1
|
Haudum S, Strasser P, Teasdale I. Phosphorus and Silicon-Based Macromolecules as Degradable Biomedical Polymers. Macromol Biosci 2023; 23:e2300127. [PMID: 37326117 DOI: 10.1002/mabi.202300127] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Synthetic polymers are indispensable in biomedical applications because they can be fabricated with consistent and reproducible properties, facile scalability, and customizable functionality to perform diverse tasks. However, currently available synthetic polymers have limitations, most notably when timely biodegradation is required. Despite there being, in principle, an entire periodic table to choose from, with the obvious exception of silicones, nearly all known synthetic polymers are combinations of carbon, nitrogen, and oxygen in the main chain. Expanding this to main-group heteroatoms can open the way to novel material properties. Herein the authors report on research to incorporate the chemically versatile and abundant silicon and phosphorus into polymers to induce cleavability into the polymer main chain. Less stable polymers, which degrade in a timely manner in mild biological environments, have considerable potential in biomedical applications. Herein the basic chemistry behind these materials is described and some recent studies into their medical applications are highlighted.
Collapse
Affiliation(s)
- Stephan Haudum
- Johannes Kepler University Linz, Altenbergerstrasse 69, Linz, 4040, Austria
| | - Paul Strasser
- Johannes Kepler University Linz, Altenbergerstrasse 69, Linz, 4040, Austria
| | - Ian Teasdale
- Johannes Kepler University Linz, Altenbergerstrasse 69, Linz, 4040, Austria
| |
Collapse
|
2
|
Strasser P, Montsch B, Weiss S, Sami H, Kugler C, Hager S, Schueffl H, Mader R, Brüggemann O, Kowol CR, Ogris M, Heffeter P, Teasdale I. Degradable Bottlebrush Polypeptides and the Impact of their Architecture on Cell Uptake, Pharmacokinetics, and Biodistribution In Vivo. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300767. [PMID: 36843221 PMCID: PMC11475343 DOI: 10.1002/smll.202300767] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Indexed: 06/02/2023]
Abstract
Bottlebrush polymers are highly promising as unimolecular nanomedicines due to their unique control over the critical parameters of size, shape and chemical function. However, since they are prepared from biopersistent carbon backbones, most known bottlebrush polymers are non-degradable and thus unsuitable for systemic therapeutic administration. Herein, we report the design and synthesis of novel poly(organo)phosphazene-g-poly(α-glutamate) (PPz-g-PGA) bottlebrush polymers with exceptional control over their structure and molecular dimensions (Dh ≈ 15-50 nm). These single macromolecules show outstanding aqueous solubility, ultra-high multivalency and biodegradability, making them ideal as nanomedicines. While well-established in polymer therapeutics, it has hitherto not been possible to prepare defined single macromolecules of PGA in these nanosized dimensions. A direct correlation was observed between the macromolecular dimensions of the bottlebrush polymers and their intracellular uptake in CT26 colon cancer cells. Furthermore, the bottlebrush macromolecular structure visibly enhanced the pharmacokinetics by reducing renal clearance and extending plasma half-lives. Real-time analysis of the biodistribution dynamics showed architecture-driven organ distribution and enhanced tumor accumulation. This work, therefore, introduces a robust, controlled synthesis route to bottlebrush polypeptides, overcoming limitations of current polymer-based nanomedicines and, in doing so, offers valuable insights into the influence of architecture on the in vivo performance of nanomedicines.
Collapse
Affiliation(s)
- Paul Strasser
- Institute of Polymer ChemistryJohannes Kepler University LinzLinz4040Austria
| | - Bianca Montsch
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaVienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”University of ViennaVienna1090Austria
| | - Silvia Weiss
- Laboratory of Macromolecular Cancer Therapeutics (MMCT)Department of Pharmaceutical SciencesFaculty of Life SciencesUniversity of ViennaVienna1090Austria
| | - Haider Sami
- Laboratory of Macromolecular Cancer Therapeutics (MMCT)Department of Pharmaceutical SciencesFaculty of Life SciencesUniversity of ViennaVienna1090Austria
| | - Christoph Kugler
- Laboratory of Macromolecular Cancer Therapeutics (MMCT)Department of Pharmaceutical SciencesFaculty of Life SciencesUniversity of ViennaVienna1090Austria
| | - Sonja Hager
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaVienna1090Austria
- Department of Food Chemistry and ToxicologyFaculty of ChemistryUniversity of ViennaVienna1090Austria
| | - Hemma Schueffl
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaVienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”University of ViennaVienna1090Austria
| | - Robert Mader
- Department of Medicine IMedical University of ViennaVienna1090Austria
| | - Oliver Brüggemann
- Institute of Polymer ChemistryJohannes Kepler University LinzLinz4040Austria
| | - Christian R. Kowol
- Research Cluster “Translational Cancer Therapy Research”University of ViennaVienna1090Austria
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaVienna1090Austria
| | - Manfred Ogris
- Laboratory of Macromolecular Cancer Therapeutics (MMCT)Department of Pharmaceutical SciencesFaculty of Life SciencesUniversity of ViennaVienna1090Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer CenterMedical University ViennaVienna1090Austria
- Research Cluster “Translational Cancer Therapy Research”University of ViennaVienna1090Austria
| | - Ian Teasdale
- Institute of Polymer ChemistryJohannes Kepler University LinzLinz4040Austria
| |
Collapse
|
3
|
Tian R, Li K, Lin Y, Lu C, Duan X. Characterization Techniques of Polymer Aging: From Beginning to End. Chem Rev 2023; 123:3007-3088. [PMID: 36802560 DOI: 10.1021/acs.chemrev.2c00750] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Polymers have been widely applied in various fields in the daily routines and the manufacturing. Despite the awareness of the aggressive and inevitable aging for the polymers, it still remains a challenge to choose an appropriate characterization strategy for evaluating the aging behaviors. The difficulties lie in the fact that the polymer features from the different aging stages require different characterization methods. In this review, we present an overview of the characterization strategies preferable for the initial, accelerated, and late stages during polymer aging. The optimum strategies have been discussed to characterize the generation of radicals, variation of functional groups, substantial chain scission, formation of low-molecular products, and deterioration in the polymers' macro-performances. In view of the advantages and the limitations of these characterization techniques, their utilization in a strategic approach is considered. In addition, we highlight the structure-property relationship for the aged polymers and provide available guidance for lifetime prediction. This review could allow the readers to be knowledgeable of the features for the polymers in the different aging stages and provide access to choose the optimum characterization techniques. We believe that this review will attract the communities dedicated to materials science and chemistry.
Collapse
Affiliation(s)
- Rui Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kaitao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanjun Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- School of Chemical Engineering, Qinghai University, Xining 810016, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xue Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
Casella G, Carlotto S, Lanero F, Mozzon M, Sgarbossa P, Bertani R. Cyclo- and Polyphosphazenes for Biomedical Applications. Molecules 2022; 27:8117. [PMID: 36500209 PMCID: PMC9736570 DOI: 10.3390/molecules27238117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Cyclic and polyphosphazenes are extremely interesting and versatile substrates characterized by the presence of -P=N- repeating units. The chlorine atoms on the P atoms in the starting materials can be easily substituted with a variety of organic substituents, thus giving rise to a huge number of new materials for industrial applications. Their properties can be designed considering the number of repetitive units and the nature of the substituent groups, opening up to a number of peculiar properties, including the ability to give rise to supramolecular arrangements. We focused our attention on the extensive scientific literature concerning their biomedical applications: as antimicrobial agents in drug delivery, as immunoadjuvants in tissue engineering, in innovative anticancer therapies, and treatments for cardiovascular diseases. The promising perspectives for their biomedical use rise from the opportunity to combine the benefits of the inorganic backbone and the wide variety of organic side groups that can lead to the formation of nanoparticles, polymersomes, or scaffolds for cell proliferation. In this review, some aspects of the preparation of phosphazene-based systems and their characterization, together with some of the most relevant chemical strategies to obtain biomaterials, have been described.
Collapse
Affiliation(s)
- Girolamo Casella
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Via Archirafi 22, 90123 Palermo, Italy
| | - Silvia Carlotto
- Department of Chemical Sciences (DiSC), University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), National Research Council (CNR), c/o Department of Chemical Sciences (DiSC), University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Francesco Lanero
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Mirto Mozzon
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Paolo Sgarbossa
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Roberta Bertani
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
5
|
Brito J, Andrianov AK, Sukhishvili SA. Factors Controlling Degradation of Biologically Relevant Synthetic Polymers in Solution and Solid State. ACS APPLIED BIO MATERIALS 2022; 5:5057-5076. [PMID: 36206552 DOI: 10.1021/acsabm.2c00694] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The field of biodegradable synthetic polymers, which is central for regenerative engineering and drug delivery applications, encompasses a multitude of hydrolytically sensitive macromolecular structures and diverse processing approaches. The ideal degradation behavior for a specific life science application must comply with a set of requirements, which include a clinically relevant kinetic profile, adequate biocompatibility, benign degradation products, and controlled structural evolution. Although significant advances have been made in tailoring materials characteristics to satisfy these requirements, the impacts of autocatalytic reactions and microenvironments are often overlooked resulting in uncontrollable and unpredictable outcomes. Therefore, roles of surface versus bulk erosion, in situ microenvironment, and autocatalytic mechanisms should be understood to enable rational design of degradable systems. In an attempt to individually evaluate the physical state and form factors influencing autocatalytic hydrolysis of degradable polymers, this Review follows a hierarchical analysis that starts with hydrolytic degradation of water-soluble polymers before building up to 2D-like materials, such as ultrathin coatings and capsules, and then to solid-state degradation. We argue that chemical reactivity largely governs solution degradation while diffusivity and geometry control the degradation of bulk materials, with thin "2D" materials remaining largely unexplored. Following this classification, this Review explores techniques to analyze degradation in vitro and in vivo and summarizes recent advances toward understanding degradation behavior for traditional and innovative polymer systems. Finally, we highlight challenges encountered in analytical methodology and standardization of results and provide perspective on the future trends in the development of biodegradable polymers.
