1
|
Kok SY, Namasivayam P, Ee GCL, Ong-Abdullah M. Comparative proteomic analysis of oil palm (Elaeis guineensis Jacq.) during early fruit development. J Proteomics 2020; 232:104052. [PMID: 33262095 DOI: 10.1016/j.jprot.2020.104052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/11/2020] [Accepted: 11/15/2020] [Indexed: 01/04/2023]
Abstract
To gain insights on protein changes in fruit setting and growth in oil palm, a comparative proteomic approach was undertaken to study proteome changes during its early development. The variations in the proteome at five early developmental stages were investigated via a gel-based proteomic technique. A total of 129 variant proteins were determined using mass spectrometric analysis, resulting in 80 identifications. The majority of the identified protein species were classified as energy and metabolism, stress response/defence and cell structure during early oil palm development representing potential candidates for the control of final fruit size and composition. Seven prominent protein species were then characterised using real-time polymerase chain reaction to validate the mRNA expression against the protein abundant profiles. Transcript and protein profiles were parallel across the developmental stages, but divergent expression was observed in one protein spot, indicative of possible post-transcriptional events. Our results revealed protein changes in early oil palm fruit development provide valuable information in the understanding of fruit growth and metabolism during early stages that may contribute towards improving agronomic traits. BIOLOGICAL SIGNIFICANCE: Two-dimensional gel electrophoresis coupled with mass spectrometry approach was used in this study to identify differentially expressed proteins during early oil palm fruit development. A total of 80 protein spots with significant change in abundance were successfully identified and selected genes were analysed using real time PCR to validate their expression. The dynamic changes in oil palm fruit proteome during early development were mostly active in primary and energy metabolism, stress responses, cell structure and protein metabolism. This study reveals the physiological processes during early oil palm fruit development and provides a reference proteome for further improvements in fruit quality traits.
Collapse
Affiliation(s)
- Sau-Yee Kok
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board (MPOB), No. 6 Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor, Malaysia; Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Parameswari Namasivayam
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Gwendoline Cheng-Lian Ee
- Department of Chemistry, Faculty of Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Meilina Ong-Abdullah
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board (MPOB), No. 6 Persiaran Institusi, Bandar Baru Bangi, Kajang, Selangor, Malaysia.
| |
Collapse
|
2
|
Chen R, Fan Y, Yan H, Zhou H, Zhou Z, Weng M, Huang X, Lakshmanan P, Li Y, Qiu L, Wu J. Enhanced Activity of Genes Associated With Photosynthesis, Phytohormone Metabolism and Cell Wall Synthesis Is Involved in Gibberellin-Mediated Sugarcane Internode Growth. Front Genet 2020; 11:570094. [PMID: 33193665 PMCID: PMC7655795 DOI: 10.3389/fgene.2020.570094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/01/2020] [Indexed: 12/04/2022] Open
Abstract
Internode elongation is an important trait in sugarcane as it affects the sugarcane yield. Gibberellin (GA) is a key modulator of internode elongation in sugarcane. Understanding the gene expression features of GA-mediated internode elongation has both scientific and practical significance. This study aimed to examine the transcriptomic changes in the internode elongation of sugarcane following GA treatment. Eighteen cDNA libraries from the internode tissues on days of 0, 3, and 6 in control and GA treatment groups were sequenced and their gene expression were studied. RNA-seq analysis revealed 1,338,723,248 reads and 70,821 unigenes from elongating internodes of sugarcane. Comparative studies discovered a large number of transcripts that were differentially expressed in GA-treated samples compared to the control. Further analysis revealed that the differentially expressed genes were enriched in the metabolic process, one-carbon compound transport, and single-organism process. Kyoto Encyclopedia of Genes and Genomes pathway annotation showed significant enrichment in photosynthesis and plant hormone signal transduction, indicating its involvement in internode elongation. The function analysis suggested that metabolic pathways and biosynthesis of secondary metabolites, plant hormones, and cell wall components were enriched in the internodes of the GA-treated plants. The hub genes were identified, with the function of cellulose synthesis. The results of this study provide a global view of mRNA changes during sugarcane internode elongation and extend our knowledge of the GA-mediated cellular processes involved in sugarcane stem growth.
