1
|
Balach MM, Santander VS, Elisio EY, Rivelli JF, Muhlberger T, Campetelli AN, Casale CH, Monesterolo NE. Tubulin-mediated anatomical and functional changes caused by Ca 2+ in human erythrocytes. J Physiol Biochem 2023:10.1007/s13105-023-00946-4. [PMID: 36773113 DOI: 10.1007/s13105-023-00946-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/28/2023] [Indexed: 02/12/2023]
Abstract
In previous research, we observed that tubulin can be found in three fractions within erythrocytes, i.e., attached to the membrane, as a soluble fraction, or as part of a structure that can be sedimented by centrifugation. Given that its differential distribution within these fractions may alter several hemorheological properties, such as erythrocyte deformability, the present work studied how this distribution is in turn affected by Ca2+, another key player in the regulation of erythrocyte cytoskeleton stability. The effect of Ca2+ on some hemorheological parameters was also assessed. The results showed that when Ca2+ concentrations increased in the cell, whether by the addition of ionophore A23187, by specific plasma membrane Ca2 + _ATPase (PMCA) inhibition, or due to arterial hypertension, tubulin translocate to the membrane, erythrocyte deformability decreased, and phosphatidylserine exposure increased. Moreover, increased Ca2+ was associated with an inverse correlation in the distribution of tubulin and spectrin, another important cytoskeleton protein. Based on these findings, we propose the existence of a mechanism of action through which higher Ca2+ concentrations in erythrocytes trigger the migration of tubulin to the membrane, a phenomenon that results in alterations of rheological and molecular aspects of the membrane itself, as well as of the integrity of the cytoskeleton.
Collapse
Affiliation(s)
- Melisa M Balach
- Instituto de Biotecnología Ambiental y Salud (INBIAS), CONICET - UNRC)- Río Cuarto, 5800, Córdoba, Argentina.,Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico- Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Verónica S Santander
- Instituto de Biotecnología Ambiental y Salud (INBIAS), CONICET - UNRC)- Río Cuarto, 5800, Córdoba, Argentina.,Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico- Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Elida Y Elisio
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico- Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Juan F Rivelli
- Instituto de Biotecnología Ambiental y Salud (INBIAS), CONICET - UNRC)- Río Cuarto, 5800, Córdoba, Argentina.,Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico- Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Tamara Muhlberger
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico- Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Alexis N Campetelli
- Instituto de Biotecnología Ambiental y Salud (INBIAS), CONICET - UNRC)- Río Cuarto, 5800, Córdoba, Argentina.,Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico- Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Cesar H Casale
- Instituto de Biotecnología Ambiental y Salud (INBIAS), CONICET - UNRC)- Río Cuarto, 5800, Córdoba, Argentina.,Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico- Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Noelia E Monesterolo
- Instituto de Biotecnología Ambiental y Salud (INBIAS), CONICET - UNRC)- Río Cuarto, 5800, Córdoba, Argentina. .,Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico- Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
2
|
Chien HD, Pantaleo A, Kesely KR, Noomuna P, Putt KS, Tuan TA, Low PS, Turrini FM. Imatinib augments standard malaria combination therapy without added toxicity. THE JOURNAL OF EXPERIMENTAL MEDICINE 2021; 218:212603. [PMID: 34436509 PMCID: PMC8404470 DOI: 10.1084/jem.20210724] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/21/2021] [Accepted: 07/26/2021] [Indexed: 01/13/2023]
Abstract
To egress from its erythrocyte host, the malaria parasite, Plasmodium falciparum, must destabilize the erythrocyte membrane by activating an erythrocyte tyrosine kinase. Because imatinib inhibits erythrocyte tyrosine kinases and because imatinib has a good safety profile, we elected to determine whether coadministration of imatinib with standard of care (SOC) might be both well tolerated and therapeutically efficacious in malaria patients. Patients with uncomplicated P. falciparum malaria from a region in Vietnam where one third of patients experience delayed parasite clearance (DPC; continued parasitemia after 3 d of therapy) were treated for 3 d with either the region’s SOC (40 mg dihydroartemisinin + 320 mg piperaquine/d) or imatinib (400 mg/d) + SOC. Imatinib + SOC–treated participants exhibited no increase in number or severity of adverse events, a significantly accelerated decline in parasite density and pyrexia, and no DPC. Surprisingly, these improvements were most pronounced in patients with the highest parasite density, where serious complications and death are most frequent. Imatinib therefore appears to improve SOC therapy, with no obvious drug-related toxicities.
Collapse
Affiliation(s)
| | - Antonella Pantaleo
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | - Panae Noomuna
- Department of Chemistry, Purdue University, West Lafayette, IN
| | - Karson S Putt
- Institute for Drug Discovery, Purdue University, West Lafayette, IN
| | - Tran Anh Tuan
- Huong Hoa District Health Center, Quang Tri, Vietnam
| | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, IN.,Institute for Drug Discovery, Purdue University, West Lafayette, IN
| | | |
Collapse
|
3
|
Chauvet M, Chhuon C, Lipecka J, Dechavanne S, Dechavanne C, Lohezic M, Ortalli M, Pineau D, Ribeil JA, Manceau S, Le Van Kim C, Luty AJF, Migot-Nabias F, Azouzi S, Guerrera IC, Merckx A. Sickle Cell Trait Modulates the Proteome and Phosphoproteome of Plasmodium falciparum-Infected Erythrocytes. Front Cell Infect Microbiol 2021; 11:637604. [PMID: 33842387 PMCID: PMC8024585 DOI: 10.3389/fcimb.2021.637604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/23/2021] [Indexed: 11/21/2022] Open
Abstract
The high prevalence of sickle cell disease in some human populations likely results from the protection afforded against severe Plasmodium falciparum malaria and death by heterozygous carriage of HbS. P. falciparum remodels the erythrocyte membrane and skeleton, displaying parasite proteins at the erythrocyte surface that interact with key human proteins in the Ankyrin R and 4.1R complexes. Oxidative stress generated by HbS, as well as by parasite invasion, disrupts the kinase/phosphatase balance, potentially interfering with the molecular interactions between human and parasite proteins. HbS is known to be associated with abnormal membrane display of parasite antigens. Studying the proteome and the phosphoproteome of red cell membrane extracts from P. falciparum infected and non-infected erythrocytes, we show here that HbS heterozygous carriage, combined with infection, modulates the phosphorylation of erythrocyte membrane transporters and skeletal proteins as well as of parasite proteins. Our results highlight modifications of Ser-/Thr- and/or Tyr- phosphorylation in key human proteins, such as ankyrin, β-adducin, β-spectrin and Band 3, and key parasite proteins, such as RESA or MESA. Altered phosphorylation patterns could disturb the interactions within membrane protein complexes, affect nutrient uptake and the infected erythrocyte cytoadherence phenomenon, thus lessening the severity of malaria symptoms.
Collapse
Affiliation(s)
- Margaux Chauvet
- Université de Paris, MERIT, IRD, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Cerina Chhuon
- Université de Paris, Proteomics Platform Necker, Structure Fédérative de Recherche Necker, Inserm US24/CNRS, UMS3633, Paris, France
| | - Joanna Lipecka
- Université de Paris, Proteomics Platform Necker, Structure Fédérative de Recherche Necker, Inserm US24/CNRS, UMS3633, Paris, France
| | - Sébastien Dechavanne
- Laboratoire d'Excellence GR-Ex, Paris, France.,Université de Paris, Inserm, BIGR, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France
| | | | | | - Margherita Ortalli
- Université de Paris, MERIT, IRD, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Damien Pineau
- Université de Paris, MERIT, IRD, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Jean-Antoine Ribeil
- Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sandra Manceau
- Laboratoire d'Excellence GR-Ex, Paris, France.,Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Caroline Le Van Kim
- Laboratoire d'Excellence GR-Ex, Paris, France.,Université de Paris, Inserm, BIGR, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France
| | | | | | - Slim Azouzi
- Laboratoire d'Excellence GR-Ex, Paris, France.,Université de Paris, Inserm, BIGR, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France
| | - Ida Chiara Guerrera
- Université de Paris, Proteomics Platform Necker, Structure Fédérative de Recherche Necker, Inserm US24/CNRS, UMS3633, Paris, France
| | - Anaïs Merckx
- Université de Paris, MERIT, IRD, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| |
Collapse
|
4
|
Adderley J, Williamson T, Doerig C. Parasite and Host Erythrocyte Kinomics of Plasmodium Infection. Trends Parasitol 2021; 37:508-524. [PMID: 33593681 DOI: 10.1016/j.pt.2021.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
Malaria remains a heavy public health and socioeconomic burden in tropical and subtropical regions. Increasing resistance against front-line treatments implies that novel targets for antimalarial intervention are urgently required. Protein kinases of both the parasites and their host cells possess strong potential in this respect. We present an overview of the updated kinome of Plasmodium falciparum, the species that is the largest contributor to malaria mortality, and of current knowledge pertaining to the function of parasite-encoded protein kinases during the parasite's life cycle. Furthermore, we detail recent advances in drug initiatives targeting Plasmodium kinases and outline the potential of protein kinases in the context of the growing field of host-directed therapies, which is currently being explored as a novel way to combat parasite drug resistance.
