1
|
Gonzalez-Lozano MA, Schmid EW, Whelan EM, Jiang Y, Paulo JA, Walter JC, Harper JW. EndoMAP.v1, a Structural Protein Complex Landscape of Human Endosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.636106. [PMID: 39975243 PMCID: PMC11839024 DOI: 10.1101/2025.02.07.636106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Early/sorting endosomes are dynamic organelles that play key roles in proteome control by triaging plasma membrane proteins for either recycling or degradation in the lysosome1,2,3. These events are coordinated by numerous transiently-associated regulatory complexes and integral membrane components that contribute to organelle identity during endosome maturation4. While a subset of the several hundred protein components and cargoes known to associate with endosomes have been studied at the biochemical and/or structural level, interaction partners and higher order molecular assemblies for many endosomal components remain unknown. Here, we combine cross-linking and native gel mass spectrometry5-8 of purified early endosomes with AlphaFold9,10 and computational analysis to create a systematic human endosomal structural interactome. We present dozens of structural models for endosomal protein pairs and higher order assemblies supported by experimental cross-links from their native subcellular context, suggesting structural mechanisms for previously reported regulatory processes. Using induced neurons, we validate two candidate complexes whose interactions are supported by crosslinks and structural predictions: TMEM230 as a subunit of ATP8/11 lipid flippases11 and TMEM9/9B as subunits of CLCN3/4/5 chloride-proton antiporters12. This resource and its accompanying structural network viewer provide an experimental framework for understanding organellar structural interactomes and large-scale validation of structural predictions.
Collapse
Affiliation(s)
- Miguel A Gonzalez-Lozano
- Department of Cell Biology, Harvard Medical School, Boston MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Ernst W Schmid
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston MA, USA
| | - Enya Miguel Whelan
- Department of Cell Biology, Harvard Medical School, Boston MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Yizhi Jiang
- Department of Cell Biology, Harvard Medical School, Boston MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Initiative in Trafficking and Neurogeneration, Department of Cell Biology, Harvard Medical School, Boston MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston MA, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
2
|
Öztemiz Topcu E, Gadermaier G. To stay or not to stay intact as an allergen: the endolysosomal degradation assay used as tool to analyze protein immunogenicity and T cell epitopes. FRONTIERS IN ALLERGY 2024; 5:1440360. [PMID: 39071040 PMCID: PMC11272489 DOI: 10.3389/falgy.2024.1440360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Antigen uptake and processing of exogenous proteins is critical for adaptive immunity, particularly for T helper cell activation. Proteins undergo distinct proteolytic processing in endolysosomal compartments of antigen-presenting cells. The resulting peptides are presented on MHC class II molecules and specifically recognized by T cells. The in vitro endolysosomal degradation assay mimics antigen processing by incubating a protein of interest with a protease cocktail derived from the endolysosomal compartments of antigen presenting cells. The kinetics of protein degradation is monitored by gel electrophoresis and allows calculation of a protein's half-life and thus endolysosomal stability. Processed peptides are analyzed by mass spectrometry and abundant peptide clusters are shown to harbor T cell epitopes. The endolysosomal degradation assay has been widely used to study allergens, which are IgE-binding proteins involved in type I hypersensitivity. In this review article, we provide the first comprehensive overview of the endolysosomal degradation of 29 isoallergens and variants originating from the PR-10, Ole e 1-like, pectate lyase, defensin polyproline-linked, non-specific lipid transfer, mite group 1, 2, and 5, and tropomyosin protein families. The assay method is described in detail and suggestions for improved standardization and reproducibility are provided. The current hypothesis implies that proteins with high endolysosomal stability can induce an efficient immune response, whereas highly unstable proteins are degraded early during antigen processing and therefore not efficient for MHC II peptide presentation. To validate this concept, systematic analyses of high and low allergenic representatives of protein families should be investigated. In addition to purified molecules, allergen extracts should be degraded to analyze potential matrix effects and gastrointestinal proteolysis of food allergens. In conclusion, individual protein susceptibility and peptides obtained from the endolysosomal degradation assay are powerful tools for understanding protein immunogenicity and T cell reactivity. Systematic studies and linkage with in vivo sensitization data will allow the establishment of (machine-learning) tools to aid prediction of immunogenicity and allergenicity. The orthogonal method could in the future be used for risk assessment of novel foods and in the generation of protein-based immunotherapeutics.
Collapse
|
3
|
Cheng Y, Chen W, Xu J, Liu H, Chen T, Hu J. Genetic analysis of potential biomarkers and therapeutic targets in age-related hearing loss. Hear Res 2023; 439:108894. [PMID: 37844444 DOI: 10.1016/j.heares.2023.108894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/06/2023] [Accepted: 09/27/2023] [Indexed: 10/18/2023]
Abstract
Age-related hearing loss (ARHL) or presbycusis is the phenomenon of hearing loss due to the aging of auditory organs with age. It seriously affects the cognitive function and quality of life of the elderly. This study is based on comprehensive bioinformatic and machine learning methods to identify the critical genes of ARHL and explore its therapy targets and pathological mechanisms. The ARHL and normal samples were from GSE49543 datasets of the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was applied to obtain significant modules. The Limma R-package was used to identify differentially expressed genes (DEGs). The 15 common genes of the practical module and DEGs were screened. Functional enrichment analysis suggested that these genes were mainly associated with inflammation, immune response, and infection. Cytoscape software created the protein-protein interaction (PPI) layouts and cytoHubba, support vector machine-recursive feature elimination (SVM-RFE), and random forests (RF) algorithms screened hub genes. After validating the hub gene expressions in GSE6045 and GSE154833 datasets, Clec4n, Mpeg1, and Fcgr3 are highly expressed in ARHL and have higher diagnostic efficacy for ARHL, so they were identified as hub genes. In conclusion, Clec4n, Mpeg1, and Fcgr3 play essential roles in developing ARHL, and they might become vital targets in ARHL diagnosis and anti-inflammatory therapy.
Collapse
Affiliation(s)
- Yajing Cheng
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wenjin Chen
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jia Xu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hang Liu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ting Chen
- Department of Neurology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jun Hu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
4
|
Wang W, Hassan MM, Mao G. Colloidal Perspective on Targeted Drug Delivery to the Central Nervous System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3235-3245. [PMID: 36825490 DOI: 10.1021/acs.langmuir.2c02949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This article describes a new approach in targeted drug delivery to the central nervous system (CNS) in a significant departure from the predominant systematic drug administration attempting to penetrate the blood-brain barrier (BBB). Nanoparticles chemically conjugated to neural tract tracer proteins are capable of path-specific axonal retrograde transport, transneuronal transport, and anatomical tract flow to bypass the BBB. To celebrate the work by Dr. Bettye Washington Greene on the physical chemistry of colloidal particles, this article focuses on the physiochemical characteristics of the nanoparticles, various colloidal forces that impact the colloidal stability of nanoparticles in biological media, and surface chemistry strategies to avoid nanoparticle aggregation-induced poor therapeutic outcomes. The biological environment for the anatomical retrograde transport of neural tract tracers is examined to directly link factors impacting the colloidal stability of the new class of CNS-targeting nanoconjugates such as nanoconjugate size, shape, surface charge, surface chemistry, ionic strength, pH, and protein adsorption on the nanoparticle. We conclude with opportunities and challenges for future research.