Collapse
Affiliation(s)
- Rongfa Chen
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Yegeng Fan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Haifeng Yan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Huiwen Zhou
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Zhongfeng Zhou
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Mengling Weng
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Xing Huang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Prakash Lakshmanan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Yangrui Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Lihang Qiu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Jianming Wu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| |
Collapse
|
3
|
Li YM, Forney C, Bondada B, Leng F, Xie ZS. The Molecular Regulation of Carbon Sink Strength in Grapevine ( Vitis vinifera L.). FRONTIERS IN PLANT SCIENCE 2020; 11:606918. [PMID: 33505415 PMCID: PMC7829256 DOI: 10.3389/fpls.2020.606918] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/08/2020] [Indexed: 05/17/2023]
Abstract
Sink organs, the net receivers of resources from source tissues, provide food and energy for humans. Crops yield and quality are improved by increased sink strength and source activity, which are affected by many factors, including sugars and hormones. With the growing global population, it is necessary to increase photosynthesis into crop biomass and yield on a per plant basis by enhancing sink strength. Sugar translocation and accumulation are the major determinants of sink strength, so understanding molecular mechanisms and sugar allocation regulation are conducive to develop biotechnology to enhance sink strength. Grapevine (Vitis vinifera L.) is an excellent model to study the sink strength mechanism and regulation for perennial fruit crops, which export sucrose from leaves and accumulates high concentrations of hexoses in the vacuoles of fruit mesocarp cells. Here recent advances of this topic in grape are updated and discussed, including the molecular biology of sink strength, including sugar transportation and accumulation, the genes involved in sugar mobilization and their regulation of sugar and other regulators, and the effects of hormones on sink size and sink activity. Finally, a molecular basis model of the regulation of sugar accumulation in the grape is proposed.
Collapse
Affiliation(s)
- You-Mei Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Charles Forney
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, Kentville, NS, Canada
| | - Bhaskar Bondada
- Wine Science Center, Washington State University, Richland, WA, United States
| | - Feng Leng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Zhao-Sen Xie
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- *Correspondence: Zhao-Sen Xie,
| |
Collapse
|
4
|
He H, Liang G, Lu S, Wang P, Liu T, Ma Z, Zuo C, Sun X, Chen B, Mao J. Genome-Wide Identification and Expression Analysis of GA2ox, GA3ox, and GA20ox Are Related to Gibberellin Oxidase Genes in Grape ( Vitis Vinifera L.). Genes (Basel) 2019; 10:genes10090680. [PMID: 31492001 PMCID: PMC6771001 DOI: 10.3390/genes10090680] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/24/2019] [Accepted: 09/02/2019] [Indexed: 01/06/2023] Open
Abstract
Gibberellin (GAs) plays the important role in the regulation of grape developmental and growth processes. The bioinformatics analysis confirmed the differential expression of GA2, GA3, and GA20 gibberellin oxidase genes (VvGA2oxs, VvGA3oxs, and VvGA20oxs) in the grape genome, and laid a theoretical basis for exploring its role in grape. Based on the Arabidopsis GA2oxs, GA3oxs, and GA20oxs genes already reported, the VvGA2oxs, VvGA3oxs, and VvGA20oxs genes in the grape genome were identified using the BLAST software in the grape genome database. Bioinformatics analysis was performed using software such as DNAMAN v.5.0, Clustalx, MapGene2Chrom, MEME, GSDS v.2.0, ExPASy, DNAsp v.5.0, and MEGA v.7.0. Chip expression profiles were generated using grape Affymetrix GeneChip 16K and Grape eFP Browser gene chip data in PLEXdb. The expression of VvGA2oxs, VvGA3oxs, and VvGA20oxs gene families in stress was examined by qRT-PCR (Quantitative real-time-PCR). There are 24 GAoxs genes identified with the grape genome that can be classified into seven subgroups based on a phylogenetic tree, gene structures, and conserved Motifs in our research. The gene family has higher codon preference, while selectivity is negative selection of codon bias and selective stress was analyzed. The expression profiles indicated that the most of VvGAox genes were highly expressed under different time lengths of ABA (Abscisic Acid) treatment, NaCl, PEG and 5 °C. Tissue expression analysis showed that the expression levels of VvGA2oxs and VvGA20oxs in different tissues at different developmental stages of grapes were relatively higher than that of VvGA3oxs. Last but not least, qRT-PCR (Real-time fluorescent quantitative PCR) was used to determine the relative expression of the GAoxs gene family under the treatment of GA3 (gibberellin 3) and uniconazole, which can find that some VvGA2oxs was upregulated under GA3 treatment. Simultaneously, some VvGA3oxs and VvGA20oxs were upregulated under uniconazole treatment. In a nutshell, the GA2ox gene mainly functions to inactivate biologically active GAs, while GA20ox mainly degrades C20 gibberellins, and GA3ox is mainly composed of biologically active GAs. The comprehensive analysis of the three classes of VvGAoxs would provide a basis for understanding the evolution and function of the VvGAox gene family in a grape plant.
