1
|
Ramesh A, Das TN, Maji TK, Ghosh G. Unravelling denaturation, temperature and cosolvent-driven chiroptical switching in peptide self-assembly with switchable piezoelectric responses. Chem Sci 2024:d4sc05016a. [PMID: 39309077 PMCID: PMC11409859 DOI: 10.1039/d4sc05016a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024] Open
Abstract
Herein, we explore the intricate pathway complexity, focusing on the dynamic interplay between kinetic and thermodynamic states, during the supramolecular self-assembly of peptides. We uncover a multiresponsive chiroptical switching phenomenon influenced by temperature, denaturation and content of cosolvent in peptide self-assembly through pathway complexity (kinetic vs. thermodynamic state). Particularly noteworthy is the observation of chiroptical switching during the denaturation process, marking an unprecedented phenomenon in the literature. Furthermore, the variation in cosolvent contents produces notable chiroptical switching effects, emphasizing their infrequent incidence. Such chiroptical switching yields switchable piezoresponsive peptide-based nanomaterials, demonstrating the potential for dynamic control over material properties. In essence, our work pioneers the ability to control piezoresponsive behavior by transforming nanostructures from kinetic to thermodynamic states through pathway complexity. This approach provides new insights and opportunities for tailoring material properties in self-assembled systems.
Collapse
Affiliation(s)
- Aparna Ramesh
- Centre for Nano and Soft Matter Sciences (CeNS) Shivanapura, Dasanapura Hobli Bangalore 562162 India
- Academy of Scientific and Innovation Research (AcSIR) Ghaziabad 201002 India
| | - Tarak Nath Das
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Tapas Kumar Maji
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
- Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Goutam Ghosh
- Centre for Nano and Soft Matter Sciences (CeNS) Shivanapura, Dasanapura Hobli Bangalore 562162 India
- Academy of Scientific and Innovation Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
2
|
Takemori H, Kanzaki C, Nomura S, Maeda T, Numata M. Catalytic effect of microflow space for supramolecular block co-polymerization of water-soluble porphyrins. Chem Commun (Camb) 2024; 60:7303-7306. [PMID: 38904123 DOI: 10.1039/d4cc02003k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Using microflow space, a catalytic effect was achieved for supramolecular polymerization. With increasing reactivity at the polymer end, the selective connection of active monomers formed new block domains, avoiding fast homo-assembly. Binding of less-reactive monomers at the polymer end overcame steric bulkiness, affording a stable supramolecular diblock copolymer (SdiBCP).
Collapse
Affiliation(s)
- Haruna Takemori
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| | - Chisako Kanzaki
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| | - Shota Nomura
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| | - Takato Maeda
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| | - Munenori Numata
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| |
Collapse
|
3
|
Elizebath D, Vedhanarayanan B, Raj A, Sudarsanakumar C, Lin TW, Praveen VK. Liquid-Liquid Phase Separation Mediated Formation of Chiral 2D Crystalline Nanosheets of a Co-Assembled System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403438. [PMID: 38978442 DOI: 10.1002/smll.202403438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/18/2024] [Indexed: 07/10/2024]
Abstract
The role of macromolecule-macromolecule and macromolecule-H2O interactions and the resulting perturbation of the H-bonded network of H2O in the liquid-liquid phase separation (LLPS) process of biopolymers are well-known. However, the potential of the hydrated state of supramolecular structures (non-covalent analogs of macromolecules) of synthetic molecules is not widely recognized for playing a similar role in the LLPS process. Herein, LLPS occurred during the co-assembly of hydrated supramolecular vesicles (bolaamphiphile, BA1) with a net positive charge (zeta potential, ζ = +60 ± 2 mV) and a dianionic chiral molecule (disodium l-[+]-tartrate) is reported. As inferred from cryo-transmission electron microscopy (TEM), the LLPS-formed droplets serve as the nucleation precursors, dictating the structure and properties of the co-assembly. The co-assembled structure formed by LLPS effectively integrates the counter anion's asymmetry, resulting in the formation of ultrathin free-standing, chiral 2D crystalline sheets. The significance of the hydrated state of supramolecular structures in influencing LLPS is unraveled through studies extended to a less hydrated supramolecular structure of a comparable system (BA2). The role of LLPS in modulating the hydrophobic interaction in water paves the way for the creation of advanced functional materials in an aqueous environment.
