 23 rue du Loess, BP 84087, 67034 Strasbourg Cedex 2, France
| | | | | | | |
Collapse
|
40
|
Anguizola J, Matsuda R, Barnaby OS, Hoy KS, Wa C, DeBolt E, Koke M, Hage DS. Review: Glycation of human serum albumin. Clin Chim Acta 2013; 425:64-76. [PMID: 23891854 DOI: 10.1016/j.cca.2013.07.013] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 02/07/2023]
Abstract
Glycation involves the non-enzymatic addition of reducing sugars and/or their reactive degradation products to amine groups on proteins. This process is promoted by the presence of elevated blood glucose concentrations in diabetes and occurs with various proteins that include human serum albumin (HSA). This review examines work that has been conducted in the study and analysis of glycated HSA. The general structure and properties of HSA are discussed, along with the reactions that can lead to modification of this protein during glycation. The use of glycated HSA as a short-to-intermediate term marker for glycemic control in diabetes is examined, and approaches that have been utilized for measuring glycated HSA are summarized. Structural studies of glycated HSA are reviewed, as acquired for both in vivo and in vitro glycated HSA, along with data that have been obtained on the rate and thermodynamics of HSA glycation. In addition, this review considers various studies that have investigated the effects of glycation on the binding of HSA with drugs, fatty acids and other solutes and the potential clinical significance of these effects.
Collapse
Affiliation(s)
- Jeanethe Anguizola
- Chemistry Department, University of Nebraska, 704 Hamilton Hall, Lincoln, NE 68588-0304, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Černý M, Skalák J, Cerna H, Brzobohatý B. Advances in purification and separation of posttranslationally modified proteins. J Proteomics 2013; 92:2-27. [PMID: 23777897 DOI: 10.1016/j.jprot.2013.05.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 05/27/2013] [Accepted: 05/29/2013] [Indexed: 11/25/2022]
Abstract
Posttranslational modifications (PTMs) of proteins represent fascinating extensions of the dynamic complexity of living cells' proteomes. The results of enzymatically catalyzed or spontaneous chemical reactions, PTMs form a fourth tier in the gene - transcript - protein cascade, and contribute not only to proteins' biological functions, but also to challenges in their analysis. There have been tremendous advances in proteomics during the last decade. Identification and mapping of PTMs in proteins have improved dramatically, mainly due to constant increases in the sensitivity, speed, accuracy and resolution of mass spectrometry (MS). However, it is also becoming increasingly evident that simple gel-free shotgun MS profiling is unlikely to suffice for comprehensive detection and characterization of proteins and/or protein modifications present in low amounts. Here, we review current approaches for enriching and separating posttranslationally modified proteins, and their MS-independent detection. First, we discuss general approaches for proteome separation, fractionation and enrichment. We then consider the commonest forms of PTMs (phosphorylation, glycosylation and glycation, lipidation, methylation, acetylation, deamidation, ubiquitination and various redox modifications), and the best available methods for detecting and purifying proteins carrying these PTMs. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
Affiliation(s)
- Martin Černý
- Department of Molecular Biology and Radiobiology, Mendel University in Brno & CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | | | | | | |
Collapse
|
42
|
Bull SD, Davidson MG, van den Elsen JMH, Fossey JS, Jenkins ATA, Jiang YB, Kubo Y, Marken F, Sakurai K, Zhao J, James TD. Exploiting the reversible covalent bonding of boronic acids: recognition, sensing, and assembly. Acc Chem Res 2013; 46:312-26. [PMID: 23148559 DOI: 10.1021/ar300130w] [Citation(s) in RCA: 456] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Boronic acids can interact with Lewis bases to generate boronate anions, and they can also bind with diol units to form cyclic boronate esters. Boronic acid based receptor designs originated when Lorand and Edwards used the pH drop observed upon the addition of saccharides to boronic acids to determine their association constants. The inherent acidity of the boronic acid is enhanced when 1,2-, 1,3-, or 1,4-diols react with boronic acids to form cyclic boronic esters (5, 6, or 7 membered rings) in aqueous media, and these interactions form the cornerstone of diol-based receptors used in the construction of sensors and separation systems. In addition, the recognition of saccharides through boronic acid complex (or boronic ester) formation often relies on an interaction between a Lewis acidic boronic acid and a Lewis base (proximal tertiary amine or anion). These properties of boronic acids have led to them being exploited in sensing and separation systems for anions (Lewis bases) and saccharides (diols). The fast and stable bond formation between boronic acids and diols to form boronate esters can serve as the basis for forming reversible molecular assemblies. In spite of the stability of the boronate esters' covalent B-O bonds, their formation is reversible under certain conditions or under the action of certain external stimuli. The reversibility of boronate ester formation and Lewis acid-base interactions has also resulted in the development and use of boronic acids within multicomponent systems. The dynamic covalent functionality of boronic acids with structure-directing potential has led researchers to develop a variety of self-organizing systems including macrocycles, cages, capsules, and polymers. This Account gives an overview of research published about boronic acids over the last 5 years. We hope that this Account will inspire others to continue the work on boronic acids and reversible covalent chemistry.