Collapse
Affiliation(s)
- Honghong He
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Guoping Liang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Pingping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Tao Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Cunwu Zuo
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaomei Sun
- College of Resource and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
5
|
Recent Advances in Hormonal Regulation and Cross-Talk during Non-Climacteric Fruit Development and Ripening. HORTICULTURAE 2019. [DOI: 10.3390/horticulturae5020045] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Fleshy fruits are characterized by having a developmentally and genetically controlled, highly intricate ripening process, leading to dramatic modifications in fruit size, texture, color, flavor, and aroma. Climacteric fruits such as tomato, pear, banana, and melon show a ripening-associated increase in respiration and ethylene production and these processes are well-documented. In contrast, the hormonal mechanism of fruit development and ripening in non-climacteric fruit, such as strawberry, grape, raspberry, and citrus, is not well characterized. However, recent studies have shown that non-climacteric fruit development and ripening, involves the coordinated action of different hormones, such as abscisic acid (ABA), auxin, gibberellins, ethylene, and others. In this review, we discuss and evaluate the recent research findings concerning the hormonal regulation of non-climacteric fruit development and ripening and their cross-talk by taking grape, strawberry, and raspberry as reference fruit species.
Collapse
|
6
|
Kuang L, Chen S, Guo Y, Ma H. Quantitative Proteome Analysis Reveals Changes in the Protein Landscape During Grape Berry Development With a Focus on Vacuolar Transport Proteins. FRONTIERS IN PLANT SCIENCE 2019; 10:641. [PMID: 31156689 PMCID: PMC6530609 DOI: 10.3389/fpls.2019.00641] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/29/2019] [Indexed: 05/08/2023]
Abstract
The vacuole plays a central role in fruit growth and quality formation, yet its proteomic landscape is largely unknown. In the present study, a protocol for isolating intact vacuoles from grape flesh tissue was successfully established. Quantitative proteome analysis identified 2533 proteins from five sampling dates along Cabernet Sauvignon berry development from stage I to III; among them, 1443 proteins were identified on all five sampling dates in at least two biological replicates per sample and were designated core proteome, and 1820 were recruited as differentially abundant proteins (DAPs) by sequential pairwise comparisons using arbitrary fold change of >1.5 and P < 0.05. Metabolism consistently constituted the largest category of identified proteins for both core proteome and DAPs, together with a consistently high proportion of protein-fate category proteins, indicating that the classic lytic functions of vegetative cell vacuoles are maintained throughout berry development; accumulation of metabolites involved in high sugar and other berry qualities in the late developmental stage added to the conventional lytic role of the flesh cell vacuoles. Overall increases in abundance of the DAPs were seen in the transporter proteins, membrane fusion/vesicle trafficking, and protein-fate categories, and decreased abundance was seen for DAPs in the stress, energy and cytoskeleton categories as berry development progressed. A very pronounced proteomic change was revealed between late stage I and mid stage II, with 915 increased and 114 decreased DAPs, demonstrating a significant surge of the vacuolar proteome underlying the rather static phenotypical and physiological phase. We identified 161 transport proteins with differential abundance, including proton pumps, aquaporins, sugar transporters, ATP-binding cassette transporters and ion transport proteins, together with organic compound transport proteins, the highest number and variety of berry tonoplast transporters found in grape proteome efforts to date. We further found a pre-positive increment of 96 transport proteins from the middle of stage II, before the berry undergoes its dramatic physiological changes at and following véraison. Our results are the first to describe the proteome of a vacuole-enriched preparation, toward understanding the functions of the largest compartment in berry cells during grape growth and ripening.