Collapse
Affiliation(s)
- Drishya Elizebath
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Balaraman Vedhanarayanan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Department of Chemistry, Tunghai University, No.1727, Section 4, Taiwan Boulevard, Xitun District, Taichung City, 40704, Taiwan
| | - Aparna Raj
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - C Sudarsanakumar
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Tsung-Wu Lin
- Department of Chemistry, Tunghai University, No.1727, Section 4, Taiwan Boulevard, Xitun District, Taichung City, 40704, Taiwan
| | - Vakayil K Praveen
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
4
|
Vleugels MEJ, Bosman R, da Camino Soligo PH, Wijker S, Fehér B, Spiering AJH, Rijns L, Bellan R, Dankers PYW, Palmans ARA. Bisurea-Based Supramolecular Polymers for Tunable Biomaterials. Chemistry 2024; 30:e202303361. [PMID: 38032693 DOI: 10.1002/chem.202303361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/01/2023]
Abstract
Water-soluble supramolecular polymers show great potential to develop dynamic biomaterials with tailored properties. Here, we elucidate the morphology, stability and dynamicity of supramolecular polymers derived from bisurea-based monomers. An accessible synthetic approach from 2,4-toluene diisocyanate (TDI) as the starting material is developed. TDI has two isocyanates that differ in intrinsic reactivity, which allows to obtain functional, desymmetrized monomers in a one-step procedure. We explore how the hydrophobic/hydrophilic ratio affects the properties of the formed supramolecular polymers by increasing the number of methylene units from 10 to 12 keeping the hydrophilic hexa(ethylene glycol) constant. All bisurea-based monomers form long, fibrous structures with 3-5 monomers in the cross-section in water, indicating a proper hydrophobic\hydrophilic balance. The stability of the supramolecular polymers increases with an increasing amount of methylene units, whereas the dynamic nature of the monomers decreases. The introduction of one Cy3 dye affords modified supramolecular monomers, which co-assemble with the unmodified monomers into fibrous structures. All systems show excellent water-compatibility and no toxicity for different cell-lines. Importantly, in cell culture media, the fibrous structures remain present, highlighting the stability of these supramolecular polymers in physiological conditions. The results obtained here motivate further investigation of these bisurea-based building blocks as dynamic biomaterial.
Collapse
Affiliation(s)
- Marle E J Vleugels
- Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Rik Bosman
- Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Piers H da Camino Soligo
- Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Stefan Wijker
- Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Bence Fehér
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - A J H Spiering
- Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Laura Rijns
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Riccardo Bellan
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Patricia Y W Dankers
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Anja R A Palmans
- Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
5
|
Hanssen JNS, Dhiman S. Impact of subtle intermolecular interactions on the structure and dynamics of multicomponent supramolecular polymers. Chem Commun (Camb) 2023; 59:13466-13469. [PMID: 37877229 DOI: 10.1039/d3cc04567f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Multicomponent supramolecular polymers offer versatile dynamic and functional properties; however, the influence of the monomer chemical structures on their structure-dynamics-function relationship remains unclear. In this study, we investigated the subtle variations in monomer interactions using one monomer and its two dopant derivatives, with functionalization away from the self-assembling core. We systematically investigated their multicomponent supramolecular polymers using a combination of spectroscopy and super-resolution microscopy. Our results highlight the significant impact of the supplementary intermolecular interactions, resulting from the functional motifs located away from the core and present in small quantities, on the microstructure and dynamics. Thus, a comprehensive approach, combining spectroscopy, microscopy, and well-designed experiments, is essential for assessing multicomponent supramolecular polymers. These findings have implications for the rational design of functional multicomponent supramolecular materials.
Collapse
Affiliation(s)
- Job N S Hanssen
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128, Mainz, Germany.
| | - Shikha Dhiman
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128, Mainz, Germany.
| |
Collapse
|
6
|
Sarkar S, Laishram R, Deb D, George SJ. Controlled Noncovalent Synthesis of Secondary Supramolecular Polymers. J Am Chem Soc 2023; 145:22009-22018. [PMID: 37754784 DOI: 10.1021/jacs.3c06844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Dynamic supramolecular polymers, with their functional similarities to classical covalent polymers and their adaptive and self-repairing nature reminiscent of biological assemblies, have emerged as highly promising systems for the design of smart soft materials. Recent advancements in mechanistic investigations and novel synthetic strategies, such as living supramolecular polymerization, have significantly enhanced our ability to control the primary structure of these supramolecular polymers. However, realizing their full functional potential requires expanding their topological diversity in a manner akin to classical polymers as well as achieving precise molecular organization at higher hierarchical levels of self-assembly. In this paper, we present a remarkable advancement in this field, introducing an unprecedented and controlled synthesis of secondary supramolecular polymers. Our innovative strategy combines chirality-controlled surface-catalyzed secondary nucleation and a bioinspired peptide design, effectively stabilizing higher-order assembly. Furthermore, by harnessing this stereoselective nucleation process, we demonstrate the successful synthesis of racemic supramolecular polymers featuring parallelly stacked conglomerate microstructures─a previously unreported topology in synthetic self-assembled systems. Additionally, we elucidate that the extent of secondary supramolecular polymers can be regulated by modulating the enantiomeric excess of the chiral monomers. Consequently, our study unveils new topologies that exhibit enhanced higher-order structural complexity in the realm of supramolecular polymers.