Collapse
Affiliation(s)
- Wenqian Wang
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Md Musfizur Hassan
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| |
Collapse
|
5
|
Rosas-García J, Ramón-Luing LA, Bobadilla K, Meraz-Ríos MA, Sevilla-Reyes EE, Santos-Mendoza T. Distinct Transcriptional Profile of PDZ Genes after Activation of Human Macrophages and Dendritic Cells. Int J Mol Sci 2022; 23:ijms23137010. [PMID: 35806015 PMCID: PMC9266728 DOI: 10.3390/ijms23137010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
The PDZ (PSD95, Dlg and ZO-1) genes encode proteins that primarily function as scaffolds of diverse signaling pathways. To date, 153 PDZ genes have been identified in the human genome, most of which have multiple protein isoforms widely studied in epithelial and neural cells. However, their expression and function in immune cells have been poorly studied. Herein, we aimed to assess the transcriptional profiles of 83 PDZ genes in human macrophages (Mɸ) and dendritic cells (DCs) and changes in their relative expression during cell PRR stimulation. Significantly distinct PDZ gene transcriptional profiles were identified under different stimulation conditions. Furthermore, a distinct PDZ gene transcriptional signature was found in Mɸ and DCs under the same phagocytic stimuli. Notably, more than 40 PDZ genes had significant changes in expression, with potentially relevant functions in antigen-presenting cells (APCs). Given that several PDZ proteins are targeted by viral products, our results support that many of these proteins might be viral targets in APCs as part of evasion mechanisms. Our results suggest a distinct requirement for PDZ scaffolds in Mɸ and DCs signaling pathways activation. More assessments on the functions of PDZ proteins in APCs and their role in immune evasion mechanisms are needed.
Collapse
Affiliation(s)
- Jorge Rosas-García
- Laboratory of Transcriptomics and Molecular Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (J.R.-G.); (K.B.)
- Department of Molecular Biomedicine, CINVESTAV, Mexico City 07360, Mexico;
| | - Lucero A. Ramón-Luing
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| | - Karen Bobadilla
- Laboratory of Transcriptomics and Molecular Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (J.R.-G.); (K.B.)
| | | | - Edgar E. Sevilla-Reyes
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
- Correspondence: (E.E.S.-R.); (T.S.-M.)
| | - Teresa Santos-Mendoza
- Laboratory of Transcriptomics and Molecular Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (J.R.-G.); (K.B.)
- Correspondence: (E.E.S.-R.); (T.S.-M.)
| |
Collapse
|
6
|
Zoncu R, Perera RM. Built to last: lysosome remodeling and repair in health and disease. Trends Cell Biol 2022; 32:597-610. [DOI: 10.1016/j.tcb.2021.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 12/21/2022]
|
7
|
Nguyen JA, Yates RM. Better Together: Current Insights Into Phagosome-Lysosome Fusion. Front Immunol 2021; 12:636078. [PMID: 33717183 PMCID: PMC7946854 DOI: 10.3389/fimmu.2021.636078] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Following phagocytosis, the nascent phagosome undergoes maturation to become a phagolysosome with an acidic, hydrolytic, and often oxidative lumen that can efficiently kill and digest engulfed microbes, cells, and debris. The fusion of phagosomes with lysosomes is a principal driver of phagosomal maturation and is targeted by several adapted intracellular pathogens. Impairment of this process has significant consequences for microbial infection, tissue inflammation, the onset of adaptive immunity, and disease. Given the importance of phagosome-lysosome fusion to phagocyte function and the many virulence factors that target it, it is unsurprising that multiple molecular pathways have evolved to mediate this essential process. While the full range of these pathways has yet to be fully characterized, several pathways involving proteins such as members of the Rab GTPases, tethering factors and SNAREs have been identified. Here, we summarize the current state of knowledge to clarify the ambiguities in the field and construct a more comprehensive phagolysosome formation model. Lastly, we discuss how other cellular pathways help support phagolysosome biogenesis and, consequently, phagocyte function.
Collapse
Affiliation(s)
- Jenny A Nguyen
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Robin M Yates
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,Cumming School of Medicine, Snyder Institute of Chronic Disease, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Merselis LC, Rivas ZP, Munson GP. Breaching the Bacterial Envelope: The Pivotal Role of Perforin-2 (MPEG1) Within Phagocytes. Front Immunol 2021; 12:597951. [PMID: 33692780 PMCID: PMC7937864 DOI: 10.3389/fimmu.2021.597951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
The membrane attack complex (MAC) of the complement system and Perforin-1 are well characterized innate immune effectors. MAC is composed of C9 and other complement proteins that target the envelope of gram-negative bacteria. Perforin-1 is deployed when killer lymphocytes degranulate to destroy virally infected or cancerous cells. These molecules polymerize with MAC-perforin/cholesterol-dependent cytolysin (MACPF/CDC) domains of each monomer deploying amphipathic β-strands to form pores through target lipid bilayers. In this review we discuss one of the most recently discovered members of this family; Perforin-2, the product of the Mpeg1 gene. Since their initial description more than 100 years ago, innumerable studies have made macrophages and other phagocytes some of the best understood cells of the immune system. Yet remarkably it was only recently revealed that Perforin-2 underpins a pivotal function of phagocytes; the destruction of phagocytosed microbes. Several studies have established that phagocytosed bacteria persist and in some cases flourish within phagocytes that lack Perforin-2. When challenged with either gram-negative or gram-positive pathogens Mpeg1 knockout mice succumb to infectious doses that the majority of wild-type mice survive. As expected by their immunocompromised phenotype, bacterial pathogens replicate and disseminate to deeper tissues of Mpeg1 knockout mice. Thus, this evolutionarily ancient gene endows phagocytes with potent bactericidal capability across taxa spanning sponges to humans. The recently elucidated structures of mammalian Perforin-2 reveal it to be a homopolymer that depends upon low pH, such as within phagosomes, to transition to its membrane-spanning pore conformation. Clinical manifestations of Mpeg1 missense mutations further highlight the pivotal role of Perforin-2 within phagocytes. Controversies and gaps within the field of Perforin-2 research are also discussed as well as animal models that may be used to resolve the outstanding issues. Our review concludes with a discussion of bacterial counter measures against Perforin-2.