Collapse
Affiliation(s)
- Liuqing Kuang
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing, China
| | - Shangwu Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yan Guo
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Huiqin Ma
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Chai L, Chai P, Chen S, Flaishman MA, Ma H. Transcriptome analysis unravels spatiotemporal modulation of phytohormone-pathway expression underlying gibberellin-induced parthenocarpic fruit set in San Pedro-type fig (Ficus carica L.). BMC PLANT BIOLOGY 2018; 18:100. [PMID: 29859043 PMCID: PMC5984833 DOI: 10.1186/s12870-018-1318-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 05/24/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND Gibberellin (GA) treatments can induce parthenocarpy in the main crop of San Pedro-type figs, the native non-parthenocarpic fruit, however, the underlying mechanism is still largely unclear. RESULTS In our study, GA3 was applied to San Pedro-type fig main crop at anthesis. Sharply increased GA3 content was detected in both female flowers and receptacle, along with significantly decreased indole-3-acetic acid (IAA), zeatin and abscisic acid (ABA) levels in female flowers, and increased zeatin peak intensity and earlier ABA peak in receptacles. Transcriptome comparison between control and treatment groups identified more differentially expressed genes (DEGs) in receptacles than in female flowers 2 and 4 days after treatment (DAT); 10 DAT, the number of DEGs became similar in the two tissues. Synchronized changing trends of phytohormone-associated DEGs were observed in female flowers and receptacles with fruit development. Modulation of ethylene and GA signaling and auxin metabolism by exogenous GA3 occurred mainly 2 DAT, whereas changes in auxin, cytokinin and ABA signaling occurred mainly 10 DAT. Auxin-, ethylene- and ABA-metabolism and response pathways were largely regulated in the two tissues, mostly 2 and 10 DAT. The major components altering fig phytohormone metabolic and response patterns included downregulated GA2ox, BAS1, NCED and ACO, and upregulated ABA 8'-h and AUX/IAA. CONCLUSIONS Thus GA-induced parthenocarpy in fig is co-modulated by the female flowers and receptacle, and repression of ABA and ethylene biosynthesis and GA catabolism might be the main forces deflecting abscission and producing fig parthenocarpy.
Collapse
Affiliation(s)
- Lijuan Chai
- College of Horticulture, China Agricultural University, Beijing, People’s Republic of China
| | - Peng Chai
- College of Horticulture, China Agricultural University, Beijing, People’s Republic of China
| | - Shangwu Chen
- College of Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
| | - Moshe A. Flaishman
- Department of Fruit Tree Sciences, Agricultural Research Organization, Volcani Center, Bet-Dagan, Israel
| | - Huiqin Ma
- College of Horticulture, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
8
|
Cheng L, Wang Y, Liu Y, Zhang Q, Gao H, Zhang F. Comparative proteomics illustrates the molecular mechanism of potato (Solanum tuberosum L.) tuberization inhibited by exogenous gibberellins in vitro. PHYSIOLOGIA PLANTARUM 2018; 163:103-123. [PMID: 29135031 DOI: 10.1111/ppl.12670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 10/31/2017] [Accepted: 11/08/2017] [Indexed: 05/24/2023]
Abstract
Among the multiple environmental signals and hormonal factors regulating potato tuberization, gibberellins (GAs) are important components of the signaling pathways in these processes. To understand the GAs-signaling response mechanism of potato tuberization, a comparative proteomics approach was applied to analyze proteome change of potato tuberization in vitro subjected to a range of exogenous GA3 treatments (0, 0.01, 0.1 and 1.0 μM) using two-dimensional gel electrophoresis. Quantitative image analyses showed that a total of 37 protein spots have their abundance significantly altered more than 2-fold. Among these proteins, 13 proteins were up-regulated, 13 proteins were down-regulated, one protein was absent and 10 proteins were induced after treatment by exogenous GA3 . The MALDI-TOF/TOF MS analyses led to the identification of differentially abundant proteins that are mainly involved in bioenergy and metabolism, storage, signaling, cell defense and rescue, transcription, chaperones, transport. Furthermore, the comparative analysis of GA3 -responsive proteome allowed for general elucidation of underlying molecular mechanisms of potato tuberization inhibited by exogenous GA3 . Most of these cellular processes were not conducive to the transition from stolon elongation to tuber formation, including a blockage of starch and storage protein accumulation, the accelerated carbohydrate catabolism, a blockage of JA biosynthesis but an elevated endogenous GAs level, the amplification of GA3 signal transduction by other signaling pathways, and the regulation of cellular RNA metabolism for controlling tuberization. Our results firstly integrated physiology and proteome data to provide new insights into GA3 -signaling response mechanisms of potato tuberization in vitro.