Collapse
Affiliation(s)
- Jordan Brito
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas77843, United States
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland20850, United States
| | - Svetlana A Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas77843, United States
| |
Collapse
|
6
|
Subash A, Basanth A, Kandasubramanian B. Biodegradable polyphosphazene – hydroxyapatite composites for bone tissue engineering. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2082426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Alsha Subash
- Department of Metallurgical and Materials Engineering, Nano Surface Texturing Laboratory, Defence Institute of Advanced Technology (DU), Ministry of Defence, Pune, Maharashtra, India
| | - Abina Basanth
- Biopolymer Science, CIPET: Institute of Plastics Technology (IPT), Kochi, India
| | - Balasubramanian Kandasubramanian
- Department of Metallurgical and Materials Engineering, Nano Surface Texturing Laboratory, Defence Institute of Advanced Technology (DU), Ministry of Defence, Pune, Maharashtra, India
| |
Collapse
|
7
|
Strasser P, Monkowius U, Teasdale I. Main group element and metal-containing polymers as photoresponsive soft materials. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
8
|
Quiñones JP, Roschger C, Iturmendi A, Henke H, Zierer A, Peniche-Covas C, Brüggemann O. Polyphosphazene-Based Nanocarriers for the Release of Camptothecin and Epirubicin. Pharmaceutics 2022; 14:169. [PMID: 35057062 PMCID: PMC8781282 DOI: 10.3390/pharmaceutics14010169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 12/24/2022] Open
Abstract
The design and study of efficient polymer-based drug delivery systems for the controlled release of anticancer drugs is one of the pillars of nanomedicine. The fight against metastatic and invasive cancers demands therapeutic candidates with increased and selective toxicity towards malignant cells, long-term activity and reduced side effects. In this sense, polyphosphazene nanocarriers were synthesized for the sustained release of the anticancer drugs camptothecin (CPT) and epirubicin (EPI). Linear poly(dichloro)phosphazene was modified with lipophilic tocopherol or testosterone glycinate, with antioxidant and antitumor activity, and with hydrophilic Jeffamine M1000 to obtain different polyphosphazene nanocarriers. It allowed us to encapsulate the lipophilic CPT and the more hydrophilic EPI. The encapsulation process was carried out via solvent exchange/precipitation, attaining a 9.2-13.6 wt% of CPT and 0.3-2.4 wt% of EPI. CPT-loaded polyphosphazenes formed 140-200 nm aggregates in simulated body physiological conditions (PBS, pH 7.4), resulting in an 80-100-fold increase of CPT solubility. EPI-loaded polyphosphazenes formed 250 nm aggregates in an aqueous medium. CPT and EPI release (PBS, pH 7.4, 37 °C) was monitored for 202 h, being almost linear during the first 8 h. The slow release of testosterone and tocopherol was also sustained for 150 h in PBS (pH 7.4 and 6.0) at 37 °C. The co-delivery of testosterone or tocopherol and the anticancer drugs from the nanocarriers was expected. Cells of the human breast cancer cell line MCF-7 demonstrated good uptake of anticancer-drug-loaded nanocarriers after 6 h. Similarly, MCF-7 spheroids showed good uptake of the anticancer-drug-loaded aggregates after 72 h. Almost all anticancer-drug-loaded polyphosphazenes exhibited similar or superior toxicity against MCF-7 cells and spheroids when compared to raw anticancer drugs. Additionally, cell-cycle arrest in the G2/M phase was increased in response to the drug-loaded nanocarriers. Almost no toxicity of anticancer-drug-loaded aggregates against primary human lung fibroblasts was observed. Furthermore, the aggregates displayed no hemolytic activity, which is in contrast to the parent anticancer drugs. Consequently, synthesized polyphosphazene-based nanocarriers might be potential nanomedicines for chemotherapy.
Collapse
Affiliation(s)
- Javier Pérez Quiñones
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria; (A.I.); (H.H.); (O.B.)
| | - Cornelia Roschger
- Department for Cardiac-, Vascular- and Thoracic Surgery, Johannes Kepler University Linz, Kepler University Hospital GmBH, Altenberger Straße 69, 4040 Linz and Krankenhausstraße 7a, 4020 Linz, Austria; (C.R.); (A.Z.)
| | - Aitziber Iturmendi
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria; (A.I.); (H.H.); (O.B.)
| | - Helena Henke
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria; (A.I.); (H.H.); (O.B.)
| | - Andreas Zierer
- Department for Cardiac-, Vascular- and Thoracic Surgery, Johannes Kepler University Linz, Kepler University Hospital GmBH, Altenberger Straße 69, 4040 Linz and Krankenhausstraße 7a, 4020 Linz, Austria; (C.R.); (A.Z.)
| | - Carlos Peniche-Covas
- Facultad de Química, Universidad de La Habana, Zapata S/N entre G y Carlitos Aguirre, La Habana 10400, Cuba;
| | - Oliver Brüggemann
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria; (A.I.); (H.H.); (O.B.)
| |
Collapse
|
9
|
Bouché M, Cormode DP. Biodegradable AuNP-Based Plasmonic Nanogels as Contrast Agents for Computed Tomography and Photoacoustics. Methods Mol Biol 2022; 2393:773-796. [PMID: 34837211 DOI: 10.1007/978-1-0716-1803-5_41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gold nanoparticles (AuNP) are well-established contrast agents in computed tomography (CT) and photoacoustic imaging (PAI). A wide variety of AuNP sizes, shapes, and coatings have been reported for these applications. However, for clinical translation, AuNP should be excretable to avoid long-term accumulation and possible side effects. Sub-5 nm AuNP have the benefit to be excretable through kidney filtration, therefore their loading in biodegradable nanogels holds promise to result in contrast agents that have long circulation times in the vasculature and subsequent biodegradation for excretion. Polyphosphazenes are intrinsically biodegradable polymers capable of forming nanogels with high payloads, and to release their payloads upon degradation. The significant development in polyphosphazenes that have tailored degradation kinetics, and their formulation with drugs or contrast agents, has shown potential as a biodegradable platform for imaging vasculature and endogenous molecules, by combination of CT and PA modalities. Therefore, we herein present methods for the formulation of AuNP assemblies loaded in nanogels composed of biodegradable polyphosphazenes, with a size range from 50 to 200 nm. We describe protocols for their characterization by UV-vis spectroscopy, Fourier-transform infrared spectroscopy, various microscopy techniques, elemental quantification by induced coupling plasma optical emission spectroscopy and contrast production in both CT and PAI. Finally, we detail the methods to investigate their effect on cells, distribution in cells and imaging properties for detection of endogenous molecules.
Collapse
Affiliation(s)
- Mathilde Bouché
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - David P Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Abid MA, Hussain S, Intisar A, Rizwan M, Ain Q, Mutahir Z, Yar M, Aamir A, Qureshi AK, Jamil M. Synthesis, characterization, hydrolytic degradation, mathematical modeling and antibacterial activity of poly[bis((methoxyethoxy)ethoxy)phosphazene] (MEEP). Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03625-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Zashikhina N, Vasileva M, Perevedentseva O, Tarasenko I, Tennikova T, Korzhikova-Vlakh E. Synthesis and Characterization of Macroinitiators Based on Polyorganophosphazenes for the Ring Opening Polymerization of N-Carboxyanhydrides. Polymers (Basel) 2021; 13:polym13091446. [PMID: 33947073 PMCID: PMC8124460 DOI: 10.3390/polym13091446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/23/2022] Open
Abstract
Among the various biocompatible amphiphilic copolymers, biodegradable ones are the most promising for the preparation of drug delivery systems since they are destroyed under physiological conditions, that, as a rule, reduce toxicity and provide controlled release of the drug. Hybrid graft-copolymers consisting of the main inorganic polyphosphazene chain and polypeptide side chains are of considerable interest for the development of delivery systems with a controlled degradation rate, since the main and side chains will have different degradation mechanisms (chemical and enzymatic hydrolysis, respectively). Variable particle degradation rate, controlled by the adjusting the composition of substituents, will allow selective delivery in vivo and controlled drug release. The present work proposes the preparation of biodegradable macroinitiators based on polyorganophosphazenes for the synthesis of hybrid copolymers. Synthesis of novel biodegradable macroinitiators based on polyorganophosphazenes was performed via macromolecular substitution of a polydichlorophosphazene chain with the sodium alcoholates, amines and amino acids. The composition of copolymers obtained was calculated using NMR. These polyorganophosphazenes bearing primary amino groups can be considered as convenient macroinitiators for the polymerization of NCA of α-amino acids in order to prepare hybrid copolymers polyphosphazene-graft-polypeptide. The developed macroinitiators were amphiphilic and self-assembled in the aqueous media into nanoparticles. Furthermore, the ability to encapsulate and release a model substance was demonstrated. In addition, the in vitro cytotoxicity of synthesized polymers was evaluated using two cell lines.
Collapse
Affiliation(s)
- Natalia Zashikhina
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.Z.); (M.V.); (O.P.); (I.T.)
| | - Marina Vasileva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.Z.); (M.V.); (O.P.); (I.T.)
| | - Olga Perevedentseva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.Z.); (M.V.); (O.P.); (I.T.)
- St. Petersburg State Institute of Technology, Moskovsky Prospect 26, 190013 St. Petersburg, Russia
| | - Irina Tarasenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.Z.); (M.V.); (O.P.); (I.T.)