Collapse
Affiliation(s)
- Leidy C Merselis
- Department of Microbiology and Immunology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Zachary P Rivas
- Department of Microbiology and Immunology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - George P Munson
- Department of Microbiology and Immunology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
9
|
Lamberti G, De Smet CH, Angelova M, Kremser L, Taub N, Herrmann C, Hess MW, Rainer J, Tancevski I, Schweigreiter R, Kofler R, Schmiedinger T, Vietor I, Trajanoski Z, Ejsing CS, Lindner HH, Huber LA, Stasyk T. LAMTOR/Ragulator regulates lipid metabolism in macrophages and foam cell differentiation. FEBS Lett 2020; 594:31-42. [PMID: 31423582 PMCID: PMC7003824 DOI: 10.1002/1873-3468.13579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 11/08/2022]
Abstract
Late endosomal/lysosomal adaptor and MAPK and mTOR activator (LAMTOR/Ragulator) is a scaffold protein complex that anchors and regulates multiprotein signaling units on late endosomes/lysosomes. To identify LAMTOR-modulated endolysosomal proteins, primary macrophages were derived from bone marrow of conditional knockout mice carrying a specific deletion of LAMTOR2 in the monocyte/macrophage cell lineage. Affymetrix-based transcriptomic analysis and quantitative iTRAQ-based organelle proteomic analysis of endosomes derived from macrophages were performed. Further analyses showed that LAMTOR could be a novel regulator of foam cell differentiation. The lipid droplet formation phenotype observed in macrophages was additionally confirmed in MEFs, where lipidomic analysis identified cholesterol esters as specifically downregulated in LAMTOR2 knockout cells. The data obtained indicate a function of LAMTOR2 in lipid metabolism.
Collapse
Affiliation(s)
- Giorgia Lamberti
- Division of Cell BiologyBiocenterMedical University of InnsbruckAustria
| | - Cedric H. De Smet
- Division of Cell BiologyBiocenterMedical University of InnsbruckAustria
| | - Mihaela Angelova
- Division of BioinformaticsBiocenterMedical University of InnsbruckAustria
| | - Leopold Kremser
- Division of Clinical BiochemistryBiocenterMedical University of InnsbruckAustria
| | - Nicole Taub
- Division of Cell BiologyBiocenterMedical University of InnsbruckAustria
| | - Caroline Herrmann
- Division of Cell BiologyBiocenterMedical University of InnsbruckAustria
| | - Michael W. Hess
- Division of Histology and EmbryologyMedical University of InnsbruckAustria
| | - Johannes Rainer
- Division of Molecular PathophysiologyBiocenterMedical University of InnsbruckAustria
| | - Ivan Tancevski
- Department of Internal MedicineMedical University of InnsbruckAustria
| | | | - Reinhard Kofler
- Division of Molecular PathophysiologyBiocenterMedical University of InnsbruckAustria
| | - Thomas Schmiedinger
- Department of Therapeutic Radiology and OncologyMedical University of InnsbruckAustria
| | - Ilja Vietor
- Division of Cell BiologyBiocenterMedical University of InnsbruckAustria
| | - Zlatko Trajanoski
- Division of BioinformaticsBiocenterMedical University of InnsbruckAustria
| | - Christer S. Ejsing
- Department of Biochemistry and Molecular BiologyVillum Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Herbert H. Lindner
- Division of Clinical BiochemistryBiocenterMedical University of InnsbruckAustria
| | - Lukas A. Huber
- Division of Cell BiologyBiocenterMedical University of InnsbruckAustria
- Austrian Drug Screening Institute, ADSIInnsbruckAustria
| | - Taras Stasyk
- Division of Cell BiologyBiocenterMedical University of InnsbruckAustria
| |
Collapse
|
10
|
Dingjan I, Linders PTA, Verboogen DRJ, Revelo NH, Ter Beest M, van den Bogaart G. Endosomal and Phagosomal SNAREs. Physiol Rev 2018; 98:1465-1492. [PMID: 29790818 DOI: 10.1152/physrev.00037.2017] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein family is of vital importance for organelle communication. The complexing of cognate SNARE members present in both the donor and target organellar membranes drives the membrane fusion required for intracellular transport. In the endocytic route, SNARE proteins mediate trafficking between endosomes and phagosomes with other endosomes, lysosomes, the Golgi apparatus, the plasma membrane, and the endoplasmic reticulum. The goal of this review is to provide an overview of the SNAREs involved in endosomal and phagosomal trafficking. Of the 38 SNAREs present in humans, 30 have been identified at endosomes and/or phagosomes. Many of these SNAREs are targeted by viruses and intracellular pathogens, which thereby reroute intracellular transport for gaining access to nutrients, preventing their degradation, and avoiding their detection by the immune system. A fascinating picture is emerging of a complex transport network with multiple SNAREs being involved in consecutive trafficking routes.
Collapse
Affiliation(s)
- Ilse Dingjan
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Peter T A Linders
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Danielle R J Verboogen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Natalia H Revelo
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Martin Ter Beest
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| |
Collapse
|
11
|
Bai F, McCormack RM, Hower S, Plano GV, Lichtenheld MG, Munson GP. Perforin-2 Breaches the Envelope of Phagocytosed Bacteria Allowing Antimicrobial Effectors Access to Intracellular Targets. THE JOURNAL OF IMMUNOLOGY 2018; 201:2710-2720. [PMID: 30249808 DOI: 10.4049/jimmunol.1800365] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/28/2018] [Indexed: 01/24/2023]
Abstract
Perforin-2, the product of the MPEG1 gene, limits the spread and dissemination of bacterial pathogens in vivo. It is highly expressed in murine and human phagocytes, and macrophages lacking Perforin-2 are compromised in their ability to kill phagocytosed bacteria. In this study, we used Salmonella enterica serovar Typhimurium as a model intracellular pathogen to elucidate the mechanism of Perforin-2's bactericidal activity. In vitro Perforin-2 was found to facilitate the degradation of Ags contained within the envelope of phagocytosed bacteria. In contrast, degradation of a representative surface Ag was found to be independent of Perforin-2. Consistent with our in vitro results, a protease-sensitive, periplasmic superoxide dismutase (SodCII) contributed to the virulence of S. Typhimurium in Perforin-2 knockout but not wild-type mice. In aggregate, our studies indicate that Perforin-2 breaches the envelope of phagocytosed bacteria, facilitating the delivery of proteases and other antimicrobial effectors to sites within the bacterial cell.
Collapse
Affiliation(s)
- Fangfang Bai
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Ryan M McCormack
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Suzanne Hower
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Gregory V Plano
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Mathias G Lichtenheld
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - George P Munson
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
12
|
Comprehensive proteome analysis of lysosomes reveals the diverse function of macrophages in immune responses. Oncotarget 2018; 8:7420-7440. [PMID: 28088779 PMCID: PMC5352332 DOI: 10.18632/oncotarget.14558] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 12/31/2016] [Indexed: 01/10/2023] Open
Abstract
Phagocytosis and autophagy in macrophages have been shown to be essential to both innate and adaptive immunity. Lysosomes are the main catabolic subcellular organelles responsible for degradation and recycling of both extracellular and intracellular material, which are the final steps in phagocytosis and autophagy. However, the molecular mechanisms underlying lysosomal functions after infection remain obscure. In this study, we conducted a quantitative proteomics analysis of the changes in constitution and glycosylation of proteins in lysosomes derived from murine RAW 264.7 macrophage cells treated with different types of pathogens comprising examples of bacteria (Listeria monocytogenes, L. m), DNA viruses (herpes simplex virus type-1, HSV-1) and RNA viruses (vesicular stomatitis virus, VSV). In total, 3,704 lysosome-related proteins and 300 potential glycosylation sites on 193 proteins were identified. Comparative analysis showed that the aforementioned pathogens induced distinct alterations in the proteome of the lysosome, which is closely associated with the immune functions of macrophages, such as toll-like receptor activation, inflammation and antigen-presentation. The most significant changes in proteins and fluctuations in glycosylation were also determined. Furthermore, Western blot analysis showed that the changes in expression of these proteins were undetectable at the whole cell level. Thus, our study provides unique insights into the function of lysosomes in macrophage activation and immune responses.