Collapse
Affiliation(s)
- Lixiang Cheng
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Yuping Wang
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Yueshan Liu
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Qingquan Zhang
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Huihui Gao
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Feng Zhang
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
9
|
GA 3 application in grapes (Vitis vinifera L.) modulates different sets of genes at cluster emergence, full bloom, and berry stage as revealed by RNA sequence-based transcriptome analysis. Funct Integr Genomics 2018; 18:439-455. [PMID: 29626310 DOI: 10.1007/s10142-018-0605-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/06/2017] [Accepted: 03/20/2018] [Indexed: 01/10/2023]
Abstract
In grapes (Vitis vinifera L.), exogenous gibberellic acid (GA3) is applied at different stages of bunch development to achieve desirable bunch shape and berry size in seedless grapes used for table purpose. RNA sequence-based transcriptome analysis was used to understand the mechanism of GA3 action at cluster emergence, full bloom, and berry stage in table grape variety Thompson Seedless. At cluster emergence, rachis samples were collected at 6 and 24 h after application of GA3, whereas flower clusters and berry samples were collected at 6, 24, and 48 h after application at full bloom and 3-4 mm berry stages. Seven hundred thirty-three genes were differentially expressed in GA3-treated samples. At rachis and flower cluster stage respectively, 126 and 264 genes were found to be significantly differentially expressed within 6 h of GA3 application. The number of DEG reduced considerably at 24 h. However, at berry stage, major changes occurred even at 24 h and a number of DEGs at 6 and 24 h were 174 and 191, respectively. As compared to upregulated genes, larger numbers of genes were downregulated. Stage-specific response to the GA3 application was observed as evident from the unique set of DEGs at each stage and only a few common genes among three stages. Among the DEGs, 67 were transcription factors. Functional categorization and enrichment analysis revealed that several transcripts involved in sucrose and hexose metabolism, hormone and secondary metabolism, and abiotic and biotic stimuli were enriched in response to application of GA3. A high correlation was recorded for real-time PCR and transcriptome data for selected DEGs, thus indicating the robustness of transcriptome data obtained in this study for understanding the GA3 response at different stages of berry development in grape. Chromosomal localization of DEGs and identification of polymorphic microsatellite markers in selected genes have potential for their use in breeding for varieties with improved bunch architecture.
Collapse
|
10
|
Wang X, Zhao M, Wu W, Korir NK, Qian Y, Wang Z. Comparative transcriptome analysis of berry-sizing effects of gibberellin (GA3) on seedless Vitis vinifera L. Genes Genomics 2017. [DOI: 10.1007/s13258-016-0500-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Characterization of miR061 and its target genes in grapevine responding to exogenous gibberellic acid. Funct Integr Genomics 2017; 17:537-549. [PMID: 28247088 DOI: 10.1007/s10142-017-0554-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 01/11/2023]
Abstract
MicroRNAs (miRNAs), as an important growth regulator, are also involved in gibberellic acid (GA) signaling, revealing much relationship between miRNAs and GA in various plant responses. Grape is highly sensitive to GA3, which plays a significant regulatory role in regulation of flower development, berry expansion, berry set, berry ripening, and seedlessness induction; further, it was found that grapevine miR061 (VvmiR061) is a GA3 responsive miRNA. In this study, grapevine REV (VvREV) and HOX32 (VvHOX32), two target genes of VvmiR061, were predicted, verified, and cloned; homologous conservation was analyzed in various plants. The expression profiles of both VvmiR061 and its target genes (VvREV and VvHOX32) under GA3 treatment were detected by qRT-PCR during grapevine flower and berry development. Results revealed that GA3 treatment has upregulated the transcription of VvREV and VvHOX32, while it downregulated the expression of VvmiR061. The function of VvmiR061 in cleaving target genes VvREV and VvHOX32 was diminished by GA3 treatment during flower developmental process. The results of this study exhibited the importance of VvmiR061 in regulating flower development and GA3 signaling pathway and also contributed some to the knowledge of small RNA-mediated regulation in grape.