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Universitesky pr. 26, 198504 St. Petersburg, Russia;
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.Z.); (M.V.); (O.P.); (I.T.)
- Institute of Chemistry, Saint-Petersburg State University, Universitesky pr. 26, 198504 St. Petersburg, Russia;
- Correspondence: ; Tel.: +7-(812)-323-04-61
| |
Collapse
|
12
|
Facile preparation of pH/redox dual-responsive biodegradable polyphosphazene prodrugs for effective cancer chemotherapy. Colloids Surf B Biointerfaces 2021; 200:111573. [PMID: 33476954 DOI: 10.1016/j.colsurfb.2021.111573] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 11/20/2022]
Abstract
In order to maximize the therapeutic effect and and minimize the systemtic side effect of the small molecule anticancer drugs, biodegradable drug delivery systems (DDSs) that respond to tumor microenvironment (TME) have attracted significant attention. Herein, a novel redox/pH dual-responsive and biodegradable polyphosphazene (PPZ) nano-prodrugs have been prepared via one-pot crosslinking of vanillin modified DOX (VMD, acid-sensitive) and 4,4'-dihydroxydiphenyl disulfide (HPS, GSH-responsive) with hexachlorocyclotriphosphazene (HCCP). The phenol groups of the as-synthesized VMD and HPS have high nucleophilic substitution activity towards HCCP under base catalyst and afforded PPZ nano-prodrugs, denoted as HCCP-VMD-HPS, with a high drug loading ratio of up to 56.4 %. As expected, the skeleton of the PPZ consisting of imine bonds in VMD and the disulfide bonds in HPS and cyclotriphosphazenes inclined to be decomposed in low pH conditions and high level of GSH environments. The antitumor drug DOX was found to be controlled released in TME conditions (extracellular, pH∼6.8 and endosomes, lysosomes pH∼5.0 with ∼10 mM GSH), rather than neutral physiological conditions (pH 7.4 with ∼20 μM GSH). Moreover, the resulting HCCP-VMD-HPS nano-prodrug have obvious cytotoxicity to cancer cells while a negligible side effect to normal cells. We therefore believe that the prepared redox/pH dual-responsive and biodegradable PPZ DDSs have great potential in various field.
Collapse
|
13
|
Sagdic G, Daglar O, Gunay US, Cakmakci E, Hizal G, Tunca U, Durmaz H. Practical phosphorylation of polymers: an easy access to fully alcohol soluble synthetically and industrially important polymers. Polym Chem 2021. [DOI: 10.1039/d1py00726b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple method for the phosphorylation of synthetically and industrially important polymers is introduced to the polymer community.
Collapse
Affiliation(s)
- Gokhan Sagdic
- Department of Chemistry
- Istanbul Technical University
- Istanbul
- Turkey
| | - Ozgun Daglar
- Department of Chemistry
- Istanbul Technical University
- Istanbul
- Turkey
| | - Ufuk Saim Gunay
- Department of Chemistry
- Istanbul Technical University
- Istanbul
- Turkey
| | - Emrah Cakmakci
- Department of Chemistry
- Marmara University
- 34722 Istanbul
- Turkey
| | - Gurkan Hizal
- Department of Chemistry
- Istanbul Technical University
- Istanbul
- Turkey
| | - Umit Tunca
- Department of Chemistry
- Istanbul Technical University
- Istanbul
- Turkey
| | - Hakan Durmaz
- Department of Chemistry
- Istanbul Technical University
- Istanbul
- Turkey
| |
Collapse
|
14
|
Zhou N, Zhang N, Zhi Z, Jing X, Liu D, Shao Y, Wang D, Meng L. One-pot synthesis of acid-degradable polyphosphazene prodrugs for efficient tumor chemotherapy. J Mater Chem B 2020; 8:10540-10548. [PMID: 33118582 DOI: 10.1039/d0tb01992e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
In order to improve the therapeutic efficacy and reduce the side effects of anticancer drugs, stimuli-responsive and biodegradable drug-delivery systems have attracted significant attention in the past three decades. Herein, we report acid-responsive and degradable polyphosphazene nano-prodrugs synthesized via a one-pot cross-linking reaction of 4-hydroxybenzhydrazide-modified doxorubicin (BMD) with hexachlorocyclotriphosphazene (HCCP). The phenol groups in the as-synthesized BMD exhibited a high reactivity towards HCCP and in the presence of a basic catalyst the determined drug loading ratio of the nanoparticles, denoted as HCCP-BMD, was up to 85.64%. Interestingly, the hydrazone bonds in BMD and the skeleton of polyphosphazene tended to break down in acidic environments, and the antitumor active drug DOX was found to be released in an acidic tumor microenvironment (pH ∼ 6.8 for extracellular, and pH ∼ 5.0 for endosomes and lysosomes). The resulting HCCP-BMD prodrug exhibited high cytotoxicity to HeLa cells and could effectively suppress tumor growth, with negligible damage to normal tissues. We therefore believe that this acid- degradable polyphosphazene prodrug may offer great potential in various biomedical fields.
Collapse
Affiliation(s)
- Na Zhou
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Ogueri KS, Ogueri KS, Ude CC, Allcock HR, Laurencin CT. Biomedical applications of polyphosphazenes. MEDICAL DEVICES & SENSORS 2020; 3:e10113. [PMID: 33889811 PMCID: PMC8059710 DOI: 10.1002/mds3.10113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022]
Abstract
Ever since the pioneering research efforts on their utility in biomedicine, polyphosphazene polymers have witnessed enormous growth and expansion in several biomedical applications due to their unique properties. The development of this exceptional biodegradable system with extraordinary design flexibility, property tunability and neutral bioactivity could stimulate an unprecedented paradigm in biomaterial design. Thus, polyphosphazenes are, undoubtedly, the next-generation biomaterials. This editorial provides a brief perspective on the promising prospects of polyphosphazene-based biomaterials for medical device technology, focusing mainly on the authors' work on this particular polymeric system.
Collapse
Affiliation(s)
- Kenneth S. Ogueri
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Kennedy S. Ogueri
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Chinedu C. Ude
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut, USA
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Harry R. Allcock
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Cato T. Laurencin
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut, USA
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
16
|
Poscher V, Pappas GS, Brüggemann O, Teasdale I, Salinas Y. Hybrid Porous Microparticles Based on a Single Organosilica Cyclophosphazene Precursor. Int J Mol Sci 2020; 21:ijms21228552. [PMID: 33202795 PMCID: PMC7698118 DOI: 10.3390/ijms21228552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 02/01/2023] Open
Abstract
Porous organosilica microparticles consisting of silane-derived cyclophosphazene bridges were synthesized by a surfactant-mediated sol-gel process. Starting from the substitution of hexachlorocyclotriphosphazene with allylamine, two different precursors were obtained by anchoring three or six alkoxysilane units, via a thiol-ene photoaddition reaction. In both cases, spherical, microparticles (size average of ca. 1000 nm) with large pores were obtained, confirmed by both, scanning and transmission electron microscopy. Particles synthesized using the partially functionalized precursor containing free vinyl groups were further functionalized with a thiol-containing molecule. While most other reported mesoporous organosilica particles are essentially hybrids with tetraethyl orthosilicate (TEOS), a unique feature of these particles is that structural control is achieved by exclusively using organosilane precursors. This allows an increase in the proportion of the co-components and could springboard these novel phosphorus-containing organosilica microparticles for different areas of technology.
Collapse
Affiliation(s)
- Vanessa Poscher
- Institute of Polymer Chemistry, Johannes Kepler University at Linz, Altenberger Strasse 69, 4040 Linz, Austria; (V.P.); (G.S.P.); (O.B.); (I.T.)
- Linz Institute of Technology (LIT), Johannes Kepler University at Linz, Altenberger Strasse 69, 4040 Linz, Austria
| | - George S. Pappas
- Institute of Polymer Chemistry, Johannes Kepler University at Linz, Altenberger Strasse 69, 4040 Linz, Austria; (V.P.); (G.S.P.); (O.B.); (I.T.)
| | - Oliver Brüggemann
- Institute of Polymer Chemistry, Johannes Kepler University at Linz, Altenberger Strasse 69, 4040 Linz, Austria; (V.P.); (G.S.P.); (O.B.); (I.T.)
| | - Ian Teasdale
- Institute of Polymer Chemistry, Johannes Kepler University at Linz, Altenberger Strasse 69, 4040 Linz, Austria; (V.P.); (G.S.P.); (O.B.); (I.T.)
- Linz Institute of Technology (LIT), Johannes Kepler University at Linz, Altenberger Strasse 69, 4040 Linz, Austria
| | - Yolanda Salinas
- Institute of Polymer Chemistry, Johannes Kepler University at Linz, Altenberger Strasse 69, 4040 Linz, Austria; (V.P.); (G.S.P.); (O.B.); (I.T.)