Collapse
|
13
|
Semini G, Aebischer T. Phagosome proteomics to study Leishmania's intracellular niche in macrophages. Int J Med Microbiol 2017; 308:68-76. [PMID: 28927848 DOI: 10.1016/j.ijmm.2017.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/23/2017] [Accepted: 09/03/2017] [Indexed: 12/14/2022] Open
Abstract
Intracellular pathogens invade their host cells and replicate within specialized compartments. In turn, the host cell initiates a defensive response trying to kill the invasive agent. As a consequence, intracellular lifestyle implies morphological and physiological changes in both pathogen and host cell. Leishmania spp. are medically important intracellular protozoan parasites that are internalized by professional phagocytes such as macrophages, and reside within the parasitophorous vacuole inhibiting their microbicidal activity. Whereas the proteome of the extracellular promastigote form and the intracellular amastigote form have been extensively studied, the constituents of Leishmania's intracellular niche, an endolysosomal compartment, are not fully deciphered. In this review we discuss protocols to purify such compartments by means of an illustrating example to highlight generally relevant considerations and innovative aspects that allow purification of not only the intracellular parasites but also the phagosomes that harbor them and analyze the latter by gel free proteomics.
Collapse
Affiliation(s)
- Geo Semini
- Mycotic and Parasitic Agents and Mycobacteria, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany.
| | - Toni Aebischer
- Mycotic and Parasitic Agents and Mycobacteria, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
14
|
Zala D, Schlattner U, Desvignes T, Bobe J, Roux A, Chavrier P, Boissan M. The advantage of channeling nucleotides for very processive functions. F1000Res 2017; 6:724. [PMID: 28663786 PMCID: PMC5473427 DOI: 10.12688/f1000research.11561.2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/17/2017] [Indexed: 12/26/2022] Open
Abstract
Nucleoside triphosphate (NTP)s, like ATP (adenosine 5'-triphosphate) and GTP (guanosine 5'-triphosphate), have long been considered sufficiently concentrated and diffusible to fuel all cellular ATPases (adenosine triphosphatases) and GTPases (guanosine triphosphatases) in an energetically healthy cell without becoming limiting for function. However, increasing evidence for the importance of local ATP and GTP pools, synthesised in close proximity to ATP- or GTP-consuming reactions, has fundamentally challenged our view of energy metabolism. It has become evident that cellular energy metabolism occurs in many specialised 'microcompartments', where energy in the form of NTPs is transferred preferentially from NTP-generating modules directly to NTP-consuming modules. Such energy channeling occurs when diffusion through the cytosol is limited, where these modules are physically close and, in particular, if the NTP-consuming reaction has a very high turnover, i.e. is very processive. Here, we summarise the evidence for these conclusions and describe new insights into the physiological importance and molecular mechanisms of energy channeling gained from recent studies. In particular, we describe the role of glycolytic enzymes for axonal vesicle transport and nucleoside diphosphate kinases for the functions of dynamins and dynamin-related GTPases.
Collapse
Affiliation(s)
- Diana Zala
- ESPCI - Paris, PSL Research University, Paris, F-75005, France.,CNRS, UMR8249, Paris, F-75005, France
| | - Uwe Schlattner
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), U1055, University Grenoble Alpes, Grenoble, 38058, France.,Inserm-U1055, Grenoble, F-38058, France
| | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97401, USA
| | - Julien Bobe
- INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, F-35000, France
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, Geneva, CH-1211, Switzerland.,Swiss National Centre for Competence in Research Programme Chemical Biology, Geneva, CH-1211, Switzerland
| | - Philippe Chavrier
- Institut Curie, Paris, F-75248, France.,PSL Research University, Paris, F-75005, France.,CNRS, UMR144, Paris, F-75248, France
| | - Mathieu Boissan
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMRS938, Saint-Antoine Research Center, Paris, F-75012, France.,AP-HP, Hospital Tenon, Service de Biochimie et Hormonologie, Paris, F-75020, France
| |
Collapse
|
15
|
Zala D, Schlattner U, Desvignes T, Bobe J, Roux A, Chavrier P, Boissan M. The advantage of channeling nucleotides for very processive functions. F1000Res 2017; 6:724. [PMID: 28663786 DOI: 10.12688/f1000research.11561.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/15/2017] [Indexed: 01/01/2023] Open
Abstract
Nucleoside triphosphate (NTP)s, like ATP (adenosine 5'-triphosphate) and GTP (guanosine 5'-triphosphate), have long been considered sufficiently concentrated and diffusible to fuel all cellular ATPases (adenosine triphosphatases) and GTPases (guanosine triphosphatases) in an energetically healthy cell without becoming limiting for function. However, increasing evidence for the importance of local ATP and GTP pools, synthesised in close proximity to ATP- or GTP-consuming reactions, has fundamentally challenged our view of energy metabolism. It has become evident that cellular energy metabolism occurs in many specialised 'microcompartments', where energy in the form of NTPs is transferred preferentially from NTP-generating modules directly to NTP-consuming modules. Such energy channeling occurs when diffusion through the cytosol is limited, where these modules are physically close and, in particular, if the NTP-consuming reaction has a very high turnover, i.e. is very processive. Here, we summarise the evidence for these conclusions and describe new insights into the physiological importance and molecular mechanisms of energy channeling gained from recent studies. In particular, we describe the role of glycolytic enzymes for axonal vesicle transport and nucleoside diphosphate kinases for the functions of dynamins and dynamin-related GTPases.