Collapse
|
12
|
Cheng C, Jiao C, Singer SD, Gao M, Xu X, Zhou Y, Li Z, Fei Z, Wang Y, Wang X. Gibberellin-induced changes in the transcriptome of grapevine (Vitis labrusca × V. vinifera) cv. Kyoho flowers. BMC Genomics 2015; 16:128. [PMID: 25888129 PMCID: PMC4348105 DOI: 10.1186/s12864-015-1324-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 02/04/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gibberellins are well known for their growth control function in flower, fruit and seed development, and as such, exogenous gibberellic acid (GA) application plays an important role in viticulture. Unfortunately, the mechanism by which GA3 acts in the regulation of these complicated developmental processes in grape remains unclear. RESULTS In the present study, we demonstrated that application of GA3 to 'Kyoho' grapevine inflorescences at pre-bloom promoted flower opening, and induced fruit coloring as well as seed abortion. In an attempt to obtain a deeper understanding of the molecular mechanisms driving these responses to GA3 treatment, we performed large-scale transcriptome sequencing of grape flowers following GA3 treatment using Illumina sequencing technology. Global expression profiles of GA3-treated and untreated grape flowers were compared and a large number of GA3-responsive genes were identified. Gene ontology (GO) term classification and biochemical pathway analyses indicated that GA3 treatment caused changes in the levels of transcripts involved in cellular processes, reproduction, hormone and secondary metabolism, as well as the scavenging and detoxification of reactive oxygen species (ROS). These findings suggest that GA3-induced morphological alterations may be related to the control of hormone biosynthesis and signaling, regulation of transcription factors, alteration of secondary metabolites, and the stability of redox homeostasis. CONCLUSIONS Taken together, this comprehensive inflorescence transcriptome data set provides novel insight into the response of grape flowers to GA3 treatment, and also provides possible candidate genes or markers that could be used to guide future efforts in this field.
Collapse
Affiliation(s)
- Chenxia Cheng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China.
| | - Chen Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Stacy D Singer
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| | - Min Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiaozhao Xu
- Institute for Horticultural Plants, China Agricultural University, Beijing, 100193, China.
| | - Yiming Zhou
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA. .,USDA Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA.
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
13
|
Chai L, Li Y, Chen S, Perl A, Zhao F, Ma H. RNA sequencing reveals high resolution expression change of major plant hormone pathway genes after young seedless grape berries treated with gibberellin. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 229:215-224. [PMID: 25443848 DOI: 10.1016/j.plantsci.2014.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/15/2014] [Accepted: 09/21/2014] [Indexed: 05/19/2023]
Abstract
Seedless varieties are of particular importance to the table-grape and raisin industries. Gibberellin (GA) application is widely used in the early stages of seedless berry development to increase berry size and economic value. However, the underlying mechanism of GA induction of berry enlargement is not well understood. Here, RNA-sequencing analysis of 'Centennial Seedless' (Vitis vinifera L.) berries treated with GA3 12 days after flowering is reported. Pair-wise comparison of GA3-treated and control samples detected 165, 444, 463 genes with an over two-fold change in expression 1, 3, and 7 days after GA3 treatment, respectively. The number of differentially expressed genes increased with time after GA3 treatment, and the differential expression was dominated by downregulation. Significantly modulated expression included genes encoding synthesis and catabolism to manage plant hormone homeostasis, hormone transporters, receptors and key components in signaling pathways; exogenous GA3 induced multipoint cross talk with auxin, cytokinin, brassinosteroid, ABA and ethylene. The temporal gene-expression patterns of cell-wall-modification enzymes, cytoskeleton and membrane components and transporters revealed a pivotal role for cell-wall-relaxation genes in GA3-induced berry enlargement. Our results provide the first sequential transcriptomic atlas of exogenous GA3-induced berry enlargement and reveal the complexity of GA3's effect on berry sizing.
