1
|
Kruhlak NL, Schmidt M, Froetschl R, Graber S, Haas B, Horne I, Horne S, King ST, Koval IA, Kumaran G, Langenkamp A, McGovern TJ, Peryea T, Sanh A, Siqueira Ferreira A, van Aerts L, Vespa A, Whomsley R. Determining recommended acceptable intake limits for N-nitrosamine impurities in pharmaceuticals: Development and application of the Carcinogenic Potency Categorization Approach (CPCA). Regul Toxicol Pharmacol 2024; 150:105640. [PMID: 38754805 DOI: 10.1016/j.yrtph.2024.105640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
N-Nitrosamine impurities, including nitrosamine drug substance-related impurities (NDSRIs), have challenged pharmaceutical industry and regulators alike and affected the global drug supply over the past 5 years. Nitrosamines are a class of known carcinogens, but NDSRIs have posed additional challenges as many lack empirical data to establish acceptable intake (AI) limits. Read-across analysis from surrogates has been used to identify AI limits in some cases; however, this approach is limited by the availability of robustly-tested surrogates matching the structural features of NDSRIs, which usually contain a diverse array of functional groups. Furthermore, the absence of a surrogate has resulted in conservative AI limits in some cases, posing practical challenges for impurity control. Therefore, a new framework for determining recommended AI limits was urgently needed. Here, the Carcinogenic Potency Categorization Approach (CPCA) and its supporting scientific rationale are presented. The CPCA is a rapidly-applied structure-activity relationship-based method that assigns a nitrosamine to 1 of 5 categories, each with a corresponding AI limit, reflecting predicted carcinogenic potency. The CPCA considers the number and distribution of α-hydrogens at the N-nitroso center and other activating and deactivating structural features of a nitrosamine that affect the α-hydroxylation metabolic activation pathway of carcinogenesis. The CPCA has been adopted internationally by several drug regulatory authorities as a simplified approach and a starting point to determine recommended AI limits for nitrosamines without the need for compound-specific empirical data.
Collapse
Affiliation(s)
- Naomi L Kruhlak
- US Food and Drug Administration (US FDA), Silver Spring, MD, USA.
| | | | - Roland Froetschl
- Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - Stefan Graber
- Swiss Agency for Therapeutic Products (Swissmedic), Bern, Switzerland
| | - Bodo Haas
- Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - Irene Horne
- Therapeutic Goods Administration (TGA), Canberra, Australia
| | - Stephen Horne
- Pharmaceutical Drugs Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Sruthi T King
- US Food and Drug Administration (US FDA), Silver Spring, MD, USA
| | - Iryna A Koval
- Medicines Evaluation Board (MEB), Utrecht, Netherlands
| | | | - Anja Langenkamp
- Swiss Agency for Therapeutic Products (Swissmedic), Bern, Switzerland
| | | | - Tyler Peryea
- US Food and Drug Administration (US FDA), Silver Spring, MD, USA
| | - Alan Sanh
- French National Agency for Medicines and Health Products Safety (ANSM), Saint-Denis, France
| | | | | | - Alisa Vespa
- Pharmaceutical Drugs Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Rhys Whomsley
- European Medicines Agency (EMA), Amsterdam, Netherlands
| |
Collapse
|
2
|
Ponting DJ, Foster RS. Drawing a Line: Where Might the Cohort of Concern End? Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.3c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- David J. Ponting
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS, United Kingdom
| | - Robert S. Foster
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS, United Kingdom
| |
Collapse
|
3
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Romualdo B, Cristina F, Stephen H, Marco I, Mosbach‐Schulz O, Riolo F, Christodoulidou A, Grasl‐Kraupp B. Risk assessment of N-nitrosamines in food. EFSA J 2023; 21:e07884. [PMID: 36999063 PMCID: PMC10043641 DOI: 10.2903/j.efsa.2023.7884] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
EFSA was asked for a scientific opinion on the risks to public health related to the presence of N-nitrosamines (N-NAs) in food. The risk assessment was confined to those 10 carcinogenic N-NAs occurring in food (TCNAs), i.e. NDMA, NMEA, NDEA, NDPA, NDBA, NMA, NSAR, NMOR, NPIP and NPYR. N-NAs are genotoxic and induce liver tumours in rodents. The in vivo data available to derive potency factors are limited, and therefore, equal potency of TCNAs was assumed. The lower confidence limit of the benchmark dose at 10% (BMDL10) was 10 μg/kg body weight (bw) per day, derived from the incidence of rat liver tumours (benign and malignant) induced by NDEA and used in a margin of exposure (MOE) approach. Analytical results on the occurrence of N-NAs were extracted from the EFSA occurrence database (n = 2,817) and the literature (n = 4,003). Occurrence data were available for five food categories across TCNAs. Dietary exposure was assessed for two scenarios, excluding (scenario 1) and including (scenario 2) cooked unprocessed meat and fish. TCNAs exposure ranged from 0 to 208.9 ng/kg bw per day across surveys, age groups and scenarios. 'Meat and meat products' is the main food category contributing to TCNA exposure. MOEs ranged from 3,337 to 48 at the P95 exposure excluding some infant surveys with P95 exposure equal to zero. Two major uncertainties were (i) the high number of left censored data and (ii) the lack of data on important food categories. The CONTAM Panel concluded that the MOE for TCNAs at the P95 exposure is highly likely (98-100% certain) to be less than 10,000 for all age groups, which raises a health concern.