Collapse
Affiliation(s)
- Jack Adderley
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Tayla Williamson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Christian Doerig
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia.
| |
Collapse
|
5
|
Mattè A, Federti E, Tibaldi E, Di Paolo ML, Bisello G, Bertoldi M, Carpentieri A, Pucci P, Iatcencko I, Wilson AB, Riccardi V, Siciliano A, Turrini F, Kim DW, Choi SY, Brunati AM, De Franceschi L. Tyrosine Phosphorylation Modulates Peroxiredoxin-2 Activity in Normal and Diseased Red Cells. Antioxidants (Basel) 2021; 10:antiox10020206. [PMID: 33535382 PMCID: PMC7912311 DOI: 10.3390/antiox10020206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/16/2022] Open
Abstract
Peroxiredoxin-2 (Prx2) is the third most abundant cytoplasmic protein in red blood cells. Prx2 belongs to a well-known family of antioxidants, the peroxiredoxins (Prxs), that are widely expressed in mammalian cells. Prx2 is a typical, homodimeric, 2-Cys Prx that uses two cysteine residues to accomplish the task of detoxifying a vast range of organic peroxides, H2O2, and peroxynitrite. Although progress has been made on functional characterization of Prx2, much still remains to be investigated on Prx2 post-translational changes. Here, we first show that Prx2 is Tyrosine (Tyr) phosphorylated by Syk in red cells exposed to oxidation induced by diamide. We identified Tyr-193 in both recombinant Prx2 and native Prx2 from red cells as a specific target of Syk. Bioinformatic analysis suggests that phosphorylation of Tyr-193 allows Prx2 conformational change that is more favorable for its peroxidase activity. Indeed, Syk-induced Tyr phosphorylation of Prx2 enhances in vitro Prx2 activity, but also contributes to Prx2 translocation to the membrane of red cells exposed to diamide. The biologic importance of Tyr-193 phospho-Prx2 is further supported by data on red cells from a mouse model of humanized sickle cell disease (SCD). SCD is globally distributed, hereditary red cell disorder, characterized by severe red cell oxidation due to the pathologic sickle hemoglobin. SCD red cells show Tyr-phosphorylated Prx2 bound to the membrane and increased Prx2 activity when compared to healthy erythrocytes. Collectively, our data highlight the novel link between redox related signaling and Prx2 function in normal and diseased red cells.
Collapse
Affiliation(s)
- Alessandro Mattè
- Department of Medicine, University of Verona and AOUI Verona, 37134 Verona, Italy; (A.M.); (E.F.); (I.I.); (A.B.W.); (V.R.); (A.S.)
| | - Enrica Federti
- Department of Medicine, University of Verona and AOUI Verona, 37134 Verona, Italy; (A.M.); (E.F.); (I.I.); (A.B.W.); (V.R.); (A.S.)
| | - Elena Tibaldi
- Department of Molecular Medicine, University of Padua, 35128 Padua, Italy; (E.T.); (M.L.D.P.); (A.M.B.)
| | - Maria Luisa Di Paolo
- Department of Molecular Medicine, University of Padua, 35128 Padua, Italy; (E.T.); (M.L.D.P.); (A.M.B.)
| | - Giovanni Bisello
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy;
| | - Mariarita Bertoldi
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy;
- Correspondence: (M.B.); (L.D.F.); Tel.: +39-045-8027671 (M.B.); +39-045-8124401 (L.D.F.)
| | - Andrea Carpentieri
- Department of Chemical Sciences, University Federico II of Napoli, 80126 Napoli, Italy; (A.C.); (P.P.)
| | - Pietro Pucci
- Department of Chemical Sciences, University Federico II of Napoli, 80126 Napoli, Italy; (A.C.); (P.P.)
- CEINGE Biotecnologie Avanzate, 80145 Napoli, Italy
| | - Iana Iatcencko
- Department of Medicine, University of Verona and AOUI Verona, 37134 Verona, Italy; (A.M.); (E.F.); (I.I.); (A.B.W.); (V.R.); (A.S.)
| | - Anand B. Wilson
- Department of Medicine, University of Verona and AOUI Verona, 37134 Verona, Italy; (A.M.); (E.F.); (I.I.); (A.B.W.); (V.R.); (A.S.)
| | - Veronica Riccardi
- Department of Medicine, University of Verona and AOUI Verona, 37134 Verona, Italy; (A.M.); (E.F.); (I.I.); (A.B.W.); (V.R.); (A.S.)
| | - Angela Siciliano
- Department of Medicine, University of Verona and AOUI Verona, 37134 Verona, Italy; (A.M.); (E.F.); (I.I.); (A.B.W.); (V.R.); (A.S.)
| | | | - Dae Won Kim
- Department of Biomedical Sciences and Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea; (D.W.K.); (S.Y.C.)
| | - Soo Young Choi
- Department of Biomedical Sciences and Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea; (D.W.K.); (S.Y.C.)
| | - Anna Maria Brunati
- Department of Molecular Medicine, University of Padua, 35128 Padua, Italy; (E.T.); (M.L.D.P.); (A.M.B.)
| | - Lucia De Franceschi
- Department of Medicine, University of Verona and AOUI Verona, 37134 Verona, Italy; (A.M.); (E.F.); (I.I.); (A.B.W.); (V.R.); (A.S.)
- Correspondence: (M.B.); (L.D.F.); Tel.: +39-045-8027671 (M.B.); +39-045-8124401 (L.D.F.)
| |
Collapse
|
6
|
Kesely K, Noomuna P, Vieth M, Hipskind P, Haldar K, Pantaleo A, Turrini F, Low PS. Identification of tyrosine kinase inhibitors that halt Plasmodium falciparum parasitemia. PLoS One 2020; 15:e0242372. [PMID: 33180822 PMCID: PMC7660480 DOI: 10.1371/journal.pone.0242372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/31/2020] [Indexed: 01/23/2023] Open
Abstract
Although current malaria therapies inhibit pathways encoded in the parasite’s genome, we have looked for anti-malaria drugs that can target an erythrocyte component because development of drug resistance might be suppressed if the parasite cannot mutate the drug’s target. In search for such erythrocyte targets, we noted that human erythrocytes express tyrosine kinases, whereas the Plasmodium falciparum genome encodes no obvious tyrosine kinases. We therefore screened a library of tyrosine kinase inhibitors from Eli Lilly and Co. in a search for inhibitors with possible antimalarial activity. We report that although most tyrosine kinase inhibitors exerted no effect on parasite survival, a subset of tyrosine kinase inhibitors displayed potent anti-malarial activity. Moreover, all inhibitors found to block tyrosine phosphorylation of band 3 specifically suppressed P. falciparum survival at the parasite egress stage of its intra-erythrocyte life cycle. Conversely, tyrosine kinase inhibitors that failed to block band 3 tyrosine phosphorylation but still terminated the parasitemia were observed to halt parasite proliferation at other stages of the parasite’s life cycle. Taken together these results suggest that certain erythrocyte tyrosine kinases may be important to P. falciparum maturation and that inhibitors that block these kinases may contribute to novel therapies for P. falciparum malaria.
Collapse
Affiliation(s)
- Kristina Kesely
- Department of Chemistry, Purdue University, West Lafayette, IN, United States of America.,Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States of America
| | - Panae Noomuna
- Department of Chemistry, Purdue University, West Lafayette, IN, United States of America.,Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States of America
| | - Michal Vieth
- Eli Lilly and Company, San Diego, CA, United States of America
| | - Philip Hipskind
- School of Medicine, Indiana University, Bloomington, IN, United States of America.,Clinical Pharmacology R2 402 MDEP, Indianapolis, IN, United States of America
| | - Kasturi Haldar
- Galvin Life Science Center, University of Notre Dame, Notre Dame, IN, United States of America
| | | | | | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, IN, United States of America.,Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States of America
| |
Collapse
|
7
|
Tsamesidis I, Reybier K, Marchetti G, Pau MC, Virdis P, Fozza C, Nepveu F, Low PS, Turrini FM, Pantaleo A. Syk Kinase Inhibitors Synergize with Artemisinins by Enhancing Oxidative Stress in Plasmodium falciparum-Parasitized Erythrocytes. Antioxidants (Basel) 2020; 9:antiox9080753. [PMID: 32824055 PMCID: PMC7464437 DOI: 10.3390/antiox9080753] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Although artemisinin-based combination therapies (ACTs) treat Plasmodium falciparum malaria effectively throughout most of the world, the recent expansion of ACT-resistant strains in some countries of the Greater Mekong Subregion (GMS) further increased the interest in improving the effectiveness of treatment and counteracting resistance. Recognizing that (1) partially denatured hemoglobin containing reactive iron (hemichromes) is generated in parasitized red blood cells (pRBC) by oxidative stress, (2) redox-active hemichromes have the potential to enhance oxidative stress triggered by the parasite and the activation of artemisinin to its pharmaceutically active form, and (3) Syk kinase inhibitors block the release of membrane microparticles containing hemichromes, we hypothesized that increasing hemichrome content in parasitized erythrocytes through the inhibition of Syk kinase might trigger a virtuous cycle involving the activation of artemisinin, the enhancement of oxidative stress elicited by activated artemisinin, and a further increase in hemichrome production. We demonstrate here that artemisinin indeed augments oxidative stress within parasitized RBCs and that Syk kinase inhibitors further increase iron-dependent oxidative stress, synergizing with artemisinin in killing the parasite. We then demonstrate that Syk kinase inhibitors achieve this oxidative enhancement by preventing parasite-induced release of erythrocyte-derived microparticles containing redox-active hemichromes. We also observe that Syk kinase inhibitors do not promote oxidative toxicity to healthy RBCs as they do not produce appreciable amounts of hemichromes. Since some Syk kinase inhibitors can be taken daily with minimal side effects, we propose that Syk kinase inhibitors could evidently contribute to the potentiation of ACTs.
Collapse
Affiliation(s)
- Ioannis Tsamesidis
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (I.T.); (G.M.); (M.C.P.)
- UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, 31000 Toulouse, France; (K.R.); (F.N.)
| | - Karine Reybier
- UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, 31000 Toulouse, France; (K.R.); (F.N.)
| | - Giuseppe Marchetti
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (I.T.); (G.M.); (M.C.P.)
| | - Maria Carmina Pau
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (I.T.); (G.M.); (M.C.P.)
| | - Patrizia Virdis
- Department of Clinical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (P.V.); (C.F.)
| | - Claudio Fozza
- Department of Clinical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (P.V.); (C.F.)
| | - Francoise Nepveu
- UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, 31000 Toulouse, France; (K.R.); (F.N.)
| | - Philip S. Low
- Purdue Institute for Drug Discovery and Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA;
| | | | - Antonella Pantaleo
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (I.T.); (G.M.); (M.C.P.)
