1
|
Karlsson A, Alarcón LA, Piñeiro-Iglesias B, Jacobsson G, Skovbjerg S, Moore ERB, Kopparapu PK, Jin T, Karlsson R. Surface-Shaving of Staphylococcus aureus Strains and Quantitative Proteomic Analysis Reveal Differences in Protein Abundance of the Surfaceome. Microorganisms 2024; 12:1725. [PMID: 39203567 PMCID: PMC11357550 DOI: 10.3390/microorganisms12081725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Staphylococcus aureus is a pathogen known to cause a wide range of infections. To find new targets for identification and to understand host-pathogen interactions, many studies have focused on surface proteins. We performed bacterial-cell surface-shaving, followed by tandem mass tag for quantitative mass spectrometry proteomics, to examine the surfaceome of S. aureus. Two steps were performed, the first step including surface protein-deficient mutants of S. aureus Newman strain lacking important virulence genes (clfA and spa, important for adhesion and immune evasion and srtAsrtB, linking surface-associated virulence factors to the surface) and the second step including isolates of different clinical origin. All strains were compared to the Newman strain. In Step 1, altogether, 7880 peptides were identified, corresponding to 1290 proteins. In Step 2, 4949 peptides were identified, corresponding to 919 proteins and for each strain, approximately 20 proteins showed differential expression compared to the Newman strain. The identified surface proteins were related to host-cell-adherence and immune-system-evasion, biofilm formation, and survival under harsh conditions. The results indicate that surface-shaving of intact S. aureus bacterial strains in combination with quantitative proteomics is a useful tool to distinguish differences in protein abundance of the surfaceome, including the expression of virulence factors.
Collapse
Affiliation(s)
| | - Leonarda Achá Alarcón
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (L.A.A.); (B.P.-I.); (S.S.); (E.R.B.M.)
| | - Beatriz Piñeiro-Iglesias
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (L.A.A.); (B.P.-I.); (S.S.); (E.R.B.M.)
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 41345 Gothenburg, Sweden
| | - Gunnar Jacobsson
- Department of Infectious Diseases, Skaraborg Hospital, 54185 Skövde, Sweden;
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 40530 Gothenburg, Sweden
| | - Susann Skovbjerg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (L.A.A.); (B.P.-I.); (S.S.); (E.R.B.M.)
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 41345 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 40530 Gothenburg, Sweden
| | - Edward R. B. Moore
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (L.A.A.); (B.P.-I.); (S.S.); (E.R.B.M.)
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 41345 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 40530 Gothenburg, Sweden
- Culture Collection of the University of Gothenburg (CCUG), Sahlgrenska Academy, 41390 Gothenburg, Sweden
| | - Pradeep Kumar Kopparapu
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden; (P.K.K.); (T.J.)
- Department of Rheumatology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Tao Jin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden; (P.K.K.); (T.J.)
- Department of Rheumatology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Roger Karlsson
- Nanoxis Consulting AB, 40016 Gothenburg, Sweden;
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (L.A.A.); (B.P.-I.); (S.S.); (E.R.B.M.)
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 41345 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
2
|
Boardman ER, Palmer T, Alcock F. Interbacterial competition mediated by the type VIIb secretion system. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001420. [PMID: 38116759 PMCID: PMC10765036 DOI: 10.1099/mic.0.001420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Successful occupancy of a given niche requires the colonising bacteria to interact extensively with the biotic and abiotic environment, including other resident microbes. Bacteria have evolved a range of protein secretion machines for this purpose with eleven such systems identified to date. The type VIIb secretion system (T7SSb) is utilised by Bacillota to secrete a range of protein substrates, including antibacterial toxins targeting closely related strains, and the system as a whole has been implicated in a range of activities such as iron acquisition, intercellular signalling, host colonisation and virulence. This review covers the components and secretion mechanism of the T7SSb, the substrates of these systems and their roles in Gram-positive bacteria, with a focus on interbacterial competition.
Collapse
Affiliation(s)
- Eleanor R. Boardman
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Tracy Palmer
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Felicity Alcock
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
3
|
Das Mitra S, Kumar B, Rajegowda S, Bandopadhyay S, Karunakar P, Pais R. Reverse vaccinology & immunoinformatics approach to design a multiepitope vaccine (CV3Ag-antiMRSA) against methicillin resistant Staphylococcus aureus (MRSA) - a pathogen affecting both human and animal health. J Biomol Struct Dyn 2023; 42:11792-11811. [PMID: 37798927 DOI: 10.1080/07391102.2023.2265471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023]
Abstract
Infections caused by drug resistant bacteria is a silent detrimental pandemic affecting the global health care profoundly. Methicillin resistant Staphylococcus aureus (MRSA) is a pathogen that causes serious infections in different settings (community, hospital & veterinary) whose treatment remains highly challenging due to its powerful characteristics (antibiotic resistance strategies, virulence factors). In this study, we used reverse vaccinology (RV) approach and designed an immunogenic multi epitope vaccine (CV3Ag-antiMRSA) targeting three potential antigen candidates viz., mecA encoding transpeptidase (PBP2a) protein responsible for conferring methicillin resistance and two virulence determinants - hlgA encoding gamma-hemolysin component A (a pore forming toxin) and isdB encoding iron regulated surface determinant B (heme transport component that allows S. aureus to scavenge iron from host hemoglobin and myoglobin). We employed an array of immunoinformatic tools/server to identify and use immunogenic epitopes (B cell and MHC class) to develop the chimeric subunit vaccine V4 (CV3Ag-antiMRSA) with immune modulating adjuvant and linkers. Based on different parameters, the vaccine construct V4 (CV3Ag-antiMRSA) was determined to be suitable vaccine (antigenic and non-allergen). Molecular docking and simulation of CV3Ag-antiMRSA with Toll Like Receptor (TLR2) predicted its immuno-stimulating potential. Finally, in silico cloning of CV3Ag-antiMRSA construct into pet28a and pet30 vector displayed its feasibility for the heterologous expression in the E. coli expression system. This vaccine candidate (CV3Ag-antiMRSA) designed based on the MRSA genomes obtained from both animal and human hosts can be experimentally validated and thereby contribute to vaccine development to impart protection to both animal and human health.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Susweta Das Mitra
- Department of Biotechnology, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| | - Bharat Kumar
- Department of Biotechnology, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| | - Sushmitha Rajegowda
- Department of Biotechnology, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| | - Satarupa Bandopadhyay
- Department of Biotechnology, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| | - Prashantha Karunakar
- Department of Biotechnology, Dayananda Sagar College of Engineering (Affiliated to Visvesvaraya Technological University, Belagavi), Bangalore, Karnataka, India
| | - Roshan Pais
- Department of Biotechnology, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| |
Collapse
|
4
|
Drumm SD, Cormican P, Owens RA, Mitchell J, Keane OM. Immunoproteomic analysis of the serum IgG response to cell wall-associated proteins of Staphylococcus aureus strains belonging to CC97 and CC151. Vet Res 2023; 54:79. [PMID: 37723537 PMCID: PMC10506246 DOI: 10.1186/s13567-023-01212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 07/24/2023] [Indexed: 09/20/2023] Open
Abstract
CC97 and CC151 are two of the most common Staphylococcus aureus lineages associated with bovine intramammary infection. The genotype of the infecting S. aureus strain influences virulence and the progression of intramammary disease. Strains from CC97 and CC151 encode a distinct array of virulence factors. Identification of proteins elaborated in vivo will provide insights into the molecular mechanism of pathogenesis of these lineages, as well as facilitating the development of tailored treatments and pan-lineage vaccines and diagnostics. The repertoire of genes encoding cell wall-anchored (CWA) proteins was identified for S. aureus strains MOK023 (CC97) and MOK124 (CC151); MOK023 encoded more CWA proteins than MOK124. Serum collected during an in vivo challenge trial was used to investigate whether the humoral response to cell wall proteins was strain-specific. Immunoproteomic analysis demonstrated that the humoral response in MOK023-infected cows predominantly targeted high molecular weight proteins while the response in MOK124-infected cows targeted medium or low molecular weight proteins. Antigenic proteins were identified by two-dimensional serum blotting followed by mass spectometry-based identification of immunoreactive spots, with putative antigens subsequently validated. The CWA proteins ClfB, SdrE/Bbp and IsdA were identified as immunogenic regardless of the infecting strain. In addition, a number of putative strain-specific imunogens were identified. The variation in antigens produced by different strains may indicate that these strains have different strategies for exploiting the intramammary niche. Such variation should be considered when developing novel control strategies including vaccines, therapeutics and diagnostics.
Collapse
Affiliation(s)
- Shauna D Drumm
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
- Seed Testing Laboratory, DAFM Laboratories, Backweston, Celbridge, Co. Kildare, Ireland
| | - Paul Cormican
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Rebecca A Owens
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Jennifer Mitchell
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Orla M Keane
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland.
| |
Collapse
|
5
|
Wittekind MA, Briaud P, Smith JL, Tennant JR, Carroll RK. The Small Protein ScrA Influences Staphylococcus aureus Virulence-Related Processes via the SaeRS System. Microbiol Spectr 2023; 11:e0525522. [PMID: 37154710 PMCID: PMC10269730 DOI: 10.1128/spectrum.05255-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/11/2023] [Indexed: 05/10/2023] Open
Abstract
Staphylococcus aureus is a Gram-positive commensal and opportunistic pathogen able to cause diseases ranging from mild skin infections to life-threatening endocarditis and toxic shock syndrome. The ability to cause such an array of diseases is due to the complex S. aureus regulatory network controlling an assortment of virulence factors, including adhesins, hemolysins, proteases, and lipases. This regulatory network is controlled by both protein and RNA elements. We previously identified a novel regulatory protein called ScrA, which, when overexpressed, leads to the increased activity and expression of the SaeRS regulon. In this study, we further explore the role of ScrA and examine the consequences to the bacterial cell of scrA gene disruption. These results demonstrate that scrA is required for several virulence-related processes, and in many cases, the phenotypes of the scrA mutant are inverse to those observed in cells overexpressing ScrA. Interestingly, while the majority of ScrA-mediated phenotypes appear to rely on the SaeRS system, our results also indicate that ScrA may also act independently of SaeRS when regulating hemolytic activity. Finally, using a murine model of infection, we demonstrate that scrA is required for virulence, potentially in an organ-specific manner. IMPORTANCE Staphylococcus aureus is the cause of several potentially life-threatening infections. An assortment of toxins and virulence factors allows such a wide range of infections. However, an assortment of toxins or virulence factors requires complex regulation to control expression under all of the different conditions encountered by the bacterium. Understanding the intricate web of regulatory systems allows the development of novel approaches to combat S. aureus infections. Here, we have shown that the small protein ScrA, which was previously identified by our laboratory, influences several virulence-related functions through the SaeRS global regulatory system. These findings add ScrA to the growing list of virulence regulators in S. aureus.
Collapse
Affiliation(s)
| | - Paul Briaud
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Jayanna L. Smith
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Julia R. Tennant
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Ronan K. Carroll
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| |
Collapse
|
6
|
Astafyeva Y, Gurschke M, Streit WR, Krohn I. Interplay between the microalgae Micrasterias radians and its symbiont Dyadobacter sp. HH091. Front Microbiol 2022; 13:1006609. [PMID: 36312980 PMCID: PMC9606717 DOI: 10.3389/fmicb.2022.1006609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Based on previous research, related to detailed insight into mutualistic collaboration of microalga and its microbiome, we established an artificial plant-bacteria system of the microalga Micrasterias radians MZCH 672 and the bacterial isolate Dyadobacter sp. HH091. The bacteria, affiliated with the phylum Bacteroidota, strongly stimulated growth of the microalga when it was added to axenic algal cultures. For further advances, we studied the isolate HH091 and its interaction with the microalga M. radians using transcriptome and extensive genome analyses. The genome of HH091 contains predicted polysaccharide utilizing gene clusters co-working with the type IX secretion system (T9SS) and conceivably involved in the algae-bacteria liaison. Here, we focus on characterizing the mechanism of T9SS, implementing the attachment and invasion of microalga by Dyadobacter sp. HH091. Omics analysis exposed T9SS genes: gldK, gldL, gldM, gldN, sprA, sprE, sprF, sprT, porU and porV. Besides, gld genes not considered as the T9SS components but required for gliding motility and protein secretion (gldA, gldB, gldD, gldF, gldG, gldH, gldI, gldJ), were also identified at this analysis. A first model of T9SS apparatus of Dyadobacter was proposed in a course of this research. Using the combination of fluorescence labeling of Dyadobacter sp. HH091, we examined the bacterial colonisation and penetration into the cell wall of the algal host M. radians MZCH 672.
