1
|
Kang Y, Wu W, Yang Y, Luo J, Lu Y, Yin L, Cui X. Progress in extracellular vesicle homeostasis as it relates to cardiovascular diseases. J Physiol Biochem 2024; 80:511-522. [PMID: 38687443 DOI: 10.1007/s13105-024-01027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
Extracellular vesicles (EVs) are involved in both physiological and pathological processes in many organ systems and are essential in mediating intercellular communication and maintaining organismal homeostasis. It is helpful to propose new strategies for disease treatment by elucidating the mechanisms of EV release and sorting. An increasing number of studies have shown that there is specific homeostasis in EVs, which is helpful for the human body to carry out physiological activities. In contrast, an EV homeostasis im-balance promotes or accelerates disease onset and development. Alternatively, regulating the quality of EVs can maintain homeostasis and even achieve the purpose of treating conditions. An analysis of the role of EV homeostasis in the onset and development of cardiovascular disease is presented in this review. This article also summarizes the methods that regulate EV homeostasis and their application in cardiovascular diseases. In particular, this study focuses on the connection between EV steady states and the cardiovascular system and the potential value of EVs in treating cardiovascular diseases.
Collapse
Affiliation(s)
- Yunan Kang
- College of Anesthesiology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261053, Shandong, P.R. China
- Clinical Medical School, Shandong Second Medical University, Weifang, 261053, Shandong, P.R. China
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, Shandong, P.R. China
| | - Wenqian Wu
- Clinical Medical School, Shandong Second Medical University, Weifang, 261053, Shandong, P.R. China
| | - Yi Yang
- Clinical Medical School, Shandong Second Medical University, Weifang, 261053, Shandong, P.R. China
| | - Jinxi Luo
- Clinical Medical School, Shandong Second Medical University, Weifang, 261053, Shandong, P.R. China
| | - Yajie Lu
- Clinical Medical School, Shandong Second Medical University, Weifang, 261053, Shandong, P.R. China
| | - Luchang Yin
- Clinical Medical School, Shandong Second Medical University, Weifang, 261053, Shandong, P.R. China.
- Internal Medicine-Cardiovascular Department, Affiliated Hospital of Shandong Second Medical University, Weifang, P.R. China.
| | - Xiaodong Cui
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, Shandong, P.R. China.
| |
Collapse
|
2
|
Tran A, Wang A, Mickaill J, Strbenac D, Larance M, Vernon ST, Grieve SM, Figtree GA, Patrick E, Yang JYH. Construction and optimization of multi-platform precision pathways for precision medicine. Sci Rep 2024; 14:4248. [PMID: 38378802 PMCID: PMC10879206 DOI: 10.1038/s41598-024-54517-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 02/13/2024] [Indexed: 02/22/2024] Open
Abstract
In the enduring challenge against disease, advancements in medical technology have empowered clinicians with novel diagnostic platforms. Whilst in some cases, a single test may provide a confident diagnosis, often additional tests are required. However, to strike a balance between diagnostic accuracy and cost-effectiveness, one must rigorously construct the clinical pathways. Here, we developed a framework to build multi-platform precision pathways in an automated, unbiased way, recommending the key steps a clinician would take to reach a diagnosis. We achieve this by developing a confidence score, used to simulate a clinical scenario, where at each stage, either a confident diagnosis is made, or another test is performed. Our framework provides a range of tools to interpret, visualize and compare the pathways, improving communication and enabling their evaluation on accuracy and cost, specific to different contexts. This framework will guide the development of novel diagnostic pathways for different diseases, accelerating the implementation of precision medicine into clinical practice.
Collapse
Affiliation(s)
- Andy Tran
- School of Mathematics and Statistics, The University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- Sydney Precision Data Science Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Andy Wang
- Westmead Medical Institute, Westmead, NSW, Australia
| | - Jamie Mickaill
- School of Mathematics and Statistics, The University of Sydney, Camperdown, NSW, Australia
- School of Computer Science, The University of Sydney, Camperdown, NSW, Australia
| | - Dario Strbenac
- School of Mathematics and Statistics, The University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- Sydney Precision Data Science Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Mark Larance
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Stephen T Vernon
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- Kolling Institute of Medical Research, St Leonards, NSW, Australia
| | - Stuart M Grieve
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- Department of Radiology, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Gemma A Figtree
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- Kolling Institute of Medical Research, St Leonards, NSW, Australia
| | - Ellis Patrick
- School of Mathematics and Statistics, The University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- Sydney Precision Data Science Centre, The University of Sydney, Camperdown, NSW, Australia
- Laboratory of Data Discovery for Health Limited (D24H), Science Park, Hong Kong SAR, China
| | - Jean Yee Hwa Yang
- School of Mathematics and Statistics, The University of Sydney, Camperdown, NSW, Australia.
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia.
- Sydney Precision Data Science Centre, The University of Sydney, Camperdown, NSW, Australia.
- Laboratory of Data Discovery for Health Limited (D24H), Science Park, Hong Kong SAR, China.
| |
Collapse
|
3
|
Lobato TB, Gennari-Felipe M, Pauferro JRB, Correa IS, Santos BF, Dias BB, de Oliveira Borges JC, dos Santos CS, de Sousa Santos ES, de Araújo MJL, Ferreira LA, Pereira SA, Serdan TDA, Levada-Pires AC, Hatanaka E, Borges L, Cury-Boaventura MF, Vinolo MAR, Pithon-Curi TC, Masi LN, Curi R, Hirabara SM, Gorjão R. Leukocyte metabolism in obese type 2 diabetic individuals associated with COVID-19 severity. Front Microbiol 2022; 13:1037469. [PMID: 36406408 PMCID: PMC9670542 DOI: 10.3389/fmicb.2022.1037469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/12/2022] [Indexed: 03/27/2024] Open
Abstract
Recent studies show that the metabolic characteristics of different leukocytes, such as, lymphocytes, neutrophils, and macrophages, undergo changes both in the face of infection with SARS-CoV-2 and in obesity and type 2 diabetes mellitus (DM2) condition. Thus, the objective of this review is to establish a correlation between the metabolic changes caused in leukocytes in DM2 and obesity that may favor a worse prognosis during SARS-Cov-2 infection. Chronic inflammation and hyperglycemia, specific and usual characteristics of obesity and DM2, contributes for the SARS-CoV-2 replication and metabolic disturbances in different leukocytes, favoring the proinflammatory response of these cells. Thus, obesity and DM2 are important risk factors for pro-inflammatory response and metabolic dysregulation that can favor the occurrence of the cytokine storm, implicated in the severity and high mortality risk of the COVID-19 in these patients.