- Correspondence:
| |
Collapse
|
8
|
Davies H, Belda H, Broncel M, Ye X, Bisson C, Introini V, Dorin-Semblat D, Semblat JP, Tibúrcio M, Gamain B, Kaforou M, Treeck M. An exported kinase family mediates species-specific erythrocyte remodelling and virulence in human malaria. Nat Microbiol 2020; 5:848-863. [PMID: 32284562 PMCID: PMC7116245 DOI: 10.1038/s41564-020-0702-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/05/2020] [Indexed: 01/31/2023]
Abstract
The most severe form of human malaria is caused by Plasmodium falciparum. Its virulence is closely linked to the increase in rigidity of infected erythrocytes and their adhesion to endothelial receptors, obstructing blood flow to vital organs. Unlike other human-infecting Plasmodium species, P. falciparum exports a family of 18 FIKK serine/threonine kinases into the host cell, suggesting that phosphorylation may modulate erythrocyte modifications. We reveal substantial species-specific phosphorylation of erythrocyte proteins by P. falciparum but not by Plasmodium knowlesi, which does not export FIKK kinases. By conditionally deleting all FIKK kinases combined with large-scale quantitative phosphoproteomics we identified unique phosphorylation fingerprints for each kinase, including phosphosites on parasite virulence factors and host erythrocyte proteins. Despite their non-overlapping target sites, a network analysis revealed that some FIKKs may act in the same pathways. Only the deletion of the non-exported kinase FIKK8 resulted in reduced parasite growth, suggesting the exported FIKKs may instead support functions important for survival in the host. We show that one kinase, FIKK4.1, mediates both rigidification of the erythrocyte cytoskeleton and trafficking of the adhesin and key virulence factor PfEMP1 to the host cell surface. This establishes the FIKK family as important drivers of parasite evolution and malaria pathology.
Collapse
Affiliation(s)
- Heledd Davies
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - Hugo Belda
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - Malgorzata Broncel
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - Xingda Ye
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Claudine Bisson
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK
| | - Viola Introini
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Dominique Dorin-Semblat
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Jean-Philippe Semblat
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Marta Tibúrcio
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - Benoit Gamain
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Myrsini Kaforou
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
9
|
Li J, Lu Y, Li N, Li P, Su J, Wang Z, Wang T, Yang Z, Yang Y, Chen H, Xiao L, Duan H, Wu W, Liu X. Muscle metabolomics analysis reveals potential biomarkers of exercise‑dependent improvement of the diaphragm function in chronic obstructive pulmonary disease. Int J Mol Med 2020; 45:1644-1660. [PMID: 32186768 PMCID: PMC7169662 DOI: 10.3892/ijmm.2020.4537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/17/2020] [Indexed: 12/25/2022] Open
Abstract
Decreased diaphragm function is a crucial factor leading to reduced ventilatory efficiency and worsening of quality of life in chronic obstructive pulmonary disease (COPD). Exercise training has been demonstrated to effectively improve the function of the diaphragm. However, the mechanism of this process has not been identified. The emergence of metabolomics has allowed the exploration of new ideas. The present study aimed to analyze the potential biomarkers of exercise-dependent enhancement of diaphragm function in COPD using metabolomics. Sprague Dawley rats were divided into three groups: COPD + exercise group (CEG); COPD model group (CMG); and control group (CG). The first two groups were exposed to cigarette smoke for 16 weeks to establish a COPD model. Then, the rats in the CEG underwent aerobic exercise training for 9 weeks. Following confirmation that exercise effectively improved the diaphragm function, a gas chromatography tandem time-of-flight mass spectrometry analysis system was used to detect the differential metabolites and associated pathways in the diaphragm muscles of the different groups. Following exercise intervention, the pulmonary function and diaphragm contractility of the CEG rats were significantly improved compared with those of the CMG rats. A total of 36 different metabolites were identified in the comparison between the CMG and the CG. Pathway enrichment analysis indicated that these different metabolites were involved in 17 pathways. A total of 29 different metabolites were identified in the comparison between the CMG and the CEG, which are involved in 14 pathways. Candidate biomarkers were selected, and the pathways analysis of these metabolites demonstrated that 2 types of metabolic pathways, the nicotinic acid and nicotinamide metabolism and arginine and proline metabolism pathways, were associated with exercise-induced pulmonary rehabilitation.
Collapse
Affiliation(s)
- Jian Li
- Department of Sports Medicine, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Yufan Lu
- Department of Sports Medicine, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Ning Li
- Department of Sports Medicine, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Peijun Li
- Department of Sports Medicine, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Jianqing Su
- Department of Sports Medicine, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Zhengrong Wang
- Department of Sports Medicine, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Ting Wang
- Department of Sports Medicine, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Zhaoyu Yang
- Department of Sports Medicine, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Yahui Yang
- Department of Sports Medicine, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Haixia Chen
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Lu Xiao
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Hongxia Duan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Weibing Wu
- Department of Sports Medicine, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Xiaodan Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
10
|
Ugurel E, Connes P, Yavas G, Eglenen B, Turkay M, Aksu AC, Renoux C, Joly P, Gauthier A, Hot A, Bertrand Y, Cannas G, Yalcin O. Differential effects of adenylyl cyclase-protein kinase A cascade on shear-induced changes of sickle cell deformability. Clin Hemorheol Microcirc 2020; 73:531-543. [DOI: 10.3233/ch-190563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Elif Ugurel
- Department of Physiology, Koç University School of Medicine, Sariyer, Istanbul, Turkey
| | - Philippe Connes
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
- Institut Universitaire de France (IUF), Paris, France
| | - Gokce Yavas
- Department of Physiology, Koç University School of Medicine, Sariyer, Istanbul, Turkey
| | - Buse Eglenen
- Department of Physiology, Koç University School of Medicine, Sariyer, Istanbul, Turkey
| | - Mine Turkay
- Department of Physiology, Koç University School of Medicine, Sariyer, Istanbul, Turkey
| | - Ali Cenk Aksu
- Department of Physiology, Koç University School of Medicine, Sariyer, Istanbul, Turkey
| | - Celine Renoux
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
- UF de biochimie des pathologies érythrocytaires, Centre de Biologie Est, Hospices Civils de Lyon, Lyon, France
| | - Philippe Joly
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
- UF de biochimie des pathologies érythrocytaires, Centre de Biologie Est, Hospices Civils de Lyon, Lyon, France
| | - Alexandra Gauthier
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
- Institut d’hématologie et d’oncologie pédiatrique (IHOP), Hospices Civils de Lyon, Lyon, France
| | - Arnaud Hot
- Clinique de Médecine Ambulatoire/Hématologie Hôpital Edouard Herriot, Lyon, Lyon, France
| | - Yves Bertrand
- Institut d’hématologie et d’oncologie pédiatrique (IHOP), Hospices Civils de Lyon, Lyon, France
| | - Giovanna Cannas
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
- Clinique de Médecine Ambulatoire/Hématologie Hôpital Edouard Herriot, Lyon, Lyon, France
| | - Ozlem Yalcin
- Department of Physiology, Koç University School of Medicine, Sariyer, Istanbul, Turkey
| |
Collapse
|
11
|
Plasmodium yoelii Erythrocyte-Binding-like Protein Modulates Host Cell Membrane Structure, Immunity, and Disease Severity. mBio 2020; 11:mBio.02995-19. [PMID: 31911494 PMCID: PMC6946805 DOI: 10.1128/mbio.02995-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Malaria is a deadly parasitic disease that continues to afflict hundreds of millions of people every year. Infections with malaria parasites can be asymptomatic, with mild symptoms, or fatal, depending on a delicate balance of host immune responses. Malaria parasites enter host red blood cells (RBCs) through interactions between parasite ligands and host receptors, such as erythrocyte-binding-like (EBL) proteins and host Duffy antigen receptor for chemokines (DARC). Plasmodium yoelii EBL (PyEBL) is known to play a role in parasite invasion of RBCs. Here, we show that PyEBL also affects disease severity through modulation of host immune responses, particularly type I interferon (IFN-I) signaling. This discovery assigns a new function to PyEBL and provides a mechanism for developing disease control strategies. Erythrocyte-binding-like (EBL) proteins are known to play an important role in malaria parasite invasion of red blood cells (RBCs); however, any roles of EBL proteins in regulating host immune responses remain unknown. Here, we show that Plasmodium yoelii EBL (PyEBL) can shape disease severity by modulating the surface structure of infected RBCs (iRBCs) and host immune responses. We identified an amino acid substitution (a change of C to Y at position 741 [C741Y]) in the protein trafficking domain of PyEBL between isogenic P. yoelliinigeriensis strain N67 and N67C parasites that produce different disease phenotypes in C57BL/6 mice. Exchanges of the C741Y alleles altered parasite growth and host survival accordingly. The C741Y substitution also changed protein processing and trafficking in merozoites and in the cytoplasm of iRBCs, reduced PyEBL binding to band 3, increased phosphatidylserine (PS) surface exposure, and elevated the osmotic fragility of iRBCs, but it did not affect invasion of RBCs in vitro. The modified iRBC surface triggered PS-CD36-mediated phagocytosis of iRBCs, host type I interferon (IFN-I) signaling, and T cell differentiation, leading to improved host survival. This study reveals a previously unknown role of PyEBL in regulating host-pathogen interaction and innate immune responses, which may be explored for developing disease control strategies.
Collapse
|
12
|
Host Cytoskeleton Remodeling throughout the Blood Stages of Plasmodium falciparum. Microbiol Mol Biol Rev 2019; 83:83/4/e00013-19. [PMID: 31484690 DOI: 10.1128/mmbr.00013-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The asexual intraerythrocytic development of Plasmodium falciparum, causing the most severe form of human malaria, is marked by extensive host cell remodeling. Throughout the processes of invasion, intracellular development, and egress, the erythrocyte membrane skeleton is remodeled by the parasite as required for each specific developmental stage. The remodeling is facilitated by a plethora of exported parasite proteins, and the erythrocyte membrane skeleton is the interface of most of the observed interactions between the parasite and host cell proteins. Host cell remodeling has been extensively described and there is a vast body of information on protein export or the description of parasite-induced structures such as Maurer's clefts or knobs on the host cell surface. Here we specifically review the molecular level of each host cell-remodeling step at each stage of the intraerythrocytic development of P. falciparum We describe key events, such as invasion, knob formation, and egress, and identify the interactions between exported parasite proteins and the host cell cytoskeleton. We discuss each remodeling step with respect to time and specific requirement of the developing parasite to explain host cell remodeling in a stage-specific manner. Thus, we highlight the interaction with the host membrane skeleton as a key event in parasite survival.