Collapse
Affiliation(s)
- Souvik Sarkar
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore 560064, India
| | - Raju Laishram
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore 560064, India
| | - Darshana Deb
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore 560064, India
| | - Subi J George
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore 560064, India
| |
Collapse
|
7
|
Zhang Y, Brooks SC, Rosi NL. Molecular Modulator Approach for Controlling the Length of Chiral 1D Single-Helical Gold Nanoparticle Superstructures. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:5071-5078. [PMID: 37456597 PMCID: PMC10339826 DOI: 10.1021/acs.chemmater.3c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/02/2023] [Indexed: 07/18/2023]
Abstract
Peptide-based methods have proven useful for constructing helical gold nanoparticle superstructures that exhibit strong plasmonic chiroptical activity. Superstructure syntheses using the amphiphilic peptide conjugate C16-(AYSSGAPPMoxPPF)2 typically yield 1D helices with a broad length distribution. In this study, we introduce a molecular modulator approach for controlling helix length. It represents a first step toward achieving narrowly disperse populations of single helices fabricated using peptide-based methods. Varying amounts of modulator, C16-(AYSSGA)2, were added to C16-(AYSSGAPPMoxPPF)2-based single-helix syntheses, resulting in decreased helix length and narrowing of the helix length distribution. Kinetic studies of fiber assembly were performed to investigate the mechanism by which the modulator affects helix length. It was found that the modulator leads to rapid peptide conjugate nucleation and fiber growth, which in turn results in large amounts of short fibers that serve as the underlying scaffold for the single-helix superstructures. These results constitute important advances toward generating monodisperse samples of plasmonic helical colloids.
Collapse
Affiliation(s)
- Yuyu Zhang
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sydney C. Brooks
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Nathaniel L. Rosi
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
8
|
Sasaki N, Kikkawa J, Ishii Y, Uchihashi T, Imamura H, Takeuchi M, Sugiyasu K. Multistep, site-selective noncovalent synthesis of two-dimensional block supramolecular polymers. Nat Chem 2023; 15:922-929. [PMID: 37264101 DOI: 10.1038/s41557-023-01216-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 04/24/2023] [Indexed: 06/03/2023]
Abstract
Although the principles of noncovalent bonding are well understood and form the basis for the syntheses of many intricate supramolecular structures, supramolecular noncovalent synthesis cannot yet achieve the levels of precision and complexity that are attainable in organic and/or macromolecular covalent synthesis. Here we show the stepwise synthesis of block supramolecular polymers from metal-porphyrin derivatives (in which the metal centre is Zn, Cu or Ni) functionalized with fluorinated alkyl chains. These monomers first undergo a one-dimensional supramolecular polymerization and cyclization process to form a toroidal structure. Subsequently, successive secondary nucleation, elongation and cyclization steps result in two-dimensional assemblies with concentric toroidal morphologies. The site selectivity endowed by the fluorinated chains, reminiscent of regioselectivity in covalent synthesis, enables the precise control of the compositions and sequences of the supramolecular structures, as demonstrated by the synthesis of several triblock supramolecular terpolymers.
Collapse
Grants
- JP22H02134 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 20H04682 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP19K05592 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 20H04669 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20H05868 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Norihiko Sasaki
- Molecular Design and Function Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Jun Kikkawa
- Electron Microscopy Group, Center for Basic Research on Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Yoshiki Ishii
- Department of Physics, Nagoya University, Nagoya, Japan
| | | | - Hitomi Imamura
- Molecular Design and Function Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
- Department of Materials Science and Engineering, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masayuki Takeuchi
- Molecular Design and Function Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
- Department of Materials Science and Engineering, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazunori Sugiyasu
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
| |
Collapse
|
9
|
Thomas M, Lewe V, Kölsch J, Urschbach M, Erlenbusch J, Stach OS, Besenius P. Impact of sample history and solvent effects on pathway control in the supramolecular polymerisation of Au(i)-metallopeptide amphiphiles. Polym Chem 2023; 14:1888-1892. [PMID: 37124957 PMCID: PMC10127225 DOI: 10.1039/d3py00053b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/13/2023] [Indexed: 05/02/2023]
Abstract
We investigate the kinetics of the supramolecular polymerisation of an Au(i)-metallopeptide amphiphile that assembles into exceptionally long and rigid nanofibers. We developed a precise preparation protocol to measure the concentration dependent assembly kinetics which elucidated a nucleation-elongation dominated supramolecular polymerisation process. We show striking differences in the assembly behavior and morphology in aqueous media, even at organic solvent contents as low as 1 vol%, compared to pure buffer.