Collapse
|
7
|
Ma PY, Chong CW, Than LTL, Sulong AB, Ho KL, Neela VK, Sekawi Z, Liew YK. Impact of IsaA Gene Disruption: Decreasing Staphylococcal Biofilm and Alteration of Transcriptomic and Proteomic Profiles. Microorganisms 2022; 10:microorganisms10061119. [PMID: 35744637 PMCID: PMC9229027 DOI: 10.3390/microorganisms10061119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Staphylococcus aureus expresses diverse proteins at different stages of growth. The immunodominant staphylococcal antigen A (IsaA) is one of the proteins that is constitutively produced by S. aureus during colonisation and infection. SACOL2584 (or isaA) is the gene that encodes this protein. It has been suggested that IsaA can hydrolyse cell walls, and there is still need to study isaA gene disruption to analyse its impact on staphylococcal phenotypes and on alteration to its transcription and protein profiles. In the present study, the growth curve in RPMI medium (which mimics human plasma), autolytic activity, cell wall morphology, fibronectin and fibrinogen adhesion and biofilm formation of S. aureus SH1000 (wildtype) was compared to that of S. aureus MS001 (isaA mutant). RNA sequencing and liquid chromatography–tandem mass spectrometry were carried out on samples of both S. aureus strains taken during the exponential growth phase, followed by bioinformatics analysis. Disruption of isaA had no obvious effect on the growth curve and autolysis ability or thickness of cell walls, but this study revealed significant strength of fibronectin adherence in S. aureus MS001. In particular, the isaA mutant formed less biofilm than S. aureus SH1000. In addition, proteomics and transcriptomics showed that the adhesin/biofilm-related genes and hemolysin genes, such as sasF, sarX and hlgC, were consistently downregulated with isaA gene disruption. The majority of the upregulated genes or proteins in S. aureus MS001 were pur genes. Taken together, this study provides insight into how isaA disruption changes the expression of other genes and has implications regarding biofilm formation and biological processes.
Collapse
Affiliation(s)
- Pei Yee Ma
- School of Postgraduate Studies, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Chun Wie Chong
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia;
| | - Leslie Thian Lung Than
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43400, Malaysia; (L.T.L.T.); (V.K.N.); (Z.S.)
| | - Anita Binti Sulong
- Department of Medical Microbiology and Immunology, Pusat Perubatan UKM, Kuala Lumpur 56000, Malaysia;
| | - Ket Li Ho
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Vasantha Kumari Neela
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43400, Malaysia; (L.T.L.T.); (V.K.N.); (Z.S.)
| | - Zamberi Sekawi
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43400, Malaysia; (L.T.L.T.); (V.K.N.); (Z.S.)
| | - Yun Khoon Liew
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
- Correspondence:
| |
Collapse
|
8
|
Addis MF, Pisanu S, Monistero V, Gazzola A, Penati M, Filipe J, Di Mauro S, Cremonesi P, Castiglioni B, Moroni P, Pagnozzi D, Tola S, Piccinini R. Comparative secretome analysis of Staphylococcus aureus strains with different within-herd intramammary infection prevalence. Virulence 2022; 13:174-190. [PMID: 35030987 PMCID: PMC8765078 DOI: 10.1080/21505594.2021.2024014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus is a major pathogen causing intramammary infection and mastitis in dairy cows. S. aureus genotypes (GT) can differ significantly in their ability to diffuse and persist in the herd; while the association of virulence gene carriage with epidemiological behavior remains unclear, a role for secreted proteins has been postulated. We characterized the secretome of six S. aureus strains belonging to two genotypes with opposite within-herd prevalence, GTB (high) and GTS (low), corresponding to sequence types (ST) 8 and 398, by high-resolution tandem mass spectrometry and differential analysis with Proteome Discoverer. Data are available via ProteomeXchange with identifier PXD029571. Out of 720 identified proteins, 98 were unique or more abundant in GTB/ST8 and 68 in GTS/ST398. GTB/ST8 released more immunoglobulin-binding proteins, complement and antimicrobial peptide inhibitors, enterotoxins, and metabolic enzymes, while GTS/ST398 released more leukocidins, hemolysins, lipases, and peptidases. Furthermore, GTB/ST8 released the von Willebrand factor protein, staphylokinase, and clumping factor B, while GTS released the staphylococcal coagulase and clumping factor A. Hence, GTB/ST8 secretomes indicated a higher propensity for immune evasion and chronicity and GTS/ST398 secretomes for cellular damage and inflammation, consistent with their epidemiological characteristics. Accordingly, GTS/ST398 secretions were significantly more cytotoxic against bovine PBMCs in vitro. Our findings confirm the crucial role of extracellular virulence factors in S. aureus pathogenesis and highlight the need to investigate their differential release adding to gene carriage for a better understanding of the relationship of S. aureus genotypes with epidemiological behavior and, possibly, disease severity.
Collapse
Affiliation(s)
- M Filippa Addis
- Dipartimento Di Medicina Veterinaria, Università Degli Studi Di Milano, Lodi, Italy
| | | | - Valentina Monistero
- Dipartimento Di Medicina Veterinaria, Università Degli Studi Di Milano, Lodi, Italy
| | - Alessandra Gazzola
- Dipartimento Di Medicina Veterinaria, Università Degli Studi Di Milano, Lodi, Italy
| | - Martina Penati
- Dipartimento Di Medicina Veterinaria, Università Degli Studi Di Milano, Lodi, Italy
| | - Joel Filipe
- Dipartimento Di Medicina Veterinaria, Università Degli Studi Di Milano, Lodi, Italy
| | - Susanna Di Mauro
- Dipartimento Di Medicina Veterinaria, Università Degli Studi Di Milano, Lodi, Italy
| | - Paola Cremonesi
- Institute of Agricultural Biology and Biotechnology, National Research Council, Lodi, Italy
| | - Bianca Castiglioni
- Institute of Agricultural Biology and Biotechnology, National Research Council, Lodi, Italy
| | - Paolo Moroni
- Dipartimento Di Medicina Veterinaria, Università Degli Studi Di Milano, Lodi, Italy.,Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, Ithaca, NY, USA
| | | | - Sebastiana Tola
- Istituto Zooprofilattico Sperimentale Della Sardegna "G. Pegreffi", Sassari, Italy
| | - Renata Piccinini
- Dipartimento Di Medicina Veterinaria, Università Degli Studi Di Milano, Lodi, Italy
| |
Collapse
|
9
|
Paudel A, Panthee S, Hamamoto H, Grunert T, Sekimizu K. YjbH regulates virulence genes expression and oxidative stress resistance in Staphylococcus aureus. Virulence 2021; 12:470-480. [PMID: 33487122 PMCID: PMC7849776 DOI: 10.1080/21505594.2021.1875683] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/04/2021] [Accepted: 01/10/2021] [Indexed: 12/14/2022] Open
Abstract
We previously reported that disruption of the yjbI gene reduced virulence of Staphylococcus aureus. In this study, we found virulence in both silkworms and mice was restored by introducing the yjbH gene but not the yjbI gene to both yjbI and yjbH genes-disrupted mutants, suggesting that yjbH, the gene downstream to the yjbI gene in a two-gene operon-yjbIH, is responsible for this phenomenon. We further observed a decrease in various surface-associated proteins and changes in cell envelope glycostructures in the mutants. RNA-seq analysis revealed that disruption of the yjbI and the yjbH genes resulted in differential expression of a broad range of genes, notably, significant downregulation of genes involved in virulence and oxidative stress. Administration of N-acetyl-L-cysteine, a free-radical scavenger, restored the virulence in both the mutants. Our findings suggested that YjbH plays a role in staphylococcal pathogenicity by regulating virulence gene expression, affecting the bacterial surface structure, and conferring resistance to oxidative stress in a host.
Collapse
Affiliation(s)
- Atmika Paudel
- Teikyo University Institute of Medical Mycology, Hachioji, Tokyo, Japan
- Division of Infection and Immunity, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Suresh Panthee
- Teikyo University Institute of Medical Mycology, Hachioji, Tokyo, Japan
| | - Hiroshi Hamamoto
- Teikyo University Institute of Medical Mycology, Hachioji, Tokyo, Japan
| | - Tom Grunert
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Kazuhisa Sekimizu
- Teikyo University Institute of Medical Mycology, Hachioji, Tokyo, Japan
| |
Collapse
|
10
|
Spengler C, Nolle F, Thewes N, Wieland B, Jung P, Bischoff M, Jacobs K. Using Knock-Out Mutants to Investigate the Adhesion of Staphylococcus aureus to Abiotic Surfaces. Int J Mol Sci 2021; 22:11952. [PMID: 34769382 PMCID: PMC8584566 DOI: 10.3390/ijms222111952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 12/19/2022] Open
Abstract
The adhesion of Staphylococcus aureus to abiotic surfaces is crucial for establishing device-related infections. With a high number of single-cell force spectroscopy measurements with genetically modified S. aureus cells, this study provides insights into the adhesion process of the pathogen to abiotic surfaces of different wettability. Our results show that S. aureus utilizes different cell wall molecules and interaction mechanisms when binding to hydrophobic and hydrophilic surfaces. We found that covalently bound cell wall proteins strongly interact with hydrophobic substrates, while their contribution to the overall adhesion force is smaller on hydrophilic substrates. Teichoic acids promote adhesion to hydrophobic surfaces as well as to hydrophilic surfaces. This, however, is to a lesser extent. An interplay of electrostatic effects of charges and protein composition on bacterial surfaces is predominant on hydrophilic surfaces, while it is overshadowed on hydrophobic surfaces by the influence of the high number of binding proteins. Our results can help to design new models of bacterial adhesion and may be used to interpret the adhesion of other microorganisms with similar surface properties.
Collapse
Affiliation(s)
- Christian Spengler
- Experimental Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany; (C.S.); (F.N.); (N.T.)
| | - Friederike Nolle
- Experimental Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany; (C.S.); (F.N.); (N.T.)
| | - Nicolas Thewes
- Experimental Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany; (C.S.); (F.N.); (N.T.)
| | - Ben Wieland
- Institute of Medical Microbiology and Hygiene and Center for Biophysics, Saarland University, 66421 Homburg, Germany; (B.W.); (P.J.); (M.B.)
| | - Philipp Jung
- Institute of Medical Microbiology and Hygiene and Center for Biophysics, Saarland University, 66421 Homburg, Germany; (B.W.); (P.J.); (M.B.)
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene and Center for Biophysics, Saarland University, 66421 Homburg, Germany; (B.W.); (P.J.); (M.B.)
| | - Karin Jacobs
- Experimental Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany; (C.S.); (F.N.); (N.T.)
- Max Planck School Matter to Life, Jahnstraße 29, 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Rivera-Calzada A, Famelis N, Llorca O, Geibel S. Type VII secretion systems: structure, functions and transport models. Nat Rev Microbiol 2021; 19:567-584. [PMID: 34040228 DOI: 10.1038/s41579-021-00560-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
Type VII secretion systems (T7SSs) have a key role in the secretion of effector proteins in non-pathogenic mycobacteria and pathogenic mycobacteria such as Mycobacterium tuberculosis, the main causative agent of tuberculosis. Tuberculosis-causing mycobacteria, still accounting for 1.4 million deaths annually, rely on paralogous T7SSs to survive in the host and efficiently evade its immune response. Although it is still unknown how effector proteins of T7SSs cross the outer membrane of the diderm mycobacterial cell envelope, recent advances in the structural characterization of these secretion systems have revealed the intricate network of interactions of conserved components in the plasma membrane. This structural information, added to recent advances in the molecular biology and regulation of mycobacterial T7SSs as well as progress in our understanding of their secreted effector proteins, is shedding light on the inner working of the T7SS machinery. In this Review, we highlight the implications of these studies and the derived transport models, which provide new scenarios for targeting the deathly human pathogen M. tuberculosis.