Collapse
Affiliation(s)
- Tiago Bertola Lobato
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Matheus Gennari-Felipe
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | | | - Ilana Souza Correa
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Beatriz Ferreira Santos
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Beatriz Belmiro Dias
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - João Carlos de Oliveira Borges
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Camila Soares dos Santos
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | | | - Maria Janaína Leite de Araújo
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Liliane Araújo Ferreira
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Sara Araujo Pereira
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | | | - Adriana Cristina Levada-Pires
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Elaine Hatanaka
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Leandro Borges
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Maria Fernanda Cury-Boaventura
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Marco Aurélio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Tania Cristina Pithon-Curi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Laureane Nunes Masi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Rui Curi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
- Immunobiological Production Section, Bioindustrial Center, Butantan Institute, São Paulo, Brazil
| | - Sandro Massao Hirabara
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Renata Gorjão
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| |
Collapse
|
4
|
Rudraprasad D, Naik MN, Joseph J. Proteome profiling of Extracellular Vesicles in Pseudomonas aeruginosa endophthalmitis: Prognostic and therapeutic significance in a mouse model. Exp Cell Res 2022; 419:113306. [PMID: 35963322 DOI: 10.1016/j.yexcr.2022.113306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/20/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022]
Abstract
Endophthalmitis is a sight-threatening infection and a serious consequence of complications during intraocular surgery or penetrating injury of which Pseudomonas aeruginosa is an important etiology. Extracellular vesicles (EVs) have evolved as a promising entity for developing diagnostic and therapeutic biomarkers due to their involvement in intracellular communication and pathogenesis of diseases. We aimed to characterise the protein cargo of extracellular vesicles, isolated from a murine (C57BL/6) model of P. aeruginosa endophthalmitis by LC-MS/MS at 24 h post infection (p.i). EVs were extracted by ultracentrifugation, characterized by Dynamic Light Scattering (DLS) and western blotting with tetraspannin markers, CD9 and CD81 and quantified by the ExoCet quantification kit. Multiplex ELISA was performed to estimate the levels of TNF-α, IL-6, IFN-γ and IL-1β. Proteomic analysis identified 2010 proteins (FDR ≤0.01) in EVs from infected mice eyes, of which 137 were differentially expressed (P-value ≤ 0.05). A total of 101 proteins were upregulated and 36 were downregulated. Additionally, 43 proteins were exclusive to infection set. KEGG and Gene Ontology revealed, Focal adhesion, Phagosome pathway, Complement cascade and IL-17 signalling pathway are crucial upregulated pathways involving proteins such as Tenascin, caveolin 1, caveolin 2, glutamine synthetase, microtubule-associated protein, C1, C8 and IL-17. Tenascin and caveolins are known to suppress anti-inflammatory cytokines further exacerbating the disease. The result of this study provides insight into the global extracellular vesicle proteome of P. aeruginosa endophthalmitis with their functional correlation and distinctive pattern of expression and tenascin, caveolin 1 and caveolin 2 are attractive biomarkers for P. aeruginosa endophthalmitis.
Collapse
Affiliation(s)
- Dhanwini Rudraprasad
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, Telangana, India; Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Milind N Naik
- Ophthalmic Plastic Surgery & Facial Aesthetics, LV. Prasad Eye Institute, Hyderabad, Telangana, India.
| | - Joveeta Joseph
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, Telangana, India; Ramoji Foundation Centre of Ocular Infections, L.V. Prasad Eye Institute, Hyderabad, Telangana, India.
| |
Collapse
|
5
|
Yan Z, Zhang K, Wang G, Wang L, Zhang J, Qiu Z, Guo Z, Zhang K, Li J. Differential proteomic of plasma provides a new perspective on scientific diagnosis and drug screening for dampness heat diarrhea in calves. Front Vet Sci 2022; 9:986329. [PMID: 36204290 PMCID: PMC9530945 DOI: 10.3389/fvets.2022.986329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022] Open
Abstract
Dampness heat diarrhea (DHD) is one of the most common syndromes of calf diarrhea. Its complex etiology and lack of objective diagnostic criteria bring great challenges to the diagnosis and treatment of this disease. This study aims to screen some prospective diagnostic biomarkers or therapeutic targets for calves with DHD by investigating the differential protein profiles of plasma between DHD calves and clinically healthy calves by mass spectrometry-based proteomic. A total of 120 DHD calves and 90 clinically healthy calves were divided into two groups randomly, 30 DHD calves and 30 clinically healthy calves in the test group, and 90 DHD calves and 60 clinically healthy calves in the validation group. In the test group, a total of 52 proteins were differentially expressed between calves with DHD and clinically healthy calves, 13 proteins were significantly increased and 39 proteins were significantly decreased. The differentially expressed proteins were associated with the intestinal immune network of IgA production, caffeine metabolism, purine metabolism, and PI3K signaling pathway. In the validation group, 13 proteins were selected from 52 differential expression proteins for parallel reaction monitoring validation to verify their associations with DHD calves. The targeted proteomic results showed that fibronectin precursor (FN1) and apolipoprotein C-IV precursor (APOC4) were significantly associated with DHD in calves, and they were downregulated in sick calves. In conclusion, the differential expression of plasma proteins was associated with DHD pathogenesis in calves, and the FN1 and APOC4 might be the potential clinical biomarkers for diagnosis of DHD in calves, and the intestinal immune network of IgA production, caffeine metabolism, purine metabolism, and PI3K signaling pathway are the candidate targets to treat DHD in calves. Our finding provides a reference for further investigating the pathogenesis, developing techniques of diagnosis, and screening treatment drugs for DHD in calves.
Collapse
|
6
|
Rudraprasad D, Sushma MV, Rengan AK, Naik MN, Joseph J. Characterization and proteome profiling of extracellular vesicles in a murine model of Staphylococcus aureus endophthalmitis. Microbes Infect 2022; 24:105014. [DOI: 10.1016/j.micinf.2022.105014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 12/16/2022]
|
7
|
Yuan HX, Liang KF, Chen C, Li YQ, Liu XJ, Chen YT, Jian YP, Liu JS, Xu YQ, Ou ZJ, Li Y, Ou JS. Size Distribution of Microparticles: A New Parameter to Predict Acute Lung Injury After Cardiac Surgery With Cardiopulmonary Bypass. Front Cardiovasc Med 2022; 9:893609. [PMID: 35571221 PMCID: PMC9098995 DOI: 10.3389/fcvm.2022.893609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Acute lung injury (ALI) is a common complication after cardiac surgery with cardiopulmonary bypass (CPB). No precise way, however, is currently available to predict its occurrence. We and others have demonstrated that microparticles (MPs) can induce ALI and were increased in patients with ALI. However, whether MPs can be used to predict ALI after cardiac surgery with CPB remains unknown. Methods In this prospective study, 103 patients undergoing cardiac surgery with CPB and 53 healthy subjects were enrolled. MPs were isolated from the plasma before, 12 h after, and 3 d after surgery. The size distributions of MPs were measured by the LitesizerTM 500 Particle Analyzer. The patients were divided into two subgroups (ALI and non-ALI) according to the diagnosis of ALI. Descriptive and correlational analyzes were conducted between the size distribution of MPs and clinical data. Results Compared to the non-ALI group, the size at peak and interquartile range (IQR) of MPs in patients with ALI were smaller, but the peak intensity of MPs is higher. Multivariate logistic regression analysis indicated that the size at peak of MPs at postoperative 12 h was an independent risk factor for ALI. The area under the curve (AUC) of peak diameter at postoperative 12 h was 0.803. The best cutoff value of peak diameter to diagnose ALI was 223.05 nm with a sensitivity of 88.0% and a negative predictive value of 94.5%. The AUC of IQR at postoperative 12 h was 0.717. The best cutoff value of IQR to diagnose ALI was 132.65 nm with a sensitivity of 88.0% and a negative predictive value of 92.5%. Combining these two parameters, the sensitivity reached 92% and the negative predictive value was 96%. Conclusions Our findings suggested that the size distribution of MPs could be a novel biomarker to predict and exclude ALI after cardiac surgery with CPB.