Collapse
Affiliation(s)
- Marius Thomas
- Department of Chemistry, Johannes Gutenberg-University Mainz Duesbergweg 10-14 D-55128 Mainz Germany
| | - Vanessa Lewe
- Department of Chemistry, Johannes Gutenberg-University Mainz Duesbergweg 10-14 D-55128 Mainz Germany
- Graduate School of Materials Science in Mainz Staudingerweg 9 D-55128 Mainz Germany
| | - Jonas Kölsch
- Department of Chemistry, Johannes Gutenberg-University Mainz Duesbergweg 10-14 D-55128 Mainz Germany
| | - Moritz Urschbach
- Department of Chemistry, Johannes Gutenberg-University Mainz Duesbergweg 10-14 D-55128 Mainz Germany
| | - Jessica Erlenbusch
- Department of Chemistry, Johannes Gutenberg-University Mainz Duesbergweg 10-14 D-55128 Mainz Germany
| | - Oliver Sven Stach
- Department of Chemistry, Johannes Gutenberg-University Mainz Duesbergweg 10-14 D-55128 Mainz Germany
| | - Pol Besenius
- Department of Chemistry, Johannes Gutenberg-University Mainz Duesbergweg 10-14 D-55128 Mainz Germany
| |
Collapse
|
10
|
Khanra P, Singh AK, Roy L, Das A. Pathway Complexity in Supramolecular Copolymerization and Blocky Star Copolymers by a Hetero-Seeding Effect. J Am Chem Soc 2023; 145:5270-5284. [PMID: 36797682 DOI: 10.1021/jacs.2c12894] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
This study unravels the intricate kinetic and thermodynamic pathways involved in the supramolecular copolymerization of the two chiral dipolar naphthalene monoimide (NMI) building blocks (O-NMI and S-NMI), differing merely by a single heteroatom (oxygen vs sulfur). O-NMI exhibits distinct supramolecular polymerization features as compared to S-NMI in terms of its pathway complexity, hierarchical organization, and chiroptical properties. Two distinct self-assembly pathways in O-NMI occur due to the interplay between the competing dipolar interactions among the NMI chromophores and amide-amide hydrogen (H)-bonding that engenders distinct nanotapes and helical fibers, from its antiparallel and parallel stacking modes, respectively. In contrast, the propensity of S-NMI to form only a stable spherical assembly is ascribed to its much stronger amide-amide H-bonding, which outperforms other competing interactions. Under the thermodynamic route, an equimolar mixture of the two monomers generates a temporally controlled chiral statistical supramolecular copolymer that autocatalytically evolves from an initially formed metastable spherical heterostructure. In contrast, the sequence-controlled addition of the two monomers leads to the kinetically driven hetero-seeded block copolymerization. The ability to trap O-NMI in a metastable state allows its secondary nucleation from the surface of the thermodynamically stable S-NMI spherical "seed", which leads to the core-multiarmed "star" copolymer with reversibly and temporally controllable length of the growing O-NMI "arms" from the S-NMI "core". Unlike the one-dimensional self-assembly of O-NMI and its random co-assembly with S-NMI, which are both chiral, unprecedentedly, the preferred helical bias of the nucleating O-NMI fibers is completely inhibited by the absence of stereoregularity of the S-NMI "seed" in the "star" topology.
Collapse
Affiliation(s)
- Payel Khanra
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ajeet Kumar Singh
- Institute of Chemical Technology Mumbai-IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai-IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
11
|
Yamashita K, Numata M. Automated Supramolecular Polymerization in a Microflow: A Versatile Platform for Multistep Supramolecular Reactions. Chempluschem 2023; 88:e202200254. [PMID: 36328773 DOI: 10.1002/cplu.202200254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/04/2022] [Indexed: 11/10/2022]
Abstract
This work reports a basic microflow system capable of performing multistep supramolecular polymerization. In this system, injection of the monomer, directional supramolecular copolymerization, removal of the unreacted monomer, and purification of the product supramolecular diblock copolymers are realized along a three-stream flow. When injecting a supramolecular polymer into the central stream of the three-stream flow, the supramolecular polymerization always occurs in the central flow, with the two lateral flows serving as supply and removal lines for the monomer. Employing two kinds of perylene bisimide derivatives as monomers, we confirmed that the reaction occurred selectively at the forward-facing terminus of the supramolecular polymer, along with recovery of the unreacted monomer, ultimately leading to a high-purity supramolecular diblock copolymer. Diblock copolymers are basic units for preparing multicomponent supramolecular block copolymers. Thus, connecting the present system in series would, in principle, result in a "microplant" capable of producing supramolecular polymers having desired inner complexity.