Collapse
Affiliation(s)
- Angel Rivera-Calzada
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| | - Nikolaos Famelis
- Institute for Molecular Infection Biology, Julius-Maximilian University of Würzburg, Würzburg, Germany.,Rudolf Virchow Center for Integrative and Translational Biomedicine, Julius-Maximilian University of Würzburg, Würzburg, Germany
| | - Oscar Llorca
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sebastian Geibel
- Institute for Molecular Infection Biology, Julius-Maximilian University of Würzburg, Würzburg, Germany. .,Rudolf Virchow Center for Integrative and Translational Biomedicine, Julius-Maximilian University of Würzburg, Würzburg, Germany.
| |
Collapse
|
12
|
Within-Host Adaptation of Staphylococcus aureus in a Bovine Mastitis Infection Is Associated with Increased Cytotoxicity. Int J Mol Sci 2021; 22:ijms22168840. [PMID: 34445550 PMCID: PMC8396210 DOI: 10.3390/ijms22168840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022] Open
Abstract
Within-host adaptation is a typical feature of chronic, persistent Staphylococcus aureus infections. Research projects addressing adaptive changes due to bacterial in-host evolution increase our understanding of the pathogen’s strategies to survive and persist for a long time in various hosts such as human and bovine. In this study, we investigated the adaptive processes of S. aureus during chronic, persistent bovine mastitis using a previously isolated isogenic strain pair from a dairy cow with chronic, subclinical mastitis, in which the last variant (host-adapted, Sigma factor SigB-deficient) quickly replaced the initial, dominant variant. The strain pair was cultivated under specific in vitro infection-relevant growth-limiting conditions (iron-depleted RPMI under oxygen limitation). We used a combinatory approach of surfaceomics, molecular spectroscopic fingerprinting and in vitro phenotypic assays. Cellular cytotoxicity assays using red blood cells and bovine mammary epithelial cells (MAC-T) revealed changes towards a more cytotoxic phenotype in the host-adapted isolate with an increased alpha-hemolysin (α-toxin) secretion, suggesting an improved capacity to penetrate and disseminate the udder tissue. Our results foster the hypothesis that within-host evolved SigB-deficiency favours extracellular persistence in S. aureus infections. Here, we provide new insights into one possible adaptive strategy employed by S. aureus during chronic, bovine mastitis, and we emphasise the need to analyse genotype–phenotype associations under different infection-relevant growth conditions.
Collapse
|
13
|
Zhao X, Chlebowicz-Flissikowska MA, Wang M, Vera Murguia E, de Jong A, Becher D, Maaß S, Buist G, van Dijl JM. Exoproteomic profiling uncovers critical determinants for virulence of livestock-associated and human-originated Staphylococcus aureus ST398 strains. Virulence 2020; 11:947-963. [PMID: 32726182 PMCID: PMC7550020 DOI: 10.1080/21505594.2020.1793525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/20/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus: with the sequence type (ST) 398 was previously associated with livestock carriage. However, in recent years livestock-independent S. aureus ST398 has emerged, representing a potential health risk for humans especially in nosocomial settings. Judged by whole-genome sequencing analyses, the livestock- and human originated strains belong to two different S. aureus ST398 clades but, to date, it was not known to what extent these clades differ in terms of actual virulence. Therefore, the objective of this study was to profile the exoproteomes of 30 representative S. aureus ST398 strains by mass spectrometry, to assess clade-specific differences in virulence factor secretion, and to correlate the identified proteins and their relative abundance to the strains' actual virulence. Although the human-originated strains are more heterogeneous at the genome level, our observations show that they are more homogeneous in terms of virulence factor production than the livestock-associated strains. To assess differences in virulence, infection models based on larvae of the wax moth Galleria mellonella and the human HeLa cell line were applied. Correlation of the exoproteome data to larval killing and toxicity toward HeLa cells uncovered critical roles of the staphylococcal Sbi, SpA, SCIN and CHIPS proteins in virulence. These findings were validated by showing that sbi or spa mutant bacteria are attenuated in G. mellonella and that the purified SCIN and CHIPS proteins are toxic for HeLa cells. Altogether, we show that exoproteome profiling allows the identification of critical determinants for virulence of livestock-associated and human-originated S. aureus ST398 strains.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Min Wang
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elias Vera Murguia
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anne de Jong
- Department of Molecular Genetics, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Sandra Maaß
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Girbe Buist
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
14
|
Klein TA, Grebenc DW, Gandhi SY, Shah VS, Kim Y, Whitney JC. Structure of the Extracellular Region of the Bacterial Type VIIb Secretion System Subunit EsaA. Structure 2020; 29:177-185.e6. [PMID: 33238147 DOI: 10.1016/j.str.2020.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/17/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022]
Abstract
Gram-positive bacteria use type VII secretion systems (T7SSs) to export effector proteins that manipulate the physiology of nearby prokaryotic and eukaryotic cells. Several mycobacterial T7SSs have established roles in virulence. By contrast, the genetically distinct T7SSb pathway found in Firmicutes bacteria more often functions to mediate bacterial competition. A lack of structural information on the T7SSb has limited the understanding of effector export by this protein secretion apparatus. Here, we present the 2.4 Å crystal structure of the extracellular region of the T7SSb subunit EsaA from Streptococcus gallolyticus. Our structure reveals that homodimeric EsaA is an elongated, arrow-shaped protein with a surface-accessible "tip", which in some species of bacteria serves as a receptor for lytic bacteriophages. Because it is the only T7SSb subunit large enough to traverse the peptidoglycan layer of Firmicutes, we propose that EsaA plays a critical role in transporting effectors across the entirety of the Gram-positive cell envelope.
Collapse
Affiliation(s)
- Timothy A Klein
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Dirk W Grebenc
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Shil Y Gandhi
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Vraj S Shah
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Youngchang Kim
- Structural Biology Center, X-ray Science, Argonne National Laboratory, Argonne, IL, USA
| | - John C Whitney
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada; David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
15
|
A membrane-depolarizing toxin substrate of the Staphylococcus aureus type VII secretion system mediates intraspecies competition. Proc Natl Acad Sci U S A 2020; 117:20836-20847. [PMID: 32769205 PMCID: PMC7456083 DOI: 10.1073/pnas.2006110117] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The type VII protein secretion system (T7SS) is conserved across Staphylococcus aureus strains and plays important roles in virulence and interbacterial competition. To date, only one T7SS substrate protein, encoded in a subset of S. aureus genomes, has been functionally characterized. Here, using an unbiased proteomic approach, we identify TspA as a further T7SS substrate. TspA is encoded distantly from the T7SS gene cluster and is found across all S. aureus strains as well as in Listeria and Enterococci. Heterologous expression of TspA from S. aureus strain RN6390 indicates its C-terminal domain is toxic when targeted to the Escherichia coli periplasm and that it depolarizes the cytoplasmic membrane. The membrane-depolarizing activity is alleviated by coproduction of the membrane-bound TsaI immunity protein, which is encoded adjacent to tspA on the S. aureus chromosome. Using a zebrafish hindbrain ventricle infection model, we demonstrate that the T7SS of strain RN6390 promotes bacterial replication in vivo, and deletion of tspA leads to increased bacterial clearance. The toxin domain of TspA is highly polymorphic and S. aureus strains encode multiple tsaI homologs at the tspA locus, suggestive of additional roles in intraspecies competition. In agreement, we demonstrate TspA-dependent growth inhibition of RN6390 by strain COL in the zebrafish infection model that is alleviated by the presence of TsaI homologs.
Collapse
|
16
|
Dreisbach A, Wang M, van der Kooi-Pol MM, Reilman E, Koedijk DGAM, Mars RAT, Duipmans J, Jonkman M, Benschop JJ, Bonarius HPJ, Groen H, Hecker M, Otto A, Bäsell K, Bernhardt J, Back JW, Becher D, Buist G, van Dijl JM. Tryptic Shaving of Staphylococcus aureus Unveils Immunodominant Epitopes on the Bacterial Cell Surface. J Proteome Res 2020; 19:2997-3010. [DOI: 10.1021/acs.jproteome.0c00043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Annette Dreisbach
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| | - Min Wang
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| | - Magdalena M. van der Kooi-Pol
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| | - Ewoud Reilman
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| | - Dennis G. A. M. Koedijk
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| | - Ruben A. T. Mars
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| | - José Duipmans
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Marcel Jonkman
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Joris J. Benschop
- Pepscan Therapeutics BV, P. O. Box 2098, 8203 AB Lelystad, the Netherlands
| | | | - Herman Groen
- IQ Therapeutics, Rozenburglaan 13a, 9727 DL Groningen, the Netherlands
| | - Michael Hecker
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 15, D-17489 Greifswald, Germany
| | - Andreas Otto
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 15, D-17489 Greifswald, Germany
| | - Katrin Bäsell
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 15, D-17489 Greifswald, Germany
| | - Jörg Bernhardt
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 15, D-17489 Greifswald, Germany
| | - Jaap Willem Back
- Pepscan Therapeutics BV, P. O. Box 2098, 8203 AB Lelystad, the Netherlands
| | - Dörte Becher
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 15, D-17489 Greifswald, Germany
| | - Girbe Buist
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB Groningen, the Netherlands
| |
Collapse
|
17
|
Tkáčová Z, Pulzová LB, Mochnáčová E, Jiménez-Munguía I, Bhide K, Mertinková P, Majerová P, Kulkarni A, Kováč A, Bhide M. Identification of the proteins of Borrelia garinii interacting with human brain microvascular endothelial cells. Ticks Tick Borne Dis 2020; 11:101451. [PMID: 32360026 DOI: 10.1016/j.ttbdis.2020.101451] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 11/25/2022]
Abstract
Lyme borreliosis is one of the major tick-borne diseases in Europe. Events of the translocation of Borrelia across the blood-brain barrier (BBB) involve multiple interactions between borrelial surface proteins and receptors on the brain microvascular endothelial cells (hBMECs). In this study, we aimed to identify proteins of Borrelia that plausibly interact with hBMECs. The surface proteome of live Borrelia (a neuroinvasive strain of B. garinii) was crosslinked with biotin prior to its incubation with hBMECs. The interacting proteins were recovered by affinity purification, followed by SWATH-MS. Twenty-four interacting candidates were grouped into outer membrane proteins (n = 12) and inner membrane proteins (n = 12) based on the subcellular location as per the predictions of LocateP. Other algorithms like TMHMM 2.0 and LipoP, ontology search and literature review were subsequently applied to each of the identified protein candidates to shortlist the most probable interactors. Six proteins namely, LysM domain protein, BESBP-5, Antigen S1, CRASP-1 (Bg071), Erp23 protein and Mlp family Lipoprotein were selected to produce their recombinant forms and experimentally validate their interaction with hBMECs. All the recombinant proteins interacted with hBMECs, in ELISA and immunocytochemistry. We present here a high-throughput approach of generating a dataset of plausible borrelial ligands followed by a systematic bioinformatic pipeline to categorize the proteins for experimental validation.