Collapse
Affiliation(s)
- Hao-Xiang Yuan
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Kai-Feng Liang
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Chao Chen
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yu-Quan Li
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Xiao-Jun Liu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Ya-Ting Chen
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yu-Peng Jian
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Jia-Sheng Liu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Ying-Qi Xu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Zhi-Jun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Division of Hypertension and Vascular Diseases, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Zhi-Jun Ou
| | - Yan Li
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Yan Li
| | - Jing-Song Ou
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China
- Jing-Song Ou ;
| |
Collapse
|
8
|
Saleem T, Sumrin A, Bilal M, Bashir H, Khawar MB. Tumor-derived extracellular vesicles: Potential tool for cancer diagnosis, prognosis, and therapy. Saudi J Biol Sci 2022; 29:2063-2071. [PMID: 35531155 PMCID: PMC9073005 DOI: 10.1016/j.sjbs.2022.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/05/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022] Open
Abstract
Various types of cancer pose a notable threat to human health globally. To date, many researchers have undertaken the search for anticancer therapies. However, many anticancer therapeutic approaches accompany many undesirable hazards. In this respect, extracellular vesicles as a whole gained excessive attention from the research community owing to their remarkable potential for delivery of anticancer agents since they are involved in distal intercellular communication via biological cargoes. With the discovery of the fact that tumor cells discharge huge quantities of EVs, new insights have been developed in cancer diagnosis and treatment. Tumor-derived extracellular vesicles (TD-EVs) can be distinguished from the normal cell-derived EVs due to the presence of specific labels on their surface. TD-EVs carry specific oncogenic proteins and the nucleic acids on their surface membrane that participate in tumor progression. Moreover, the proportion of these nucleic acids and the protein greatly varies among malignant and healthy cell-derived EVs. The diagnostic potential of TD-EVs can be implied for the more precise and early-stage detection of cancer that was impossible in the past. This review examines the recent progress in prognostic, diagnostic, and therapeutic potential of the EVs derived from the tumor cells.
Collapse
Affiliation(s)
- Tayyaba Saleem
- Centre for Applied Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore 53700, Pakistan
| | - Aleena Sumrin
- Centre for Applied Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore 53700, Pakistan
| | - Muhammad Bilal
- Centre for Applied Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore 53700, Pakistan
| | - Hamid Bashir
- Centre for Applied Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore 53700, Pakistan
| | - Muhammad Babar Khawar
- Applied Molecular Biology and Biomedicine Lab, Departmnet of Zoology, University of Narowal, Narowal, Pakistan
| |
Collapse
|
9
|
Suades R, Padró T, Vilahur G, Badimon L. Platelet-released extracellular vesicles: the effects of thrombin activation. Cell Mol Life Sci 2022; 79:190. [PMID: 35288766 PMCID: PMC8920058 DOI: 10.1007/s00018-022-04222-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022]
Abstract
Platelets exert fundamental roles in thrombosis, inflammation, and angiogenesis, contributing to different pathologies from cardiovascular diseases to cancer. We previously reported that platelets release extracellular vesicles (pEVs) which contribute to thrombus formation. However, pEV composition remains poorly defined. Indeed, pEV quality and type, rather than quantity, may be relevant in intravascular cross-talk with either circulating or vascular cells. We aimed to define the phenotypic characteristics of pEVs released spontaneously and those induced by thrombin activation to better understand their role in disease dissemination. pEVs obtained from washed platelets from healthy donor blood were characterized by flow cytometry. pEVs from thrombin-activated platelets (T-pEVs) showed higher levels of P-selectin and active form of glycoprotein IIb/IIIa than baseline non-activated platelets (B-pEVs). Following mass spectrometry-based differential proteomic analysis, significant changes in the abundance of proteins secreted in T-pEVs compared to B-pEVs were found. These differential proteins were involved in coagulation, adhesion, cytoskeleton, signal transduction, metabolism, and vesicle-mediated transport. Interestingly, release of proteins relevant for cell adhesion, intrinsic pathway coagulation, and platelet activation signalling was significantly modified by thrombin stimulation. A novel pEV-associated protein (protocadherin-α4) was found to be significantly reduced in T-pEVs showing a shift towards increased expression in the membranes of activated platelets. In summary, platelet activation induced by thrombin triggers the shedding of pEVs with a complex proteomic pattern rich in procoagulant and proadhesive proteins. Crosstalk with other vascular and blood cells in a paracrine regulatory mode could extend the prothrombotic signalling as well as promote proteostasic changes in other cellular types.
Collapse
Affiliation(s)
- Rosa Suades
- Cardiovascular Program ICCC, Research Institute Hospital Santa Creu i Sant Pau, IIB Sant Pau, c/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain
| | - Teresa Padró
- Cardiovascular Program ICCC, Research Institute Hospital Santa Creu i Sant Pau, IIB Sant Pau, c/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain
- CIBERCV Instituto de Salud Carlos III, Madrid, Spain
| | - Gemma Vilahur
- Cardiovascular Program ICCC, Research Institute Hospital Santa Creu i Sant Pau, IIB Sant Pau, c/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain
- CIBERCV Instituto de Salud Carlos III, Madrid, Spain
| | - Lina Badimon
- Cardiovascular Program ICCC, Research Institute Hospital Santa Creu i Sant Pau, IIB Sant Pau, c/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain.
- CIBERCV Instituto de Salud Carlos III, Madrid, Spain.