Collapse
|
13
|
Arend P. Position of human blood group O(H) and phenotype-determining enzymes in growth and infectious disease. Ann N Y Acad Sci 2018; 1425:5-18. [PMID: 29754430 PMCID: PMC7676429 DOI: 10.1111/nyas.13694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/22/2018] [Accepted: 03/06/2018] [Indexed: 12/12/2022]
Abstract
The human ABO(H) blood group phenotypes arise from the evolutionarily oldest genetic system found in primate populations. While the blood group antigen A is considered the ancestral primordial structure, under the selective pressure of life‐threatening diseases blood group O(H) came to dominate as the most frequently occurring blood group worldwide. Non‐O(H) phenotypes demonstrate impaired formation of adaptive and innate immunoglobulin specificities due to clonal selection and phenotype formation in plasma proteins. Compared with individuals with blood group O(H), blood group A individuals not only have a significantly higher risk of developing certain types of cancer but also exhibit high susceptibility to malaria tropica or infection by Plasmodium falciparum. The phenotype‐determining blood group A glycotransferase(s), which affect the levels of anti‐A/Tn cross‐reactive immunoglobulins in phenotypic glycosidic accommodation, might also mediate adhesion and entry of the parasite to host cells via trans‐species O‐GalNAc glycosylation of abundantly expressed serine residues that arise throughout the parasite's life cycle, while excluding the possibility of antibody formation against the resulting hybrid Tn antigen. In contrast, human blood group O(H), lacking this enzyme, is indicated to confer a survival advantage regarding the overall risk of developing cancer, and individuals with this blood group rarely develop life‐threatening infections involving evolutionarily selective malaria strains.
Collapse
Affiliation(s)
- Peter Arend
- Department of Medicine, Philipps University Marburg, Marburg/Lahn, Germany. Gastroenterology Research Laboratory, College of Medicine, University of Iowa, Iowa City, Iowa. Research Laboratories, Chemie Grünenthal GmbH, Aachen, Germany
| |
Collapse
|
14
|
Sharma J, Baumeister S, Przyborski JM, Lingelbach K. Babesia divergens-infected red blood cells take up glutamate via an EAAT3 independent mechanism. Int J Med Microbiol 2017; 308:148-154. [PMID: 29089241 DOI: 10.1016/j.ijmm.2017.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/20/2017] [Accepted: 10/24/2017] [Indexed: 11/28/2022] Open
Abstract
Human red blood cells infected with the malaria parasite Plasmodium falciparum show an increased permeability to a number of solutes. We have previously demonstrated that such infected cells take up glutamate via a member of the excitatory amino acid transporter protein family (EAAT), namely EAAT3. Babesia divergens is a parasite that also infects human erythrocytes, and also induces increased solute permeability, including for glutamate. Here we have investigated whether glutamate uptake in B. divergens infected human red blood cells is also dependent on EAAT3 activity. We find that, although B. divergens infected cells do take up glutamate, this uptake is independent on EAAT3. Thus, though infecting the same host cell, two related parasites have developed distinct pathways to obtain access to nutrients from the extracellular milieu.
Collapse
Affiliation(s)
- Jyotsna Sharma
- Department of Parasitology, Faculty of Biology, Philipps University Marburg, Marburg, Germany
| | - Stefan Baumeister
- Department of Parasitology, Faculty of Biology, Philipps University Marburg, Marburg, Germany.
| | - Jude M Przyborski
- Department of Parasitology, Faculty of Biology, Philipps University Marburg, Marburg, Germany; Parasitology, Centre for Infectious Diseases, INF324, 69120 Heidelberg, Germany.
| | - Klaus Lingelbach
- Department of Parasitology, Faculty of Biology, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
15
|
Miliu A, Lebrun M, Braun-Breton C, Lamarque MH. Shelph2, a bacterial-like phosphatase of the malaria parasite Plasmodium falciparum, is dispensable during asexual blood stage. PLoS One 2017; 12:e0187073. [PMID: 29073264 PMCID: PMC5658161 DOI: 10.1371/journal.pone.0187073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/12/2017] [Indexed: 12/03/2022] Open
Abstract
During the erythrocytic cycle of the malaria parasite Plasmodium falciparum, egress and invasion are essential steps finely controlled by reversible phosphorylation. In contrast to the growing number of kinases identified as key regulators, phosphatases have been poorly studied, and calcineurin is the only one identified so far to play a role in invasion. PfShelph2, a bacterial-like phosphatase, is a promising candidate to participate in the invasion process, as it was reported to be expressed late during the asexual blood stage and to reside within an apical compartment, yet distinct from rhoptry bulb, micronemes, or dense granules. It was also proposed to play a role in the control of the red blood cell membrane deformability at the end of the invasion process. However, genetic studies are still lacking to support this hypothesis. Here, we take advantage of the CRISPR-Cas9 technology to tag shelph2 genomic locus while retaining its endogenous regulatory regions. This new strain allows us to follow the endogenous PfShelph2 protein expression and location during asexual blood stages. We show that PfShelph2 apical location is also distinct from the rhoptry neck or exonemes. We further demonstrate PfShelph2 dispensability during the asexual blood stage by generating PfShelph2-KO parasites using CRISPR-Cas9 machinery. Analyses of the mutant during the course of the erythrocytic development indicate that there are no detectable phenotypic consequences of Pfshelph2 genomic deletion. As this lack of phenotype might be due to functional redundancy, we also explore the likelihood of PfShelph1 (PfShelph2 paralog) being a compensatory phosphatase. We conclude that despite its cyclic expression profile, PfShelph2 is a dispensable phosphatase during the Plasmodium falciparum asexual blood stage, whose function is unlikely substituted by PfShelph1.
Collapse
Affiliation(s)
| | - Maryse Lebrun
- DIMNP, CNRS, Université de Montpellier, Montpellier, France
| | | | - Mauld H. Lamarque
- DIMNP, CNRS, Université de Montpellier, Montpellier, France
- * E-mail:
| |
Collapse
|
16
|
Syk inhibitors interfere with erythrocyte membrane modification during P falciparum growth and suppress parasite egress. Blood 2017. [PMID: 28634183 DOI: 10.1182/blood-2016-11-748053] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Band 3 (also known as the anion exchanger, SLCA1, AE1) constitutes the major attachment site of the spectrin-based cytoskeleton to the erythrocyte's lipid bilayer and thereby contributes critically to the stability of the red cell membrane. During the intraerythrocytic stage of Plasmodium falciparum's lifecycle, band 3 becomes tyrosine phosphorylated in response to oxidative stress, leading to a decrease in its affinity for the spectrin/actin cytoskeleton and causing global membrane destabilization. Because this membrane weakening is hypothesized to facilitate parasite egress and the consequent dissemination of released merozoites throughout the bloodstream, we decided to explore which tyrosine kinase inhibitors might block the kinase-induced membrane destabilization. We demonstrate here that multiple Syk kinase inhibitors both prevent parasite-induced band 3 tyrosine phosphorylation and inhibit parasite-promoted membrane destabilization. We also show that the same Syk kinase inhibitors suppress merozoite egress near the end of the parasite's intraerythrocytic lifecycle. Because the entrapped merozoites die when prevented from escaping their host erythrocytes and because some Syk inhibitors have displayed long-term safety in human clinical trials, we suggest Syk kinase inhibitors constitute a promising class of antimalarial drugs that can suppress parasitemia by inhibiting a host target that cannot be mutated by the parasite to evolve drug resistance.
Collapse
|
17
|
Global transformation of erythrocyte properties via engagement of an SH2-like sequence in band 3. Proc Natl Acad Sci U S A 2016; 113:13732-13737. [PMID: 27856737 DOI: 10.1073/pnas.1611904113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Src homology 2 (SH2) domains are composed of weakly conserved sequences of ∼100 aa that bind phosphotyrosines in signaling proteins and thereby mediate intra- and intermolecular protein-protein interactions. In exploring the mechanism whereby tyrosine phosphorylation of the erythrocyte anion transporter, band 3, triggers membrane destabilization, vesiculation, and fragmentation, we discovered a SH2 signature motif positioned between membrane-spanning helices 4 and 5. Evidence that this exposed cytoplasmic sequence contributes to a functional SH2-like domain is provided by observations that: (i) it contains the most conserved sequence of SH2 domains, GSFLVR; (ii) it binds the tyrosine phosphorylated cytoplasmic domain of band 3 (cdb3-PO4) with Kd = 14 nM; (iii) binding of cdb3-PO4 to erythrocyte membranes is inhibited both by antibodies against the SH2 signature sequence and dephosphorylation of cdb3-PO4; (iv) label transfer experiments demonstrate the covalent transfer of photoactivatable biotin from isolated cdb3-PO4 (but not cdb3) to band 3 in erythrocyte membranes; and (v) phosphorylation-induced binding of cdb3-PO4 to the membrane-spanning domain of band 3 in intact cells causes global changes in membrane properties, including (i) displacement of a glycolytic enzyme complex from the membrane, (ii) inhibition of anion transport, and (iii) rupture of the band 3-ankyrin bridge connecting the spectrin-based cytoskeleton to the membrane. Because SH2-like motifs are not retrieved by normal homology searches for SH2 domains, but can be found in many tyrosine kinase-regulated transport proteins using modified search programs, we suggest that related cases of membrane transport proteins containing similar motifs are widespread in nature where they participate in regulation of cell properties.