Collapse
Affiliation(s)
- Lijuan Chai
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Yanmei Li
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Shangwu Chen
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Avihai Perl
- Department of Fruit Tree Breeding and Molecular Genetics, Agricultural Research Organization, The Volcani Center, Bet-Dagan 50250, Israel.
| | - Fengxia Zhao
- Tobacco Institute, Henan Academy of Agricultural Sciences, Xuchang 461000, China.
| | - Huiqin Ma
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
14
|
Wang X, Kayesh E, Han J, Liu C, Wang C, Song C, Ge A, Fang J. Microarray analysis of differentially expressed genes engaged in fruit development between table and wine grape. Mol Biol Rep 2014; 41:4397-412. [PMID: 24728608 DOI: 10.1007/s11033-014-3311-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 02/17/2014] [Indexed: 10/25/2022]
Abstract
Microarray analysis of genes can provide individual gene-expression profiles and new insights for elucidating biological mechanisms responsible for fruit development. To obtain an overall view on expression profiles of metabolism-related genes involved in fruit development of table and wine grapes, a microarray system comprising 15,403 ESTs was used to compare the expressed genes. The expression patterns from the microarray analysis were validated with quantitative real-time polymerase chain reaction analysis of 18 selected genes of interest. During the entire fruit development stage, 2,493 genes exhibited at least 2.0-fold differences in expression levels with 1,244 genes being up-regulated and 1,249 being down-regulated. Following gene ontology analysis, only 929 differentially expressed (including 403 up-regulated and 526 down-regulated) genes were annotated in table and wine grapes. These differentially expressed genes were found to be mainly involved in carbohydrate metabolism, biosynthesis of secondary metabolites as well as energy, lipid and amino acid metabolism via KEGG. Our results provide new insights into the molecular mechanisms and expression profiles of genes in the fruit development stage of table and wine grapes.
Collapse
Affiliation(s)
- Xicheng Wang
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China,
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Jung CJ, Hur YY, Jung SM, Noh JH, Do GR, Park SJ, Nam JC, Park KS, Hwang HS, Choi D, Lee HJ. Transcriptional changes of gibberellin oxidase genes in grapevines with or without gibberellin application during inflorescence development. JOURNAL OF PLANT RESEARCH 2014; 127:359-71. [PMID: 24374939 DOI: 10.1007/s10265-013-0623-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 11/16/2013] [Indexed: 05/06/2023]
Abstract
The concept that gibberellin (GA) application on seeded grapevines induces seedlessness has been known for decades in viticulture. GA was applied to inflorescence clusters of seeded diploid grapevine cultivar 'Tamnara' (Vitis spp.) at 14 days before full bloom (DBF). Morphological and molecular effects of GA application were examined on the induction of parthenocarpic fruit development. With GA application, ovaries were enlarged and pollen tube growth was completely inhibited. Vitis GA oxidase enzymes, key determinants for GA level, were characterized through phylogenetic analysis with Arabidopsis GA oxidase enzymes. Five VvGA 20-oxidase (VvGA20ox), three VvGA 3-oxidase (VvGA3ox), and nine VvGA 2-oxidase (VvGA2ox) family proteins, and one VvGA methyltransferase (VvGAMT) and one Vitis cytochrome P450 714A1 proteins were identified, and their expression patterns were analyzed during inflorescence development from 14 DBF to 5 days after full bloom (DAF). VvGA2ox1, VvGA20ox3, and VvGA3ox2 were the most abundantly expressed genes in each gene family at 7, 5, and 2 DBF, respectively. Following GA application at 14 DBF inducing seedlessness, GA catabolic genes such as VvGAMT2, VvGA2ox3, and VvGA2ox4 were up-regulated at 12 DBF, full bloom, and 5 DAF, respectively. Conversely, most GA biosynthetic genes, VvGA20oxs and VvGA3oxs, were down-regulated at near full bloom, and the timing of their peak expression was changed. These results suggest that GA application at pre-bloom changes the GA biosynthesis into GA catabolic pathway at near full bloom by altering the transcription level and timing of GA oxidase genes during grapevine inflorescence development.