Collapse
|
4
|
Ponting DJ, Dobo KL, Kenyon MO, Kalgutkar AS. Strategies for Assessing Acceptable Intakes for Novel N-Nitrosamines Derived from Active Pharmaceutical Ingredients. J Med Chem 2022; 65:15584-15607. [PMID: 36441966 DOI: 10.1021/acs.jmedchem.2c01498] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The detection of N-nitrosamines, derived from solvents and reagents and, on occasion, the active pharmaceutical ingredient (API) at higher than acceptable levels in drug products, has led regulators to request a detailed review for their presence in all medicinal products. In the absence of rodent carcinogenicity data for novel N-nitrosamines derived from amine-containing APIs, a conservative class limit of 18 ng/day (based on the most carcinogenic N-nitrosamines) or the derivation of acceptable intakes (AIs) using structurally related surrogates with robust rodent carcinogenicity data is recommended. The guidance has implications for the pharmaceutical industry given the vast number of marketed amine-containing drugs. In this perspective, the rate-limiting step in N-nitrosamine carcinogenicity, involving cytochrome P450-mediated α-carbon hydroxylation to yield DNA-reactive diazonium or carbonium ion intermediates, is discussed with reference to the selection of read-across analogs to derive AIs. Risk-mitigation strategies for managing putative N-nitrosamines in the preclinical discovery setting are also presented.
Collapse
Affiliation(s)
- David J Ponting
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS, United Kingdom
| | - Krista L Dobo
- Drug Safety Research and Development, Global Portfolio and Regulatory Strategy, Pfizer Worldwide Research, Development, and Medical, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Michelle O Kenyon
- Drug Safety Research and Development, Global Portfolio and Regulatory Strategy, Pfizer Worldwide Research, Development, and Medical, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Amit S Kalgutkar
- Medicine Design, Pfizer Worldwide Research, Development, and Medical, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Wenzel J, Schmidt F, Blumrich M, Amberg A, Czich A. Predicting DNA-Reactivity of N-Nitrosamines: A Quantum Chemical Approach. Chem Res Toxicol 2022; 35:2068-2084. [PMID: 36302168 DOI: 10.1021/acs.chemrestox.2c00217] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
N-Nitrosamines (NAs) are a class of reactive organic chemicals that humans may be exposed to from environmental sources, food but also impurities in pharmaceutical preparations. Some NAs were identified as DNA-reactive mutagens and many of those have been classified as probable human carcinogens. Beyond high-potency mutagenic carcinogens that need to be strictly controlled, NAs of low potency need to be considered for risk assessment as well. NA impurities and nitrosylated products of active pharmaceutical ingredients (APIs) often arise from production processes or degradation. Most NAs require metabolic activation to ultimately become carcinogens, and their activation can be appropriately described by first-principles computational chemistry approaches. To this end, we treat NA-induced DNA alkylation as a series of subsequent association and dissociation reaction steps that can be calculated stringently by density functional theory (DFT), including α-hydroxylation, proton transfer, hydroxyl elimination, direct SN2/SNAr DNA alkylation, competing hydrolysis and SN1 reactions. Both toxification and detoxification reactions are considered. The activation reactions are modeled by DFT at a high level of theory with an appropriate solvent model to compute Gibbs free energies of the reactions (thermodynamical effects) and activation barriers (kinetic effects). We study congeneric series of aliphatic and cyclic NAs to identify trends. Overall, this work reveals detailed insight into mechanisms of activation for NAs, suggesting that individual steric and electronic factors have directing and rate-determining influence on the formation of carbenium ions as the ultimate pro-mutagens and thus carcinogens. Therefore, an individual risk assessment of NAs is suggested, as exemplified for the complex API-like 4-(N-nitroso-N-methyl)aminoantipyrine which is considered as low-potency NA by in silico prediction.