- Cardiovascular Research Chair, UAB, Barcelona, Spain.
| |
Collapse
|
10
|
The bone marrow niche from the inside out: how megakaryocytes are shaped by and shape hematopoiesis. Blood 2022; 139:483-491. [PMID: 34587234 PMCID: PMC8938937 DOI: 10.1182/blood.2021012827] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/10/2021] [Indexed: 01/29/2023] Open
Abstract
Megakaryocytes (MKs), the largest of the hematopoietic cells, are responsible for producing platelets by extending and depositing long proplatelet extensions into the bloodstream. The traditional view of megakaryopoiesis describes the cellular journey from hematopoietic stem cells (HSCs) along the myeloid branch of hematopoiesis. However, recent studies suggest that MKs can be generated from multiple pathways, some of which do not require transit through multipotent or bipotent MK-erythroid progenitor stages in steady-state and emergency conditions. Growing evidence suggests that these emergency conditions are due to stress-induced molecular changes in the bone marrow (BM) microenvironment, also called the BM niche. These changes can result from insults that affect the BM cellular composition, microenvironment, architecture, or a combination of these factors. In this review, we explore MK development, focusing on recent studies showing that MKs can be generated from multiple divergent pathways. We highlight how the BM niche may encourage and alter these processes using different mechanisms of communication, such as direct cell-to-cell contact, secreted molecules (autocrine and paracrine signaling), and the release of cellular components (eg, extracellular vesicles). We also explore how MKs can actively build and shape the surrounding BM niche.
Collapse
|
11
|
Plasma Exosome Profile in ST-Elevation Myocardial Infarction Patients with and without Out-of-Hospital Cardiac Arrest. Int J Mol Sci 2021; 22:ijms22158065. [PMID: 34360827 PMCID: PMC8347807 DOI: 10.3390/ijms22158065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022] Open
Abstract
The identification of new biomarkers allowing an early and more accurate characterization of patients with ST-segment elevation myocardial infarction (STEMI) is still needed, and exosomes represent an attractive diagnostic tool in this context. However, the characterization of their protein cargo in relation to cardiovascular clinical manifestation is still lacking. To this end, 35 STEMI patients (17 experiencing resuscitated out-of-hospital cardiac arrest (OHCA-STEMI) and 18 uncomplicated) and 32 patients with chronic coronary syndrome (CCS) were enrolled. Plasma exosomes were characterized by the nanoparticle tracking analysis and Western blotting. Exosomes from STEMI patients displayed a higher concentration and size and a greater expression of platelet (GPIIb) and vascular endothelial (VE-cadherin) markers, but a similar amount of cardiac troponin compared to CCS. In addition, a difference in exosome expression of acute-phase proteins (ceruloplasmin, transthyretin and fibronectin) between STEMI and CCS patients was found. GPIIb and brain-associated marker PLP1 accurately discriminated between OHCA and uncomplicated STEMI. In conclusion, the exosome profile of STEMI patients has peculiar features that differentiate it from that of CCS patients, reflecting the pathophysiological mechanisms involved in STEMI. Additionally, the exosome expression of brain- and platelet-specific markers might allow the identification of patients experiencing ischemic brain injury in STEMI.
Collapse
|
12
|
Hermida-Nogueira L, García Á. Extracellular vesicles in the transfusion medicine field: The potential of proteomics. Proteomics 2021; 21:e2000089. [PMID: 33754471 DOI: 10.1002/pmic.202000089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 03/04/2021] [Accepted: 03/15/2021] [Indexed: 11/07/2022]
Abstract
In transfusion centres, blood components are divided and stored following specific guidelines. The storage temperature and time vary among the blood cells but all of them release extracellular vesicles (EVs) under blood bank conditions. The clinical impact of such vesicles in blood components for transfusion is an object of debate, but should be considered and is being investigated. In this context, proteomics is an excellent tool to study the cargo and composition of EVs derived from red blood cells and platelets, since such vesicles are enriched in lipids and proteins. The development of quantitative mass spectrometry techniques and the evolution of bioinformatics have allowed the identification of novel EVs biomarkers for different diseases. In this context, the application of high coverage proteomic tools to the analysis of EVs in the transfusion medicine field would provide information about storage lesions and possible transfusion adverse reactions. This viewpoint article approaches the potential of proteomics to investigate the impact of EVs in blood bank transfusion components, especially red blood cells and platelets.
Collapse
Affiliation(s)
- Lidia Hermida-Nogueira
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, and Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Ángel García
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, and Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
13
|
Guan F, Xiang X, Xie Y, Li H, Zhang W, Shu Y, Wang J, Qin W. Simultaneous metabolomics and proteomics analysis of plasma-derived extracellular vesicles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1930-1938. [PMID: 33913941 DOI: 10.1039/d1ay00060h] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Extracellular vesicles (EVs) are nanoscale vesicles with a phospholipid bilayer. In the past few decades, EVs have gained more and more attention, which is attributed to their important roles in cell-to-cell communication. They are regarded as promising sources for disease biomarkers and have been explored for applications in early-stage diagnostics, monitoring of disease status, therapeutics and drug delivery. Nevertheless, EVs are a heterogeneous group of vesicles, and include two predominant classes: exosomes and microvesicles. The origins of these vesicles are diverse, which determines their differences in features and functions. To study the diversity of these EV subpopulations, it is essential to elucidate their compositions including proteins, metabolites, etc. Here, we presented a tandem extraction method to obtain metabolites and proteins from the same batch of EVs simultaneously, enabling a multi-omics differential analysis of exosomes and microvesicles in human plasma. As a result, we found 112 different proteins and 50 different metabolites between exosomes and microvesicles, demonstrating the diversity of these EV subpopulations. Furthermore, compared with human plasma, these two major classes of EVs showed distinct metabolome features, which indicated the necessity of analysing the metabolites derived from EVs to obtain a more comprehensive profile of the plasma metabolome, and the potential of EVs as important sources for biomarker screening.