Collapse
Affiliation(s)
- Kae Yamashita
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Munenori Numata
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
| |
Collapse
|
12
|
Jansen SA, Weyandt E, Aoki T, Akiyama T, Itoh Y, Vantomme G, Aida T, Meijer EW. Simulating Assembly Landscapes for Comprehensive Understanding of Supramolecular Polymer-Solvent Systems. J Am Chem Soc 2023; 145:4231-4237. [PMID: 36757843 PMCID: PMC9951209 DOI: 10.1021/jacs.2c12941] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Indexed: 02/10/2023]
Abstract
Complexity in supramolecular polymer systems arises from interactions between different components, including solvent molecules. By varying their concentration or temperature in such multicomponent systems, complex phenomena can occur such as thermally bisignate and dilution-induced assembly of supramolecular polymers. Herein, we demonstrate that both these phenomena emerge from the same underlying interaction mechanism between the components. As a model system, amide-decorated supramolecular polymers of porphyrins were investigated in combination with aliphatic alcohols as hydrogen-bond scavengers, and thermodynamic mass-balance models were applied to map the three-dimensional assembly landscapes. These studies unveiled that the interaction between hydrogen-bond scavengers and monomers is temperature-dependent and becomes dominant at high monomer concentrations. With these insights, we could exploit competitive monomer-alcohol interactions to prompt the dilution-induced assembly of various common monomers as well as bisignate assembly events. Moreover, kinetic insights were obtained by navigating through the assembly landscape. Similar to phase diagrams of covalent polymers, these assembly landscapes provide a comprehensive picture of supramolecular polymerizations, which helps to precisely regulate the system properties. The generality of this approach using assembly landscapes makes it relevant for any supramolecular system, and this enhanced control will open the door to build complex and functional supramolecular polymer systems.
Collapse
Affiliation(s)
- Stef A.
H. Jansen
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Laboratory
of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Elisabeth Weyandt
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Laboratory
of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Tsubasa Aoki
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takayoshi Akiyama
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yoshimitsu Itoh
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ghislaine Vantomme
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Laboratory
of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Takuzo Aida
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- RIKEN
Center for Emergent Matter Science, 2-1
Hirosawa, Wako, Saitama 351-0198, Japan
| | - E. W. Meijer
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Laboratory
of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- School
of Chemistry and RNA Institute, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
13
|
Chen M, Wang H, Li E, Li X, Shi T. Hierarchically supramolecular polymerization of anthraquinone dye to chiral aggregates via 2D-monolayered nanosheets: the unanticipated role of pathway complexity. NANOSCALE 2022; 14:14052-14056. [PMID: 36134624 DOI: 10.1039/d2nr04404h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
An anthraquinone dye underwent supramolecular polymerization, affording 2D-monolayered nanosheets in a kinetically controlled state. The nanosheets then transformed into hierarchically chiral aggregates in a thermodynamically controlled step. The unanticipated role played by pathway complexity was clearly unravelled in this work, highlighting the diversified pathways in the supramolecular polymerization of various building blocks.
Collapse
Affiliation(s)
- Mingyue Chen
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, Shandong Prov., China.
| | - Houchen Wang
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, Shandong Prov., China.
| | - Enhui Li
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, Shandong Prov., China.
| | - Xueru Li
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, Shandong Prov., China.
| | - Tiesheng Shi
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, Shandong Prov., China.
| |
Collapse
|
14
|
Hu Y, Mu J. How the modification of the hyperbranched terminals affects the solution self-assembly of linear-block-hyperbranched copolymers. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Goll FD, Taubmann G, Ziener U. Static Scanning Tunneling Microscopy Images Reveal the Mechanism of Supramolecular Polymerization of an Oligopyridine on Graphite. Angew Chem Int Ed Engl 2022; 61:e202117580. [PMID: 35138691 PMCID: PMC9307023 DOI: 10.1002/anie.202117580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 11/18/2022]
Abstract
Supramolecular polymerization of a donor-acceptor bisterpyridine (BTP) equipped with an electron-rich carbazole unit is observed by scanning tunneling microscopy (STM) at the highly oriented pyrolytic graphite (HOPG)|solution interface. It is shown that two-dimensional crystals of supramolecular (co)polymers are formed by chain growth polymerization, which in turn can be described by copolymerization statistics. From concentration-dependent measurements, derived copolymerization parameters and DFT calculations, a mechanism for self-assembly is developed that suggests a kinetically driven polymerization process in combination with thermodynamically controlled crystallization.