Collapse
Affiliation(s)
- Zuzana Tkáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenskeho 73, 04001, Kosice, Slovakia
| | - Lucia Borszéková Pulzová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenskeho 73, 04001, Kosice, Slovakia
| | - Evelína Mochnáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenskeho 73, 04001, Kosice, Slovakia
| | - Irene Jiménez-Munguía
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenskeho 73, 04001, Kosice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenskeho 73, 04001, Kosice, Slovakia
| | - Patrícia Mertinková
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenskeho 73, 04001, Kosice, Slovakia
| | - Petra Majerová
- Institute of Neuroimmunology of Slovak Academy of Sciences, 84510, Bratislava, Slovakia
| | - Amod Kulkarni
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenskeho 73, 04001, Kosice, Slovakia; Institute of Neuroimmunology of Slovak Academy of Sciences, 84510, Bratislava, Slovakia
| | - Andrej Kováč
- Institute of Neuroimmunology of Slovak Academy of Sciences, 84510, Bratislava, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenskeho 73, 04001, Kosice, Slovakia; Institute of Neuroimmunology of Slovak Academy of Sciences, 84510, Bratislava, Slovakia.
| |
Collapse
|
18
|
A Kayvirus Distant Homolog of Staphylococcal Virulence Determinants and VISA Biomarker Is a Phage Lytic Enzyme. Viruses 2020; 12:v12030292. [PMID: 32156046 PMCID: PMC7150955 DOI: 10.3390/v12030292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 01/07/2023] Open
Abstract
Staphylococcal bacteriophages of the Kayvirus genus are candidates for therapeutic applications. One of their proteins, Tgl, is slightly similar to two staphylococcal virulence factors, secreted autolysins of lytic transglycosylase motifs IsaA and SceD. We show that Tgl is a lytic enzyme secreted by the bacterial transport system and localizes to cell peripheries like IsaA and SceD. It causes lysis of E. coli cells expressing the cloned tgl gene, but could be overproduced when depleted of signal peptide. S. aureus cells producing Tgl lysed in the presence of nisin, which mimics the action of phage holin. In vitro, Tgl protein was able to destroy S. aureus cell walls. The production of Tgl decreased S. aureus tolerance to vancomycin, unlike the production of SceD, which is associated with decreased sensitivity to vancomycin. In the genomes of kayviruses, the tgl gene is located a few genes away from the lysK gene, encoding the major endolysin. While lysK is a late phage gene, tgl can be transcribed by a host RNA polymerase, like phage early genes. Taken together, our data indicate that tgl belongs to the kayvirus lytic module and encodes an additional endolysin that can act in concert with LysK in cell lysis.
Collapse
|
19
|
Principle and potential applications of the non-classical protein secretory pathway in bacteria. Appl Microbiol Biotechnol 2019; 104:953-965. [PMID: 31853566 DOI: 10.1007/s00253-019-10285-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 12/15/2022]
Abstract
In addition to the extracellular proteins secreted by known secretory pathways, a number of cytoplasmic proteins without predicable or known signal sequences or secretory motifs have been found in the extracellular milieu, and were consequently classified as non-classically secreted proteins. Non-classical protein secretion is considered to be a general, conserved cellular phenomenon in both eukaryotes and prokaryotes. There are several research hotspots on the non-classical protein secretory pathway, and the most important two of them are the recognition principle of substrate proteins and possible secretory mechanisms. To date, researchers have made some progress in understanding the characteristics of these proteins. For example, it was discovered that many non-classically secreted proteins exist and are secreted in multimeric form. Some of these proteins prefer to be clustered and exported at the poles and the septum of the cell. The majority of these proteins play different functions when they are in the intra- and extracellular environments, and several of their functions are related to survival and pathogenicity. Furthermore, non-classically secreted proteins can be used as leading proteins to guide a POI (protein of interest) out of the cells, which provides a novel strategy for protein secretion with potential applications in the industry. Summarizing these findings, this review emphasizes the hot spots related to non-classically secreted proteins in bacteria, lists the most important hypotheses on the selection and secretion mechanisms of non-classically secreted proteins, and put forward their potential applications.
Collapse
|
20
|
Mietrach N, Schlosser A, Geibel S. An extracellular domain of the EsaA membrane component of the type VIIb secretion system: expression, purification and crystallization. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2019; 75:725-730. [PMID: 31797813 PMCID: PMC6891578 DOI: 10.1107/s2053230x1901495x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/05/2019] [Indexed: 11/20/2022]
Abstract
The biophysical characterization and crystallization of an extracellular domain of the EsaA membrane component of the type VIIb secretion system is described. The membrane protein EsaA is a conserved component of the type VIIb secretion system. Limited proteolysis of purified EsaA from Staphylococcus aureus USA300 identified a stable 48 kDa fragment, which was mapped by fingerprint mass spectrometry to an uncharacterized extracellular segment of EsaA. Analysis by circular dichroism spectroscopy showed that this fragment folds into a single stable domain made of mostly α-helices with a melting point of 34.5°C. Size-exclusion chromatography combined with multi-angle light scattering indicated the formation of a dimer of the purified extracellular domain. Octahedral crystals were grown in 0.2 M ammonium citrate tribasic pH 7.0, 16% PEG 3350 using the hanging-drop vapor-diffusion method. Diffraction data were analyzed to 4.0 Å resolution, showing that the crystals belonged to the enantiomorphic tetragonal space groups P41212 or P43212, with unit-cell parameters a = 197.5, b = 197.5, c = 368.3 Å, α = β = γ = 90°.
Collapse
Affiliation(s)
- Nicole Mietrach
- Institute for Molecular Infection Biology, Julius-Maximilians-University Würzburg, Josef Schneider Strasse 2, 97080 Würzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, Julius-Maximilians-University Würzburg, Josef Schneider Strasse 2, 97080 Würzburg, Germany
| | - Sebastian Geibel
- Institute for Molecular Infection Biology, Julius-Maximilians-University Würzburg, Josef Schneider Strasse 2, 97080 Würzburg, Germany
| |
Collapse
|
21
|
Abdi RD, Dunlap JR, Gillespie BE, Ensermu DB, Almeida RA, Kerro Dego O. Comparison of Staphylococcus aureus surface protein extraction methods and immunogenicity. Heliyon 2019; 5:e02528. [PMID: 31687478 PMCID: PMC6820086 DOI: 10.1016/j.heliyon.2019.e02528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 07/05/2019] [Accepted: 09/24/2019] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus is the major contagious bovine mastitis pathogen and has no effective vaccine. Strain variation and limited knowledge of common immunogenic antigen/s are among major constraints for developing effective vaccines. S. aureus cell surface proteins that are exposed to the host immune system constitute good vaccine candidates. The objective of this study was to compare two novel S. aureus surface protein extraction methods with biotinylation method and evaluate immune-reactivity of extracted proteins. Surface proteins were extracted from nine genetically distinct S. aureus strains from cases of bovine mastitis. After extraction, bacterial cell integrity was examined by Gram staining and electron microscopy to determine if extraction methods caused damage to cells that may release non-surface proteins. The extracted proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and evaluated for immune-reactivity using western blot. Results showed that all three extraction methods provided multiple protein bands on SDS-PAGE. Western blot result showed several immunoreactive surface proteins, in which some proteins strongly (well-resolved, thick, dark, and intense band) reacted across the nine strains tested. The three methods are valid for the extraction of surface proteins and hexadecane, and cholic acid methods are more feasible than biotinylation since both are easier, cheaper, and have minor effects on the bacterial cell. Strongly immune-reactive surface proteins may serve as potential candidates for a vaccine to control S. aureus mastitis in dairy cows.
Collapse
Affiliation(s)
- Reta Duguma Abdi
- Department of Animal Science, The University of Tennessee, Knoxville, TN37966, United States
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Greenvale, NY11548, United States
| | - John R. Dunlap
- Joint Institute for Advanced Materials (JIAM) Microscopy Center and Advanced Microscopy and Imaging Center, The University of Tennessee, Knoxville, TN, 37996, United States
| | - Barbara E. Gillespie
- Department of Animal Science, The University of Tennessee, Knoxville, TN37966, United States
| | - Desta Beyene Ensermu
- Department of Animal Science, The University of Tennessee, Knoxville, TN37966, United States
| | - Raul Antonio Almeida
- Department of Animal Science, The University of Tennessee, Knoxville, TN37966, United States
| | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee, Knoxville, TN37966, United States
- Corresponding author.
| |
Collapse
|
22
|
Li Y, Qin H, Ye M. An overview on enrichment methods for cell surface proteome profiling. J Sep Sci 2019; 43:292-312. [PMID: 31521063 DOI: 10.1002/jssc.201900700] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022]
Abstract
Cell surface proteins are essential for many important biological processes, including cell-cell interactions, signal transduction, and molecular transportation. With the characteristics of low abundance, high hydrophobicity, and high heterogeneity, it is difficult to get a comprehensive view of cell surface proteome by direct analysis. Thus, it is important to selectively enrich the cell surface proteins before liquid chromatography with mass spectrometry analysis. In recent years, a variety of enrichment methods have been developed. Based on the separation mechanism, these methods could be mainly classified into three types. The first type is based on their difference in the physicochemical property, such as size, density, charge, and hydrophobicity. The second one is based on the bimolecular affinity interaction with lectin or antibody. And the third type is based on the chemical covalent coupling to free side groups of surface-exposed proteins or carbohydrate chains, such as primary amines, carboxyl groups, glycan side chains. In addition, metabolic labeling and enzymatic reaction-based methods have also been employed to selectively isolate cell surface proteins. In this review, we will provide a comprehensive overview of the enrichment methods for cell surface proteome profiling.
Collapse
Affiliation(s)
- Yanan Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, P. R. China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, P. R. China
| |
Collapse
|
23
|
Zhao X, Palma Medina LM, Stobernack T, Glasner C, de Jong A, Utari P, Setroikromo R, Quax WJ, Otto A, Becher D, Buist G, van Dijl JM. Exoproteome Heterogeneity among Closely Related Staphylococcus aureus t437 Isolates and Possible Implications for Virulence. J Proteome Res 2019; 18:2859-2874. [PMID: 31119940 PMCID: PMC6617432 DOI: 10.1021/acs.jproteome.9b00179] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Staphylococcus aureus with spa-type t437 has been identified as a predominant community-associated methicillin-resistant S. aureus clone from Asia, which is also encountered in Europe. Molecular typing has previously shown that t437 isolates are highly similar regardless of geographical regions or host environments. The present study was aimed at assessing to what extent this high similarity is actually reflected in the production of secreted virulence factors. We therefore profiled the extracellular proteome, representing the main reservoir of virulence factors, of 20 representative clinical isolates by mass spectrometry. The results show that these isolates can be divided into three groups and nine subgroups based on exoproteome abundance signatures. This implies that S. aureus t437 isolates show substantial exoproteome heterogeneity. Nonetheless, 30 highly conserved extracellular proteins, of which about 50% have a predicted role in pathogenesis, were dominantly identified. To approximate the virulence of the 20 investigated isolates, we employed infection models based on Galleria mellonella and HeLa cells. The results show that the grouping of clinical isolates based on their exoproteome profile can be related to virulence. We consider this outcome important as our approach provides a tool to pinpoint differences in virulence among seemingly highly similar clinical isolates of S. aureus.