Collapse
Affiliation(s)
- Fulin Guan
- Research Center for Analytical Sciences, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Human Plasma Extracellular Vesicle Isolation and Proteomic Characterization for the Optimization of Liquid Biopsy in Multiple Myeloma. Methods Mol Biol 2021; 2261:151-191. [PMID: 33420989 DOI: 10.1007/978-1-0716-1186-9_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer cells secrete membranous extracellular vesicles (EVs) which contain specific oncogenic molecular cargo (including oncoproteins, oncopeptides, and RNA) into their microenvironment and the circulation. As such, EVs including exosomes (small EVs) and microvesicles (large EVs) represent important circulating biomarkers for various diseases, including cancer and its progression. These circulating biomarkers offer a potentially minimally invasive and repeatable targets for analysis (liquid biopsy) that could aid in the diagnosis, risk stratification, and monitoring of cancer. Although their potential as cancer biomarkers has been promising, the identification and quantification of EVs in clinical samples remain challenging. Like EVs, other types of circulating biomarkers (including cell-free nucleic acids, cf-NAs; or circulating tumor cells, CTCs) may represent a complementary or alternative approach to cancer diagnosis. In the context of multiple myeloma (MM), a systemic cancer type that causes cancer cells to accumulate in the bone marrow, the specific role for EVs as biomarkers for diagnosis and monitoring remains undefined. Tumor heterogeneity along with the various subtypes of MM (such as non-secretory MM) that cannot be monitored using conventional testing (e.g. sequential serological testing and bone marrow biopsies) render liquid biopsy and circulating tumor-derived EVs a promising approach. In this protocol, we describe the isolation and purification of EVs from peripheral blood plasma (PBPL) collected from healthy donors and patients with MM for a biomarker discovery strategy. Our results demonstrate detection of circulating EVs from as little as 1 mL of MM patients' PBPL. High-resolution mass spectrometry (MS)-based proteomics promises to provide new avenues in identifying novel markers for detection, monitoring, and therapeutic intervention of disease. We describe biophysical characterization and quantitative proteomic profiling of disease-specific circulating EVs which may provide important implications for the development of cancer diagnostics in MM.
Collapse
|
15
|
Barrachina MN, García Á. Clinical Proteomics for the Analysis of Circulating Extracellular Vesicles. Methods Mol Biol 2021; 2259:13-23. [PMID: 33687706 DOI: 10.1007/978-1-0716-1178-4_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In recent years, technical improvements in proteomics have allowed its rapid application for biomarker discovery, new drug target identification, and the study of disease progression and drug resistance. The clinical potential of circulating extracellular vesicles (EVs) as a source of biomarkers is one of the reasons why several research groups have recently applied proteomics to their study. A large variety of proteomic approaches such as gel-based proteomics and bottom-up and top-down mass spectrometry have been applied to the study of EVs. In this chapter, we will present basic protocols for gel-based and quantitative MS-based approaches applied to the study of EVs.
Collapse
Affiliation(s)
- Maria N Barrachina
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade Santiago de Compostela, Santiago de Compostela, Spain.,Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Ángel García
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade Santiago de Compostela, Santiago de Compostela, Spain. .,Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain.
| |
Collapse
|
16
|
Mallia A, Gianazza E, Zoanni B, Brioschi M, Barbieri SS, Banfi C. Proteomics of Extracellular Vesicles: Update on Their Composition, Biological Roles and Potential Use as Diagnostic Tools in Atherosclerotic Cardiovascular Diseases. Diagnostics (Basel) 2020; 10:diagnostics10100843. [PMID: 33086718 PMCID: PMC7588996 DOI: 10.3390/diagnostics10100843] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are lipid-bound vesicles released from cells under physiological and pathological conditions. Basing on biogenesis, dimension, content and route of secretion, they can be classified into exosomes, microvesicles (MVs) and apoptotic bodies. EVs have a key role as bioactive mediators in intercellular communication, but they are also involved in other physiological processes like immune response, blood coagulation, and tissue repair. The interest in studying EVs has increased over the years due to their involvement in several diseases, such as cardiovascular diseases (CVDs), and their potential role as biomarkers in diagnosis, therapy, and in drug delivery system development. Nowadays, the improvement of mass spectrometry (MS)-based techniques allows the characterization of the EV protein composition to deeply understand their role in several diseases. In this review, a critical overview is provided on the EV’s origin and physical properties, as well as their emerging functional role in both physiological and disease conditions, focusing attention on the role of exosomes in CVDs. The most important cardiac exosome proteomic studies will be discussed giving a qualitative and quantitative characterization of the exosomal proteins that could be used in future as new potential diagnostic markers or targets for specific therapies.
Collapse
|
17
|
Tetraspanins, More than Markers of Extracellular Vesicles in Reproduction. Int J Mol Sci 2020; 21:ijms21207568. [PMID: 33066349 PMCID: PMC7589920 DOI: 10.3390/ijms21207568] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
The participation of extracellular vesicles in many cellular processes, including reproduction, is unquestionable. Although currently, the tetraspanin proteins found in extracellular vesicles are mostly applied as markers, increasing evidence points to their role in extracellular vesicle biogenesis, cargo selection, cell targeting, and cell uptake under both physiological and pathological conditions. In this review, we bring other insight into the involvement of tetraspanin proteins in extracellular vesicle physiology in mammalian reproduction. We provide knowledge regarding the involvement of extracellular vesicle tetraspanins in these processes in somatic cells. Furthermore, we discuss the future direction towards an understanding of their functions in the tissues and fluids of the mammalian reproductive system in gamete maturation, fertilization, and embryo development; their involvement in mutual cell contact and communication in their complexity.
Collapse
|
18
|
Tunset ME, Haslene-Hox H, Van Den Bossche T, Vaaler AE, Sulheim E, Kondziella D. Extracellular vesicles in patients in the acute phase of psychosis and after clinical improvement: an explorative study. PeerJ 2020; 8:e9714. [PMID: 32995075 PMCID: PMC7501784 DOI: 10.7717/peerj.9714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/23/2020] [Indexed: 12/28/2022] Open
Abstract
Extracellular vesicles (EVs) are cell-derived structures that transport proteins, lipids and nucleic acids between cells, thereby affecting the phenotype of the recipient cell. As the content of EVs reflects the status of the originating cell, EVs can have potential as biomarkers. Identifying EVs, including their cells of origin and their cargo, may provide insights in the pathophysiology of psychosis. Here, we present an in-depth analysis and proteomics of EVs from peripheral blood in patients (n = 25) during and after the acute phase of psychosis. Concentration and protein content of EVs in psychotic patients were twofold higher than in 25 age- and sex-matched healthy controls (p < 0.001 for both concentration and protein content), and the diameter of EVs was larger in patients (p = 0.02). Properties of EVs did not differ significantly in blood sampled during and after the acute psychotic episode. Proteomic analyses on isolated EVs from individual patients revealed 1,853 proteins, whereof 45 were brain-elevated proteins. Of these, five proteins involved in regulation of plasticity of glutamatergic synapses were significantly different in psychotic patients compared to controls; neurogranin (NRGN), neuron-specific calcium-binding protein hippocalcin (HPCA), kalirin (KALRN), beta-adducin (ADD2) and ankyrin-2 (ANK2). To summarize, our results show that peripheral EVs in psychotic patients are different from those in healthy controls and point at alterations on the glutamatergic system. We suggest that EVs allow investigation of blood-borne brain-originating biological material and that their role as biomarkers in patients with psychotic disorders is worthy of further exploration.