Collapse
Affiliation(s)
- Felix D. Goll
- Ulm UniversityInstitute of Organic Chemistry IIIAlbert-Einstein-Allee 1189081UlmGermany
| | - Gerhard Taubmann
- Ulm UniversityInstitute of Theoretical ChemistryAlbert-Einstein-Allee 1189081UlmGermany
| | - Ulrich Ziener
- Ulm UniversityInstitute of Organic Chemistry IIIAlbert-Einstein-Allee 1189081UlmGermany
| |
Collapse
|
16
|
Goll FD, Taubmann G, Ziener U. Statische Rastertunnelmikroskopie‐Bilder enthüllen den Mechanismus der supramolekularen Polymerisation eines Oligopyridins auf Graphit. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Felix D. Goll
- Universität Ulm Institut für Organische Chemie III Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Gerhard Taubmann
- Universität Ulm Institut für Theoretische Chemie Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Ulrich Ziener
- Universität Ulm Institut für Organische Chemie III Albert-Einstein-Allee 11 89081 Ulm Deutschland
| |
Collapse
|
17
|
Chen Z, Suzuki Y, Imayoshi A, Ji X, Rao KV, Omata Y, Miyajima D, Sato E, Nihonyanagi A, Aida T. Solvent-free autocatalytic supramolecular polymerization. NATURE MATERIALS 2022; 21:253-261. [PMID: 34650229 DOI: 10.1038/s41563-021-01122-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Solvent-free chemical manufacturing is one of the awaited technologies for addressing an emergent issue of environmental pollution. Here, we report solvent-free autocatalytic supramolecular polymerization (SF-ASP), which provides an inhibition-free template-assisted catalytic organic transformation that takes great advantage of the fact that the product (template) undergoes a termination-free nucleation-elongation assembly (living supramolecular polymerization) under solvent-free conditions. SF-ASP allows for reductive cyclotetramerization of hydrogen-bonding phthalonitriles into the corresponding phthalocyanines in exceptionally high yields (>80%). SF-ASP requires the growing polymer to form hexagonally packed crystalline fibres, which possibly preorganize the phthalonitriles at their cross-sectional edges for their efficient transformation. With metal oleates, SF-ASP produces single-crystalline fibres of metallophthalocyanines again in exceptionally high yields, which grow in both directions without terminal coupling until the phthalonitrile precursors are completely consumed. By taking advantage of this living nature of polymerization, multistep SF-ASP without/with metal oleates allows for the precision synthesis of multi-block supramolecular copolymers.
Collapse
Affiliation(s)
- Zhen Chen
- RIKEN Center for Emergent Matter Science, Wako, Saitama, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Yukinaga Suzuki
- RIKEN Center for Emergent Matter Science, Wako, Saitama, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ayumi Imayoshi
- RIKEN Center for Emergent Matter Science, Wako, Saitama, Japan
| | - Xiaofan Ji
- RIKEN Center for Emergent Matter Science, Wako, Saitama, Japan
| | | | - Yuki Omata
- RIKEN Center for Emergent Matter Science, Wako, Saitama, Japan
| | - Daigo Miyajima
- RIKEN Center for Emergent Matter Science, Wako, Saitama, Japan.
| | - Emiko Sato
- RIKEN Center for Emergent Matter Science, Wako, Saitama, Japan
| | | | - Takuzo Aida
- RIKEN Center for Emergent Matter Science, Wako, Saitama, Japan.
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
18
|
Coste M, Suárez-Picado E, Ulrich S. Hierarchical self-assembly of aromatic peptide conjugates into supramolecular polymers: it takes two to tango. Chem Sci 2022; 13:909-933. [PMID: 35211257 PMCID: PMC8790784 DOI: 10.1039/d1sc05589e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/10/2021] [Indexed: 12/26/2022] Open
Abstract
Supramolecular polymers are self-assembled materials displaying adaptive and responsive "life-like" behaviour which are often made of aromatic compounds capable of engaging in π-π interactions to form larger assemblies. Major advances have been made recently in controlling their mode of self-assembly, from thermodynamically-controlled isodesmic to kinetically-controlled living polymerization. Dynamic covalent chemistry has been recently implemented to generate dynamic covalent polymers which can be seen as dynamic analogues of biomacromolecules. On the other hand, peptides are readily-available and structurally-rich building blocks that can lead to secondary structures or specific functions. In this context, the past decade has seen intense research activity in studying the behaviour of aromatic-peptide conjugates through supramolecular and/or dynamic covalent chemistries. Herein, we review those impressive key achievements showcasing how aromatic- and peptide-based self-assemblies can be combined using dynamic covalent and/or supramolecular chemistry, and what it brings in terms of the structure, self-assembly pathways, and function of supramolecular and dynamic covalent polymers.