Collapse
Affiliation(s)
- Diana Zala
- ESPCI - Paris, PSL Research University, Paris, F-75005, France.,CNRS, UMR8249, Paris, F-75005, France
| | - Uwe Schlattner
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), U1055, University Grenoble Alpes, Grenoble, 38058, France.,Inserm-U1055, Grenoble, F-38058, France
| | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97401, USA
| | - Julien Bobe
- INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, F-35000, France
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, Geneva, CH-1211, Switzerland.,Swiss National Centre for Competence in Research Programme Chemical Biology, Geneva, CH-1211, Switzerland
| | - Philippe Chavrier
- Institut Curie, Paris, F-75248, France.,PSL Research University, Paris, F-75005, France.,CNRS, UMR144, Paris, F-75248, France
| | - Mathieu Boissan
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMRS938, Saint-Antoine Research Center, Paris, F-75012, France.,AP-HP, Hospital Tenon, Service de Biochimie et Hormonologie, Paris, F-75020, France
| |
Collapse
|
16
|
Chang HF, Bzeih H, Chitirala P, Ravichandran K, Sleiman M, Krause E, Hahn U, Pattu V, Rettig J. Preparing the lethal hit: interplay between exo- and endocytic pathways in cytotoxic T lymphocytes. Cell Mol Life Sci 2016; 74:399-408. [PMID: 27585956 PMCID: PMC5241346 DOI: 10.1007/s00018-016-2350-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/08/2016] [Accepted: 08/29/2016] [Indexed: 12/11/2022]
Abstract
Cytotoxic T lymphocytes patrol our body in search for infected cells which they kill through the release of cytotoxic substances contained in cytotoxic granules. The fusion of cytotoxic granules occurs at a specially formed contact site, the immunological synapse, and is tightly controlled to ensure specificity. In this review, we discuss the contribution of two intracellular compartments, endosomes and cytotoxic granules, to the formation, function and disassembly of the immunological synapse. We highlight a recently proposed sequential process of fusion events at the IS upon target cell recognition. First, recycling endosomes fuse with the plasma membrane to deliver cargo required for the docking of cytotoxic granules. Second, cytotoxic granules arrive and fuse upon docking in a SNARE-dependent manner. Following fusion, membrane components of the cytotoxic granule are retrieved through endocytosis to ensure the fast, efficient serial killing of target cells that is characteristic of cytotoxic T lymphocytes.
Collapse
Affiliation(s)
- Hsin-Fang Chang
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421, Homburg, Germany
| | - Hawraa Bzeih
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421, Homburg, Germany
| | - Praneeth Chitirala
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421, Homburg, Germany
| | - Keerthana Ravichandran
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421, Homburg, Germany
| | - Marwa Sleiman
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421, Homburg, Germany
| | - Elmar Krause
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421, Homburg, Germany
| | - Ulrike Hahn
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421, Homburg, Germany
| | - Varsha Pattu
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421, Homburg, Germany
| | - Jens Rettig
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
17
|
Lamberti G, de Araújo MEG, Huber LA. Isolation of Macrophage Early and Late Endosomes by Latex Bead Internalization and Density Gradient Centrifugation. Cold Spring Harb Protoc 2015; 2015:pdb.prot083451. [PMID: 26631120 DOI: 10.1101/pdb.prot083451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Immortalized macrophage lines and primary macrophages display the ability to internalize small latex beads through the endocytic pathway. This protocol describes a simple and robust method for separating endocytic organelles from macrophages on a sucrose gradient, taking advantage of the significantly lower density of the organelles containing latex beads compared with other intracellular organelles. The latex beads are retained in the endosomes as they mature; therefore, harvesting cells at different time points after internalization permits the purification of different organelle fractions, particularly early and late endosomes.
Collapse
Affiliation(s)
- Giorgia Lamberti
- Biocenter, Division of Cell Biology, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Mariana E G de Araújo
- Biocenter, Division of Cell Biology, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Lukas A Huber
- Biocenter, Division of Cell Biology, Innsbruck Medical University, A-6020 Innsbruck, Austria
| |
Collapse
|
18
|
de Araújo MEG, Lamberti G, Huber LA. Purification of Early and Late Endosomes. Cold Spring Harb Protoc 2015; 2015:pdb.top074443. [PMID: 26631131 DOI: 10.1101/pdb.top074443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Proteomic analysis of early and late endosomes has been constrained by the limited purity of the endosomal fractions that can be achieved by biochemical methods. Here we briefly review endocytic pathways, and then introduce fractionation strategies that have been used to improve the purity of isolated endosomes. In addition, we describe innovative proteomics analysis methods that have been shown to partially circumvent the limitations found in the enrichment steps.
Collapse
Affiliation(s)
- Mariana E G de Araújo
- Biocenter, Division of Cell Biology, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Giorgia Lamberti
- Biocenter, Division of Cell Biology, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Lukas A Huber
- Biocenter, Division of Cell Biology, Innsbruck Medical University, A-6020 Innsbruck, Austria
| |
Collapse
|
19
|
Taffoni C, Pujol N. Mechanisms of innate immunity in C. elegans epidermis. Tissue Barriers 2015; 3:e1078432. [PMID: 26716073 PMCID: PMC4681281 DOI: 10.1080/21688370.2015.1078432] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/17/2015] [Accepted: 07/24/2015] [Indexed: 01/26/2023] Open
Abstract
The roundworm C. elegans has been successfully used for more than 50 y as a genetically tractable invertebrate model in diverse biological fields such as neurobiology, development and interactions. C. elegans feeds on bacteria and can be naturally infected by a wide range of microorganisms, including viruses, bacteria and fungi. Most of these pathogens infect C. elegans through its gut, but some have developed ways to infect the epidermis. In this review, we will mainly focus on epidermal innate immunity, in particular the signaling pathways and effectors activated upon wounding and fungal infection that serve to protect the host. We will discuss the parallels that exist between epidermal innate immune responses in nematodes and mammals.
Collapse
Affiliation(s)
- Clara Taffoni
- Center d'Immunologie de Marseille-Luminy; Aix Marseille Université UM2 ; Inserm; Marseille, France
| | - Nathalie Pujol
- Center d'Immunologie de Marseille-Luminy; Aix Marseille Université UM2 ; Inserm; Marseille, France
| |
Collapse
|
20
|
Zhang Y, Bottinelli D, Lisacek F, Luban J, Strambio-De-Castillia C, Varesio E, Hopfgartner G. Optimization of human dendritic cell sample preparation for mass spectrometry-based proteomic studies. Anal Biochem 2015; 484:40-50. [PMID: 25983236 PMCID: PMC4732721 DOI: 10.1016/j.ab.2015.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DCs) are specialized leukocytes that orchestrate the adaptive immune response. Mass spectrometry (MS)-based proteomic study of these cells presents technical challenges, especially when the DCs are human in origin due to the paucity of available biological material. Here, to maximize MS coverage of the global human DC proteome, different cell disruption methods, lysis conditions, protein precipitation, and protein pellet solubilization and denaturation methods were compared. Mechanical disruption of DC cell pellets under cryogenic conditions, coupled with the use of RIPA (radioimmunoprecipitation assay) buffer, was shown to be the method of choice based on total protein extraction and on the solubilization and identification of nuclear proteins. Precipitation by acetone was found to be more efficient than that by 10% trichloroacetic acid (TCA)/acetone, allowing in excess of 28% more protein identifications. Although being an effective strategy to eliminate the detergent residue, the acetone wash step caused a loss of protein identifications. However, this potential drawback was overcome by adding 1% sodium deoxycholate into the dissolution buffer, which enhanced both solubility of the precipitated proteins and digestion efficiency. This in turn resulted in 6 to 11% more distinct peptides and 14 to 19% more total proteins identified than using 0.5M triethylammonium bicarbonate alone, with the greatest increase (34%) for hydrophobic proteins.