Collapse
Affiliation(s)
- Mette Elise Tunset
- Department of Østmarka- Division of Mental Healthcare, St. Olavs University Hospital, Trondheim, Norway.,Department of Mental Health- Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Hanne Haslene-Hox
- Department of Biotechnology and Nanomedicine, SINTEF, Trondheim, Norway
| | - Tim Van Den Bossche
- VIB - UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Arne Einar Vaaler
- Department of Østmarka- Division of Mental Healthcare, St. Olavs University Hospital, Trondheim, Norway.,Department of Mental Health- Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Einar Sulheim
- Department of Biotechnology and Nanomedicine, SINTEF, Trondheim, Norway.,Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Daniel Kondziella
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Donoso-Quezada J, Ayala-Mar S, González-Valdez J. State-of-the-art exosome loading and functionalization techniques for enhanced therapeutics: a review. Crit Rev Biotechnol 2020; 40:804-820. [DOI: 10.1080/07388551.2020.1785385] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Sergio Ayala-Mar
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey, Mexico
| | | |
Collapse
|
20
|
Khalyfa A, Castro-Grattoni AL, Gozal D. Cardiovascular morbidities of obstructive sleep apnea and the role of circulating extracellular vesicles. Ther Adv Respir Dis 2020; 13:1753466619895229. [PMID: 31852426 PMCID: PMC6923690 DOI: 10.1177/1753466619895229] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by recurrent upper airway collapse
during sleep resulting in impaired blood gas exchange, namely intermittent
hypoxia (IH) and hypercapnia, fragmented sleep (SF), increased oxidative stress
and systemic inflammation. Among a myriad of potential associated morbidities,
OSA has been particularly implicated as mechanistically contributing to the
prevalence and severity of cardiovascular diseases (CVD). However, the benefits
of continuous positive airway pressure (CPAP), which is generally employed in
OSA treatment, to either prevent or improve CVD outcomes remain unconvincing,
suggesting that the pathophysiological mechanisms underlying the incremental CVD
risk associated with OSA are not clearly understood. One of the challenges in
development of non-invasive diagnostic assays is the ability to identify
clinically and mechanistically relevant biomarkers. Circulating extracellular
vesicles (EVs) and their cargos reflect underlying changes in cellular
homeostasis and can provide insights into how cells and systems cope with
physiological perturbations by virtue of the identity and abundance of miRNAs,
mRNAs, proteins, and lipids that are packaged in the EVs under normal as well as
diseased states, such as OSA. EVs can not only provide unique insights into
coordinated cellular responses at the organ or systemic level, but can also
serve as reporters of the effects of OSA in CVD, either by their properties
enabling regeneration and repair of injured vascular cells or by damaging them.
Here, we highlight recent progress in the pathological CVD consequences of OSA,
and explore the putative roles of EVs in OSA-associated CVD, along with emerging
diagnostic and therapeutic opportunities. The reviews of this paper are available via the supplemental material
section.
Collapse
Affiliation(s)
- Abdelnaby Khalyfa
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO, USA
| | - Anabel L Castro-Grattoni
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO, USA
| | - David Gozal
- Department of Child Health and MU Women's and Children's Hospital, University of Missouri School of Medicine, 400 N. Keene Street, Suite 010, Columbia, MO 65201, USA
| |
Collapse
|
21
|
Perdomo L, Vidal-Gómez X, Soleti R, Vergori L, Duluc L, Chwastyniak M, Bisserier M, Le Lay S, Villard A, Simard G, Meilhac O, Lezoualc'h F, Khantalin I, Veerapen R, Dubois S, Boursier J, Henni S, Gagnadoux F, Pinet F, Andriantsitohaina R, Martínez MC. Large Extracellular Vesicle-Associated Rap1 Accumulates in Atherosclerotic Plaques, Correlates With Vascular Risks and Is Involved in Atherosclerosis. Circ Res 2020; 127:747-760. [PMID: 32539601 DOI: 10.1161/circresaha.120.317086] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE Metabolic syndrome (MetS) is a cluster of interrelated risk factors for cardiovascular diseases and atherosclerosis. Circulating levels of large extracellular vesicles (lEVs), submicrometer-sized vesicles released from plasma membrane, from MetS patients were shown to induce endothelial dysfunction, but their role in early stage of atherosclerosis and on vascular smooth muscle cells (SMC) remain to be fully elucidated. OBJECTIVE To determine the mechanisms by which lEVs lead to the progression of atherosclerosis in the setting of MetS. METHODS AND RESULTS Proteomic analysis revealed that the small GTPase, Rap1 was overexpressed in lEVs from MetS patients compared with those from non-MetS subjects. Rap1 was in GTP-associated active state in both types of lEVs, and Rap1-lEVs levels correlated with increased cardiovascular risks, including stenosis. MetS-lEVs, but not non-MetS-lEVs, increased Rap1-dependent endothelial cell permeability. MetS-lEVs significantly promoted migration and proliferation of human aortic SMC and increased expression of proinflammatory molecules and activation of ERK (extracellular signal-regulated kinase) 5/p38 pathways. Neutralization of Rap1 by specific antibody or pharmacological inhibition of Rap1 completely prevented the effects of lEVs from MetS patients. High-fat diet-fed ApoE-/- mice displayed an increased expression of Rap1 both in aortas and circulating lEVs. lEVs accumulated in plaque atherosclerotic lesions depending on the progression of atherosclerosis. lEVs from high-fat diet-fed ApoE-/- mice, but not those from mice fed with a standard diet, enhanced SMC proliferation. Human atherosclerotic lesions were enriched in lEVs expressing Rap1. CONCLUSIONS These data demonstrate that Rap1 carried by MetS-lEVs participates in the enhanced SMC proliferation, migration, proinflammatory profile, and activation of ERK5/p38 pathways leading to vascular inflammation and remodeling, and atherosclerosis. These results highlight that Rap1 carried by MetS-lEVs may be a novel determinant of diagnostic value for cardiometabolic risk factors and suggest Rap1 as a promising therapeutic target against the development of atherosclerosis. Graphical Abstract: A graphical abstract is available for this article.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Atherosclerosis/blood
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Case-Control Studies
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Extracellular Vesicles/metabolism
- Female
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Middle Aged
- Mitogen-Activated Protein Kinase 7/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Permeability
- Phosphorylation
- Plaque, Atherosclerotic
- Prognosis
- Proteomics
- Risk Assessment
- Risk Factors
- Signal Transduction
- p38 Mitogen-Activated Protein Kinases/metabolism
- rap GTP-Binding Proteins
- rap1 GTP-Binding Proteins/metabolism
Collapse
Affiliation(s)
- Liliana Perdomo
- From the SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, France (L.P., X.V.-G., R.S., L.V., L.D., S.L.L., A.V., G.S., S.D., F.G., R.A., M.C.M.)
| | - Xavier Vidal-Gómez
- From the SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, France (L.P., X.V.-G., R.S., L.V., L.D., S.L.L., A.V., G.S., S.D., F.G., R.A., M.C.M.)