Collapse
Affiliation(s)
- Maëva Coste
- IBMM, Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, ENSCM Montpellier France
| | - Esteban Suárez-Picado
- IBMM, Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, ENSCM Montpellier France
| | - Sébastien Ulrich
- IBMM, Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, ENSCM Montpellier France
| |
Collapse
|
19
|
Controlling the length of porphyrin supramolecular polymers via coupled equilibria and dilution-induced supramolecular polymerization. Nat Commun 2022; 13:248. [PMID: 35017511 PMCID: PMC8752679 DOI: 10.1038/s41467-021-27831-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/07/2021] [Indexed: 12/29/2022] Open
Abstract
Multi-component systems often display convoluted behavior, pathway complexity and coupled equilibria. In recent years, several ways to control complex systems by manipulating the subtle balances of interaction energies between the individual components have been explored and thereby shifting the equilibrium between different aggregate states. Here we show the enantioselective chain-capping and dilution-induced supramolecular polymerization with a Zn2+-porphyrin-based supramolecular system when going from long, highly cooperative supramolecular polymers to short, disordered aggregates by adding a monotopic Mn3+-porphyrin monomer. When mixing the zinc and manganese centered monomers, the Mn3+-porphyrins act as chain-cappers for Zn2+-porphyrin supramolecular polymers, effectively hindering growth of the copolymer and reducing the length. Upon dilution, the interaction between chain-capper and monomers weakens as the equilibria shift and long supramolecular polymers form again. This dynamic modulation of aggregate morphology and length is achieved through enantioselectivity in the aggregation pathways and concentration-sensitive equilibria. All-atom and coarse-grained molecular simulations provide further insights into the mixing of the species and their exchange dynamics. Our combined experimental and theoretical approach allows for precise control of molecular self-assembly and chiral discrimination in complex systems.
Collapse
|
20
|
Su H, Jansen SAH, Schnitzer T, Weyandt E, Rösch AT, Liu J, Vantomme G, Meijer EW. Unraveling the Complexity of Supramolecular Copolymerization Dictated by Triazine-Benzene Interactions. J Am Chem Soc 2021; 143:17128-17135. [PMID: 34612646 PMCID: PMC8532160 DOI: 10.1021/jacs.1c07690] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Supramolecular copolymers
formed by the noncovalent synthesis of
multiple components expand the complexity of functional molecular
systems. However, varying the composition and microstructure of copolymers
through tuning the interactions between building blocks remains a
challenge. Here, we report a remarkable discovery of the temperature-dependent
supramolecular copolymerization of the two chiral monomers 4,4′,4″-(1,3,5-triazine-2,4,6-triyl)tribenzamide
(S-T) and 4,4′,4″-(benzene-1,3,5-triyl)tribenzamide
(S-B). We first demonstrate
in the homopolymerization of the two individual monomers that a subtle
change from the central triazine to benzene in the chemical structure
of the monomers significantly affects the properties of the resulting
homopolymers in solution. Homopolymers formed by S-T exhibit enhanced stability in comparison
to S-B. More importantly,
through a combination of spectroscopic analysis and theoretical simulation,
we reveal the complex process of copolymerization: S-T aggregates into homopolymers at elevated
temperature, and upon slow cooling S-B gradually intercalates into the copolymers, to finally
give copolymers with almost 80% alternating bonds at 10 °C. The
formation of the predominantly alternating copolymers is plausibly
contributed by preferred heterointeractions between triazine and benzene
cores in S-T and S-B, respectively, at lower temperatures.
Overall, this work unravels the complexity of a supramolecular copolymerization
process where an intermediate heterointeraction (higher than one homointeraction
and lower than the other homointeraction) presents and proposes a
general method to elucidate the microstructures of copolymers responsive
to temperature changes.
Collapse
Affiliation(s)
- Hao Su
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Stef A H Jansen
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Tobias Schnitzer
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Elisabeth Weyandt
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Andreas T Rösch
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jie Liu
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ghislaine Vantomme
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - E W Meijer
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
21
|
Tang Z, Gao L, Lin J, Cai C, Yao Y, Guerin G, Tian X, Lin S. Anchorage-Dependent Living Supramolecular Self-Assembly of Polymeric Micelles. J Am Chem Soc 2021; 143:14684-14693. [PMID: 34472352 DOI: 10.1021/jacs.1c06020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Anchorage-dependent contact-inhibited growth usually refers to on-surface cell proliferation inhibited by the proximity of other cells. This phenomenon, prominent in nature, has yet to be achieved with polymeric micelles. Here, we report the control living supra-macromolecular self-assembly of elongated micelles with a liquid crystalline core onto a hydrophobic substrate via the synergetic interactions between the substrate and aggregates dispersed in solution. In this system, seed formation is a transient phenomenon induced by the adsorption and rearrangement of the core-swollen aggregates. The seeds then trigger the growth of elongated micelles onto the substrate in a living controllable manner until the contact with the substrate is disrupted. Brownian dynamic simulations show that this unique behavior is due to the fusion of the aggregates onto both ends of the anchored seeds. More important, the micelle length can be tuned by varying the substrate hydrophobicity, a key step toward the fabrication of intricate structures.