Collapse
|
18
|
Kesely KR, Pantaleo A, Turrini FM, Olupot-Olupot P, Low PS. Inhibition of an Erythrocyte Tyrosine Kinase with Imatinib Prevents Plasmodium falciparum Egress and Terminates Parasitemia. PLoS One 2016; 11:e0164895. [PMID: 27768734 PMCID: PMC5074466 DOI: 10.1371/journal.pone.0164895] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/03/2016] [Indexed: 11/18/2022] Open
Abstract
With half of the world's population at risk for malaria infection and with drug resistance on the rise, the search for mutation-resistant therapies has intensified. We report here a therapy for Plasmodium falciparum malaria that acts by inhibiting the phosphorylation of erythrocyte membrane band 3 by an erythrocyte tyrosine kinase. Because tyrosine phosphorylation of band 3 causes a destabilization of the erythrocyte membrane required for parasite egress, inhibition of the erythrocyte tyrosine kinase leads to parasite entrapment and termination of the infection. Moreover, because one of the kinase inhibitors to demonstrate antimalarial activity is imatinib, i.e. an FDA-approved drug authorized for use in children, translation of the therapy into the clinic will be facilitated. At a time when drug resistant strains of P. falciparum are emerging, a strategy that targets a host enzyme that cannot be mutated by the parasite should constitute a therapeutic mechanism that will retard evolution of resistance.
Collapse
Affiliation(s)
- Kristina R. Kesely
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, 47907, United States of America
- Purdue Department of Chemistry, Purdue University, West Lafayette, 47907, United States of America
| | - Antonella Pantaleo
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Francesco M. Turrini
- Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy
| | - Peter Olupot-Olupot
- Department of Paediatrics/Research Unit, Mbale Regional Referral Hospital, Mbale, Uganda
| | - Philip S. Low
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, 47907, United States of America
- Purdue Department of Chemistry, Purdue University, West Lafayette, 47907, United States of America
- * E-mail:
| |
Collapse
|
19
|
Plasmodiumfalciparum infection induces dynamic changes in the erythrocyte phospho-proteome. Blood Cells Mol Dis 2016; 58:35-44. [PMID: 27067487 DOI: 10.1016/j.bcmd.2016.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 11/21/2022]
Abstract
The phosphorylation status of red blood cell proteins is strongly altered during the infection by the malaria parasite Plasmodium falciparum. We identify the key phosphorylation events that occur in the erythrocyte membrane and cytoskeleton during infection, by a comparative analysis of global phospho-proteome screens between infected (obtained at schizont stage) and uninfected RBCs. The meta-analysis of reported mass spectrometry studies revealed a novel compendium of 495 phosphorylation sites in 182 human proteins with regulatory roles in red cell morphology and stability, with about 25% of these sites specific to infected cells. A phosphorylation motif analysis detected 7 unique motifs that were largely mapped to kinase consensus sequences of casein kinase II and of protein kinase A/protein kinase C. This analysis highlighted prominent roles for PKA/PKC involving 78 phosphorylation sites. We then compared the phosphorylation status of PKA (PKC) specific sites in adducin, dematin, Band 3 and GLUT-1 in uninfected RBC stimulated or not by cAMP to their phosphorylation status in iRBC. We showed cAMP-induced phosphorylation of adducin S59 by immunoblotting and we were able to demonstrate parasite-induced phosphorylation for adducin S726, Band 3 and GLUT-1, corroborating the protein phosphorylation status in our erythrocyte phosphorylation site compendium.
Collapse
|
20
|
Quantitative phospho-proteomics reveals the Plasmodium merozoite triggers pre-invasion host kinase modification of the red cell cytoskeleton. Sci Rep 2016; 6:19766. [PMID: 26830761 PMCID: PMC4735681 DOI: 10.1038/srep19766] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/17/2015] [Indexed: 01/27/2023] Open
Abstract
The invasive blood-stage malaria parasite - the merozoite - induces rapid morphological changes to the target erythrocyte during entry. However, evidence for active molecular changes in the host cell that accompany merozoite invasion is lacking. Here, we use invasion inhibition assays, erythrocyte resealing and high-definition imaging to explore red cell responses during invasion. We show that although merozoite entry does not involve erythrocyte actin reorganisation, it does require ATP to complete the process. Towards dissecting the ATP requirement, we present an in depth quantitative phospho-proteomic analysis of the erythrocyte during each stage of invasion. Specifically, we demonstrate extensive increased phosphorylation of erythrocyte proteins on merozoite attachment, including modification of the cytoskeletal proteins beta-spectrin and PIEZO1. The association with merozoite contact but not active entry demonstrates that parasite-dependent phosphorylation is mediated by host-cell kinase activity. This provides the first evidence that the erythrocyte is stimulated to respond to early invasion events through molecular changes in its membrane architecture.
Collapse
|
21
|
Band 3 Erythrocyte Membrane Protein Acts as Redox Stress Sensor Leading to Its Phosphorylation by p (72) Syk. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:6051093. [PMID: 27034738 PMCID: PMC4806680 DOI: 10.1155/2016/6051093] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/19/2015] [Accepted: 10/26/2015] [Indexed: 11/17/2022]
Abstract
In erythrocytes, the regulation of the redox sensitive Tyr phosphorylation of band 3 and its functions are still partially defined. A role of band 3 oxidation in regulating its own phosphorylation has been previously suggested. The current study provides evidences to support this hypothesis: (i) in intact erythrocytes, at 2 mM concentration of GSH, band 3 oxidation, and phosphorylation, Syk translocation to the membrane and Syk phosphorylation responded to the same micromolar concentrations of oxidants showing identical temporal variations; (ii) the Cys residues located in the band 3 cytoplasmic domain are 20-fold more reactive than GSH; (iii) disulfide linked band 3 cytoplasmic domain docks Syk kinase; (iv) protein Tyr phosphatases are poorly inhibited at oxidant concentrations leading to massive band 3 oxidation and phosphorylation. We also observed that hemichromes binding to band 3 determined its irreversible oxidation and phosphorylation, progressive hemolysis, and serine hyperphosphorylation of different cytoskeleton proteins. Syk inhibitor suppressed the phosphorylation of band 3 also preventing serine phosphorylation changes and hemolysis. Our data suggest that band 3 acts as redox sensor regulating its own phosphorylation and that hemichromes leading to the protracted phosphorylation of band 3 may trigger a cascade of events finally leading to hemolysis.
Collapse
|
22
|
Malaria Parasite Proteins and Their Role in Alteration of the Structure and Function of Red Blood Cells. ADVANCES IN PARASITOLOGY 2015; 91:1-86. [PMID: 27015947 DOI: 10.1016/bs.apar.2015.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Malaria, caused by Plasmodium spp., continues to be a major threat to human health and a significant cause of socioeconomic hardship in many countries. Almost half of the world's population live in malaria-endemic regions and many of them suffer one or more, often life-threatening episodes of malaria every year, the symptoms of which are attributable to replication of the parasite within red blood cells (RBCs). In the case of Plasmodium falciparum, the species responsible for most malaria-related deaths, parasite replication within RBCs is accompanied by striking alterations to the morphological, biochemical and biophysical properties of the host cell that are essential for the parasites' survival. To achieve this, the parasite establishes a unique and extensive protein export network in the infected RBC, dedicating at least 6% of its genome to the process. Understanding the full gamut of proteins involved in this process and the mechanisms by which P. falciparum alters the structure and function of RBCs is important both for a more complete understanding of the pathogenesis of malaria and for development of new therapeutic strategies to prevent or treat this devastating disease. This review focuses on what is currently known about exported parasite proteins, their interactions with the RBC and their likely pathophysiological consequences.
Collapse
|
23
|
A spiral scaffold underlies cytoadherent knobs in Plasmodium falciparum-infected erythrocytes. Blood 2015; 127:343-51. [PMID: 26637786 DOI: 10.1182/blood-2015-10-674002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/30/2015] [Indexed: 12/11/2022] Open
Abstract
Much of the virulence of Plasmodium falciparum malaria is caused by cytoadherence of infected erythrocytes, which promotes parasite survival by preventing clearance in the spleen. Adherence is mediated by membrane protrusions known as knobs, whose formation depends on the parasite-derived, knob-associated histidine-rich protein (KAHRP). Knobs are required for cytoadherence under flow conditions, and they contain both KAHRP and the parasite-derived erythrocyte membrane protein PfEMP1. Using electron tomography, we have examined the 3-dimensional structure of knobs in detergent-insoluble skeletons of P falciparum 3D7 schizonts. We describe a highly organized knob skeleton composed of a spiral structure coated by an electron-dense layer underlying the knob membrane. This knob skeleton is connected by multiple links to the erythrocyte cytoskeleton. We used immuno-electron microscopy (EM) to locate KAHRP in these structures. The arrangement of membrane proteins in the knobs, visualized by high-resolution freeze-fracture scanning EM, is distinct from that in the surrounding erythrocyte membrane, with a structure at the apex that likely represents the adhesion site. Thus, erythrocyte knobs in P falciparum infection contain a highly organized skeleton structure underlying a specialized region of membrane. We propose that the spiral and dense coat organize the cytoadherence structures in the knob, and anchor them into the erythrocyte cytoskeleton. The high density of knobs and their extensive mechanical linkage suggest an explanation for the rigidification of the cytoskeleton in infected cells, and for the transmission to the cytoskeleton of shear forces experienced by adhering cells.
Collapse
|
24
|
Panichakul T, Ponnikorn S, Roytrakul S, Paemanee A, Kittisenachai S, Hongeng S, Udomsangpetch R. Plasmodium vivax inhibits erythroid cell growth through altered phosphorylation of the cytoskeletal protein ezrin. Malar J 2015; 14:138. [PMID: 25889165 PMCID: PMC4392472 DOI: 10.1186/s12936-015-0648-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 03/15/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The underlying causes of severe malarial anaemia are multifactorial. In previously reports, Plasmodium vivax was found to be able to directly inhibited erythroid cell proliferation and differentiation. The molecular mechanisms underlying the suppression of erythropoiesis by P. vivax are remarkably complex and remain unclear. In this study, a phosphoproteomic approach was performed to dissect the molecular mechanism of phosphoprotein regulation, which is involved in the inhibitory effect of parasites on erythroid cell development. METHODS This study describes the first comparative phosphoproteome analysis of growing erythroid cells (gECs), derived from human haematopoietic stem cells, exposed to lysates of infected erythrocytes (IE)/uninfected erythrocytes (UE) for 24, 48 and 72 h. This study utilized IMAC phosphoprotein isolation directly coupled with LC MS/MS analysis. RESULTS Lysed IE significantly inhibited gEC growth at 48 and 72 h and cell division resulting in the accumulation of cells in G0 phase. The relative levels of forty four phosphoproteins were determined from gECs exposed to IE/UE for 24-72 h and compared with the media control using the label-free quantitation technique. Interestingly, the levels of three phosphoproteins: ezrin, alpha actinin-1, and Rho kinase were significantly (p < 0.05) altered. These proteins display interactions and are involved in the regulation of the cellular cytoskeleton. Particularly affected was ezrin (phosphorylated at Thr567), which is normally localized to gEC cell extension peripheral processes. Following exposure to IE, for 48-72 h, the ezrin signal intensity was weak or absent. This result suggests that phospho-ezrin is important for actin cytoskeleton regulation during erythroid cell growth and division. CONCLUSIONS These findings suggest that parasite proteins are able to inhibit erythroid cell growth by down-regulation of ezrin phosphorylation, leading to ineffective erythropoiesis ultimately resulting in severe malarial anaemia. A better understanding of the mechanisms of ineffective erythropoiesis may be beneficial in the development of therapeutic strategies to prevent severe malarial anaemia.