| | - Raffaella Soleti
- From the SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, France (L.P., X.V.-G., R.S., L.V., L.D., S.L.L., A.V., G.S., S.D., F.G., R.A., M.C.M.)
| | - Luisa Vergori
- From the SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, France (L.P., X.V.-G., R.S., L.V., L.D., S.L.L., A.V., G.S., S.D., F.G., R.A., M.C.M.)
| | - Lucie Duluc
- From the SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, France (L.P., X.V.-G., R.S., L.V., L.D., S.L.L., A.V., G.S., S.D., F.G., R.A., M.C.M.)
| | - Maggy Chwastyniak
- Université de Lille, Inserm, CHU Lille, Institute Pasteur De Lille, U1167 - RID-AGE, Lille, France (M.C., F.P.)
| | - Malik Bisserier
- Inserm, UMR-1048, Institut Des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (M.B., F.L.)
| | - Soazig Le Lay
- From the SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, France (L.P., X.V.-G., R.S., L.V., L.D., S.L.L., A.V., G.S., S.D., F.G., R.A., M.C.M.)
| | - Alexandre Villard
- From the SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, France (L.P., X.V.-G., R.S., L.V., L.D., S.L.L., A.V., G.S., S.D., F.G., R.A., M.C.M.)
| | - Gilles Simard
- From the SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, France (L.P., X.V.-G., R.S., L.V., L.D., S.L.L., A.V., G.S., S.D., F.G., R.A., M.C.M.)
| | - Olivier Meilhac
- DéTROI, INSERM U1188, Université de La Réunion, France (O.M.)
| | - Frank Lezoualc'h
- Inserm, UMR-1048, Institut Des Maladies Métaboliques et Cardiovasculaires, Toulouse, France (M.B., F.L.)
| | | | - Reuben Veerapen
- Clinique Sainte-Clotilde, Groupe Clinifutur, Sainte-Clotilde, France (R.V.)
| | - Séverine Dubois
- From the SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, France (L.P., X.V.-G., R.S., L.V., L.D., S.L.L., A.V., G.S., S.D., F.G., R.A., M.C.M.)
- CHU d'Angers, France (S.D., J.B., S.H., F.G., R.A., M.C.M.)
| | | | - Samir Henni
- CHU d'Angers, France (S.D., J.B., S.H., F.G., R.A., M.C.M.)
| | - Frédéric Gagnadoux
- From the SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, France (L.P., X.V.-G., R.S., L.V., L.D., S.L.L., A.V., G.S., S.D., F.G., R.A., M.C.M.)
- CHU d'Angers, France (S.D., J.B., S.H., F.G., R.A., M.C.M.)
| | - Florence Pinet
- Université de Lille, Inserm, CHU Lille, Institute Pasteur De Lille, U1167 - RID-AGE, Lille, France (M.C., F.P.)
| | - Ramaroson Andriantsitohaina
- From the SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, France (L.P., X.V.-G., R.S., L.V., L.D., S.L.L., A.V., G.S., S.D., F.G., R.A., M.C.M.)
- CHU d'Angers, France (S.D., J.B., S.H., F.G., R.A., M.C.M.)
| | - M Carmen Martínez
- From the SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, France (L.P., X.V.-G., R.S., L.V., L.D., S.L.L., A.V., G.S., S.D., F.G., R.A., M.C.M.)
- CHU d'Angers, France (S.D., J.B., S.H., F.G., R.A., M.C.M.)
| |
Collapse
|
22
|
Sanford JA, Nogiec CD, Lindholm ME, Adkins JN, Amar D, Dasari S, Drugan JK, Fernández FM, Radom-Aizik S, Schenk S, Snyder MP, Tracy RP, Vanderboom P, Trappe S, Walsh MJ, Adkins JN, Amar D, Dasari S, Drugan JK, Evans CR, Fernandez FM, Li Y, Lindholm ME, Nogiec CD, Radom-Aizik S, Sanford JA, Schenk S, Snyder MP, Tomlinson L, Tracy RP, Trappe S, Vanderboom P, Walsh MJ, Lee Alekel D, Bekirov I, Boyce AT, Boyington J, Fleg JL, Joseph LJ, Laughlin MR, Maruvada P, Morris SA, McGowan JA, Nierras C, Pai V, Peterson C, Ramos E, Roary MC, Williams JP, Xia A, Cornell E, Rooney J, Miller ME, Ambrosius WT, Rushing S, Stowe CL, Jack Rejeski W, Nicklas BJ, Pahor M, Lu CJ, Trappe T, Chambers T, Raue U, Lester B, Bergman BC, Bessesen DH, Jankowski CM, Kohrt WM, Melanson EL, Moreau KL, Schauer IE, Schwartz RS, Kraus WE, Slentz CA, Huffman KM, Johnson JL, Willis LH, Kelly L, Houmard JA, Dubis G, Broskey N, Goodpaster BH, Sparks LM, Coen PM, Cooper DM, Haddad F, Rankinen T, Ravussin E, Johannsen N, Harris M, Jakicic JM, Newman AB, Forman DD, Kershaw E, Rogers RJ, Nindl BC, Page LC, Stefanovic-Racic M, Barr SL, Rasmussen BB, Moro T, Paddon-Jones D, Volpi E, Spratt H, Musi N, Espinoza S, Patel D, Serra M, Gelfond J, Burns A, Bamman MM, Buford TW, Cutter GR, Bodine SC, Esser K, Farrar RP, Goodyear LJ, Hirshman MF, Albertson BG, Qian WJ, Piehowski P, Gritsenko MA, Monore ME, Petyuk VA, McDermott JE, Hansen JN, Hutchison C, Moore S, Gaul DA, Clish CB, Avila-Pacheco J, Dennis C, Kellis M, Carr S, Jean-Beltran PM, Keshishian H, Mani D, Clauser K, Krug K, Mundorff C, Pearce C, Ivanova AA, Ortlund EA, Maner-Smith K, Uppal K, Zhang T, Sealfon SC, Zaslavsky E, Nair V, Li S, Jain N, Ge Y, Sun Y, Nudelman G, Ruf-zamojski F, Smith G, Pincas N, Rubenstein A, Anne Amper M, Seenarine N, Lappalainen T, Lanza IR, Sreekumaran Nair K, Klaus K, Montgomery SB, Smith KS, Gay NR, Zhao B, Hung CJ, Zebarjadi N, Balliu B, Fresard L, Burant CF, Li JZ, Kachman M, Soni T, Raskind AB, Gerszten R, Robbins J, Ilkayeva O, Muehlbauer MJ, Newgard CB, Ashley EA, Wheeler MT, Jimenez-Morales D, Raja A, Dalton KP, Zhen J, Suk Kim Y, Christle JW, Marwaha S, Chin ET, Hershman SG, Hastie T, Tibshirani R, Rivas MA. Molecular Transducers of Physical Activity Consortium (MoTrPAC): Mapping the Dynamic Responses to Exercise. Cell 2020; 181:1464-1474. [DOI: 10.1016/j.cell.2020.06.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 12/31/2022]
|
23
|
Patil M, Henderson J, Luong H, Annamalai D, Sreejit G, Krishnamurthy P. The Art of Intercellular Wireless Communications: Exosomes in Heart Disease and Therapy. Front Cell Dev Biol 2019; 7:315. [PMID: 31850349 PMCID: PMC6902075 DOI: 10.3389/fcell.2019.00315] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Exosomes are nanoscale membrane-bound extracellular vesicles secreted by most eukaryotic cells in the body that facilitates intercellular communication. Exosomes carry several signaling biomolecules, including miRNA, proteins, enzymes, cell surface receptors, growth factors, cytokines and lipids that can modulate target cell biology and function. Due to these capabilities, exosomes have emerged as novel intercellular signaling mediators in both homeostasis and pathophysiological conditions. Recent studies document that exosomes (both circulating or released from heart tissue) have been actively involved in cardiac remodeling in response to stressors. Also, exosomes released from progenitor/stem cells have protective effects in heart diseases and shown to have regenerative potential in the heart. In this review we discuss- the critical role played by circulating exosomes released from various tissues and from cells within the heart in cardiac health; the gap in knowledge that needs to be addressed to promote future research; and exploitation of recent advances in exosome engineering to develop novel therapy.