Collapse
Affiliation(s)
- Chan Jin Jung
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Suwon, 440-706, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cheng C, Xu X, Singer SD, Li J, Zhang H, Gao M, Wang L, Song J, Wang X. Effect of GA3 treatment on seed development and seed-related gene expression in grape. PLoS One 2013; 8:e80044. [PMID: 24224035 PMCID: PMC3818301 DOI: 10.1371/journal.pone.0080044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/27/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The phytohormone gibberellic acid (GA3) is widely used in the table grape industry to induce seedlessness in seeded varieties. However, there is a paucity of information concerning the mechanisms by which GAs induce seedlessness in grapes. METHODOLOGY/PRINCIPAL FINDINGS In an effort to systematically analyze the cause of this GA3-induced seed abortion, we conducted an in depth characterization of two seeded grape cultivars ('Kyoho' and 'Red Globe'), along with a seedless cultivar ('Thompson Seedless'), following treatment with GA3. In a similar fashion to the seedless control, which exhibited GA3-induced abortion of the seeds 9 days after full bloom (DAF), both 'Kyoho' and 'Red Globe' seeded varieties exhibited complete abortion of the seeds 15 DAF when treated with GA3. Morphological analyses indicated that while fertilization appeared to occur normally following GA3 treatment, as well as in the untreated seedless control cultivar, seed growth eventually ceased. In addition, we found that GA3 application had an effect on redox homeostasis, which could potentially cause cell damage and subsequent seed abortion. Furthermore, we carried out an analysis of antioxidant enzyme activities, as well as transcript levels from various genes believed to be involved in seed development, and found several differences between GA3-treated and untreated controls. CONCLUSION Therefore, it seems that the mechanisms driving GA3-induced seedlessness are similar in both seeded and seedless cultivars, and that the observed abortion of seeds may result at least in part from a GA3-induced increase in cell damage caused by reactive oxygen species, a decrease in antioxidant enzymatic activities, and an alteration of the expression of genes related to seed development.
Collapse
Affiliation(s)
- Chenxia Cheng
- College of Horticulture, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaozhao Xu
- College of Horticulture, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Stacy D. Singer
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jun Li
- College of Horticulture, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongjing Zhang
- College of Horticulture, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Min Gao
- College of Horticulture, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Li Wang
- College of Horticulture, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Junyang Song
- College of Horticulture, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiping Wang
- College of Horticulture, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
17
|
Li MW, Qi X, Ni M, Lam HM. Silicon era of carbon-based life: application of genomics and bioinformatics in crop stress research. Int J Mol Sci 2013; 14:11444-83. [PMID: 23759993 PMCID: PMC3709742 DOI: 10.3390/ijms140611444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/07/2013] [Accepted: 05/17/2013] [Indexed: 01/25/2023] Open
Abstract
Abiotic and biotic stresses lead to massive reprogramming of different life processes and are the major limiting factors hampering crop productivity. Omics-based research platforms allow for a holistic and comprehensive survey on crop stress responses and hence may bring forth better crop improvement strategies. Since high-throughput approaches generate considerable amounts of data, bioinformatics tools will play an essential role in storing, retrieving, sharing, processing, and analyzing them. Genomic and functional genomic studies in crops still lag far behind similar studies in humans and other animals. In this review, we summarize some useful genomics and bioinformatics resources available to crop scientists. In addition, we also discuss the major challenges and advancements in the "-omics" studies, with an emphasis on their possible impacts on crop stress research and crop improvement.
Collapse
Affiliation(s)
- Man-Wah Li
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong; E-Mails: (M.-W.L.); (X.Q.); (M.N.)
| | - Xinpeng Qi
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong; E-Mails: (M.-W.L.); (X.Q.); (M.N.)
| | - Meng Ni
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong; E-Mails: (M.-W.L.); (X.Q.); (M.N.)
| | - Hon-Ming Lam
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong; E-Mails: (M.-W.L.); (X.Q.); (M.N.)
| |
Collapse
|