Collapse
Affiliation(s)
- Ying Zhang
- Life Sciences Mass Spectrometry, School of Pharmaceutical Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Dario Bottinelli
- Life Sciences Mass Spectrometry, School of Pharmaceutical Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Frédérique Lisacek
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, CH-1211 Geneva 4, Switzerland; Faculty of Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | - Emmanuel Varesio
- Life Sciences Mass Spectrometry, School of Pharmaceutical Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Gérard Hopfgartner
- Life Sciences Mass Spectrometry, School of Pharmaceutical Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
21
|
Dinter J, Duong E, Lai NY, Berberich MJ, Kourjian G, Bracho-Sanchez E, Chu D, Su H, Zhang SC, Le Gall S. Variable processing and cross-presentation of HIV by dendritic cells and macrophages shapes CTL immunodominance and immune escape. PLoS Pathog 2015; 11:e1004725. [PMID: 25781895 PMCID: PMC4364612 DOI: 10.1371/journal.ppat.1004725] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 02/03/2015] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) and macrophages (Møs) internalize and process exogenous HIV-derived antigens for cross-presentation by MHC-I to cytotoxic CD8+ T cells (CTL). However, how degradation patterns of HIV antigens in the cross-presentation pathways affect immunodominance and immune escape is poorly defined. Here, we studied the processing and cross-presentation of dominant and subdominant HIV-1 Gag-derived epitopes and HLA-restricted mutants by monocyte-derived DCs and Møs. The cross-presentation of HIV proteins by both DCs and Møs led to higher CTL responses specific for immunodominant epitopes. The low CTL responses to subdominant epitopes were increased by pretreatment of target cells with peptidase inhibitors, suggestive of higher intracellular degradation of the corresponding peptides. Using DC and Mø cell extracts as a source of cytosolic, endosomal or lysosomal proteases to degrade long HIV peptides, we identified by mass spectrometry cell-specific and compartment-specific degradation patterns, which favored the production of peptides containing immunodominant epitopes in all compartments. The intracellular stability of optimal HIV-1 epitopes prior to loading onto MHC was highly variable and sequence-dependent in all compartments, and followed CTL hierarchy with immunodominant epitopes presenting higher stability rates. Common HLA-associated mutations in a dominant epitope appearing during acute HIV infection modified the degradation patterns of long HIV peptides, reduced intracellular stability and epitope production in cross-presentation-competent cell compartments, showing that impaired epitope production in the cross-presentation pathway contributes to immune escape. These findings highlight the contribution of degradation patterns in the cross-presentation pathway to HIV immunodominance and provide the first demonstration of immune escape affecting epitope cross-presentation. Pathogens such as HIV can enter cells by fusion at the plasma membrane for delivery in the cytosol, or by internalization in endolysosomal vesicles. Pathogens can be degraded in these various compartments into peptides (epitopes) displayed at the cell surface by MHC-I. The presentation of pathogen-derived peptides triggers the activation of T cell immune responses and the clearance of infected cells. How the diversity of compartments in which HIV traffics combined with the diversity of HIV sequences affects the degradation of HIV and the recognition of infected cells by immune cells is not understood. We compared the degradation of HIV proteins in subcellular compartments of dendritic cells and macrophages, two cell types targeted by HIV and the subsequent presentation of epitopes to T cells. We show variable degradation patterns of HIV according to compartments, and the preferential production and superior intracellular stability of immunodominant epitopes corresponding to stronger T cell responses. Frequent mutations in immunodominant epitopes during acute infection resulted in decreased production and intracellular stability of these epitopes. Together these results demonstrate the importance of protein degradation patterns in shaping immunodominant epitopes and the contribution of impaired epitope production in all cellular compartments to immune escape during HIV infection.
Collapse
Affiliation(s)
- Jens Dinter
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Ellen Duong
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Nicole Y. Lai
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Matthew J. Berberich
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Georgio Kourjian
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Edith Bracho-Sanchez
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Duong Chu
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Hang Su
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Shao Chong Zhang
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Sylvie Le Gall
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
22
|
Bentley M, Decker H, Luisi J, Banker G. A novel assay reveals preferential binding between Rabs, kinesins, and specific endosomal subpopulations. ACTA ACUST UNITED AC 2015; 208:273-81. [PMID: 25624392 PMCID: PMC4315250 DOI: 10.1083/jcb.201408056] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A novel assay based on expressing FRB-tagged candidate vesicle-binding protein reveals that KIF13A and KIF13B bind preferentially to early endosomes, whereas KIF1A and KIF1Bβ bind preferentially to late endosomes and lysosomes. Identifying the proteins that regulate vesicle trafficking is a fundamental problem in cell biology. In this paper, we introduce a new assay that involves the expression of an FKBP12-rapamycin–binding domain–tagged candidate vesicle-binding protein, which can be inducibly linked to dynein or kinesin. Vesicles can be labeled by any convenient method. If the candidate protein binds the labeled vesicles, addition of the linker drug results in a predictable, highly distinctive change in vesicle localization. This assay generates robust and easily interpretable results that provide direct experimental evidence of binding between a candidate protein and the vesicle population of interest. We used this approach to compare the binding of Kinesin-3 family members with different endosomal populations. We found that KIF13A and KIF13B bind preferentially to early endosomes and that KIF1A and KIF1Bβ bind preferentially to late endosomes and lysosomes. This assay may have broad utility for identifying the trafficking proteins that bind to different vesicle populations.
Collapse
Affiliation(s)
- Marvin Bentley
- Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR 97239
| | - Helena Decker
- Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR 97239
| | - Julie Luisi
- Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR 97239
| | - Gary Banker
- Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
23
|
Miller MA, Ganesan APV, Eisenlohr LC. Toward a Network Model of MHC Class II-Restricted Antigen Processing. Front Immunol 2013; 4:464. [PMID: 24379819 PMCID: PMC3864185 DOI: 10.3389/fimmu.2013.00464] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/03/2013] [Indexed: 11/16/2022] Open
Abstract
The standard model of Major Histocompatibility Complex class II (MHCII)-restricted antigen processing depicts a straightforward, linear pathway: internalized antigens are converted into peptides that load in a chaperone dependent manner onto nascent MHCII in the late endosome, the complexes subsequently trafficking to the cell surface for recognition by CD4(+) T cells (TCD4+). Several variations on this theme, both moderate and radical, have come to light but these alternatives have remained peripheral, the conventional pathway generally presumed to be the primary driver of TCD4+ responses. Here we continue to press for the conceptual repositioning of these alternatives toward the center while proposing that MHCII processing be thought of less in terms of discrete pathways and more in terms of a network whose major and minor conduits are variable depending upon many factors, including the epitope, the nature of the antigen, the source of the antigen, and the identity of the antigen-presenting cell.