Collapse
Affiliation(s)
- Jan Wenzel
- Sanofi, R&D, Preclinical Safety, Industriepark Höchst, Industriepark Höchst, 65926Frankfurt am Main, Germany
| | - Friedemann Schmidt
- Sanofi, R&D, Preclinical Safety, Industriepark Höchst, Industriepark Höchst, 65926Frankfurt am Main, Germany
| | - Matthias Blumrich
- Sanofi, R&D, Preclinical Safety, Industriepark Höchst, Industriepark Höchst, 65926Frankfurt am Main, Germany
| | - Alexander Amberg
- Sanofi, R&D, Preclinical Safety, Industriepark Höchst, Industriepark Höchst, 65926Frankfurt am Main, Germany
| | - Andreas Czich
- Sanofi, R&D, Preclinical Safety, Industriepark Höchst, Industriepark Höchst, 65926Frankfurt am Main, Germany
| |
Collapse
|
6
|
Thomas R, Tennant RE, Oliveira AAF, Ponting DJ. What Makes a Potent Nitrosamine? Statistical Validation of Expert-Derived Structure-Activity Relationships. Chem Res Toxicol 2022; 35:1997-2013. [PMID: 36302501 PMCID: PMC9682520 DOI: 10.1021/acs.chemrestox.2c00199] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 01/09/2023]
Abstract
The discovery of carcinogenic nitrosamine impurities above the safe limits in pharmaceuticals has led to an urgent need to develop methods for extending structure-activity relationship (SAR) analyses from relatively limited datasets, while the level of confidence required in that SAR indicates that there is significant value in investigating the effect of individual substructural features in a statistically robust manner. This is a challenging exercise to perform on a small dataset, since in practice, compounds contain a mixture of different features, which may confound both expert SAR and statistical quantitative structure-activity relationship (QSAR) methods. Isolating the effects of a single structural feature is made difficult due to the confounding effects of other functionality as well as issues relating to determining statistical significance in cases of concurrent statistical tests of a large number of potential variables with a small dataset; a naïve QSAR model does not predict any features to be significant after correction for multiple testing. We propose a variation on Bayesian multiple linear regression to estimate the effects of each feature simultaneously yet independently, taking into account the combinations of features present in the dataset and reducing the impact of multiple testing, showing that some features have a statistically significant impact. This method can be used to provide statistically robust validation of expert SAR approaches to the differences in potency between different structural groupings of nitrosamines. Structural features that lead to the highest and lowest carcinogenic potency can be isolated using this method, and novel nitrosamine compounds can be assigned into potency categories with high accuracy.