Collapse
Affiliation(s)
- Xin Zhao
- University of Groningen , University Medical Center Groningen, Department of Medical Microbiology , Hanzeplein 1 , P.O. Box 30001, 9700 RB Groningen , The Netherlands
| | - Laura M Palma Medina
- University of Groningen , University Medical Center Groningen, Department of Medical Microbiology , Hanzeplein 1 , P.O. Box 30001, 9700 RB Groningen , The Netherlands
| | - Tim Stobernack
- University of Groningen , University Medical Center Groningen, Department of Medical Microbiology , Hanzeplein 1 , P.O. Box 30001, 9700 RB Groningen , The Netherlands
| | - Corinna Glasner
- University of Groningen , University Medical Center Groningen, Department of Medical Microbiology , Hanzeplein 1 , P.O. Box 30001, 9700 RB Groningen , The Netherlands
| | - Anne de Jong
- University of Groningen , Groningen Biomolecular Sciences and Biotechnology Institute, Department of Molecular Genetics , 9747 AG Groningen , The Netherlands
| | - Putri Utari
- University of Groningen , Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology , A. Deusinglaan 1 , 9713 AV Groningen , The Netherlands
| | - Rita Setroikromo
- University of Groningen , Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology , A. Deusinglaan 1 , 9713 AV Groningen , The Netherlands
| | - Wim J Quax
- University of Groningen , Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology , A. Deusinglaan 1 , 9713 AV Groningen , The Netherlands
| | - Andreas Otto
- Institut für Mikrobiologie , University of Greifswald , Felix-Hausdorff-Str. 8 , 17475 Greifswald , Germany
| | - Dörte Becher
- Institut für Mikrobiologie , University of Greifswald , Felix-Hausdorff-Str. 8 , 17475 Greifswald , Germany
| | - Girbe Buist
- University of Groningen , University Medical Center Groningen, Department of Medical Microbiology , Hanzeplein 1 , P.O. Box 30001, 9700 RB Groningen , The Netherlands
| | - Jan Maarten van Dijl
- University of Groningen , University Medical Center Groningen, Department of Medical Microbiology , Hanzeplein 1 , P.O. Box 30001, 9700 RB Groningen , The Netherlands
| |
Collapse
|
24
|
Parida R. Human MOSPD2: A bacterial Lmb mimicked auto-antigen is involved in immune infertility. J Transl Autoimmun 2019; 1:100002. [PMID: 32743492 PMCID: PMC7388392 DOI: 10.1016/j.jtauto.2019.100002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/16/2019] [Accepted: 05/19/2019] [Indexed: 12/12/2022] Open
Abstract
Autoantibody production is one of the leading factors of immune infertility, an autoimmune disease of the male reproductive system. The potential involvement of MHC-class II derived self-peptides against bacterial proteins in the antisperm antibody (ASA) production has been reported previously. Apparently, Streptococcus agalactiae has been considered as an important pathogen to impart infection-induced infertility in a bacteriospermia associated leukocytospermia (LCS/BS) state. Hence, the present study attempts to confirm S. agalactiae specific Laminin binding protein (Lmb) derived self-peptide ('KDSYTKKAKAFKKEA') namely human Motile Sperm domain-containing protein 2 (MOSPD2) as an auto-antigen in LCS/BS condition. Semen samples were collected from infertile men with LCS/BS (n = 17) and their fertile counterparts (n = 10). Gram-positive bacteria were predominantly identified in the entire 17 LCS samples using culture method followed by 16S rDNA sequencing technique. TLRs 2 and 4 expression used as markers of immune response in spermatozoa and sperm dysfunction were elevated in the LCS/BS spermatozoa as compared to their fertile counterparts. A significant increase in oxidative stress indices i.e., protein carbonylation, lipid peroxidation and acridine orange test (AOT), was also observed in the LCS/BS spermatozoa. Spermatozoa lysate (both auto and heterologous), bacterial lysate (control) and synthesized MOSPD2 self-peptide were used to test their antigenicity against the autoantibodies by rocket immunoelectrophoresis (RIEP) assay. Seminal plasma from LCS/BS patients with S. agalactiae was used as the source of autoantibodies. Spermatozoa and bacteria lysate; and MOSPD2 self-peptide were able to bind autoantibodies in the seminal plasma. Besides, the self-peptide showed a dose dependent increase in the precipitation of antibody. T-cell epitope mapping of 48 Enterococcus faecalis and 91Staphylococcus aureus surface proteins confirmed MOSPD2 as a global auto-antigen. Thus, augmentation of TLR expression in LCS/BS spermatozoa inferred MOSPD2 to be a putative immunogen. Altogether, these findings will delineate the significance of MOSPD2 auto-antigen in a bacteria derived immune infertility condition.
Collapse
Affiliation(s)
- Rajeshwari Parida
- Department of Zoology, Ravenshaw University, Cuttack, 753003, Odisha, India
| |
Collapse
|
25
|
Maaß S, Moog G, Becher D. Subcellular Protein Fractionation in Legionella pneumophila and Preparation of the Derived Sub-proteomes for Analysis by Mass Spectrometry. Methods Mol Biol 2019; 1921:445-464. [PMID: 30694509 DOI: 10.1007/978-1-4939-9048-1_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Classical proteomic techniques are perfectly suited to reflect changes in the metabolism by detection of changed protein synthesis rates and protein abundances in a global protein-centered analysis. Although the proteome of microbes is considered as rather low complex, usually the subcellular fractionation of proteins leads to higher proteome coverage which might be important for the proteome quantification. Additionally, such fractionation provides the possibility to detect changes in the protein localization as well as the protein abundance in single sub-proteomes. Here, a workflow for subcellular fractionation of Legionella pneumophila into cytosolic, periplasmic, membrane, and extracellular proteins for global proteome analyses is provided. The methods included in this workflow can be used to analyze the adaptation of L. pneumophila to different environmental and nutritional situations during infection or during different life cycle stages including planktonic or biofilm phase.
Collapse
Affiliation(s)
- Sandra Maaß
- Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Gina Moog
- Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
26
|
Esbelin J, Santos T, Ribière C, Desvaux M, Viala D, Chambon C, Hébraud M. Comparison of three methods for cell surface proteome extraction of Listeria monocytogenes biofilms. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 22:779-787. [PMID: 30457927 DOI: 10.1089/omi.2018.0144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The cell surface proteome of the foodborne pathogen Listeria monocytogenes, the etiological agent of listeriosis, is critical for understanding the physiological processes associated with stress resistance and persistence in the environment. In this context, the most widespread mode of growth for bacterial cells in natural and industrial environments is in biofilms. Cell surface proteins are, however, challenging to characterize because of their low abundance and poor solubility. Moreover, cell surface protein extracts are usually contaminated with cytoplasmic proteins that constitute the main signal in proteomic analysis. This study aimed to compare the efficiency of three methods to extract and explore surface proteins of L. monocytogenes growing in a biofilm: trypsin shaving, biotinylation, and cell fractionation. Peptide separation and identification were performed by shotgun proteomics using high-performance liquid chromatography combined with tandem mass spectrometry (LC-MS/MS). The biotinylation method was the most effective in extracting surface proteins, with the lowest rate of contamination by cytoplasmic proteins. Although presenting a higher contamination rate in cytoplasmic proteins, the other two techniques allowed the identification of additional surface proteins. Seven proteins were commonly retrieved by the three methods. The extracted proteins belong to several functional classes, involved in virulence, transport, or metabolic pathways. Finally, the three extraction methods seemed complementary and their combined use improved the exploration of the bacterial surface proteome. These new findings collectively inform future discovery and translational proteomics for clinical, environmental health, and industrial applications.
Collapse
Affiliation(s)
- Julia Esbelin
- 1 Université Clermont Auvergne, INRA, UMR Microbiologie Environnement Digestif Santé (MEDiS), Saint-Genès Champanelle, France
| | - Tiago Santos
- 1 Université Clermont Auvergne, INRA, UMR Microbiologie Environnement Digestif Santé (MEDiS), Saint-Genès Champanelle, France
| | - Céline Ribière
- 1 Université Clermont Auvergne, INRA, UMR Microbiologie Environnement Digestif Santé (MEDiS), Saint-Genès Champanelle, France
| | - Mickaël Desvaux
- 1 Université Clermont Auvergne, INRA, UMR Microbiologie Environnement Digestif Santé (MEDiS), Saint-Genès Champanelle, France
| | - Didier Viala
- 2 INRA, Plate-Forme d'Exploration du Métabolisme composante protéomique (PFEMcp), Saint-Genès Champanelle, France
| | - Christophe Chambon
- 2 INRA, Plate-Forme d'Exploration du Métabolisme composante protéomique (PFEMcp), Saint-Genès Champanelle, France
| | - Michel Hébraud
- 1 Université Clermont Auvergne, INRA, UMR Microbiologie Environnement Digestif Santé (MEDiS), Saint-Genès Champanelle, France.,2 INRA, Plate-Forme d'Exploration du Métabolisme composante protéomique (PFEMcp), Saint-Genès Champanelle, France
| |
Collapse
|
27
|
Byrum S, Loughran AJ, Beenken KE, Orr LM, Storey AJ, Mackintosh SG, Edmondson RD, Tackett AJ, Smeltzer MS. Label-Free Proteomic Approach to Characterize Protease-Dependent and -Independent Effects of sarA Inactivation on the Staphylococcus aureus Exoproteome. J Proteome Res 2018; 17:3384-3395. [PMID: 30209945 PMCID: PMC6209314 DOI: 10.1021/acs.jproteome.8b00288] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The staphylococcal accessory regulator A ( sarA) impacts the extracellular accumulation of Staphylococcus aureus virulence factors at the level of intracellular production and extracellular protease-mediated degradation. We previously used a proteomics approach that measures protein abundance of all proteoforms to demonstrate that mutation of sarA results in increased levels of extracellular proteases and assesses the impact of this on the accumulation of S. aureus exoproteins. Our previous approach was limited as it did not take into account that large, stable proteolytic products from a given protein could result in false negatives when quantified by total proteoforms. Here, our goal was to use an expanded proteomics approach utilizing a dual quantitative method for measuring abundance at both the total proteoform and full-length exoprotein levels to alleviate these false negatives and thereby provide for characterization of protease-dependent and -independent effects of sarA mutation on the S. aureus exoproteome. Proteins present in conditioned medium from overnight, stationary phase cultures of the USA300 strain LAC, an isogenic sarA mutant, and a sarA mutant unable to produce any of the known extracellular proteases ( sarA/protease) were resolved using one-dimensional gel electrophoresis. Quantitative proteomic comparisons of sarA versus sarA/protease mutants identified proteins that were cleaved in a protease-dependent manner owing to mutation of sarA, and comparisons of sarA/protease mutant versus the LAC parent strain identified proteins in which abundance was altered in a sarA mutant in a protease-independent manner. Furthermore, the proteins uniquely identified by the full-length data analysis approach eliminated false negatives observed in the total proteoform analysis. This expanded approach provided for a more comprehensive analysis of the impact of mutating sarA on the S. aureus exoproteome.
Collapse
Affiliation(s)
- Stephanie
D. Byrum
- Department
of Biochemistry and Molecular Biology, University
of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, United States,Arkansas
Children’s Research Institute, 13 Children’s Way, Little Rock, Arkansas 72202, United States
| | - Allister J. Loughran
- Department
of Microbiology and Immunology, University
of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, United States
| | - Karen E. Beenken
- Department
of Microbiology and Immunology, University
of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, United States
| | - Lisa M. Orr
- Department
of Biochemistry and Molecular Biology, University
of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, United States
| | - Aaron J. Storey
- Department
of Biochemistry and Molecular Biology, University
of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, United States
| | - Samuel G. Mackintosh
- Department
of Biochemistry and Molecular Biology, University
of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, United States
| | - Ricky D. Edmondson
- Department
of Biochemistry and Molecular Biology, University
of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, United States
| | - Alan J. Tackett
- Department
of Biochemistry and Molecular Biology, University
of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, United States,Arkansas
Children’s Research Institute, 13 Children’s Way, Little Rock, Arkansas 72202, United States,E-mail:
| | - Mark S. Smeltzer
- Department
of Microbiology and Immunology, University
of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, United States,E-mail: , Phone: (501) 686-7958
| |
Collapse
|
28
|
Enrichment of Cell Surface-Associated Proteins in Gram-Positive Bacteria by Biotinylation or Trypsin Shaving for Mass Spectrometry Analysis. Methods Mol Biol 2018. [PMID: 30259478 DOI: 10.1007/978-1-4939-8695-8_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
In microbial cells surface-exposed proteins represent a physiologically important class of molecules as they enable these cells to interact with their environment both as free-living organisms and during interactions with a host. However, the characteristics of these proteins are quite divergent, which makes attempts to enrich, analyze, and quantify these molecules a challenging task. In this chapter two complementary methods for the enrichment and identification of cell surface-associated proteins, namely the biotinylation and the shaving approaches, are presented. Both protocols have been optimized for Gram-positive bacteria, and we provide a step-by-step guide for sample generation. Possible pitfalls during protein preparation are discussed.
Collapse
|
29
|
Lysostaphin Lysibody Leads to Effective Opsonization and Killing of Methicillin-Resistant Staphylococcus aureus in a Murine Model. Antimicrob Agents Chemother 2018; 62:AAC.01056-18. [PMID: 30038041 DOI: 10.1128/aac.01056-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/16/2018] [Indexed: 12/31/2022] Open
Abstract
The cell wall of Gram-positive bacteria contains abundant surface-exposed carbohydrate structures that are highly conserved. While these properties make surface carbohydrates ideal targets for immunotherapy, carbohydrates elicit a poor immune response that results primarily in low-affinity IgM antibodies. In a previous publication, we introduced the lysibody approach to address this shortcoming. Lysibodies are engineered molecules that combine a high-affinity carbohydrate-binding domain of bacterial or bacteriophage origin and an Fc effector portion of a human IgG antibody, thus directing effective immunity to conserved bacterial surface carbohydrates. Here, we describe the first example of a lysibody containing the binding domain from a bacteriocin, lysostaphin. We also describe the creation of five lysibodies with binding domains derived from phage lysins, directed against Staphylococcus aureus The lysostaphin and LysK lysibodies showed the most promise and were further characterized. Both lysibodies bound a range of clinically important staphylococcal strains, fixed complement on the staphylococcal surface, and induced phagocytosis of S. aureus by macrophages and human neutrophils. The lysostaphin lysibody had superior in vitro activity compared to that of the LysK lysibody, as well as that of the previously characterized ClyS lysibody, and it effectively protected mice in a kidney abscess/bacteremia model. These results further demonstrate that the lysibody approach is a reproducible means of creating antibacterial antibodies that cannot be produced by conventional means. Lysibodies therefore are a promising solution for opsonic antibodies that may be used passively to both treat and prevent infection by drug-resistant pathogens.