- Linz Institute of Technology (LIT), Johannes Kepler University at Linz, Altenberger Strasse 69, 4040 Linz, Austria
- Correspondence: ; Tel.: +43-732-2468-9075
| |
Collapse
|
17
|
Hsu W, Csaba N, Alexander C, Garcia‐Fuentes M. Polyphosphazenes for the delivery of biopharmaceuticals. J Appl Polym Sci 2020. [DOI: 10.1002/app.48688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wei‐Hsin Hsu
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS)Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Division of Molecular Therapeutics and Formulation School of PharmacyUniversity of Nottingham UK
| | - Noemi Csaba
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS)Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Cameron Alexander
- Division of Molecular Therapeutics and Formulation School of PharmacyUniversity of Nottingham UK
| | - Marcos Garcia‐Fuentes
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS)Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
18
|
Zhou N, Zhi Z, Liu D, Wang D, Shao Y, Yan K, Meng L, Yu D. Acid-Responsive and Biologically Degradable Polyphosphazene Nanodrugs for Efficient Drug Delivery. ACS Biomater Sci Eng 2020; 6:4285-4293. [PMID: 33463351 DOI: 10.1021/acsbiomaterials.0c00378] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To enhance the therapeutic effects and reduce the damage to normal tissues in cancer chemotherapy, it is indispensable to develop drug delivery carriers with controllable release and good biocompatibility. In this work, acid-responsive and degradable polyphosphazene (PPZ) nanoparticles were synthesized by the reaction of hexachlorotripolyphosphonitrile (HCCP) with 4-hydroxy-benzoic acid (4-hydroxy-benzylidene)-hydrazide (HBHBH) and anticancer drug doxorubicin (DOX). The controlled release of DOX could be realized based on the acid responsiveness of acylhydrazone in HBHBH. Experimental results showed that polyphosphazene nanoparticles remained stable in the body's normal fluids (pH ∼ 7.4), while they were degraded and controllable release of DOX in an acidic environment such as tumors (pH ∼ 6.8) and lysosome and endosome (∼5.0) in cancer cells In particular, the doxorubicin (DOX)-loading ratio was fair high and could be tuned from 10.6 to 52.6% by changing the dosing ratio of DOX to HBHBH. Meanwhile, the polyphosphazene nanodrugs showed excellent toxicity to tumor cells and reduced the side effect to normal cells both in vitro and in vivo due to their enhanced permeability and retention (EPR) effect and pH-sensitive degradation properties. Therefore, the constructed pH-sensitive drug delivery system has great potential for cancer chemotherapy.
Collapse
Affiliation(s)
- Na Zhou
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China.,Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zhe Zhi
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Daomeng Liu
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Daquan Wang
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yongping Shao
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kai Yan
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lingjie Meng
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China.,Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an 710049, China
| | - Demei Yu
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
19
|
Strasser P, Teasdale I. Main-Chain Phosphorus-Containing Polymers for Therapeutic Applications. Molecules 2020; 25:E1716. [PMID: 32276516 PMCID: PMC7181247 DOI: 10.3390/molecules25071716] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023] Open
Abstract
Polymers in which phosphorus is an integral part of the main chain, including polyphosphazenes and polyphosphoesters, have been widely investigated in recent years for their potential in a number of therapeutic applications. Phosphorus, as the central feature of these polymers, endears the chemical functionalization, and in some cases (bio)degradability, to facilitate their use in such therapeutic formulations. Recent advances in the synthetic polymer chemistry have allowed for controlled synthesis methods in order to prepare the complex macromolecular structures required, alongside the control and reproducibility desired for such medical applications. While the main polymer families described herein, polyphosphazenes and polyphosphoesters and their analogues, as well as phosphorus-based dendrimers, have hitherto predominantly been investigated in isolation from one another, this review aims to highlight and bring together some of this research. In doing so, the focus is placed on the essential, and often mutual, design features and structure-property relationships that allow the preparation of such functional materials. The first part of the review details the relevant features of phosphorus-containing polymers in respect to their use in therapeutic applications, while the second part highlights some recent and innovative applications, offering insights into the most state-of-the-art research on phosphorus-based polymers in a therapeutic context.
Collapse
Affiliation(s)
- Paul Strasser
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria
| | - Ian Teasdale
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria
| |
Collapse
|
20
|
Çetİndere S, YeŞİlot S, KiliÇ A. Pyrene-BODIPY-substituted novel water-soluble cyclotriphosphazenes: synthesis, characterization, and photophysical properties. Turk J Chem 2020; 44:1-14. [PMID: 33488139 PMCID: PMC7751814 DOI: 10.3906/kim-1907-40] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/28/2020] [Indexed: 01/09/2023] Open
Abstract
In the present work, pyrene-boron-dipyrromethene (BODIPY)-substituted novel water-soluble cyclotriphosphazene derivatives (6 and 7) were synthesized by click reactions between a cyclotriphosphazene derivative with a hydrophilic glycol side group (2) and BODIPYs (4 and 5). All of the new compounds (2, 6, and 7) were characterized by Fourier-transform infrared and nuclear magnetic resonance spectroscopy, as well as mass spectrometry and elemental analysis. The photophysical properties of the BODIPY-substituted cyclotriphosphazenes (6 and 7) were investigated by UV-Vis and fluorescence emission spectroscopy in water and water/solvent mixtures. It was found that the target compounds were soluble in water and could be potential candidates as water-soluble fluorescent dyes for the desired applications.
Collapse
Affiliation(s)
- Seda Çetİndere
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli Turkey
- Institute of Inorganic Chemistry I, Ulm University, Ulm Germany
| | - Serkan YeŞİlot
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli Turkey
| | - Adem KiliÇ
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli Turkey
| |
Collapse
|
21
|
Zhu W, Zhao L, Fan Y, Zhao J, Shi X, Shen M. 131 I-Labeled Multifunctional Polyphosphazene Nanospheres for SPECT Imaging-Guided Radiotherapy of Tumors. Adv Healthc Mater 2019; 8:e1901299. [PMID: 31697048 DOI: 10.1002/adhm.201901299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/18/2019] [Indexed: 12/31/2022]
Abstract
Design of theranostic nanoplatforms represents a major topic for current nanomedicine. Here, the preparation of multifunctional poly(cyclotriphosphazene-co-polyethylenimine) nanospheres (PNSs) labeled with radionuclide 131 I for single photon emission computed tomography (SPECT) imaging-guided radiotherapy of tumors is reported. In this work, PNSs are prepared using hexachlorocyclotriphosphazene as a crosslinker to crosslink branched polyethylenimine (PEI) via a nucleophilic substitution reaction, modified with 3-(4'-hydroxyphenyl) propionic acid-OSu (HPAO) for 131 I labeling, and reacted with 1,3-propane sulfonate (1,3-PS) to render the particles with antifouling property, followed by acetylation of the remaining surface amines and labeling with 131 I. The acquired PNS.NHAc-HPAO(131 I)-PS particles are well characterized. It is shown that the multifunctional PNSs with an average size of 184 ± 29.3 nm exhibit favorable antifouling properties, high 131 I labeling efficiency (76.05 ± 3.75%), and excellent radiostability and colloidal stability. With these properties owned, the developed PNS.NHAc-HPAO(131 I)-PS spheres enable much more efficient SPECT imaging and radiotherapy of a xenografted tumor model in vivo than the PEI counterpart material (PEI.NHAc-HPAO(131 I)-PS). The developed PNSs may be used as a versatile platform for further development of different forms of nanomedicine for various biomedical applications.
Collapse
Affiliation(s)
- Wei Zhu
- State Key Laboratory for Modification of Chemical Fiber and Polymer MaterialsInternational Joint Lab for Advanced Fiber and Low‐dimension MaterialsCollege of Chemistry, Chemical Engineering and BiotechnologyDonghua University Shanghai 201620 P. R. China
| | - Lingzhou Zhao
- Department of Nuclear MedicineShanghai General HospitalShanghai Jiao Tong University School of Medicine Shanghai 200080 P. R. China
| | - Yu Fan
- State Key Laboratory for Modification of Chemical Fiber and Polymer MaterialsInternational Joint Lab for Advanced Fiber and Low‐dimension MaterialsCollege of Chemistry, Chemical Engineering and BiotechnologyDonghua University Shanghai 201620 P. R. China
| | - Jinhua Zhao
- Department of Nuclear MedicineShanghai General HospitalShanghai Jiao Tong University School of Medicine Shanghai 200080 P. R. China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fiber and Polymer MaterialsInternational Joint Lab for Advanced Fiber and Low‐dimension MaterialsCollege of Chemistry, Chemical Engineering and BiotechnologyDonghua University Shanghai 201620 P. R. China
- CQM‐Centro de Química da MadeiraUniversidade da Madeira Campus da Penteada 9000–390 Funchal Portugal
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fiber and Polymer MaterialsInternational Joint Lab for Advanced Fiber and Low‐dimension MaterialsCollege of Chemistry, Chemical Engineering and BiotechnologyDonghua University Shanghai 201620 P. R. China
| |
Collapse
|
22
|
Yüzer A, Ayaz F, Ince M. Immunomodulatory activities of zinc(II)phthalocyanine on the mammalian macrophages through p38 pathway: Potential ex vivo immunomodulatory PDT reagents. Bioorg Chem 2019; 92:103249. [DOI: 10.1016/j.bioorg.2019.103249] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/05/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023]
|
23
|
Çetindere S, Okutan E, Tümay SO, Yeşilot S, Kılıç A. Novel Water-Soluble Cyclotriphosphazene-Bodipy Conjugates: Synthesis, Characterization and Photophysical Properties. J Fluoresc 2019; 29:1143-1152. [PMID: 31407124 DOI: 10.1007/s10895-019-02424-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022]
Abstract
In the present work, novel water-soluble cyclotriphosphazene derivatives (3b and 4b) were synthesized by 'click' reactions between cyclotriphosphazene derivative with hydrophilic glycol side groups (2) and Bodipy's (3a and 4a). All newly synthesized compounds (2, 3b and 4b) were characterized by fourier-transform infrared (FTIR), mass and NMR spectroscopy techniques and elemental analysis (EA). The photophysical properties of Bodipy substituted novel cyclotriphosphazenes (3a and 4a) were examined via UV-Vis absorption and fluorescence emission spectroscopy inside water and many organic solvents such as acetone, tetrahydrofuran, dichloromethane, dimethyl sulfoxide, etc., and the results were compared with the each other. Graphical Abstract.