Collapse
Affiliation(s)
- Tasanee Panichakul
- Faculty of Science and Technology, Suan Dusit Rajabhat University, 204/3 Sirindhorn Rd. Bangplat, 10700, Bangkok, Thailand.
| | - Saranyoo Ponnikorn
- Chulabhorn International College of Medicine, Thammasat University, 2nd Floor, Piyachart Building, Thammasat University, Rungsit campus, 12120, Patumthani, Thailand.
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, National Center for Genetic and Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Klong1, 12120, Klong Luang, Pathumthani, Thailand.
| | - Atchara Paemanee
- Proteomics Research Laboratory, National Center for Genetic and Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Klong1, 12120, Klong Luang, Pathumthani, Thailand.
| | - Suthathip Kittisenachai
- Proteomics Research Laboratory, National Center for Genetic and Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Klong1, 12120, Klong Luang, Pathumthani, Thailand.
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 272 Rama VI Rd., Ratchathewi District, 10400, Bangkok, Thailand.
| | - Rachanee Udomsangpetch
- Department of Pathobiology, Faculty of Science, Mahidol University, 272 Rama VI Rd., Ratchathewi District, 10400, Bangkok, Thailand.
| |
Collapse
|
25
|
Larson MC, Hillery CA, Hogg N. Circulating membrane-derived microvesicles in redox biology. Free Radic Biol Med 2014; 73:214-28. [PMID: 24751526 PMCID: PMC4465756 DOI: 10.1016/j.freeradbiomed.2014.04.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 01/20/2023]
Abstract
Microparticles or microvesicles (MVs) are subcellular membrane blebs shed from all cells in response to various stimuli. MVs carry a battery of signaling molecules, many of them related to redox-regulated processes. The role of MVs, either as a cause or as a result of cellular redox signaling, has been increasingly recognized over the past decade. This is in part due to advances in flow cytometry and its detection of MVs. Notably, recent studies have shown that circulating MVs from platelets and endothelial cells drive reactive species-dependent angiogenesis; circulating MVs in cancer alter the microenvironment and enhance invasion through horizontal transfer of mutated proteins and nucleic acids and harbor redox-regulated matrix metalloproteinases and procoagulative surface molecules; and circulating MVs from red blood cells and other cells modulate cell-cell interactions through scavenging or production of nitric oxide and other free radicals. Although our recognition of MVs in redox-related processes is growing, especially in the vascular biology field, much remains unknown regarding the various biologic and pathologic functions of MVs. Like reactive oxygen and nitrogen species, MVs were originally believed to have a solely pathological role in biology. And like our understanding of reactive species, it is now clear that MVs also play an important role in normal growth, development, and homeostasis. We are just beginning to understand how MVs are involved in various biological processes-developmental, homeostatic, and pathological-and the role of MVs in redox signaling is a rich and exciting area of investigation.
Collapse
Affiliation(s)
- Michael Craig Larson
- Department of Biophysics and Medical College of Wisconsin, Milwaukee, WI 53226, USA; Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA
| | - Cheryl A Hillery
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA; Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Neil Hogg
- Department of Biophysics and Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
26
|
Abstract
Targeting the redox metabolism of Plasmodium falciparum to create a fatal overload of oxidative stress is a route to explore the discovery of new antimalarial drugs. There are three main possibilities to target the redox metabolism of P. falciparum at the erythrocytic stage: selective targeting and inhibition of a redox P. falciparum protein or enzyme; oxidant drugs targeting essential parasite components and heme by-products; and redox cycler drugs targeting the parasitized red blood cell. Oxidants and redox cycler agents, with or without specific targets, may disrupt the fragile parasitized erythrocyte redox-dependent architecture given that: redox equilibrium plays a vital role at the erythrocytic stage; P. falciparum possesses major NADPH-dependent redox systems, such as glutathione and thioredoxin ones; and the protein-NADPH-dependent phosphorylation-dephosphorylation process is involved in building new permeation pathways and channels for the nutrient-waste import-export traffic of the parasite.
Collapse
|
27
|
Graciotti M, Alam M, Solyakov L, Schmid R, Burley G, Bottrill AR, Doerig C, Cullis P, Tobin AB. Malaria protein kinase CK2 (PfCK2) shows novel mechanisms of regulation. PLoS One 2014; 9:e85391. [PMID: 24658579 PMCID: PMC3962329 DOI: 10.1371/journal.pone.0085391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/05/2013] [Indexed: 11/19/2022] Open
Abstract
Casein kinase 2 (protein kinase CK2) is a conserved eukaryotic serine/theronine kinase with multiple substrates and roles in the regulation of cellular processes such as cellular stress, cell proliferation and apoptosis. Here we report a detailed analysis of the Plasmodium falciparum CK2, PfCK2, demonstrating that this kinase, like the mammalian orthologue, is a dual specificity kinase able to phosphorylate at both serine and tyrosine. However, unlike the human orthologue that is auto-phosphorylated on tyrosine within the activation loop, PfCK2 shows no activation loop auto-phosphorylation but rather is auto-phosphorylated at threonine 63 within subdomain I. Phosphorylation at this site in PfCK2 is shown here to regulate the intrinsic kinase activity of PfCK2. Furthermore, we generate an homology model of PfCK2 in complex with the known selective protein kinase CK2 inhibitor, quinalizarin, and in so doing identify key co-ordinating residues in the ATP binding pocket that could aid in designing selective inhibitors to PfCK2.
Collapse
Affiliation(s)
- Michele Graciotti
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom
| | - Mahmood Alam
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Lev Solyakov
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Ralf Schmid
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
| | - Glenn Burley
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Andrew R. Bottrill
- The Protein Nucleic Acid Chemistry Laboratory, University of Leicester, Leicester, United Kingdom
| | - Christian Doerig
- Department of Microbiology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | - Paul Cullis
- Department of Chemistry, University of Leicester, Leicester, United Kingdom
| | - Andrew B. Tobin
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Oxidative stress and β-thalassemic erythroid cells behind the molecular defect. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:985210. [PMID: 24205432 PMCID: PMC3800594 DOI: 10.1155/2013/985210] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/04/2013] [Indexed: 11/18/2022]
Abstract
β-thalassemia is a worldwide distributed monogenic red cell disorder, characterized by the absence or reduced β-globin chain synthesis. Despite the extensive knowledge of the molecular defects causing β-thalassemia, less is known about the mechanisms responsible for the associated ineffective erythropoiesis and reduced red cell survival, which sustain anemia of β-thalassemia. The unbalance of alpha-gamma chain and the presence of pathological free iron promote a severe red cell membrane oxidative stress, which results in abnormal β-thalassemic red cell features. These cells are precociously removed by the macrophage system through two mechanisms: the removal of phosphatidylserine positive cells and through the natural occurring antibody produced against the abnormally clustered membrane protein band 3. In the present review we will discuss the changes in β-thalassemic red cell homeostasis related to the oxidative stress and its connection with production of microparticles and with malaria infection. The reactive oxygen species (ROS) are also involved in ineffective erythropoiesis of β-thalassemia through still partially known pathways. Novel cytoprotective systems such as ASHP, eIF2α, and peroxiredoxin-2 have been suggested to be important against ROS in β-thalassemic erythropoiesis. Finally, we will discuss the results of the major in vitro and in vivo studies with antioxidants in β-thalassemia.
Collapse
|
29
|
Ferru E, Pantaleo A, Carta F, Mannu F, Khadjavi A, Gallo V, Ronzoni L, Graziadei G, Cappellini MD, Turrini F. Thalassemic erythrocytes release microparticles loaded with hemichromes by redox activation of p72Syk kinase. Haematologica 2013; 99:570-8. [PMID: 24038029 DOI: 10.3324/haematol.2013.084533] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
High counts of circulating microparticles, originated from the membrane of abnormal erythrocytes, have been associated with increased thrombotic risk in hemolytic disorders. Our studies indicate that in thalassemia intermedia patients the number of circulating microparticles correlates with the capability of the thalassemic erythrocytes to release microparticles. The microparticles are characteristically loaded with hemichromes formed by denatured α-chains. This finding was substantiated by the positive correlation observed in thalassemia intermedia patients between the amount of hemichromes measured in erythrocytes, their capability to release microparticles and the levels of plasma hemichromes. We observed that hemichromes, following their binding to the cytoplasmic domain of band 3, induce the formation of disulfide band 3 dimers that are subsequently phosphorylated by p72Syk kinase. Phosphorylation of oxidized band 3 appears to be relevant for the formation of large hemichromes/band 3 clusters that, in turn, induce local membrane instability and the release of microparticles. Proteomic analysis of microparticles released from thalassemia intermedia erythrocytes indicated that, besides hemichromes and clustered band 3, the microparticles contain a characteristic set of proteins that includes catalase, heat shock protein 70, peroxiredoxin 2 and carbonic anhydrase. High amounts of immunoglobulins and C3 have also been found to be associated with microparticles, accounting for their intense phagocytosis. The effect of p72Syk kinase inhibitors on the release of microparticles from thalassemia intermedia erythrocytes may indicate new perspectives for controlling the release of circulating microparticles in hemolytic anemias.