Collapse
|
30
|
From the genome sequence via the proteome to cell physiology – Pathoproteomics and pathophysiology of Staphylococcus aureus. Int J Med Microbiol 2018; 308:545-557. [DOI: 10.1016/j.ijmm.2018.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/23/2017] [Accepted: 01/02/2018] [Indexed: 02/01/2023] Open
|
31
|
Regulation of saeRS, agrA and sarA on sasX Expression in Staphylococcus aureus. Jundishapur J Microbiol 2018. [DOI: 10.5812/jjm.13821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
32
|
Jiménez-Munguía I, Pulzova L, Kanova E, Tomeckova Z, Majerova P, Bhide K, Comor L, Sirochmanova I, Kovac A, Bhide M. Proteomic and bioinformatic pipeline to screen the ligands of S. pneumoniae interacting with human brain microvascular endothelial cells. Sci Rep 2018; 8:5231. [PMID: 29588455 PMCID: PMC5869694 DOI: 10.1038/s41598-018-23485-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/14/2018] [Indexed: 01/17/2023] Open
Abstract
The mechanisms by which Streptococcus pneumoniae penetrates the blood-brain barrier (BBB), reach the CNS and causes meningitis are not fully understood. Adhesion of bacterial cells on the brain microvascular endothelial cells (BMECs), mediated through protein-protein interactions, is one of the crucial steps in translocation of bacteria across BBB. In this work, we proposed a systematic workflow for identification of cell wall associated ligands of pneumococcus that might adhere to the human BMECs. The proteome of S. pneumoniae was biotinylated and incubated with BMECs. Interacting proteins were recovered by affinity purification and identified by data independent acquisition (DIA). A total of 44 proteins were identified from which 22 were found to be surface-exposed. Based on the subcellular location, ontology, protein interactive analysis and literature review, five ligands (adhesion lipoprotein, endo-β-N-acetylglucosaminidase, PhtA and two hypothetical proteins, Spr0777 and Spr1730) were selected to validate experimentally (ELISA and immunocytochemistry) the ligand-BMECs interaction. In this study, we proposed a high-throughput approach to generate a dataset of plausible bacterial ligands followed by systematic bioinformatics pipeline to categorize the protein candidates for experimental validation. The approach proposed here could contribute in the fast and reliable screening of ligands that interact with host cells.
Collapse
Affiliation(s)
- Irene Jiménez-Munguía
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovak Republic
| | - Lucia Pulzova
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovak Republic
| | - Evelina Kanova
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovak Republic
| | - Zuzana Tomeckova
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovak Republic
| | - Petra Majerova
- Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Katarina Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovak Republic
| | - Lubos Comor
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovak Republic
| | - Ivana Sirochmanova
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovak Republic
| | - Andrej Kovac
- Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovak Republic.
- Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovak Republic.
| |
Collapse
|
33
|
Romero Pastrana F, Neef J, Koedijk DGAM, de Graaf D, Duipmans J, Jonkman MF, Engelmann S, van Dijl JM, Buist G. Human antibody responses against non-covalently cell wall-bound Staphylococcus aureus proteins. Sci Rep 2018; 8:3234. [PMID: 29459694 PMCID: PMC5818649 DOI: 10.1038/s41598-018-21724-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 02/06/2018] [Indexed: 12/28/2022] Open
Abstract
Human antibody responses to pathogens, like Staphylococcus aureus, are important indicators for in vivo expression and immunogenicity of particular bacterial components. Accordingly, comparing the antibody responses to S. aureus components may serve to predict their potential applicability as antigens for vaccination. The present study was aimed at assessing immunoglobulin G (IgG) responses elicited by non-covalently cell surface-bound proteins of S. aureus, which thus far received relatively little attention. To this end, we applied plasma samples from patients with the genetic blistering disease epidermolysis bullosa (EB) and healthy S. aureus carriers. Of note, wounds of EB patients are highly colonized with S. aureus and accordingly these patients are more seriously exposed to staphylococcal antigens than healthy individuals. Ten non-covalently cell surface-bound proteins of S. aureus, namely Atl, Eap, Efb, EMP, IsaA, LukG, LukH, SA0710, Sle1 and SsaA2, were selected by bioinformatics and biochemical approaches. These antigens were recombinantly expressed, purified and tested for specific IgG responses using human plasma. We show that high exposure of EB patients to S. aureus is mirrored by elevated IgG levels against all tested non-covalently cell wall-bound staphylococcal antigens. This implies that these S. aureus cell surface proteins are prime targets for the human immune system.
Collapse
Affiliation(s)
- Francisco Romero Pastrana
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Jolanda Neef
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Dennis G A M Koedijk
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Douwe de Graaf
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - José Duipmans
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Marcel F Jonkman
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Susanne Engelmann
- Institute of Microbiology, Technical University Braunschweig, Inhoffenstrasse 7, D-38124, Braunschweig, Germany.,Helmholtz Institute for Infection Research, Microbial Proteomics, Inhoffenstrasse 7, D-38124, Braunschweig, Germany
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands.
| | - Girbe Buist
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| |
Collapse
|
34
|
Rosman CWK, Romero Pastrana F, Buist G, Heuker M, van Oosten M, McNamara JO, van Dam GM, van Dijl JM. Ex Vivo Tracer Efficacy in Optical Imaging of Staphylococcus Aureus Nuclease Activity. Sci Rep 2018; 8:1305. [PMID: 29358617 PMCID: PMC5778018 DOI: 10.1038/s41598-018-19289-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 11/15/2017] [Indexed: 12/23/2022] Open
Abstract
The key to effective treatment of bacterial infections is a swift and reliable diagnosis. Current clinical standards of bacterial diagnosis are slow and laborious. There are several anatomical imaging modalities that can detect inflammation, but none can distinguish between bacterial and sterile inflammation. Novel tracers such as smart activatable fluorescent probes represent a promising development that allow fast and specific testing without the use of ionizing radiation. Previously, a smart activatable probe was developed that is a substrate for the micrococcal nuclease as produced by Staphylococcus aureus. In the present study, the function of this probe was validated. Practical applicability in terms of sensitivity was assessed by incubation of the probe with 26 clinical S. aureus isolates, and probe specificity was verified by incubation with 30 clinical isolates and laboratory strains of various bacterial pathogens. The results show that the nuclease-specific probe was activated by all tested S. aureus isolates and laboratory strains with a threshold of ~106-107 cells/mL. The probe was also activated by certain opportunistic staphylococci. We therefore propose that the studied nuclease probe represents a significant step forward to address the need for a rapid, practical, and precise method to detect infections caused by S. aureus.
Collapse
Affiliation(s)
- Colin W K Rosman
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Francisco Romero Pastrana
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Girbe Buist
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marjolein Heuker
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marleen van Oosten
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - James O McNamara
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Gooitzen M van Dam
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
35
|
Celebioglu HU, Svensson B. Exo- and surface proteomes of the probiotic bacterium Lactobacillus acidophilus NCFM. Proteomics 2018; 17. [PMID: 28393464 DOI: 10.1002/pmic.201700019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/30/2017] [Accepted: 04/06/2017] [Indexed: 11/09/2022]
Abstract
Lactobacillus acidophilus NCFM is a well-known probiotic bacterium extensively studied for its beneficial health effects. Exoproteome (proteins exported into culture medium) and surface proteome (proteins attached to S-layer) of this probiotic were identified by using 2DE followed by MALDI TOF MS to find proteins potentially involved in bacteria-host interactions. The exo- and surface proteomes included 43 and 39 different proteins from 72 and 49 successfully identified spots, respectively. Twenty-two proteins were shared between the two proteomes; both contained the major surface layer protein that participates in host interaction as well as several well-known and putative moonlighting proteins. The exoproteome contained nine classically-secreted (containing a signal sequence) and ten nonclassically-secreted proteins, while the surface proteome contained four classically-secreted and eight nonclassically secreted proteins. Identification of exo- and surface proteomes contributes describing potential protein-mediated probiotic-host interactions.
Collapse
Affiliation(s)
- Hasan Ufuk Celebioglu
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
36
|
Distinct virulent network between healthcare- and community-associated Staphylococcus aureus based on proteomic analysis. Clin Proteomics 2018; 15:2. [PMID: 29321722 PMCID: PMC5757299 DOI: 10.1186/s12014-017-9178-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/22/2017] [Indexed: 12/18/2022] Open
Abstract
Background Staphylococcus aureus (S. aureus or SA) is a leading cause of healthcare-associated (HA-) and community-associated (CA) infection. HA-SA isolates usually cause nosocomial pneumonia, bloodstream infections, catheter-related urinary tract infections, etc. On the other hand, CA-SA isolates usually cause highly fatal diseases, such as SSTIs as well as post influenza necrotic hemorrhagic pneumonia. The differences of the infection types are partially due to the unique characteristics between HA-SA and CA-SA isolates. For example, HA-SA isolates showed strong adherence to host epithelial cells, while CA-SA isolates displayed higher virulence due to the increased activity of the important quorum-sensing system accessory gene regulator (agr). Thus, the aim of this study was to characterize the proteomic difference between HA-SA and CA-SA lineage. Methods In this study, the extracted peptides from those representative strains were analyzed by LC-MS/MS. The protein-protein interaction network was constructed by bioinformatics and their expressions were verified by RT-PCR and Western blot. Results We demonstrated that Agr system (AgrA and AgrC) and its interactive factors (PhoP, SrrB, YycG, SarX, SigB and ClpP) based on the protein–protein interaction network were expressed significantly higher in the epidemic Chinese CA-SA lineage ST398 compared to HA-SA lineage ST239 by LC-MS/MS. We further verified the increased transcription of all these genes in ST398 by RT-PCR, suggesting that the higher expression of these genes/proteins probably play role in the acute infection of CA-SA. Moreover, surface-related proteins (FnbpA, SpA, Atl, ClfA, IsaA, IsaB, LtaS, SsaA and Cna) that are repressed by the Agr system have significantly higher expression in the epidemic Chinese HA-SA clone ST239 in comparison to CA-SA lineage ST398 by LC-MS/MS. Furthermore, we confirmed the significantly increased expression of two important adhesive proteins (Atl and ClfA) in ST239 by Western blot, which may contribute to the durative infection of HA-SA. Conclusion The results suggest that the different proteomic profile, at least partially, contribute to the pathogenic differences between HA-SA and CA-SA. Electronic supplementary material The online version of this article (10.1186/s12014-017-9178-5) contains supplementary material, which is available to authorized users.
Collapse
|
37
|
García-Pérez AN, de Jong A, Junker S, Becher D, Chlebowicz MA, Duipmans JC, Jonkman MF, van Dijl JM. From the wound to the bench: exoproteome interplay between wound-colonizing Staphylococcus aureus strains and co-existing bacteria. Virulence 2018; 9:363-378. [PMID: 29233035 PMCID: PMC5955179 DOI: 10.1080/21505594.2017.1395129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/09/2017] [Accepted: 10/15/2017] [Indexed: 11/16/2022] Open
Abstract
Wound-colonizing microorganisms can form complex and dynamic polymicrobial communities where pathogens and commensals may co-exist, cooperate or compete with each other. The present study was aimed at identifying possible interactions between different bacteria isolated from the same chronic wound of a patient with the genetic blistering disease epidermolysis bullosa (EB). Specifically, this involved two different isolates of the human pathogen Staphylococcus aureus, and isolates of Bacillus thuringiensis and Klebsiella oxytoca. Particular focus was attributed to interactions of S. aureus with the two other species, because of the high staphylococcal prevalence among chronic wounds. Intriguingly, upon co-cultivation, none of the wound isolates inhibited each other's growth. Since the extracellular proteome of bacterial pathogens is a reservoir of virulence factors, the exoproteomes of the staphylococcal isolates in monoculture and co-culture with B. thuringiensis and K. oxytoca were characterized by Mass Spectrometry to explore the inherent relationships between these co-exisiting bacteria. This revealed a massive reduction in the number of staphylococcal exoproteins upon co-culturing with K. oxytoca or B. thuringiensis. Interestingly, this decrease was particularly evident for extracellular proteins with a predicted cytoplasmic localization, which were recently implicated in staphylococcal virulence and epidemiology. Furthermore, our exoproteome analysis uncovered potential cooperativity between the two different S. aureus isolates. Altogether, the observed exoproteome variations upon co-culturing are indicative of unprecedented adaptive mechanisms that set limits to the production of secreted staphylococcal virulence factors.