Collapse
Affiliation(s)
- Seda Çetindere
- Department of Chemistry, Gebze Technical University, P.O.Box: 141, 41400 Gebze, Kocaeli, Turkey. .,Institute of Inorganic Chemistry I, Ulm University, 89081, Ulm, Germany.
| | - Elif Okutan
- Department of Chemistry, Gebze Technical University, P.O.Box: 141, 41400 Gebze, Kocaeli, Turkey
| | - Süreyya Oğuz Tümay
- Department of Chemistry, Gebze Technical University, P.O.Box: 141, 41400 Gebze, Kocaeli, Turkey
| | - Serkan Yeşilot
- Department of Chemistry, Gebze Technical University, P.O.Box: 141, 41400 Gebze, Kocaeli, Turkey
| | - Adem Kılıç
- Department of Chemistry, Gebze Technical University, P.O.Box: 141, 41400 Gebze, Kocaeli, Turkey
| |
Collapse
|
24
|
Abstract
This microreview details recent developments in stimuli-responsive polymers with phosphorus in the main-chain, in particular polyphosphazenes and polyphosphoesters. The presence of phosphorus in the polymers endows unique properties onto the macromolecules, which can be utilized for the preparation of materials capable of physically responding to specific stimuli. Achieving the desired responsiveness has been much facilitated by recent developments in synthetic polymer chemistry, in particular controlled synthesis and backbone functionalization phosphorus-based polymers, in order to achieve the required properties and hence responsiveness of the materials. The development of phosphorus-based polymers which respond to the most important stimuli are discussed, namely, pH, oxidation, reduction, temperature and biological triggers. The polymers are placed in the context not just of each other but also with reference to state-of-the-art organic polymers.
Collapse
Affiliation(s)
- Ian Teasdale
- Institute of Polymer ChemistryJohannes Kepler University LinzAltenberger Straße 694040LinzAustria
| |
Collapse
|
25
|
Quiñones JP, Iturmendi A, Henke H, Roschger C, Zierer A, Brüggemann O. Polyphosphazene-based nanocarriers for the release of agrochemicals and potential anticancer drugs. J Mater Chem B 2019; 7:7783-7794. [DOI: 10.1039/c9tb01985e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesised polyphosphazene-based nanocarriers allowed sustained diosgenin and brassinosteroid release over 4 days, with strong to moderate MCF-7 cytotoxicity and good agrochemical activity at medium and low concentrations.
Collapse
Affiliation(s)
| | - Aitziber Iturmendi
- Institute of Polymer Chemistry (ICP)
- Johannes Kepler University Linz
- 4040 Linz
- Austria
| | - Helena Henke
- Institute of Polymer Chemistry (ICP)
- Johannes Kepler University Linz
- 4040 Linz
- Austria
| | - Cornelia Roschger
- Johannes Kepler University Linz
- Kepler University Hospital GmbH
- Department for Cardiac-, Vascular- and Thoracic Surgery
- 4020 Linz
- Austria
| | - Andreas Zierer
- Johannes Kepler University Linz
- Kepler University Hospital GmbH
- Department for Cardiac-, Vascular- and Thoracic Surgery
- 4020 Linz
- Austria
| | - Oliver Brüggemann
- Institute of Polymer Chemistry (ICP)
- Johannes Kepler University Linz
- 4040 Linz
- Austria
| |
Collapse
|
26
|
Iturmendi A, Theis S, Maderegger D, Monkowius U, Teasdale I. Coumarin-Caged Polyphosphazenes with a Visible-Light Driven On-Demand Degradation. Macromol Rapid Commun 2018; 39:e1800377. [PMID: 30048024 DOI: 10.1002/marc.201800377] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/28/2018] [Indexed: 01/08/2023]
Abstract
Polymers that, upon photochemical activation with visible light, undergo rapid degradation to small molecules are described. Through functionalization of a polyphosphazene backbone with pendant coumarin groups sensitive to light, polymers which are stable in the dark could be prepared. Upon irradiation, cleavage of the coumarin moieties exposes carboxylic acid moieties along the polymer backbone. The subsequent macromolecular photoacid is found to catalyze the rapid hydrolytic degradation of the polyphosphazene backbone. Water-soluble and non-water-soluble polymers are reported, which due to their sensitivity toward light in the visible region could be significant as photocleavable materials in biological applications.
Collapse
Affiliation(s)
- Aitziber Iturmendi
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69,, 4040, Linz, Austria
| | - Sabrina Theis
- Institute of Inorganic Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69,, 4040, Linz, Austria
| | - Dominik Maderegger
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69,, 4040, Linz, Austria
| | - Uwe Monkowius
- Linz School of Education, Johannes Kepler University Linz, Altenberger Strasse 69,, 4040, Linz, Austria
| | - Ian Teasdale
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69,, 4040, Linz, Austria
| |
Collapse
|
27
|
Andrianov AK, Marin A, Martinez AP, Weidman JL, Fuerst TR. Hydrolytically Degradable PEGylated Polyelectrolyte Nanocomplexes for Protein Delivery. Biomacromolecules 2018; 19:3467-3478. [PMID: 29953203 DOI: 10.1021/acs.biomac.8b00785] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Novel oppositely charged polyphosphazene polyelectrolytes containing grafted poly(ethylene glycol) (PEG) chains were synthesized as modular components for the assembly of biodegradable PEGylated protein delivery vehicles. These macromolecular counterparts, which contained either carboxylic acid or tertiary amino groups, were then formulated at near physiological conditions into supramolecular assemblies of nanoscale level, below 100 nm. Nanocomplexes with electroneutral surface charge, as assessed by zeta potential measurements, were stable in aqueous solutions, which suggests their compact polyelectrolyte complex "core"-hydrophilic PEG "shell" structure. Investigation of PEGylated polyphosphazene nanocomplexes as agents for noncovalent PEGylation of the therapeutic protein l-asparaginase (L-ASP) in vitro demonstrated their ability to dramatically reduce protein antigenicity, as measured by antibody binding using enzyme linked immunosorbent assay (ELISA). Encapsulation in nanocomplexes did not affect enzymatic activity of L-ASP, but improved its thermal stability and proteolytic resistance. Gel permeation chromatography (GPC) experiments revealed that all synthesized polyphosphazenes exhibited composition controlled hydrolytic degradability in aqueous solutions at neutral pH and showed greater stability at lower temperatures. Overall, novel hydrolytically degradable polyphosphazene polyelectrolytes capable of spontaneous self-assembly into PEGylated nanoparticulates in aqueous solutions can potentially enable a simple and effective approach to modifying therapeutic proteins without the need for their covalent modification.
Collapse
Affiliation(s)
- Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research , University of Maryland , 9600 Gudelsky Drive , Rockville , Maryland 20850 , United States
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research , University of Maryland , 9600 Gudelsky Drive , Rockville , Maryland 20850 , United States
| | - Andre P Martinez
- Institute for Bioscience and Biotechnology Research , University of Maryland , 9600 Gudelsky Drive , Rockville , Maryland 20850 , United States
| | - Jacob L Weidman
- Institute for Bioscience and Biotechnology Research , University of Maryland , 9600 Gudelsky Drive , Rockville , Maryland 20850 , United States
| | - Thomas R Fuerst
- Institute for Bioscience and Biotechnology Research , University of Maryland , 9600 Gudelsky Drive , Rockville , Maryland 20850 , United States.,Department of Cell Biology and Molecular Genetics , 1109 Microbiology Building , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|
28
|
Ren Y, Li Z, Allcock HR. Molecular Engineering of Polyphosphazenes and SWNT Hybrids with Potential Applications as Electronic Materials. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yi Ren
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- School of Physical Science and Technology, Shanghai Technical University, Shanghai 201210, P. R. China
| | - Zhongjing Li
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Harry R. Allcock
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
29
|
Uslu A, Özcan E. Synthesis of water soluble cyclotriphosphazenes with thiazole-containing side groups: Amphiphilic and hydrolytic degradable. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.03.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
30
|
Carriedo GA, de la Campa R, Soto AP. Polyphosphazenes - Synthetically Versatile Block Copolymers (“Multi-Tool”) for Self-Assembly. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Gabino A. Carriedo
- Department of Organic and Inorganic Chemistry; Facultad de Química; Universidad de Oviedo; Julián Clavería s/n 33006 Oviedo Spain
| | - Raquel de la Campa
- Department of Organic and Inorganic Chemistry; Facultad de Química; Universidad de Oviedo; Julián Clavería s/n 33006 Oviedo Spain
| | - Alejandro Presa Soto
- Department of Organic and Inorganic Chemistry; Facultad de Química; Universidad de Oviedo; Julián Clavería s/n 33006 Oviedo Spain
| |
Collapse
|
31
|
Nikovskii IA, Chistyakov EM, Tupikov AS. Phosphazene-Containing Ligands and Complexes on Their Base. RUSS J GEN CHEM+ 2018. [DOI: 10.1134/s1070363218030143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Linhardt A, König M, Iturmendi A, Henke H, Brüggemann O, Teasdale I. Degradable, Dendritic Polyols on a Branched Polyphosphazene Backbone. Ind Eng Chem Res 2018; 57:3602-3609. [PMID: 29568158 PMCID: PMC5857928 DOI: 10.1021/acs.iecr.7b05301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/16/2018] [Accepted: 02/23/2018] [Indexed: 11/30/2022]
Abstract
Herein, we present the design, synthesis, and characterization of fully degradable, hybrid, star-branched dendritic polyols. First multiarmed polyphosphazenes were prepared as a star-branched scaffold which upon functionalization produced globular branched hydroxyl-functionalized polymers with over 1700 peripheral functional end groups. These polyols with unique branched architectures could be prepared with controlled molecular weights and relatively narrow dispersities. Furthermore, the polymers are shown to undergo hydrolytic degradation to low molecular weight degradation products, the rate of which could be controlled through postpolymerization functionalization of the phosphazene backbone.