Collapse
Affiliation(s)
- Michael A. Miller
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Asha Purnima V. Ganesan
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Laurence C. Eisenlohr
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
24
|
Garg A, Wu LP. Drosophila Rab14 mediates phagocytosis in the immune response to Staphylococcus aureus. Cell Microbiol 2013; 16:296-310. [PMID: 24119134 DOI: 10.1111/cmi.12220] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 09/24/2013] [Accepted: 09/26/2013] [Indexed: 01/20/2023]
Abstract
Drosophila haemocytes are essential for the animal to resist Staphylococcus aureus infections. Phagocytosis is a central component of the haemocyte-mediated immune response. It involves regulated interaction between the phagocytic and the endocytic compartments. RabGTPases are pivotal for the membrane trafficking and fusion events, and thus are often targets of intracellular pathogens that subvert phagocytosis. An in vivo screen identified Rab2 and Rab14 as candidates for proteins regulating phagosome maturation. Since Rab14 is often targeted by intracellular pathogens, an understanding of its function during phagocytosis and the overall immune response can give insight into the pathogenesis of intracellular microbes. We generated a Drosophila Rab14 mutant and characterized the resulting immune defects in animals and specifically in haemocytes in response to an S. aureus infection. Haemocyte based immunofluorescence studies indicate that Rab14 is recruited to the phagosome and like Rab7, a well-characterized regulator of the phagocytic pathway, is essential for progression of phagosome maturation. Rab14 mutant haemocytes show impaired recruitment of Rab7 and of a lysosomal marker onto S. aureus phagosomes. The defect in phagocytosis is associated with higher bacterial load and increased susceptibility to S. aureus in the animal.
Collapse
Affiliation(s)
- Aprajita Garg
- Institute for Bioscience and Biotechnology Research, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | | |
Collapse
|
25
|
Abstract
Rab GTPases are at the central node of the machinery that regulates trafficking of organelles, including phagosomes. Thanks to the unique combination of high quality phagosome purification with highly sensitive proteomic studies, the network of Rab proteins that are dynamically associated with phagosomes during the process of maturation of this organelle is relatively well known. Whereas the phagosomal functions of many of the Rab proteins associated with phagosomes are characterized, the role(s) of most of these trafficking regulators remains to be identified. In some cases, even when the function in the context of phagosome biology is described, phagosomal Rab proteins seem to have similar roles. This review summarizes the current knowledge about the identity and function of phagosomal Rab GTPases, with a particular emphasis on new evidence that clarify these seemingly overlapping Rab functions during phagosome maturation.
Collapse
|
26
|
Chapel A, Kieffer-Jaquinod S, Sagné C, Verdon Q, Ivaldi C, Mellal M, Thirion J, Jadot M, Bruley C, Garin J, Gasnier B, Journet A. An extended proteome map of the lysosomal membrane reveals novel potential transporters. Mol Cell Proteomics 2013; 12:1572-88. [PMID: 23436907 PMCID: PMC3675815 DOI: 10.1074/mcp.m112.021980] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 02/01/2013] [Indexed: 12/22/2022] Open
Abstract
Lysosomes are membrane-bound endocytic organelles that play a major role in degrading cell macromolecules and recycling their building blocks. A comprehensive knowledge of the lysosome function requires an extensive description of its content, an issue partially addressed by previous proteomic analyses. However, the proteins underlying many lysosomal membrane functions, including numerous membrane transporters, remain unidentified. We performed a comparative, semi-quantitative proteomic analysis of rat liver lysosome-enriched and lysosome-nonenriched membranes and used spectral counts to evaluate the relative abundance of proteins. Among a total of 2,385 identified proteins, 734 proteins were significantly enriched in the lysosomal fraction, including 207 proteins already known or predicted as endo-lysosomal and 94 proteins without any known or predicted subcellular localization. The remaining 433 proteins had been previously assigned to other subcellular compartments but may in fact reside on lysosomes either predominantly or as a secondary location. Many membrane-associated complexes implicated in diverse processes such as degradation, membrane trafficking, lysosome biogenesis, lysosome acidification, signaling, and nutrient sensing were enriched in the lysosomal fraction. They were identified to an unprecedented extent as most, if not all, of their subunits were found and retained by our screen. Numerous transporters were also identified, including 46 novel potentially lysosomal proteins. We expressed 12 candidates in HeLa cells and observed that most of them colocalized with the lysosomal marker LAMP1, thus confirming their lysosomal residency. This list of candidate lysosomal proteins substantially increases our knowledge of the lysosomal membrane and provides a basis for further characterization of lysosomal functions.
Collapse
Affiliation(s)
- Agnès Chapel
- From the ‡Commissariat à l'Energie Atomique, Institut de Recherches en Technologies et Sciences du Vivant, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France
- §INSERM, U1038, F-38054 Grenoble, France
- the ¶Université Joseph Fourier, Grenoble 1, F-38000, France
| | - Sylvie Kieffer-Jaquinod
- From the ‡Commissariat à l'Energie Atomique, Institut de Recherches en Technologies et Sciences du Vivant, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France
- §INSERM, U1038, F-38054 Grenoble, France
- the ¶Université Joseph Fourier, Grenoble 1, F-38000, France
| | - Corinne Sagné
- the ‖Université Paris Descartes, Sorbonne Paris Cité, CNRS, UMR 8192, Centre Universitaire des Saints-Pères, 45 Rue des Saints-Pères, F-75006 Paris, France
| | - Quentin Verdon
- the ‖Université Paris Descartes, Sorbonne Paris Cité, CNRS, UMR 8192, Centre Universitaire des Saints-Pères, 45 Rue des Saints-Pères, F-75006 Paris, France
- §§Graduate School ED 419, Université Paris-Sud 11, Hôpital Bicêtre, F-94276 Le Kremlin Bicêtre France, and
| | - Corinne Ivaldi
- From the ‡Commissariat à l'Energie Atomique, Institut de Recherches en Technologies et Sciences du Vivant, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France
- §INSERM, U1038, F-38054 Grenoble, France
- the ¶Université Joseph Fourier, Grenoble 1, F-38000, France
| | - Mourad Mellal
- From the ‡Commissariat à l'Energie Atomique, Institut de Recherches en Technologies et Sciences du Vivant, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France
- §INSERM, U1038, F-38054 Grenoble, France
- the ¶Université Joseph Fourier, Grenoble 1, F-38000, France
| | - Jaqueline Thirion
- the **Unité de Recherche en Physiologie Moléculaire, Namur Research Institute for Life Sciences, University of Namur (FUNDP), 61, Rue de Bruxelles B,-5000, Namur, Belgium
| | - Michel Jadot
- the **Unité de Recherche en Physiologie Moléculaire, Namur Research Institute for Life Sciences, University of Namur (FUNDP), 61, Rue de Bruxelles B,-5000, Namur, Belgium
| | - Christophe Bruley
- From the ‡Commissariat à l'Energie Atomique, Institut de Recherches en Technologies et Sciences du Vivant, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France
- §INSERM, U1038, F-38054 Grenoble, France
- the ¶Université Joseph Fourier, Grenoble 1, F-38000, France
| | - Jérôme Garin
- From the ‡Commissariat à l'Energie Atomique, Institut de Recherches en Technologies et Sciences du Vivant, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France
- §INSERM, U1038, F-38054 Grenoble, France
- the ¶Université Joseph Fourier, Grenoble 1, F-38000, France
| | - Bruno Gasnier
- the ‖Université Paris Descartes, Sorbonne Paris Cité, CNRS, UMR 8192, Centre Universitaire des Saints-Pères, 45 Rue des Saints-Pères, F-75006 Paris, France
| | - Agnès Journet
- From the ‡Commissariat à l'Energie Atomique, Institut de Recherches en Technologies et Sciences du Vivant, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble, France
- §INSERM, U1038, F-38054 Grenoble, France
- the ¶Université Joseph Fourier, Grenoble 1, F-38000, France
| |
Collapse
|
27
|
Hopkins RA, Connolly JE. The specialized roles of immature and mature dendritic cells in antigen cross-presentation. Immunol Res 2012; 53:91-107. [PMID: 22450675 DOI: 10.1007/s12026-012-8300-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Exogenous antigen cross-presentation is integral to the stimulation of cytotoxic T-lymphocytes against viruses and tumors. Central to this process are dendritic cells (DCs), which specialize in cross-presentation. DCs may be considered to exist in two radically different states of activation, generally referred to as immature and mature. In each of these states, the cell has a series of separate and specialized abilities for the induction of T-cell immunity. In the immature state, the DC is adept in surveying the periphery, acquiring and storing antigen, but has a limited capacity for direct T-cell activation. During a brief and defined window of time following DC stimulation, nearly every aspect of antigen handling changes, as it transitions from an entity focused on protein preservation to one capable of efficient cross-presentation. It is this time period and the underlying molecular mechanisms active here, which form the core of our studies on cross-presentation.