Collapse
Affiliation(s)
- Andrea N. García-Pérez
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Anne de Jong
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, AG Groningen, the Netherlands
| | - Sabryna Junker
- Institute for Microbiology, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 15, Greifswald, Germany
| | - Dörte Becher
- Institute for Microbiology, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str. 15, Greifswald, Germany
| | - Monika A. Chlebowicz
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - José C. Duipmans
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, RB Groningen, the Netherlands
| | - Marcel F. Jonkman
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, RB Groningen, the Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| |
Collapse
|
38
|
Romero Pastrana F, Thompson JM, Heuker M, Hoekstra H, Dillen CA, Ortines RV, Ashbaugh AG, Pickett JE, Linssen MD, Bernthal NM, Francis KP, Buist G, van Oosten M, van Dam GM, Thorek DLJ, Miller LS, van Dijl JM. Noninvasive optical and nuclear imaging of Staphylococcus-specific infection with a human monoclonal antibody-based probe. Virulence 2017; 9:262-272. [PMID: 29166841 PMCID: PMC5955194 DOI: 10.1080/21505594.2017.1403004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus infections are a major threat in healthcare, requiring adequate early-stage diagnosis and treatment. This calls for novel diagnostic tools that allow noninvasive in vivo detection of staphylococci. Here we performed a preclinical study to investigate a novel fully-human monoclonal antibody 1D9 that specifically targets the immunodominant staphylococcal antigen A (IsaA). We show that 1D9 binds invariantly to S. aureus cells and may further target other staphylococcal species. Importantly, using a human post-mortem implant model and an in vivo murine skin infection model, preclinical feasibility was demonstrated for 1D9 labeled with the near-infrared fluorophore IRDye800CW to be applied for direct optical imaging of in vivo S. aureus infections. Additionally, 89Zirconium-labeled 1D9 could be used for positron emission tomography imaging of an in vivo S. aureus thigh infection model. Our findings pave the way towards clinical implementation of targeted imaging of staphylococcal infections using the human monoclonal antibody 1D9.
Collapse
Affiliation(s)
- Francisco Romero Pastrana
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Hanzeplein 1, Groningen , RB , The Netherlands
| | - John M Thompson
- b Department of Orthopaedic Surgery , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Marjolein Heuker
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Hanzeplein 1, Groningen , RB , The Netherlands
| | - Hedzer Hoekstra
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Hanzeplein 1, Groningen , RB , The Netherlands
| | - Carly A Dillen
- c Department of Dermatology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Roger V Ortines
- c Department of Dermatology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Alyssa G Ashbaugh
- c Department of Dermatology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Julie E Pickett
- d Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Radiological Science , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Matthijs D Linssen
- e Department of Gastroentrology and Hepatology , University of Groningen, University Medical Center Groningen , Hanzeplein 1, Groningen , RB , The Netherlands.,f Department of clinical Pharmacy and Pharmacology , University of Groningen, University Medical Center Groningen , Hanzeplein 1, Groningen , RB , The Netherlands
| | - Nicholas M Bernthal
- g Department of Orthopaedic Surgery , David Geffen School of Medicine at the University of California, Los Angeles Medical Center , Santa Monica , CA , USA
| | - Kevin P Francis
- g Department of Orthopaedic Surgery , David Geffen School of Medicine at the University of California, Los Angeles Medical Center , Santa Monica , CA , USA.,h PerkinElmer , Alameda , California , CA , USA.,i Department of Surgery , Nuclear Medicine and Molecular Imaging and Intensive Care, University of Groningen, University Medical Center Groningen , Hanzeplein 1, Groningen , RB , The Netherlands
| | - Girbe Buist
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Hanzeplein 1, Groningen , RB , The Netherlands
| | - Marleen van Oosten
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Hanzeplein 1, Groningen , RB , The Netherlands
| | - Gooitzen M van Dam
- i Department of Surgery , Nuclear Medicine and Molecular Imaging and Intensive Care, University of Groningen, University Medical Center Groningen , Hanzeplein 1, Groningen , RB , The Netherlands
| | - Daniel L J Thorek
- d Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Radiological Science , Johns Hopkins University School of Medicine , Baltimore , MD , USA.,j Department of Oncology , Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Lloyd S Miller
- b Department of Orthopaedic Surgery , Johns Hopkins University School of Medicine , Baltimore , MD , USA.,c Department of Dermatology , Johns Hopkins University School of Medicine , Baltimore , MD , USA.,k Division of Infectious Disease, Department of Medicine , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Jan Maarten van Dijl
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Hanzeplein 1, Groningen , RB , The Netherlands
| |
Collapse
|
39
|
Fuchs S, Mehlan H, Bernhardt J, Hennig A, Michalik S, Surmann K, Pané-Farré J, Giese A, Weiss S, Backert L, Herbig A, Nieselt K, Hecker M, Völker U, Mäder U. AureoWiki ̵ The repository of the Staphylococcus aureus research and annotation community. Int J Med Microbiol 2017; 308:558-568. [PMID: 29198880 DOI: 10.1016/j.ijmm.2017.11.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/20/2017] [Accepted: 11/24/2017] [Indexed: 11/28/2022] Open
Abstract
In light of continuously accumulating data and knowledge on major human pathogens, comprehensive and up-to-date sources of easily accessible information are urgently required. The AureoWiki database (http://aureowiki.med.uni-greifswald.de) provides detailed information on the genes and proteins of clinically and experimentally relevant S. aureus strains, currently covering NCTC 8325, COL, Newman, USA300_FPR3757, and N315. By implementing a pan-genome approach, AureoWiki facilitates the transfer of knowledge gained in studies with different S. aureus strains, thus supporting functional annotation and better understanding of this organism. All data related to a given gene or gene product is compiled on a strain-specific gene page. The gene pages contain sequence-based information complemented by data on, for example, protein function and localization, transcriptional regulation, and gene expression. The information provided is connected via links to other databases and published literature. Importantly, orthologous genes of the individual strains, which are linked by a pan-genome gene identifier and a unified gene name, are presented side by side using strain-specific tabs. The respective pan-genome gene page contains an orthologue table for 32 S. aureus strains, a multiple-strain genome viewer, a protein sequence alignment as well as other comparative information. The data collected in AureoWiki is also accessible through various download options in order to support bioinformatics applications. In addition, based on two large-scale gene expression data sets, AureoWiki provides graphical representations of condition-dependent mRNA levels and protein profiles under various laboratory and infection-related conditions.
Collapse
Affiliation(s)
- Stephan Fuchs
- FG13 Nosocomial Pathogens and Antibiotic Resistance, Robert Koch Institute, Wernigerode, Germany; Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Henry Mehlan
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jörg Bernhardt
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - André Hennig
- Center for Bioinformatics Tübingen, University of Tübingen, Tübingen, Germany
| | - Stephan Michalik
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Kristin Surmann
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jan Pané-Farré
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Anne Giese
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Linus Backert
- Center for Bioinformatics Tübingen, University of Tübingen, Tübingen, Germany
| | - Alexander Herbig
- Center for Bioinformatics Tübingen, University of Tübingen, Tübingen, Germany
| | - Kay Nieselt
- Center for Bioinformatics Tübingen, University of Tübingen, Tübingen, Germany
| | - Michael Hecker
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany; ZIK FunGene, Ernst-Moritz-Arndt-University Greifswald and University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany; ZIK FunGene, Ernst-Moritz-Arndt-University Greifswald and University Medicine Greifswald, Greifswald, Germany
| | - Ulrike Mäder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
40
|
Klotz C, O'Flaherty S, Goh YJ, Barrangou R. Investigating the Effect of Growth Phase on the Surface-Layer Associated Proteome of Lactobacillus acidophilus Using Quantitative Proteomics. Front Microbiol 2017; 8:2174. [PMID: 29167661 PMCID: PMC5682318 DOI: 10.3389/fmicb.2017.02174] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/23/2017] [Indexed: 01/17/2023] Open
Abstract
Bacterial surface-layers (S-layers) are semi-porous crystalline arrays that self-assemble to form the outermost layer of some cell envelopes. S-layers have been shown to act as scaffolding structures for the display of auxiliary proteins externally. These S-layer associated proteins have recently gained attention in probiotics due to their direct physical contact with the intestinal mucosa and potential role in cell proliferation, adhesion, and immunomodulation. A number of studies have attempted to catalog the S-layer associated proteome of Lactobacillus acidophilus NCFM under a single condition. However, due to the versatility of the cell surface, we chose to employ a multiplexing-based approach with the intention of accurately contrasting multiple conditions. In this study, a previously described lithium chloride isolation protocol was used to release proteins bound to the L. acidophilus S-layer during logarithmic and early stationary growth phases. Protein quantification values were obtained via TMT (tandem mass tag) labeling combined with a triple-stage mass spectrometry (MS3) method. Results showed significant growth stage-dependent alterations to the surface-associated proteome while simultaneously highlighting the sensitivity and reproducibility of the technology. Thus, this study establishes a framework for quantifying condition-dependent changes to cell surface proteins that can easily be applied to other S-layer forming bacteria.
Collapse
Affiliation(s)
- Courtney Klotz
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC, United States.,Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Sarah O'Flaherty
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Yong Jun Goh
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Rodolphe Barrangou
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC, United States.,Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
41
|
Fels U, Gevaert K, Van Damme P. Proteogenomics in Aid of Host-Pathogen Interaction Studies: A Bacterial Perspective. Proteomes 2017; 5:E26. [PMID: 29019919 PMCID: PMC5748561 DOI: 10.3390/proteomes5040026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/02/2017] [Accepted: 10/08/2017] [Indexed: 12/17/2022] Open
Abstract
By providing useful tools to study host-pathogen interactions, next-generation omics has recently enabled the study of gene expression changes in both pathogen and infected host simultaneously. However, since great discriminative power is required to study pathogen and host simultaneously throughout the infection process, the depth of quantitative gene expression profiling has proven to be unsatisfactory when focusing on bacterial pathogens, thus preferentially requiring specific strategies or the development of novel methodologies based on complementary omics approaches. In this review, we focus on the difficulties encountered when making use of proteogenomics approaches to study bacterial pathogenesis. In addition, we review different omics strategies (i.e., transcriptomics, proteomics and secretomics) and their applications for studying interactions of pathogens with their host.
Collapse
Affiliation(s)
- Ursula Fels
- VIB-UGent Center for Medical Biotechnology, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium.
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium.
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium.
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium.
| | - Petra Van Damme
- VIB-UGent Center for Medical Biotechnology, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium.
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium.
| |
Collapse
|
42
|
Elongation factor Tu is a multifunctional and processed moonlighting protein. Sci Rep 2017; 7:11227. [PMID: 28894125 PMCID: PMC5593925 DOI: 10.1038/s41598-017-10644-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/10/2017] [Indexed: 01/10/2023] Open
Abstract
Many bacterial moonlighting proteins were originally described in medically, agriculturally, and commercially important members of the low G + C Firmicutes. We show Elongation factor Tu (Ef-Tu) moonlights on the surface of the human pathogens Staphylococcus aureus (SaEf-Tu) and Mycoplasma pneumoniae (MpnEf-Tu), and the porcine pathogen Mycoplasma hyopneumoniae (MhpEf-Tu). Ef-Tu is also a target of multiple processing events on the cell surface and these were characterised using an N-terminomics pipeline. Recombinant MpnEf-Tu bound strongly to a diverse range of host molecules, and when bound to plasminogen, was able to convert plasminogen to plasmin in the presence of plasminogen activators. Fragments of Ef-Tu retain binding capabilities to host proteins. Bioinformatics and structural modelling studies indicate that the accumulation of positively charged amino acids in short linear motifs (SLiMs), and protein processing promote multifunctional behaviour. Codon bias engendered by an A + T rich genome may influence how positively-charged residues accumulate in SLiMs.