Collapse
Affiliation(s)
- Anne Linhardt
- Institute of Polymer Chemistry, Johannes
Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria
| | - Michael König
- Institute of Polymer Chemistry, Johannes
Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria
| | - Aitziber Iturmendi
- Institute of Polymer Chemistry, Johannes
Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria
| | - Helena Henke
- Institute of Polymer Chemistry, Johannes
Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria
| | - Oliver Brüggemann
- Institute of Polymer Chemistry, Johannes
Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria
| | - Ian Teasdale
- Institute of Polymer Chemistry, Johannes
Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria
| |
Collapse
|
33
|
Suppan T, Kunjunni MK, Barik A, Bhattacharjee RR. Effect of Jeffamine ®-Modified Phosphotungstic Acid on Porphyrin Synthesis in Water. ChemistrySelect 2018. [DOI: 10.1002/slct.201702845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Thangamani Suppan
- PSG Institute of Advanced Studies; Coimbatore, Tamil Nadu 641 004 India
| | - Meenu K. Kunjunni
- PSG Institute of Advanced Studies; Coimbatore, Tamil Nadu 641 004 India
| | - Atanu Barik
- Radiation and Photochemistry Division; Bhabha Atomic Research Centre; Mumbai 400 085, Maharashtra India
| | - Rama R. Bhattacharjee
- PSG Institute of Advanced Studies; Coimbatore, Tamil Nadu 641 004 India
- Department of Nanotechnology; Amity University Kolkata (AINTK); West Bengal 700135 India
| |
Collapse
|
34
|
Aichhorn S, Linhardt A, Halfmann A, Nadlinger M, Kirchberger S, Stadler M, Dillinger B, Distel M, Dohnal A, Teasdale I, Schöfberger W. A pH-sensitive Macromolecular Prodrug as TLR7/8 Targeting Immune Response Modifier. Chemistry 2017; 23:17721-17726. [PMID: 28758266 PMCID: PMC5763314 DOI: 10.1002/chem.201702942] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Indexed: 11/09/2022]
Abstract
The chemical synthesis and biological activity of novel functionalized imidazoquinoline derivatives (ImQ) to generate Toll-like receptor (TLR) 7/8 specific prodrugs are presented. In vivo activity of ImQs to induce inflammation was confirmed in zebrafish larvae. After covalent ligation to fully biodegradable polyphosphazenes (ImQ-polymer), the macromolecular prodrugs were designed to undergo intracellular pH-sensitive release of ImQs to induce inflammation through binding to endosomal TLR7/8 (danger signal). We showed ImQ dissociation from prodrugs at a pH 5 pointing towards endosomal prodrug degradability. ImQ-polymers strongly activated ovalbumin-specific T cells in murine splenocytes as shown by increased proliferation and expression of the IL-2 receptor (CD25) on CD8+ T cells accompanied by strong IFN-γ release. ImQ prodrugs presented here are suggested to form the basis of novel nanovaccines, for example, for intravenous or intratumoral cancer immunotherapeutic applications to trigger physiological antitumor immune responses.
Collapse
Affiliation(s)
- Stefan Aichhorn
- Institute of Organic ChemistryJohannes Kepler UniversityAltenberger Straße 694040LinzAustria
| | - Anne Linhardt
- Institute of Polymer ChemistryJohannes Kepler UniversityAltenberger Straße 694040LinzAustria
| | - Angela Halfmann
- Tumorimmunology and Innovative Cancer Models, St. Anna Kinderkrebsforschung e.V. CCRI-Children's Cancer Research InstituteZimmermannplatz 101090ViennaAustria
| | - Markus Nadlinger
- Institute of Organic ChemistryJohannes Kepler UniversityAltenberger Straße 694040LinzAustria
| | - Stefanie Kirchberger
- Tumorimmunology and Innovative Cancer Models, St. Anna Kinderkrebsforschung e.V. CCRI-Children's Cancer Research InstituteZimmermannplatz 101090ViennaAustria
| | - Manuela Stadler
- Tumorimmunology and Innovative Cancer Models, St. Anna Kinderkrebsforschung e.V. CCRI-Children's Cancer Research InstituteZimmermannplatz 101090ViennaAustria
| | - Barbara Dillinger
- Tumorimmunology and Innovative Cancer Models, St. Anna Kinderkrebsforschung e.V. CCRI-Children's Cancer Research InstituteZimmermannplatz 101090ViennaAustria
| | - Martin Distel
- Tumorimmunology and Innovative Cancer Models, St. Anna Kinderkrebsforschung e.V. CCRI-Children's Cancer Research InstituteZimmermannplatz 101090ViennaAustria
| | - Alexander Dohnal
- Tumorimmunology and Innovative Cancer Models, St. Anna Kinderkrebsforschung e.V. CCRI-Children's Cancer Research InstituteZimmermannplatz 101090ViennaAustria
| | - Ian Teasdale
- Institute of Polymer ChemistryJohannes Kepler UniversityAltenberger Straße 694040LinzAustria
| | - Wolfgang Schöfberger
- Institute of Organic ChemistryJohannes Kepler UniversityAltenberger Straße 694040LinzAustria
| |
Collapse
|
35
|
Hackl CM, Schoenhacker-Alte B, Klose MHM, Henke H, Legina MS, Jakupec MA, Berger W, Keppler BK, Brüggemann O, Teasdale I, Heffeter P, Kandioller W. Synthesis and in vivo anticancer evaluation of poly(organo)phosphazene-based metallodrug conjugates. Dalton Trans 2017; 46:12114-12124. [PMID: 28862707 DOI: 10.1039/c7dt01767g] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Within this work we aimed to improve the pharmacodynamics and toxicity profile of organoruthenium and -rhodium complexes which had previously been found to be highly potent in vitro but showed unselective activity in vivo. Different organometallic complexes were attached to a degradable poly(organo)phosphazene macromolecule, prepared via controlled polymerization techniques. The conjugation to hydrophilic polymers was designed to increase the aqueous solubility of the typically poorly soluble metal-based half-sandwich compounds with the aim of a controlled, pH-triggered release of the active metallodrug. The synthesized conjugates and their characteristics have been thoroughly studied by means of 31P NMR and UV-Vis spectroscopy, ICP-MS analyses and SEC coupled to ICP-MS. In order to assess their potential as possible anticancer drug candidates, the complexes, as well as their respective macromolecular prodrug formulations were tested against three different cancer cell lines in cell culture. Subsequently, the anticancer activity and organ distribution of the poly(organo)phosphazene drug conjugates were explored in vivo in mice bearing CT-26 colon carcinoma. Our investigations revealed a beneficial influence of this macromolecular prodrug by a significant reduction of adverse effects compared to the free metallodrugs.
Collapse
Affiliation(s)
- Carmen M Hackl
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Wien, Austria.
| | - Beatrix Schoenhacker-Alte
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Wien, Austria. and Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria. and Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Str. 42, 1090 Wien, Austria
| | - Matthias H M Klose
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Wien, Austria.
| | - Helena Henke
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, 4040 Linz, Austria
| | - Maria S Legina
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Wien, Austria.
| | - Michael A Jakupec
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Wien, Austria. and Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Str. 42, 1090 Wien, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria. and Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Str. 42, 1090 Wien, Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Wien, Austria. and Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Str. 42, 1090 Wien, Austria
| | - Oliver Brüggemann
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, 4040 Linz, Austria
| | - Ian Teasdale
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, 4040 Linz, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria. and Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Str. 42, 1090 Wien, Austria
| | - Wolfgang Kandioller
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Wien, Austria. and Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Str. 42, 1090 Wien, Austria
| |
Collapse
|
36
|
Bhattacharjee RR, S T, Mal SS. A Liquid Derivative of Phosphotungstic Acid as Catalyst for Benzyl Alcohol Oxidation in Water: Facile Separation and Stability of Benzaldehyde at Room Temperature †. ChemistrySelect 2017. [DOI: 10.1002/slct.201700443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Thangamani S
- PSG Institute of Advanced Studies, Coimbatore; Tamil Nadu- 641004 India
| | - Sib S. Mal
- National Institute of Technology, Dept. of Chemistry, Surathkal; Karnataka- 575025 India
| |
Collapse
|
37
|
de la Campa R, García D, Rodríguez S, Carriedo GA, Presa Soto A. Direct Functionalization of Poly(spirophosphazene)s via the Regioselective Lithiation of the Aromatic Rings Using a Cooperative Superbase. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/10/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Raquel de la Campa
- Departamento de Química Orgánica e Inorgánica (IUQOEM); Facultad de Química; Universidad de Oviedo; Julián Clavería, s/n 33006 Oviedo Spain
| | - Diego García
- Departamento de Química Orgánica e Inorgánica (IUQOEM); Facultad de Química; Universidad de Oviedo; Julián Clavería, s/n 33006 Oviedo Spain
| | - Sandra Rodríguez
- Departamento de Química Orgánica e Inorgánica (IUQOEM); Facultad de Química; Universidad de Oviedo; Julián Clavería, s/n 33006 Oviedo Spain
| | - Gabino A. Carriedo
- Departamento de Química Orgánica e Inorgánica (IUQOEM); Facultad de Química; Universidad de Oviedo; Julián Clavería, s/n 33006 Oviedo Spain
| | - Alejandro Presa Soto
- Departamento de Química Orgánica e Inorgánica (IUQOEM); Facultad de Química; Universidad de Oviedo; Julián Clavería, s/n 33006 Oviedo Spain
| |
Collapse
|
38
|
Iturmendi A, Monkowius U, Teasdale I. Oxidation Responsive Polymers with a Triggered Degradation via Arylboronate Self-Immolative Motifs on a Polyphosphazene Backbone. ACS Macro Lett 2017; 6:150-154. [PMID: 28251035 PMCID: PMC5322476 DOI: 10.1021/acsmacrolett.7b00015] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/31/2017] [Indexed: 01/25/2023]
Abstract
Oxidation responsive polymers with triggered degradation pathways have been prepared via attachment of self-immolative moieties onto a hydrolytically unstable polyphosphazene backbone. After controlled main-chain growth, postpolymerization functionalization allows the preparation of hydrolytically stable poly(organo)phosphazenes decorated with a phenylboronic ester caging group. In oxidative environments, triggered cleavage of the caging group is followed by self-immolation, exposing the unstable glycine-substituted polyphosphazene which subsequently undergoes to backbone degradation to low-molecular weight molecules. As well as giving mechanistic insights, detailed GPC and 1H and 31P NMR analysis reveal the polymers to be stable in aqueous solutions, but show a selective, fast degradation upon exposure to hydrogen peroxide containing solutions. Since the post-polymerization functionalization route allows simple access to polymer backbones with a broad range of molecular weights, the approach of using the inorganic backbone as a platform significantly expands the toolbox of polymers capable of stimuli-responsive degradation.