Collapse
Affiliation(s)
- Mallikarjun Patil
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - John Henderson
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hien Luong
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Divya Annamalai
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gopalkrishna Sreejit
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
24
|
Ayala‐Mar S, Donoso‐Quezada J, Gallo‐Villanueva RC, Perez‐Gonzalez VH, González‐Valdez J. Recent advances and challenges in the recovery and purification of cellular exosomes. Electrophoresis 2019; 40:3036-3049. [PMID: 31373715 PMCID: PMC6972601 DOI: 10.1002/elps.201800526] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022]
Abstract
Exosomes are nanovesicles secreted by most cellular types that carry important biochemical compounds throughout the body with different purposes, playing a preponderant role in cellular communication. Because of their structure, physicochemical properties and stability, recent studies are focusing in their use as nanocarriers for different therapeutic compounds for the treatment of different diseases ranging from cancer to Parkinson's disease. However, current bioseparation protocols and methodologies are selected based on the final exosome application or intended use and present both advantages and disadvantages when compared among them. In this context, this review aims to present the most important technologies available for exosome isolation while discussing their advantages and disadvantages and the possibilities of being combined with other strategies. This is critical since the development of novel exosome-based therapeutic strategies will be constrained to the effectiveness and yield of the selected downstream purification methodologies for which a thorough understanding of the available technological resources is needed.
Collapse
Affiliation(s)
- Sergio Ayala‐Mar
- Tecnologico de MonterreySchool of Engineering and Science, AvEugenio Garza Sada 2501 SurMonterreyNLMexico
| | - Javier Donoso‐Quezada
- Tecnologico de MonterreySchool of Engineering and Science, AvEugenio Garza Sada 2501 SurMonterreyNLMexico
| | | | - Victor H. Perez‐Gonzalez
- Tecnologico de MonterreySchool of Engineering and Science, AvEugenio Garza Sada 2501 SurMonterreyNLMexico
| | - José González‐Valdez
- Tecnologico de MonterreySchool of Engineering and Science, AvEugenio Garza Sada 2501 SurMonterreyNLMexico
| |
Collapse
|
25
|
Ayala-Mar S, Perez-Gonzalez VH, Mata-Gómez MA, Gallo-Villanueva RC, González-Valdez J. Electrokinetically Driven Exosome Separation and Concentration Using Dielectrophoretic-Enhanced PDMS-Based Microfluidics. Anal Chem 2019; 91:14975-14982. [DOI: 10.1021/acs.analchem.9b03448] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sergio Ayala-Mar
- Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico
| | - Victor H. Perez-Gonzalez
- Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico
| | - Marco A. Mata-Gómez
- Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico
| | - Roberto C. Gallo-Villanueva
- Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico
| | - José González-Valdez
- Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico
| |
Collapse
|
26
|
An Update on Isolation Methods for Proteomic Studies of Extracellular Vesicles in Biofluids. Molecules 2019; 24:molecules24193516. [PMID: 31569778 PMCID: PMC6803898 DOI: 10.3390/molecules24193516] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer enclosed particles which present in almost all types of biofluids and contain specific proteins, lipids, and RNA. Increasing evidence has demonstrated the tremendous clinical potential of EVs as diagnostic and therapeutic tools, especially in biofluids, since they can be detected without invasive surgery. With the advanced mass spectrometry (MS), it is possible to decipher the protein content of EVs under different physiological and pathological conditions. Therefore, MS-based EV proteomic studies have grown rapidly in the past decade for biomarker discovery. This review focuses on the studies that isolate EVs from different biofluids and contain MS-based proteomic analysis. Literature published in the past decade (2009.1-2019.7) were selected and summarized with emphasis on isolation methods of EVs and MS analysis strategies, with the aim to give an overview of MS-based EV proteomic studies and provide a reference for future research.
Collapse
|
27
|
Extracellular Vesicles and Their Potential Use in Monitoring Cancer Progression and Therapy: The Contribution of Proteomics. JOURNAL OF ONCOLOGY 2019; 2019:1639854. [PMID: 31281356 PMCID: PMC6590542 DOI: 10.1155/2019/1639854] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/22/2019] [Indexed: 12/17/2022]
Abstract
Extracellular Vesicles (EVs) are small membrane-enclosed particles released by cells and able to vehiculate information between them. The term EVs categorizes many and different vesicles based on their biogenesis and release pathway, such as exosomes (Exo), ectosomes, or shedding microvesicles (SMVs), apoptotic blebs (ABs), and other EVs subsets, generating a heterogeneous group of components able to redistribute their cargo into the entire organism. Moreover EVs are becoming increasingly important in monitoring cancer progression and therapy, since they are able to carry specific disease biomarkers such as Glypican-1, colon cancer-associated transcript 2, CD63, CD24, and many others. The importance of their biological role together with their heterogeneity prompted researchers to adopt and standardize purification methods able to isolate EVs for characterizing their cargo. In this way, mass spectrometry (MS)-based proteomics approaches are emerging as promising tool for the identification and quantification of EVs protein cargoes, but this technique resulted to be deeply influenced by the low quality of the isolation techniques. This review presents the state-of-the-art of EVs isolation, purification, and characterization for omics studies, with a particular focus to their potential use in monitoring cancer progression and therapy.
Collapse
|