Collapse
|
30
|
Brandt GS, Bailey S. Dematin, a human erythrocyte cytoskeletal protein, is a substrate for a recombinant FIKK kinase from Plasmodium falciparum. Mol Biochem Parasitol 2013; 191:20-3. [DOI: 10.1016/j.molbiopara.2013.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 08/07/2013] [Accepted: 08/13/2013] [Indexed: 10/26/2022]
|
31
|
A bacterial phosphatase-like enzyme of the malaria parasite Plasmodium falciparum possesses tyrosine phosphatase activity and is implicated in the regulation of band 3 dynamics during parasite invasion. EUKARYOTIC CELL 2013; 12:1179-91. [PMID: 23825180 DOI: 10.1128/ec.00027-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Eukaryotic parasites of the genus Plasmodium cause malaria by invading and developing within host erythrocytes. Here, we demonstrate that PfShelph2, a gene product of Plasmodium falciparum that belongs to the Shewanella-like phosphatase (Shelph) subfamily, selectively hydrolyzes phosphotyrosine, as shown for other previously studied Shelph family members. In the extracellular merozoite stage, PfShelph2 localizes to vesicles that appear to be distinct from those of rhoptry, dense granule, or microneme organelles. During invasion, PfShelph2 is released from these vesicles and exported to the host erythrocyte. In vitro, PfShelph2 shows tyrosine phosphatase activity against the host erythrocyte protein Band 3, which is the most abundant tyrosine-phosphorylated species of the erythrocyte. During P. falciparum invasion, Band 3 undergoes dynamic and rapid clearance from the invasion junction within 1 to 2 s of parasite attachment to the erythrocyte. Release of Pfshelph2 occurs after clearance of Band 3 from the parasite-host cell interface and when the parasite is nearly or completely enclosed in the nascent vacuole. We propose a model in which the phosphatase modifies Band 3 in time to restore its interaction with the cytoskeleton and thus reestablishes the erythrocyte cytoskeletal network at the end of the invasion process.
Collapse
|
32
|
Oxidative stress and caspase-mediated fragmentation of cytoplasmic domain of erythrocyte band 3 during blood storage. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2012; 10 Suppl 2:s55-62. [PMID: 22890269 DOI: 10.2450/2012.009s] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND During blood bank storage, red blood cells (RBCs) undergo a number of biological and biochemical alterations collectively referred to as "storage lesions". These injuries include loss and oxidative cross-linking of band 3, the major integral protein of RBC membranes. Denaturation of hemoglobin (Hb) and damage to the amino-terminal of band 3 are recognised as the starting events for immunological recognition mechanisms and phagocytic removal of senescent or impaired RBCs from circulation. Consequently, studies focusing on the Hb-association and oxidative status of the cytoskeleton of stored RBCs intended for transfusion are of extreme interest. In this work, two storage-related fragments of band 3 were documented and biochemically characterised. METHODS Four RBC units were collected from normal volunteers and stored for 21 days under (i) standard blood bank conditions, (ii) anaerobic conditions, or (iii) in the presence of caspase 3-inhibitor. Degradation products of band 3 were followed by sodium dodecyl sulfatepolyacrylamide gel electrophoresis coupled with western blot and mass spectrometry analyses. RESULTS Two different degradation products of the cytoplasmic domain of the erythrocyte band 3 (CDB3) were detected in RBC membranes during storage in saline-adenine-glucosemannitol (SAGM) preservation medium. One of these fragments showed an apparent molecular weight of 34 kDa and was demonstrated to be the product of a free-radical attack on the protein main chain, whereas another fragment of 24 kDa was the result of a caspase 3-mediated cleavage. DISCUSSION Although to different extent, anaerobic conditions reduced the formation of both truncated products indicating an enhanced activity of the pro-apoptotic caspase 3 enzyme following oxidative stress. Interestingly, both CDB3 fragments were tightly associated to the erythrocyte membrane supporting the involvement of Cys-201 and/or Cys-317 in clustering different band 3 monomers.
Collapse
|
33
|
Lasonder E, Green JL, Camarda G, Talabani H, Holder AA, Langsley G, Alano P. The Plasmodium falciparum schizont phosphoproteome reveals extensive phosphatidylinositol and cAMP-protein kinase A signaling. J Proteome Res 2012; 11:5323-37. [PMID: 23025827 DOI: 10.1021/pr300557m] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The asexual blood stages of Plasmodium falciparum cause the most lethal form of human malaria. During growth within an infected red blood cell, parasite multiplication and formation of invasive merozoites is called schizogony. Here, we present a detailed analysis of the phosphoproteome of P. falciparum schizonts revealing 2541 unique phosphorylation sites, including 871 novel sites. Prominent roles for cAMP-dependent protein kinase A- and phosphatidylinositol-signaling were identified following analysis by functional enrichment, phosphoprotein interaction network clustering and phospho-motif identification tools. We observed that most key enzymes in the inositol pathway are phosphorylated, which strongly suggests additional levels of regulation and crosstalk with other protein kinases that coregulate different biological processes. A distinct pattern of phosphorylation of proteins involved in merozoite egress and red blood cell invasion was noted. The analyses also revealed that cAMP-PKA signaling is implicated in a wide variety of processes including motility. We verified this finding experimentally using an in vitro kinase assay and identified three novel PKA substrates associated with the glideosome motor complex: myosin A, GAP45 and CDPK1. Therefore, in addition to an established role for CDPK1 in the motor complex, this study reveals the coinvolvement of PKA, further implicating cAMP as an important regulator of host cell invasion.
Collapse
Affiliation(s)
- Edwin Lasonder
- Centre for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
34
|
Wirth CC, Pradel G. Molecular mechanisms of host cell egress by malaria parasites. Int J Med Microbiol 2012; 302:172-8. [DOI: 10.1016/j.ijmm.2012.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
35
|
Pantaleo A, Ferru E, Carta F, Valente E, Pippia P, Turrini F. Effect of heterozygous beta thalassemia on the phosphorylative response to Plasmodium falciparum infection. J Proteomics 2012; 76 Spec No.:251-8. [PMID: 22960126 DOI: 10.1016/j.jprot.2012.08.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/19/2012] [Accepted: 08/25/2012] [Indexed: 12/28/2022]
Abstract
Malaria parasites interact with the host cell membrane inserting new proteins and inducing oxidative and phosphorylative changes of erythrocyte proteins. In the present report we monitored the time dependent oxidative and phosphorylative modifications induced by parasites in heterozygous beta thalassemia (Het-βThal). Het-βThal causes mild anemia and is known to determine a pro-oxidant milieu and a protective effect against severe malaria. In malaria cultures Het-βThal has been reported to induce accumulation of hemoglobin denaturation products. At early parasite development stages (rings), tyrosine hyper-phosphorylation of band 3 was the most notable modification, and at later development stages (trophozoites), additional membrane proteins displayed significant hyper-phosphorylation of their serine and tyrosine residues (adducins, ankyrin, catalase). Het-βThal also caused membrane destabilization. Free radical scavengers effectively inhibited the phosphorylative response and membrane destabilization. Kinase inhibitors exerted similar effects suggesting a causal relationship between oxidative stress, membrane protein hyper-phosphorylation and increased membrane damage exacerbated by Het-βThal. In conclusion, different lines of evidence suggest that Het-βThal enhances the redox stress caused by malaria parasites inducing its protective effect destabilizing the host cell membrane. This article is part of a Special Issue entitled: Integrated omics.
Collapse
|
36
|
Greth A, Lampkin S, Mayura-Guru P, Rodda F, Drysdale K, Roberts-Thomson M, McMorran BJ, Foote SJ, Burgio G. A novel ENU-mutation in ankyrin-1 disrupts malaria parasite maturation in red blood cells of mice. PLoS One 2012; 7:e38999. [PMID: 22723917 PMCID: PMC3378575 DOI: 10.1371/journal.pone.0038999] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 05/15/2012] [Indexed: 11/19/2022] Open
Abstract
The blood stage of the plasmodium parasite life cycle is responsible for the clinical symptoms of malaria. Epidemiological studies have identified coincidental malarial endemicity and multiple red blood cell (RBC) disorders. Many RBC disorders result from mutations in genes encoding cytoskeletal proteins and these are associated with increased protection against malarial infections. However the mechanisms underpinning these genetic, host responses remain obscure. We have performed an N-ethyl-N-nitrosourea (ENU) mutagenesis screen and have identified a novel dominant (haploinsufficient) mutation in the Ank-1 gene (Ank1MRI23420) of mice displaying hereditary spherocytosis (HS). Female mice, heterozygous for the Ank-1 mutation showed increased survival to infection by Plasmodium chabaudi adami DS with a concomitant 30% decrease in parasitemia compared to wild-type, isogenic mice (wt). A comparative in vivo red cell invasion and parasite growth assay showed a RBC-autonomous effect characterised by decreased proportion of infected heterozygous RBCs. Within approximately 6–8 hours post-invasion, TUNEL staining of intraerythrocytic parasites, showed a significant increase in dead parasites in heterozygotes. This was especially notable at the ring and trophozoite stages in the blood of infected heterozygous mutant mice compared to wt (p<0.05). We conclude that increased malaria resistance due to ankyrin-1 deficiency is caused by the intraerythrocytic death of P. chabaudi parasites.