Collapse
Affiliation(s)
- Richard A Hopkins
- Program in Translational Immunology, Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #03 Immunos, Biopolis, Singapore
| | | |
Collapse
|
28
|
Laurindo FRM, Pescatore LA, Fernandes DDC. Protein disulfide isomerase in redox cell signaling and homeostasis. Free Radic Biol Med 2012; 52:1954-69. [PMID: 22401853 DOI: 10.1016/j.freeradbiomed.2012.02.037] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 02/23/2012] [Accepted: 02/24/2012] [Indexed: 12/16/2022]
Abstract
Thiol proteins may potentially act as redox signaling adaptor proteins, adjusting reactive oxygen species intermediates to specific signals and redox signals to cell homeostasis. In this review, we discuss redox effects of protein disulfide isomerase (PDI), a thioredoxin superfamily oxidoreductase from the endoplasmic reticulum (ER). Abundantly expressed PDI displays ubiquity, interactions with redox and nonredox proteins, versatile effects, and several posttranslational modifications. The PDI family contains >20 members with at least some apparent complementary actions. PDI has oxidoreductase, isomerase, and chaperone effects, the last not directly dependent on its thiols. PDI is a converging hub for pathways of disulfide bond introduction into ER-processed proteins, via hydrogen peroxide-generating mechanisms involving the oxidase Ero1α, as well as hydrogen peroxide-consuming reactions involving peroxiredoxin IV and the novel peroxidases Gpx7/8. PDI is a candidate pathway for coupling ER stress to oxidant generation. Emerging information suggests a convergence between PDI and Nox family NADPH oxidases. PDI silencing prevents Nox responses to angiotensin II and inhibits Akt phosphorylation in vascular cells and parasite phagocytosis in macrophages. PDI overexpression spontaneously enhances Nox activation and expression. In neutrophils, PDI redox-dependently associates with p47phox and supports the respiratory burst. At the cell surface, PDI exerts transnitrosation, thiol reductase, and apparent isomerase activities toward targets including adhesion and matrix proteins and proteases. Such effects mediate redox-dependent adhesion, coagulation/thrombosis, immune functions, and virus internalization. The route of PDI externalization remains elusive. Such multiple redox effects of PDI may contribute to its conspicuous expression and functional role in disease, rendering PDI family members putative redox cell signaling adaptors.
Collapse
Affiliation(s)
- Francisco R M Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, 05403-000 São Paulo, Brazil.
| | | | | |
Collapse
|
29
|
Linz JE, Chanda A, Hong SY, Whitten DA, Wilkerson C, Roze LV. Proteomic and biochemical evidence support a role for transport vesicles and endosomes in stress response and secondary metabolism in Aspergillus parasiticus. J Proteome Res 2011; 11:767-75. [PMID: 22103394 DOI: 10.1021/pr2006389] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Aflatoxin is among the most potent naturally occurring carcinogens known. Previous studies demonstrated that endosomes in the filamentous fungus Aspergillus parasiticus carry enzymes that catalyze the final two steps in aflatoxin synthesis, and these structures also play a role in aflatoxin storage and export. We hypothesized that endosomes house a complete and functional aflatoxin biosynthetic pathway. To address this hypothesis, we purified a cellular fraction containing endosomes, transport vesicles, and vacuoles (V fraction) from A. parasiticus grown under aflatoxin inducing and noninducing conditions. We also added (fed) aflatoxin pathway intermediates to V fraction to test the functional status of aflatoxin pathway enzymes. High throughput LC-MS/MS analysis of proteins in V fraction detected 8 aflatoxin enzymes with high reliability and 8 additional enzymes at lower reliability, suggesting that most aflatoxin pathway enzymes are present. Purified V fraction synthesized aflatoxin and addition of the pathway intermediate versicolorin A increased aflatoxin synthesis, confirming that middle and late aflatoxin enzymes in V fraction are functional. Of particular significance, proteomic and biochemical analysis strongly suggested that additional secondary metabolic pathways as well as proteins involved in response to heat, osmotic, and oxidative stress are housed in V fraction.
Collapse
Affiliation(s)
- John E Linz
- Department of Food Science and Human Nutrition, Department of Microbiology and Molecular Genetics, 234B GM Trout Building, Michigan State University , East Lansing, Michigan 48824, United States.
| | | | | | | | | | | |
Collapse
|
30
|
Guimarães de Araújo ME, Huber LA, Stasyk T. Latex beads internalization and quantitative proteomics join forces to decipher the endosomal proteome. Expert Rev Proteomics 2011; 8:303-7. [PMID: 21679111 DOI: 10.1586/epr.11.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The proteome analysis of endocytic compartments has been constrained by the limited purity of the organelle fractions obtained by current biochemical methods. Duclos and coworkers have developed a novel method to isolate highly purified endosomal organelles based on small latex beads internalization followed by gradient centrifugation and successfully combined it with a redundant peptide counting method to compare the relative abundance of proteins in organelles. The presence of bona fide markers in their respective subcellular organelles and the identification of several new endosomal-associated proteins, attested the applicability of their combinatory approach. Future applications of this strategy may deliver a comprehensive endosomal proteome chart: from the identification of the key players to the determination of time and signaling-dependent proteome changes. As a long-term perspective, such an approach may unveil new clues to the molecular mechanisms underlining human diseases associated with endosomal biogenesis defects.
Collapse
|