Collapse
Affiliation(s)
- Robert Thomas
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, LeedsLS11 5PS, United Kingdom
| | - Rachael E. Tennant
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, LeedsLS11 5PS, United Kingdom
| | | | - David J. Ponting
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, LeedsLS11 5PS, United Kingdom
| |
Collapse
|
7
|
Gómez-Bombarelli R, González-Pérez M, Calle E, Casado J. Potential of the NBP Method for the Study of Alkylation Mechanisms: NBP as a DNA-Model. Chem Res Toxicol 2012; 25:1176-91. [DOI: 10.1021/tx300065v] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rafael Gómez-Bombarelli
- Departamento de Química Física, Facultad de
Ciencias Químicas, Universidad de Salamanca, Plaza de los Caídos, 1-5, E-37008 Salamanca, Spain
| | - Marina González-Pérez
- Departamento de Química Física, Facultad de
Ciencias Químicas, Universidad de Salamanca, Plaza de los Caídos, 1-5, E-37008 Salamanca, Spain
| | - Emilio Calle
- Departamento de Química Física, Facultad de
Ciencias Químicas, Universidad de Salamanca, Plaza de los Caídos, 1-5, E-37008 Salamanca, Spain
| | - Julio Casado
- Departamento de Química Física, Facultad de
Ciencias Químicas, Universidad de Salamanca, Plaza de los Caídos, 1-5, E-37008 Salamanca, Spain
| |
Collapse
|
8
|
|
9
|
Gómez-Bombarelli R, González-Pérez M, Arenas-Valgañón J, Céspedes-Camacho IF, Calle E, Casado J. DNA-damaging disinfection byproducts: alkylation mechanism of mutagenic mucohalic acids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:9009-9016. [PMID: 21910489 DOI: 10.1021/es202251b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Hydroxyhalofuranones form a group of genotoxic disinfection byproduct (DBP) of increasing interest. Among them, mucohalic acids (3,4-dihalo-5-hydroxyfuran-2(5H)-one, MXA) are known mutagens that react with nucleotides, affording etheno, oxaloetheno, and halopropenal derivatives. Mucohalic acids have also found use in organic synthesis due to their high functionalization. In this work, the alkylation kinetics of mucochloric and mucobromic acids with model nucleophiles aniline and NBP has been studied experimentally. Also, the alkylation mechanism of nucleosides by MXA has been studied in silico. The results described allow us to reach the following conclusions: (i) based on the kinetic and computational evidence obtained, a reaction mechanism was proposed, in which MXA react directly with amino groups in nucleotides, preferentially attacking the exocyclic amino groups over the endocyclic aromatic nitrogen atoms; (ii) the suggested mechanism is in agreement with both the product distribution observed experimentally and the mutational pattern of MXA; (iii) the limiting step in the alkylation reaction is addition to the carbonyl group, subsequent steps occurring rapidly; and (iv) mucoxyhalic acids, the hydrolysis products of MXA, play no role in the alkylation reaction by MXA.
Collapse
Affiliation(s)
- Rafael Gómez-Bombarelli
- Departamento de Química física, Facultad de Ciencias Químicas Universidad de Salamanca, Plaza de los Caídos, 1-5 E-37008 Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Shukla P, Ganapathy V, Mishra P. A quantum theoretical study of reactions of methyldiazonium ion with DNA base pairs. Chem Phys 2011. [DOI: 10.1016/j.chemphys.2011.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Manso JA, Camacho IFC, Calle E, Casado J. Alkylating potential of α,β-unsaturated compounds. Org Biomol Chem 2011; 9:6226-33. [PMID: 21773622 DOI: 10.1039/c1ob05298e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alkylation reactions of the nucleoside guanosine (Guo) by the α,β-unsaturated compounds (α,β-UC) acrylonitrile (AN), acrylamide (AM), acrylic acid (AA) and acrolein (AC), which can act as alkylating agents of DNA, were investigated kinetically. The following conclusions were drawn: i) The Guo alkylation mechanism by AC is different from those brought about the other α,β-UC; ii) for the first three, the following sequence of alkylating potential was found: AN > AM > AA; iii) A correlation between the chemical reactivity (alkylation rate constants) of AN, AM, and AA and their capacity to form adducts with biomarkers was found. iv) Guo alkylation reactions for AN and AM occur through Michael addition mechanisms, reversible in the first case, and irreversible in the second. The equilibrium constant for the formation of the Guo-AN adduct is K(eq) (37 °C) = 5 × 10(-4); v) The low energy barrier (≈10 kJ mol(-1)) to reverse the Guo alkylation by AN reflects the easy reversibility of this reaction and its possible correction by repair mechanisms; vi) No reaction was observed for AN, AM, and AA at pH < 8.0. In contrast, Guo alkylation by AC was observed under cellular pH conditions. The reaction rate constants for the formation of the α-OH-Guo adduct (the most genotoxic isomer), is 1.5-fold faster than that of γ-OH-Guo. vii) a correlation between the chemical reactivity of α,β-UC (alkylation rate constants) and mutagenicity was found.