Collapse
Affiliation(s)
- Steven D Bull
- Department of Chemistry, University of Bath, Bath BA2 7AY UK
| | | | | | - John S. Fossey
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, UK
| | | | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering and the MOE Key Laboratory of Analytical Sciences, Xiamen University, Xiamen 361005, China
| | - Yuji Kubo
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Frank Marken
- Department of Chemistry, University of Bath, Bath BA2 7AY UK
| | - Kazuo Sakurai
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu City, Fukuoka, 808-0135 Japan
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, 2 Ling-Gong Road, Dalian University of Technology, Dalian 116024, China
| | - Tony D. James
- Department of Chemistry, University of Bath, Bath BA2 7AY UK
| |
Collapse
|
43
|
|
44
|
Siegel D. Applications of reversible covalent chemistry in analytical sample preparation. Analyst 2012; 137:5457-82. [PMID: 23013801 DOI: 10.1039/c2an35697j] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Reversible covalent chemistry (RCC) adds another dimension to commonly used sample preparation techniques like solid-phase extraction (SPE), solid-phase microextraction (SPME), molecular imprinted polymers (MIPs) or immuno-affinity cleanup (IAC): chemical selectivity. By selecting analytes according to their covalent reactivity, sample complexity can be reduced significantly, resulting in enhanced analytical performance for low-abundance target analytes. This review gives a comprehensive overview of the applications of RCC in analytical sample preparation. The major reactions covered include reversible boronic ester formation, thiol-disulfide exchange and reversible hydrazone formation, targeting analyte groups like diols (sugars, glycoproteins and glycopeptides, catechols), thiols (cysteinyl-proteins and cysteinyl-peptides) and carbonyls (carbonylated proteins, mycotoxins). Their applications range from low abundance proteomics to reversible protein/peptide labelling to antibody chromatography to quantitative and qualitative food analysis. In discussing the potential of RCC, a special focus is on the conditions and restrictions of the utilized reaction chemistry.
Collapse
Affiliation(s)
- David Siegel
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str 11, 12489 Berlin, Germany.
| |
Collapse
|
45
|
Fossey JS, D'Hooge F, van den Elsen JMH, Pereira Morais MP, Pascu SI, Bull SD, Marken F, Jenkins ATA, Jiang YB, James TD. The development of boronic acids as sensors and separation tools. CHEM REC 2012; 12:464-78. [PMID: 22791631 DOI: 10.1002/tcr.201200006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Indexed: 01/28/2023]
Abstract
Synthetic receptors for diols that incorporate boronic acid motifs have been developed as new sensors and separation tools. Utilizing the reversible interactions of diols with boronic acids to form boronic esters under new binding regimes has provided new hydrogel constructs that have found use as dye-displacement sensors and electrophoretic separation tools; similarly, molecular boronic-acid-containing chemosensors were constructed that offer applications in the sensing of diols. This review provides a somewhat-personal perspective of developments in boronic-acid-mediated sensing and separation, placed in the context of the seminal works of others in the area, as well as offering a concise summary of the contributions of the co-authors in the area.
Collapse
Affiliation(s)
- John S Fossey
- The School of Chemistry, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK..
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Guerin-Dubourg A, Catan A, Bourdon E, Rondeau P. Structural modifications of human albumin in diabetes. DIABETES & METABOLISM 2012; 38:171-8. [PMID: 22349032 DOI: 10.1016/j.diabet.2011.11.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 11/09/2011] [Indexed: 01/18/2023]
Abstract
AIM Albumin, a major protein in the blood circulation, can undergo increased glycation in diabetes. From recent studies, it has become evident that glycation has important implications for albumin actions and impact on cell functioning. This study compares the structural and functional properties of albumin glycated by glucose and methylglyoxal (MGO) with those of albumin purified from diabetic patients. METHODS Human serum albumin (HSA) was purified from diabetic patients and control subjects using affinity chromatography, and oxidation parameters in various albumin preparations were determined. Tryptophan and 1-anilino-8-naphthalene sulphonic acid (ANSA) probe fluorescence, redox state, antioxidant and copper-binding capacities of the different preparations of albumin were also determined and compared. RESULTS Occurrence of oxidative modifications was enhanced in albumin whether purified from diabetic patients, or glycated by glucose or MGO, after determination of their fructosamine and free thiol and amino group contents, carbonyl content and antioxidant activities. Whereas more quantitative changes in oxidative and structural parameters were observed in the glucose- and MGO-modified albumins, significant impairment of albumin function (free-radical-scavenging and copper-binding capacities) were demonstrated in the HSA purified from diabetics. These findings reveal different structural and functional features of diabetic HSA compared with in vitro models. CONCLUSION This study provides new information supporting albumin as an important biomarker for monitoring diabetic pathophysiology. In addition, it reconfirms the influence of experimental conditions in which advanced glycation end-products (AGEs) are generated in tests designed to mimic the pathological conditions of diabetes.
Collapse
Affiliation(s)
- A Guerin-Dubourg
- Laboratoire de biochimie et génétique moléculaire, groupe d'étude sur l'inflammation chronique et l'obésité, université de La Réunion, 15 avenue René-Cassin, Saint-Denis Messag cedex 09, Réunion, Réunion
| | | | | | | |
Collapse
|
48
|
Liu Y, Lu Y, Liu Z. Restricted access boronate affinity porous monolith as a protein A mimetic for the specific capture of immunoglobulin G. Chem Sci 2012. [DOI: 10.1039/c2sc20125a] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
49
|
Cross AJ, Davidson MG, García-Vivó D, James TD. Well-controlled synthesis of boronic-acid functionalised poly(lactide)s: a versatile platform for biocompatible polymer conjugates and sensors. RSC Adv 2012. [DOI: 10.1039/c2ra20373a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
50
|
D'Hooge F, Elfeky SA, Flower SE, Pascu SI, Jenkins ATA, Elsen JMHVD, James TD, Fossey JS. Biotinylated boronic acid fluorophore conjugates: Quencher elimination strategy for imaging and saccharide detection. RSC Adv 2012. [DOI: 10.1039/c2ra00542e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|