Collapse
Affiliation(s)
- Andreas Greth
- The Menzies Research Institute of Tasmania, University of Tasmania, Hobart, Australia
- Australian School of Advanced Medicine, Macquarie University, Sydney, Australia
| | - Shelley Lampkin
- The Menzies Research Institute of Tasmania, University of Tasmania, Hobart, Australia
- Australian School of Advanced Medicine, Macquarie University, Sydney, Australia
| | - Preethi Mayura-Guru
- The Menzies Research Institute of Tasmania, University of Tasmania, Hobart, Australia
| | - Fleur Rodda
- The Menzies Research Institute of Tasmania, University of Tasmania, Hobart, Australia
| | - Karen Drysdale
- The Menzies Research Institute of Tasmania, University of Tasmania, Hobart, Australia
| | | | - Brendan J. McMorran
- The Menzies Research Institute of Tasmania, University of Tasmania, Hobart, Australia
- Australian School of Advanced Medicine, Macquarie University, Sydney, Australia
| | - Simon J. Foote
- The Menzies Research Institute of Tasmania, University of Tasmania, Hobart, Australia
- Australian School of Advanced Medicine, Macquarie University, Sydney, Australia
| | - Gaétan Burgio
- The Menzies Research Institute of Tasmania, University of Tasmania, Hobart, Australia
- Australian School of Advanced Medicine, Macquarie University, Sydney, Australia
- * E-mail:
| |
Collapse
|
37
|
Pantaleo A, Ferru E, Vono R, Giribaldi G, Lobina O, Nepveu F, Ibrahim H, Nallet JP, Carta F, Mannu F, Pippia P, Campanella E, Low PS, Turrini F. New antimalarial indolone-N-oxides, generating radical species, destabilize the host cell membrane at early stages of Plasmodium falciparum growth: role of band 3 tyrosine phosphorylation. Free Radic Biol Med 2012; 52:527-36. [PMID: 22142474 PMCID: PMC3385926 DOI: 10.1016/j.freeradbiomed.2011.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 11/07/2011] [Accepted: 11/09/2011] [Indexed: 11/20/2022]
Abstract
Although indolone-N-oxide (INODs) genereting long-lived radicals possess antiplasmodial activity in the low-nanomolar range, little is known about their mechanism of action. To explore the molecular basis of INOD activity, we screened for changes in INOD-treated malaria-infected erythrocytes (Pf-RBCs) using a proteomics approach. At early parasite maturation stages, treatment with INODs at their IC(50) concentrations induced a marked tyrosine phosphorylation of the erythrocyte membrane protein band 3, whereas no effect was observed in control RBCs. After INOD treatment of Pf-RBCs we also observed: (i) accelerated formation of membrane aggregates containing hyperphosphorylated band 3, Syk kinase, and denatured hemoglobin; (ii) dose-dependent release of microvesicles containing the membrane aggregates; (iii) reduction in band 3 phosphorylation, Pf-RBC vesiculation, and antimalarial effect of INODs upon addition of Syk kinase inhibitors; and (iv) correlation between the IC(50) and the INOD concentrations required to induce band 3 phosphorylation and vesiculation. Together with previous data demonstrating that tyrosine phosphorylation of oxidized band 3 promotes its dissociation from the cytoskeleton, these results suggest that INODs cause a profound destabilization of the Pf-RBC membrane through a mechanism apparently triggered by the activation of a redox signaling pathway rather than direct oxidative damage.
Collapse
Affiliation(s)
- Antonella Pantaleo
- Department of Physiological, Biochemical, and Cell Sciences, University of Sassari, Sassari 07100, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Fontaine A, Bourdon S, Belghazi M, Pophillat M, Fourquet P, Granjeaud S, Torrentino-Madamet M, Rogier C, Fusai T, Almeras L. Plasmodium falciparum infection-induced changes in erythrocyte membrane proteins. Parasitol Res 2011; 110:545-56. [PMID: 21744020 DOI: 10.1007/s00436-011-2521-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 06/22/2011] [Indexed: 01/08/2023]
Abstract
Over the past decade, advances in proteomic and mass spectrometry techniques and the sequencing of the Plasmodium falciparum genome have led to an increasing number of studies regarding the parasite proteome. However, these studies have focused principally on parasite protein expression, neglecting parasite-induced variations in the host proteome. Here, we investigated P. falciparum-induced modifications of the infected red blood cell (iRBC) membrane proteome, taking into account both host and parasite proteome alterations. Furthermore, we also determined if some protein changes were associated with genotypically distinct P. falciparum strains. Comparison of host membrane proteomes between iRBCs and uninfected red blood cells using fluorescence-based proteomic approaches, such as 2D difference gel electrophoresis revealed that more than 100 protein spots were highly up-represented (fold change increase greater than five) following P. falciparum infection for both strains (i.e. RP8 and Institut Pasteur Pregnancy Associated Malaria). The majority of spots identified by mass spectrometry corresponded to Homo sapiens proteins. However, infection-induced changes in host proteins did not appear to affect molecules located at the outer surface of the plasma membrane. The under-representation of parasite proteins could not be attributed to deficient parasite protein expression. Thus, this study describes for the first time that considerable host protein modifications were detected following P. falciparum infection at the erythrocyte membrane level. Further analysis of infection-induced host protein modifications will improve our knowledge of malaria pathogenesis.
Collapse
Affiliation(s)
- Albin Fontaine
- Unité de Parasitologie, Institut de Recherche Biomédicale des Armées (IRBA), antenne Marseille, IFR48, Allée du Médecin colonel Eugène Jamot, Parc du Pharo, BP 60 109, 13262, Marseille Cedex 07, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zuccala ES, Baum J. Cytoskeletal and membrane remodelling during malaria parasite invasion of the human erythrocyte. Br J Haematol 2011; 154:680-9. [DOI: 10.1111/j.1365-2141.2011.08766.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Regulation of membrane-cytoskeletal interactions by tyrosine phosphorylation of erythrocyte band 3. Blood 2011; 117:5998-6006. [PMID: 21474668 DOI: 10.1182/blood-2010-11-317024] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytoplasmic domain of band 3 serves as a center of erythrocyte membrane organization and constitutes the major substrate of erythrocyte tyrosine kinases. Tyrosine phosphorylation of band 3 is induced by several physiologic stimuli, including malaria parasite invasion, cell shrinkage, normal cell aging, and oxidant stress (thalassemias, sickle cell disease, glucose-6-phosphate dehydrogenase deficiency, etc). In an effort to characterize the biologic sequelae of band 3 tyrosine phosphorylation, we looked for changes in the polypeptide's function that accompany its phosphorylation. We report that tyrosine phosphorylation promotes dissociation of band 3 from the spectrin-actin skeleton as evidenced by: (1) a decrease in ankyrin affinity in direct binding studies, (2) an increase in detergent extractability of band 3 from ghosts, (3) a rise in band 3 cross-linkability by bis-sulfosuccinimidyl-suberate, (4) significant changes in erythrocyte morphology, and (5) elevation of the rate of band 3 diffusion in intact cells. Because release of band 3 from its ankyrin and adducin linkages to the cytoskeleton can facilitate changes in multiple membrane properties, tyrosine phosphorylation of band 3 is argued to enable adaptive changes in erythrocyte biology that permit the cell to respond to the above stresses.
Collapse
|
41
|
Pantaleo A, Ferru E, Carta F, Mannu F, Simula LF, Khadjavi A, Pippia P, Turrini F. Irreversible AE1 tyrosine phosphorylation leads to membrane vesiculation in G6PD deficient red cells. PLoS One 2011; 6:e15847. [PMID: 21246053 PMCID: PMC3016414 DOI: 10.1371/journal.pone.0015847] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 11/25/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND While G6PD deficiency is one of the major causes of acute hemolytic anemia, the membrane changes leading to red cell lysis have not been extensively studied. New findings concerning the mechanisms of G6PD deficient red cell destruction may facilitate our understanding of the large individual variations in susceptibility to pro-oxidant compounds and aid the prediction of the hemolytic activity of new drugs. METHODOLOGY/PRINCIPAL FINDINGS Our results show that treatment of G6PD deficient red cells with diamide (0.25 mM) or divicine (0.5 mM) causes: (1) an increase in the oxidation and tyrosine phosphorylation of AE1; (2) progressive recruitment of phosphorylated AE1 in large membrane complexes which also contain hemichromes; (3) parallel red cell lysis and a massive release of vesicles containing hemichromes. We have observed that inhibition of AE1 phosphorylation by Syk kinase inhibitors prevented its clustering and the membrane vesiculation while increases in AE1 phosphorylation by tyrosine phosphatase inhibitors increased both red cell lysis and vesiculation rates. In control RBCs we observed only transient AE1 phosphorylation. CONCLUSIONS/SIGNIFICANCE Collectively, our findings indicate that persistent tyrosine phosphorylation produces extensive membrane destabilization leading to the loss of vesicles which contain hemichromes. The proposed mechanism of hemolysis may be applied to other hemolytic diseases characterized by the accumulation of hemoglobin denaturation products.
Collapse
Affiliation(s)
- Antonella Pantaleo
- Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy
| | - Emanuela Ferru
- Section of Internal Medicine, Department of Clinical and Experimental Medicine, University of Verona, Verona, Italy
| | | | | | | | - Amina Khadjavi
- Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy
| | - Proto Pippia
- Department of Physiological, Biochemical and Cell Sciences, University of Sassari, Sassari, Italy
| | - Francesco Turrini
- Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy
- * E-mail:
| |
Collapse
|
42
|
Specific antibody responses against membrane proteins of erythrocytes infected by Plasmodium falciparum of individuals briefly exposed to malaria. Malar J 2010; 9:276. [PMID: 20932351 PMCID: PMC2959075 DOI: 10.1186/1475-2875-9-276] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 10/11/2010] [Indexed: 11/16/2022] Open
Abstract
Background Plasmodium falciparum infections could lead to severe malaria, principally in non-immune individuals as children and travellers from countries exempted of malaria. Severe malaria is often associated with the sequestration of P. falciparum-infected erythrocytes in deep micro-vascular beds via interactions between host endothelial receptors and parasite ligands expressed on the surface of the infected erythrocyte. Although, serological responses from individuals living in endemic areas against proteins expressed at surface of the infected erythrocyte have been largely studied, seldom data are available about the specific targets of antibody response from travellers. Methods In order to characterize antigens recognized by traveller sera, a comparison of IgG immune response against membrane protein extracts from uninfected and P. falciparum-infected red blood cells (iRBC), using immunoblots, was performed between non exposed individuals (n = 31) and briefly exposed individuals (BEI) (n = 38) to malaria transmission. Results Immune profile analysis indicated that eight protein bands from iRBC were significantly detected more frequently in the BEI group. Some of these antigenic proteins were identified by an original immuno-proteomic approach. Conclusion Collectively, these data may be useful to characterize the singular serological immune response against a primary malaria infection in individuals briefly exposed to transmission.
Collapse
|