Collapse
Affiliation(s)
- Aitziber Iturmendi
- Institute of Polymer Chemistry and Institute of Inorganic Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Uwe Monkowius
- Institute of Polymer Chemistry and Institute of Inorganic Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Ian Teasdale
- Institute of Polymer Chemistry and Institute of Inorganic Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| |
Collapse
|
39
|
Henke H, Brüggemann O, Teasdale I. Branched Macromolecular Architectures for Degradable, Multifunctional Phosphorus-Based Polymers. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201600644] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/10/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Helena Henke
- Institute of Polymer Chemistry; Johannes Kepler University Linz; Altenberger Straße 69 4040 Linz Austria
| | - Oliver Brüggemann
- Institute of Polymer Chemistry; Johannes Kepler University Linz; Altenberger Straße 69 4040 Linz Austria
| | - Ian Teasdale
- Institute of Polymer Chemistry; Johannes Kepler University Linz; Altenberger Straße 69 4040 Linz Austria
| |
Collapse
|
40
|
Ullah RS, Wang L, Yu H, Abbasi NM, Akram M, -ul-Abdin Z, Saleem M, Haroon M, Khan RU. Synthesis of polyphosphazenes with different side groups and various tactics for drug delivery. RSC Adv 2017. [DOI: 10.1039/c6ra27103k] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polyphosphazenes (PPZs) are hybrid polymers comprising a main chain containing nitrogen and phosphorous linked through interchanging single and double bonds, and side chains.
Collapse
Affiliation(s)
- Raja Summe Ullah
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Li Wang
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Nasir M. Abbasi
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Muhammad Akram
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Zain -ul-Abdin
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Muhammad Saleem
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Muhammad Haroon
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Rizwan Ullah Khan
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
41
|
Rothemund S, Teasdale I. Preparation of polyphosphazenes: a tutorial review. Chem Soc Rev 2016; 45:5200-15. [PMID: 27314867 PMCID: PMC5048340 DOI: 10.1039/c6cs00340k] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Indexed: 01/24/2023]
Abstract
Poly(organo)phosphazenes are a family of inorganic molecular hybrid polymers with very diverse properties due to the vast array of organic substituents possible. This tutorial review aims to introduce the basics of the synthetic chemistry of polyphosphazenes, detailing for readers outside the field the essential knowledge required to design and prepare polyphosphazenes with desired properties. A particular focus is given to some of the recent advances in their chemical synthesis which allows not only the preparation of polyphosphazenes with controlled molecular weights and polydispersities, but also novel branched architectures and block copolymers. We also discuss the preparation of supramolecular structures, bioconjugates and in situ forming gels from this diverse family of functional materials. This tutorial review aims to equip the reader to prepare defined polyphosphazenes with unique property combinations and in doing so we hope to stimulate further research and yet more innovative applications for these highly interesting multifaceted materials.
Collapse
Affiliation(s)
- Sandra Rothemund
- NanoScience Technology Center , University of Central Florida , 12424 Research Parkway Suite 400 , Orlando , FL 32826 , USA
| | - Ian Teasdale
- Institute of Polymer Chemistry , Johannes Kepler University , Altenberger Strasse 69 , 4040 Linz , Austria .
| |
Collapse
|
42
|
Henke H, Kryeziu K, Banfić J, Theiner S, Körner W, Brüggemann O, Berger W, Keppler BK, Heffeter P, Teasdale I. Macromolecular Pt(IV) Prodrugs from Poly(organo)phosphazenes. Macromol Biosci 2016; 16:1239-1249. [PMID: 27169668 DOI: 10.1002/mabi.201600035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/25/2016] [Indexed: 11/06/2022]
Abstract
The preparation of novel macromolecular prodrugs via the conjugation of two platinum(IV) complexes to suitably functionalized poly(organo)phosphazenes is presented. The inorganic/organic polymers provide carriers with controlled dimensions due to the use of living cationic polymerization and allow the preparation of conjugates with excellent aqueous solubility but long-term hydrolytic degradability. The macromolecular Pt(IV) prodrugs are designed to undergo intracellular reduction and simultaneous release from the macromolecular carrier to present the active Pt(II) drug derivatives. In vitro investigations show a significantly enhanced intracellular uptake of Pt for the macromolecular prodrugs when compared to small molecule Pt complexes, which is also reflected in an increase in cytotoxicity. Interestingly, drug-resistant sublines also show a significantly smaller resistance against the conjugates compared to clinically established platinum drugs, indicating that an alternative uptake route of the Pt(IV) conjugates might also be able to overcome acquired resistance against Pt(II) drugs. In vivo studies of a selected conjugate show improved tumor shrinkage compared to the respective Pt(IV) complex.
Collapse
Affiliation(s)
- Helena Henke
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Kushtrim Kryeziu
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Jelena Banfić
- Institute of Inorganic Chemistry University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Sarah Theiner
- Research Platform "Translational Cancer Therapy Research," University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Wilfried Körner
- Department of Environmental Geosciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Oliver Brüggemann
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Bernhard K Keppler
- Research Platform "Translational Cancer Therapy Research," University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Ian Teasdale
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| |
Collapse
|
43
|
Henke H, Posch S, Brüggemann O, Teasdale I. Polyphosphazene Based Star-Branched and Dendritic Molecular Brushes. Macromol Rapid Commun 2016; 37:769-74. [PMID: 27027404 PMCID: PMC4907350 DOI: 10.1002/marc.201600057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/29/2016] [Indexed: 12/14/2022]
Abstract
A new synthetic procedure is described for the preparation of poly(organo)phosphazenes with star-branched and star dendritic molecular brush type structures, thus describing the first time it has been possible to prepare controlled, highly branched architectures for this type of polymer. Furthermore, as a result of the extremely high-arm density generated by the phosphazene repeat unit, the second-generation structures represent quite unique architectures for any type of polymer. Using two relativity straight forward iterative syntheses it is possible to prepare globular highly branched polymers with up to 30 000 functional end groups, while keeping relatively narrow polydispersities (1.2-1.6). Phosphine mediated polymerization of chlorophosphoranimine is first used to prepare three-arm star polymers. Subsequent substitution with diphenylphosphine moieties gives poly(organo)phosphazenes to function as multifunctional macroinitiators for the growth of a second generation of polyphosphazene arms. Macrosubstitution with Jeffamine oligomers gives a series of large, water soluble branched macromolecules with high-arm density and hydrodynamic diameters between 10 and 70 nm.
Collapse
Affiliation(s)
- Helena Henke
- Institute of Polymer Chemistry Johannes Kepler University Linz Altenberger Straße 69, 4040 Linz, Austria
| | - Sandra Posch
- Department of Applied Experimental Biophysics Institute of
Biophysics Johannes Kepler University Linz Gruberstraße 40, 4020
Linz, Austria
| | - Oliver Brüggemann
- Institute of Polymer Chemistry Johannes Kepler University Linz
Altenberger Straße 69, 4040 Linz, Austria
| | - Ian Teasdale
- Institute of Polymer Chemistry Johannes Kepler University Linz
Altenberger Straße 69, 4040 Linz, Austria
| |
Collapse
|
44
|
Linhardt A, König M, Schöfberger W, Brüggemann O, Andrianov AK, Teasdale I. Biodegradable Polyphosphazene Based Peptide-Polymer Hybrids. Polymers (Basel) 2016; 8:polym8040161. [PMID: 30979252 PMCID: PMC6432119 DOI: 10.3390/polym8040161] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 11/16/2022] Open
Abstract
A novel series of peptide based hybrid polymers designed to undergo enzymatic degradation is presented, via macrosubstitution of a polyphosphazene backbone with the tetrapeptide Gly-Phe-Leu-Gly. Further co-substitution of the hybrid polymers with hydrophilic polyalkylene oxide Jeffamine M-1000 leads to water soluble and biodegradable hybrid polymers. Detailed degradation studies, via 31P NMR spectroscopy, dynamic light scattering and field flow fractionation show the polymers degrade via a combination of enzymatic, as well as hydrolytic pathways. The peptide sequence was chosen due to its known property to undergo lysosomal degradation; hence, these degradable, water soluble polymers could be of significant interest for the use as polymer therapeutics. In this context, we investigated conjugation of the immune response modifier imiquimod to the polymers via the tetrapeptide and report the self-assembly behavior of the conjugate, as well as its enzymatically triggered drug release behavior.