Collapse
Affiliation(s)
- José A Manso
- Departamento de Química Física, Universidad de Salamanca, Salamanca, Spain
| | | | | | | |
Collapse
|
12
|
González-Pérez M, Gómez-Bombarelli R, Pérez-Prior MT, Manso JA, Céspedes-Camacho IF, Calle E, Casado J. Reactivity of p-nitrostyrene oxide as an alkylating agent. A kinetic approach to biomimetic conditions. Org Biomol Chem 2011; 9:7016-22. [DOI: 10.1039/c1ob05909b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Abstract
Small, highly strained heterocycles are archetypical alkylating agents (oxiranes, beta-lactones, aziridinium, and thiirinium ions). Oxetanes, which are tetragonal ethers, are higher homologues of oxiranes and reduced counterparts of beta-lactones, and would therefore be expected to be active alkylating agents. Oxetanes are widely used in the manufacture of polymers, especially in organic light-emitting diodes (OLEDs), and are present, as a substructure, in compounds such as the widely used antimitotic taxol. Whereas the results of animal tests suggest that trimethylene oxide (TMO), the parent compound, and beta,beta-dimethyloxetane (DMOX) are active carcinogens at the site of injection, no studies have explored the alkylating ability and genotoxicity of oxetanes. This work addresses the issue using a mixed methodology: a kinetic study of the alkylation reaction of 4-(p-nitrobenzyl)pyridine (NBP), a trap for alkylating agents with nucleophilicity similar to that of DNA bases, by three oxetanes (TMO, DMOX, and methyloxetanemethanol), and a mutagenicity, genotoxicity, and cell viability study (Salmonella microsome test, BTC E. coli test, alkaline comet assay, and MTT assay). The results suggest either that oxetanes lack genotoxic capacity or that their mode of action is very different from that of epoxides and beta-lactones.
Collapse
|
14
|
Céspedes-Camacho IF, Manso JA, Pérez-Prior MT, Gómez-Bombarelli R, González-Pérez M, Calle E, Casado J. Reactivity of acrylamide as an alkylating agent: a kinetic approach. J PHYS ORG CHEM 2009. [DOI: 10.1002/poc.1600] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Pérez-Prior MT, Gómez-Bombarelli R, González-Pérez M, Manso JA, García-Santos MP, Calle E, Casado J. Sorbate−Nitrite Interactions: Acetonitrile Oxide as an Alkylating Agent. Chem Res Toxicol 2009; 22:1320-4. [DOI: 10.1021/tx9001226] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - José A. Manso
- Departamento de Química Física, Universidad de Salamanca, E-37008 Salamanca, Spain
| | | | - Emilio Calle
- Departamento de Química Física, Universidad de Salamanca, E-37008 Salamanca, Spain
| | - Julio Casado
- Departamento de Química Física, Universidad de Salamanca, E-37008 Salamanca, Spain
| |
Collapse
|
16
|
Manso JA, Pérez-Prior MT, Gómez-Bombarelli R, González-Pérez M, Céspedes IF, García-Santos MP, Calle E, Casado J. Alkylating potential ofN-phenyl-N-nitrosourea. J PHYS ORG CHEM 2009. [DOI: 10.1002/poc.1456] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Gómez-Bombarelli R, González-Pérez M, Pérez-Prior MT, Manso JA, Calle E, Casado J. Kinetic study of the neutral and base hydrolysis of diketene. J PHYS ORG CHEM 2009. [DOI: 10.1002/poc.1483] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|