Collapse
|
43
|
Rewiring of the FtsH regulatory network by a single nucleotide change in saeS of Staphylococcus aureus. Sci Rep 2017; 7:8456. [PMID: 28814746 PMCID: PMC5559551 DOI: 10.1038/s41598-017-08774-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/18/2017] [Indexed: 11/08/2022] Open
Abstract
In the Gram-positive pathogen Staphylococcus aureus, the membrane-bound ATP-dependent metalloprotease FtsH plays a critical role in resistance to various stressors. However, the molecular mechanism of the FtsH functions is not known. Here, we identified core FtsH target proteins in S. aureus. In the strains Newman and USA300, the abundance of 33 proteins were altered in both strains, of which 11 were identified as core FtsH substrate protein candidates. In the strain Newman and some other S. aureus strains, the sensor histidine kinase SaeS has an L18P (T53C in saeS) substitution, which transformed the protein into an FtsH substrate. Due to the increase of SaeS L18P in the ftsH mutant, Eap, a sae-regulon protein, was also increased in abundance, causing the Newman-specific cell-aggregation phenotype. Regardless of the strain background, however, the ftsH mutants showed lower virulence and survival in a murine infection model. Our study illustrates the elasticity of the bacterial regulatory network, which can be rewired by a single substitution mutation.
Collapse
|
44
|
Koedijk DGAM, Pastrana FR, Hoekstra H, Berg SVD, Back JW, Kerstholt C, Prins RC, Bakker-Woudenberg IAJM, van Dijl JM, Buist G. Differential epitope recognition in the immunodominant staphylococcal antigen A of Staphylococcus aureus by mouse versus human IgG antibodies. Sci Rep 2017; 7:8141. [PMID: 28811514 PMCID: PMC5557936 DOI: 10.1038/s41598-017-08182-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/29/2017] [Indexed: 11/25/2022] Open
Abstract
The immunodominant staphylococcal antigen A (IsaA) is a potential target for active or passive immunization against the important human pathogen Staphylococcus aureus. Consistent with this view, monoclonal antibodies against IsaA were previously shown to be protective against S. aureus infections in mouse models. Further, patients with the genetic blistering disease epidermolysis bullosa (EB) displayed high IsaA-specific IgG levels that could potentially be protective. Yet, mice actively immunized with IsaA were not protected against S. aureus infection. The present study was aimed at explaining these differences in IsaA-specific immune responses. By epitope mapping, we show that the protective human monoclonal antibody (humAb) 1D9 recognizes a conserved 62-residue N-terminal domain of IsaA. The same region of IsaA is recognized by IgGs in EB patient sera. Further, we show by immunofluorescence microscopy that this N-terminal IsaA domain is exposed on the S. aureus cell surface. In contrast to the humAb 1D9 and IgGs from EB patients, the non-protective IgGs from mice immunized with IsaA were shown to predominantly bind the C-terminal domain of IsaA. Altogether, these observations focus attention on the N-terminal region of IsaA as a potential target for future immunization against S. aureus.
Collapse
Affiliation(s)
- Dennis G A M Koedijk
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Francisco Romero Pastrana
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Hedzer Hoekstra
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Sanne van den Berg
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Carolien Kerstholt
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Rianne C Prins
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Irma A J M Bakker-Woudenberg
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands.
| | - Girbe Buist
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| |
Collapse
|
45
|
Mekonnen SA, Palma Medina LM, Glasner C, Tsompanidou E, de Jong A, Grasso S, Schaffer M, Mäder U, Larsen AR, Gumpert H, Westh H, Völker U, Otto A, Becher D, van Dijl JM. Signatures of cytoplasmic proteins in the exoproteome distinguish community- and hospital-associated methicillin-resistant Staphylococcus aureus USA300 lineages. Virulence 2017; 8:891-907. [PMID: 28475476 PMCID: PMC5626246 DOI: 10.1080/21505594.2017.1325064] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is the common name for a heterogeneous group of highly drug-resistant staphylococci. Two major MRSA classes are distinguished based on epidemiology, namely community-associated (CA) and hospital-associated (HA) MRSA. Notably, the distinction of CA- and HA-MRSA based on molecular traits remains difficult due to the high genomic plasticity of S. aureus. Here we sought to pinpoint global distinguishing features of CA- and HA-MRSA through a comparative genome and proteome analysis of the notorious MRSA lineage USA300. We show for the first time that CA- and HA-MRSA isolates can be distinguished by 2 distinct extracellular protein abundance clusters that are predictive not only for epidemiologic behavior, but also for their growth and survival within epithelial cells. This ‘exoproteome profiling’ also groups more distantly related HA-MRSA isolates into the HA exoproteome cluster. Comparative genome analysis suggests that these distinctive features of CA- and HA-MRSA isolates relate predominantly to the accessory genome. Intriguingly, the identified exoproteome clusters differ in the relative abundance of typical cytoplasmic proteins, suggesting that signatures of cytoplasmic proteins in the exoproteome represent a new distinguishing feature of CA- and HA-MRSA. Our comparative genome and proteome analysis focuses attention on potentially distinctive roles of ‘liberated’ cytoplasmic proteins in the epidemiology and intracellular survival of CA- and HA-MRSA isolates. Such extracellular cytoplasmic proteins were recently invoked in staphylococcal virulence, but their implication in the epidemiology of MRSA is unprecedented.
Collapse
Affiliation(s)
- Solomon A Mekonnen
- a Department of Medical Microbiology , University of Groningen, University Medical Center, Groningen , Groningen , The Netherlands
| | - Laura M Palma Medina
- b Interfaculty Institute for Genetics and Functional Genomics , University Medicine Greifswald , Greifswald , Germany
| | - Corinna Glasner
- a Department of Medical Microbiology , University of Groningen, University Medical Center, Groningen , Groningen , The Netherlands
| | - Eleni Tsompanidou
- a Department of Medical Microbiology , University of Groningen, University Medical Center, Groningen , Groningen , The Netherlands
| | - Anne de Jong
- c Department of Molecular Genetics , University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute , Groningen , The Netherlands
| | - Stefano Grasso
- a Department of Medical Microbiology , University of Groningen, University Medical Center, Groningen , Groningen , The Netherlands
| | - Marc Schaffer
- b Interfaculty Institute for Genetics and Functional Genomics , University Medicine Greifswald , Greifswald , Germany
| | - Ulrike Mäder
- b Interfaculty Institute for Genetics and Functional Genomics , University Medicine Greifswald , Greifswald , Germany
| | - Anders R Larsen
- d National Center for Antimicrobials and Infection Control , Statens Serum Institut , Copenhagen , Denmark
| | - Heidi Gumpert
- e Department of Clinical Microbiology , Hvidovre University Hospital , Hvidovre , Denmark
| | - Henrik Westh
- e Department of Clinical Microbiology , Hvidovre University Hospital , Hvidovre , Denmark.,f Department of Clinical Medicine, Faculty of Health , University of Copenhagen , Copenhagen , Denmark
| | - Uwe Völker
- b Interfaculty Institute for Genetics and Functional Genomics , University Medicine Greifswald , Greifswald , Germany
| | - Andreas Otto
- g Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität Greifswald , Greifswald , Germany
| | - Dörte Becher
- g Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität Greifswald , Greifswald , Germany
| | - Jan Maarten van Dijl
- a Department of Medical Microbiology , University of Groningen, University Medical Center, Groningen , Groningen , The Netherlands
| |
Collapse
|
46
|
Lysibodies are IgG Fc fusions with lysin binding domains targeting Staphylococcus aureus wall carbohydrates for effective phagocytosis. Proc Natl Acad Sci U S A 2017; 114:4781-4786. [PMID: 28428342 DOI: 10.1073/pnas.1619249114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cell wall of Gram-positive bacteria contains abundant surface-exposed carbohydrate molecules that are highly conserved within and often across species. The potential therapeutic usefulness of high-affinity antibodies to cell wall carbohydrates is unquestioned, however obtaining such antibodies is challenging due to the poor overall immunogenicity of these bacterial targets. Autolysins and phage lysins are peptidoglycan hydrolases, enzymes that have evolved over a billion years to degrade bacterial cell wall. Such wall hydrolases are modular enzymes, composed of discrete domains for high-affinity binding to cell wall carbohydrates and cleavage activity. In this study, we demonstrate that binding domains from autolysins and lysins can be fused to the Fc region of human IgG, creating a fully functional homodimer (or "lysibody") with high-affinity binding and specificity for carbohydrate determinants on the bacterial surface. Furthermore, we demonstrate that this process is reproducible with three different binding domains specific to methicillin-resistant Staphylococcus aureus (MRSA). Cell-bound lysibodies induced the fixation of complement on the bacterial surface, promoted phagocytosis by macrophages and neutrophils, and protected mice from MRSA infection in two model systems. The lysibody approach could be used to target a range of difficult-to-treat pathogenic bacteria, given that cell wall hydrolases are ubiquitous in nature.
Collapse
|
47
|
Hajighahramani N, Nezafat N, Eslami M, Negahdaripour M, Rahmatabadi SS, Ghasemi Y. Immunoinformatics analysis and in silico designing of a novel multi-epitope peptide vaccine against Staphylococcus aureus. INFECTION GENETICS AND EVOLUTION 2017; 48:83-94. [DOI: 10.1016/j.meegid.2016.12.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 11/29/2016] [Accepted: 12/09/2016] [Indexed: 12/19/2022]
|
48
|
Stobernack T, Glasner C, Junker S, Gabarrini G, de Smit M, de Jong A, Otto A, Becher D, van Winkelhoff AJ, van Dijl JM. Extracellular Proteome and Citrullinome of the Oral Pathogen Porphyromonas gingivalis. J Proteome Res 2016; 15:4532-4543. [DOI: 10.1021/acs.jproteome.6b00634] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Tim Stobernack
- Department
of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands
| | - Corinna Glasner
- Department
of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands
| | - Sabryna Junker
- Institute
for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald 17489, Germany
| | - Giorgio Gabarrini
- Department
of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands
- Center
for Dentistry and Oral Hygiene, Department of Periodontology, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands
| | - Menke de Smit
- Center
for Dentistry and Oral Hygiene, Department of Periodontology, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands
| | - Anne de Jong
- Department
of Molecular Genetics, University of Groningen, Groningen 9700 AB, The Netherlands
| | - Andreas Otto
- Institute
for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald 17489, Germany
| | - Dörte Becher
- Institute
for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald 17489, Germany
| | - Arie Jan van Winkelhoff
- Department
of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands
- Center
for Dentistry and Oral Hygiene, Department of Periodontology, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands
| | - Jan Maarten van Dijl
- Department
of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands
| |
Collapse
|
49
|
Donnarumma D, Faleri A, Costantino P, Rappuoli R, Norais N. The role of structural proteomics in vaccine development: recent advances and future prospects. Expert Rev Proteomics 2016; 13:55-68. [PMID: 26714563 DOI: 10.1586/14789450.2016.1121113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Vaccines are the most effective way to fight infectious diseases saving countless lives since their introduction. Their evolution during the last century made use of the best technologies available to continuously increase their efficacy and safety. Mass spectrometry (MS) and proteomics are already playing a central role in the identification and characterization of novel antigens. Over the last years, we have been witnessing the emergence of structural proteomics in vaccinology, as a major tool for vaccine candidate discovery, antigen design and life cycle management of existing products. In this review, we describe the MS techniques associated to structural proteomics and we illustrate the contribution of structural proteomics to vaccinology discussing potential applications.
Collapse
|
50
|
Couto N, Martins J, Lourenço AM, Pomba C, Varela Coelho A. Identification of vaccine candidate antigens of Staphylococcus pseudintermedius by whole proteome characterization and serological proteomic analyses. J Proteomics 2016; 133:113-124. [DOI: 10.1016/j.jprot.2015.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 12/02/2015] [Accepted: 12/09/2015] [Indexed: 01/12/2023]
|