Collapse
Affiliation(s)
- Anne Linhardt
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria.
| | - Michael König
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria.
| | - Wolfgang Schöfberger
- Institute of Organic Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria.
| | - Oliver Brüggemann
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria.
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850, USA.
| | - Ian Teasdale
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria.
| |
Collapse
|
45
|
Huang Z, Pan Y, Guo J, Chao Y, Shen W, Wang C, Xu H. Electron-withdrawing ability tunable polyphosphazene frameworks as novel heterogeneous catalysts for efficient biomass upgrading. RSC Adv 2016. [DOI: 10.1039/c6ra08634a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel polyphosphazene frameworks as green heterogeneous catalysts are discovered for efficient production of 5-HMF from fructose, which is due to the unique cyclotriphosphazene unit and the electron-withdrawing nature of the polymer backbone.
Collapse
Affiliation(s)
- Zhen Huang
- Department of Chemistry
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials
- Fudan University
- Shanghai 200433
| | - Yuanjia Pan
- Department of Macromolecular Science
- State Key Laboratory of Molecular Engineering of Polymers and Laboratory of Advanced Materials
- Fudan University
- Shanghai 200433
- P. R. China
| | - Jia Guo
- Department of Macromolecular Science
- State Key Laboratory of Molecular Engineering of Polymers and Laboratory of Advanced Materials
- Fudan University
- Shanghai 200433
- P. R. China
| | - Yimin Chao
- Energy Materials Lab
- School of Chemistry
- University of East Anglia
- Norwich
- UK
| | - Wei Shen
- Department of Chemistry
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials
- Fudan University
- Shanghai 200433
| | - ChangChun Wang
- Department of Macromolecular Science
- State Key Laboratory of Molecular Engineering of Polymers and Laboratory of Advanced Materials
- Fudan University
- Shanghai 200433
- P. R. China
| | - Hualong Xu
- Department of Chemistry
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials
- Fudan University
- Shanghai 200433
| |
Collapse
|
46
|
Nichol JL, Allcock HR. Polyphosphazenes with amino acid citronellol ester side groups for biomedical applications. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2014.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Huang Z, Chen S, Lu X, Lu Q. Water-triggered self-assembly polycondensation for the one-pot synthesis of cyclomatrix polyphosphazene nanoparticles from amino acid ester. Chem Commun (Camb) 2015; 51:8373-6. [DOI: 10.1039/c5cc00735f] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Water-triggered self-assembly polycondensation was proposed for preparation of cyclomatrix polyphosphazene nanoparticles from amino acid ester, and a critical solubility parameter was found to determine whether the nanoparticles were formed.
Collapse
Affiliation(s)
- Zhangjun Huang
- School of Chemistry and Chemical Engineering
- the State Key Laboratory of Metal Matrix Composites
- Shanghai Jiaotong University
- Shanghai 200240
- P. R. China
| | - Shuangshuang Chen
- School of Chemistry and Chemical Engineering
- the State Key Laboratory of Metal Matrix Composites
- Shanghai Jiaotong University
- Shanghai 200240
- P. R. China
| | - Xuemin Lu
- School of Chemistry and Chemical Engineering
- the State Key Laboratory of Metal Matrix Composites
- Shanghai Jiaotong University
- Shanghai 200240
- P. R. China
| | - Qinghua Lu
- School of Chemistry and Chemical Engineering
- the State Key Laboratory of Metal Matrix Composites
- Shanghai Jiaotong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
48
|
Rothemund S, Aigner TB, Iturmendi A, Rigau M, Husár B, Hildner F, Oberbauer E, Prambauer M, Olawale G, Forstner R, Liska R, Schröder KR, Brüggemann O, Teasdale I. Degradable Glycine-Based Photo-Polymerizable Polyphosphazenes for Use as Scaffolds for Tissue Regeneration. Macromol Biosci 2014; 15:351-63. [DOI: 10.1002/mabi.201400390] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 09/29/2014] [Indexed: 02/01/2023]
Affiliation(s)
- Sandra Rothemund
- Institute of Polymer Chemistry; Johannes Kepler University Linz; Welser Straße 42 Leonding A-4060 Austria
| | - Tamara B. Aigner
- Institute of Polymer Chemistry; Johannes Kepler University Linz; Welser Straße 42 Leonding A-4060 Austria
- Transfercenter für Kunststofftechnik (TCKT) GmbH; Franz-Fritsch-Strasse 11 A-4600 Wels Austria
| | - Aitziber Iturmendi
- Institute of Polymer Chemistry; Johannes Kepler University Linz; Welser Straße 42 Leonding A-4060 Austria
- Transfercenter für Kunststofftechnik (TCKT) GmbH; Franz-Fritsch-Strasse 11 A-4600 Wels Austria
| | - Maria Rigau
- Red Cross Blood Transfusion Service of Upper Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration; Krankenhausstraße 7 A-4017 Linz Austria
| | - Branislav Husár
- Institute of Applied Synthetic Chemistry; Vienna University of Technology; Getreidemarkt 9/163 A-1060 Vienna Austria
| | - Florian Hildner
- Red Cross Blood Transfusion Service of Upper Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration; Krankenhausstraße 7 A-4017 Linz Austria
| | - Eleni Oberbauer
- Red Cross Blood Transfusion Service of Upper Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration; Krankenhausstraße 7 A-4017 Linz Austria
| | - Martina Prambauer
- Institute of Polymer Chemistry; Johannes Kepler University Linz; Welser Straße 42 Leonding A-4060 Austria
- Transfercenter für Kunststofftechnik (TCKT) GmbH; Franz-Fritsch-Strasse 11 A-4600 Wels Austria
| | - Gbenga Olawale
- BioMed-zet Life Science GmbH; Industriezeile 36 A-4020 Linz Austria
| | - Reinhard Forstner
- Transfercenter für Kunststofftechnik (TCKT) GmbH; Franz-Fritsch-Strasse 11 A-4600 Wels Austria
| | - Robert Liska
- Institute of Applied Synthetic Chemistry; Vienna University of Technology; Getreidemarkt 9/163 A-1060 Vienna Austria
| | | | - Oliver Brüggemann
- Institute of Polymer Chemistry; Johannes Kepler University Linz; Welser Straße 42 Leonding A-4060 Austria
| | - Ian Teasdale
- Institute of Polymer Chemistry; Johannes Kepler University Linz; Welser Straße 42 Leonding A-4060 Austria
| |
Collapse
|
49
|
Oliveira C, Silveira I, Veiga F, Ribeiro AJ. Recent advances in characterization of nonviral vectors for delivery of nucleic acids: impact on their biological performance. Expert Opin Drug Deliv 2014; 12:27-39. [PMID: 25141765 DOI: 10.1517/17425247.2014.945421] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Nucleic acid delivery is a complex process that requires transport across numerous extracellular and intracellular barriers, whose impact is often neglected during optimization studies. As such, the development of nonviral vectors for efficient delivery would benefit from an understanding of how these barriers relate to the physicochemical properties of lipoplexes and polyplexes. AREAS COVERED This review focuses on the evaluation of parameters associated with barriers to delivery such as blood and immune cells compatibility which, as a collective, may serve as a useful prescreening tool for the advancement of nonviral vectors in vivo. An outline of the most relevant rationally developed polyplexes and lipoplexes for clinical application is also given. EXPERT OPINION The evaluation of scientifically recognized parameters enabled the identification of systemic delivered nonviral vectors' behavior while in blood as one of the key determinants of vectors function and activity both in vitro and in vivo. This multiparametric approach complements the use of in vitro efficacy results alone for prescreening and improves in vitro-in vivo translation by minimizing false negatives. Further, it can aid in the identification of meaningful structure-function-activity relationships, improve the in vitro screening process of nonviral vectors before in vivo use and facilitate the future development of potent and safe nonviral vectors.
Collapse
Affiliation(s)
- Claudia Oliveira
- Group Genetics of Cognitive Dysfunction, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto , Rua do Campo Alegre, 4150-180, Porto , Portugal
| | | | | | | |
Collapse
|
50
|
Steinke JHG, Greenland BW, Johns S, Parker MP, Atkinson RCJ, Cade IA, Golding P, Trussell SJ. Robust and Operationally Simple Synthesis of Poly(bis(2,2,2-trifluoroethoxy) phosphazene) with Controlled Molecular Weight, Low PDI, and High Conversion. ACS Macro Lett 2014; 3:548-551. [PMID: 35590724 DOI: 10.1021/mz500199x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synthetically straightforward conditions have been developed for the preparation of poly(bis 2,2,2-trifluoroethoxy)phosphazene with low PDI (<1.15) at high conversion (75-99%) and on a multigram scale. A combination of 31P NMR and GPC analyses demonstrate that molecular weight increases linearly as a function of monomer consumption, exhibiting first order kinetics with respect to monomer concentration up to high monomer conversion. Thus, the molecular weight can be controlled by varying the initiator (H2O) to monomer ratio.
Collapse
Affiliation(s)
- Joachim H. G. Steinke
- Department
of Chemistry, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, United Kingdom
| | - Barnaby W. Greenland
- Reading
School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6 AU, United Kingdom
| | - Stephen Johns
- Department
of Chemistry, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, United Kingdom
| | - Matthew P. Parker
- Reading
School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6 AU, United Kingdom
| | - Robert C. J. Atkinson
- Department
of Chemistry, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, United Kingdom
| | - Ian A. Cade
- Department
of Chemistry, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, United Kingdom
| | - Peter Golding
- AWE plc., Aldermaston, Reading, Berkshire, RG7
4PR, United Kingdom
| | | |
Collapse
|