Collapse
Affiliation(s)
- Zhengmin Tang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuan Yao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Gerald Guerin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaohui Tian
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
22
|
Stach OS, Breul K, Berač CM, Urschbach M, Seiffert S, Besenius P. Bridging Rigidity and Flexibility: Modulation of Supramolecular Hydrogels by Metal Complexation. Macromol Rapid Commun 2021; 43:e2100473. [PMID: 34505725 DOI: 10.1002/marc.202100473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/03/2021] [Indexed: 11/11/2022]
Abstract
The combination of complementary, noncovalent interactions is a key principle for the design of multistimuli responsive hydrogels. In this work, an amphiphilic peptide, supramacromolecular hydrogelator which combines metal-ligand coordination induced gelation and thermoresponsive toughening is reported. Following a modular approach, the incorporation of the triphenylalanine sequence FFF into a structural (C3 EG ) and a terpyridine-functionalized (C3 Tpy ) C3 -symmetric monomer enables their statistical copolymerization into self-assembled, 1D nanorods in water, as investigated by circular dichroism (CD) spectroscopy and transmission electron microscopy (TEM). In the presence of a terpyridine functionalized telechelic polyethylene glycol (PEG) cross-linker, complex formation upon addition of different transition metal ions (Fe2+ , Zn2+ , Ni2+ ) induces the formation of soft, reversible hydrogels at a solid weight content of 1 wt% as observed by linear shear rheology. The viscoelastic behavior of Fe2+ and Zn2+ cross-linked hydrogels are basically identical, while the most kinetically inert Ni2+ coordinative bond leads to significantly weaker hydrogels, suggesting that the most dynamic rather than the most thermodynamically stable interaction supports the formation of robust and responsive hydrogel materials.
Collapse
Affiliation(s)
- Oliver S Stach
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany
| | - Katharina Breul
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany.,Graduate School of Materials Science in Mainz, Staudingerweg 9, Mainz, 55128, Germany
| | - Christian M Berač
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany.,Graduate School of Materials Science in Mainz, Staudingerweg 9, Mainz, 55128, Germany
| | - Moritz Urschbach
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany
| | - Sebastian Seiffert
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany.,Graduate School of Materials Science in Mainz, Staudingerweg 9, Mainz, 55128, Germany
| | - Pol Besenius
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany.,Graduate School of Materials Science in Mainz, Staudingerweg 9, Mainz, 55128, Germany
| |
Collapse
|
23
|
Sarkar A, Sasmal R, Das A, Venugopal A, Agasti SS, George SJ. Tricomponent Supramolecular Multiblock Copolymers with Tunable Composition via Sequential Seeded Growth. Angew Chem Int Ed Engl 2021; 60:18209-18216. [PMID: 34111324 DOI: 10.1002/anie.202105342] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/25/2021] [Indexed: 01/28/2023]
Abstract
Synthesis of supramolecular block co-polymers (BCP) with small monomers and predictive sequence requires elegant molecular design and synthetic strategies. Herein we report the unparalleled synthesis of tri-component supramolecular BCPs with tunable microstructure by a kinetically controlled sequential seeded supramolecular polymerization of fluorescent π-conjugated monomers. Core-substituted naphthalene diimide (cNDI) derivatives with different core substitutions and appended with β-sheet forming peptide side chains provide perfect monomer design with spectral complementarity, pathway complexity and minimal structural mismatch to synthesize and characterize the multi-component BCPs. The distinct fluorescent nature of various cNDI monomers aids the spectroscopic probing of the seeded growth process and the microscopic visualization of resultant supramolecular BCPs using Structured Illumination Microscopy (SIM). Kinetically controlled sequential seeded supramolecular polymerization presented here is reminiscent of the multi-step synthesis of covalent BCPs via living chain polymerization. These findings provide a promising platform for constructing unique functional organic heterostructures for various optoelectronic and catalytic applications.
Collapse
Affiliation(s)
- Aritra Sarkar
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Ranjan Sasmal
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Angshuman Das
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Akhil Venugopal
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Sarit S Agasti
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Subi J George
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| |
Collapse
|
24
|
A case study of monomer design for controlled/living supramolecular polymerization. Polym J 2021. [DOI: 10.1038/s41428-021-00478-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Song Q, Kerr A, Yang J, Hall SCL, Perrier S. Tubular supramolecular alternating copolymers fabricated by cyclic peptide-polymer conjugates. Chem Sci 2021; 12:9096-9103. [PMID: 34276939 PMCID: PMC8261775 DOI: 10.1039/d1sc02389f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/29/2021] [Indexed: 11/21/2022] Open
Abstract
Supramolecular copolymers are an emerging class of materials, which bring together different properties and functionalities of multiple components via noncovalent interactions. While it is widely acknowledged that the repeating unit sequence plays an essential role on the performance of these materials, mastering and tuning the supramolecular copolymer sequence is still an open challenge. To date, only statistical supramolecular copolymers have been reported using cyclic peptide-polymer conjugates as building blocks. To enrich the diversity of tubular supramolecular copolymers, we report here a strategy of controlling their sequences by introducing an extra complementary noncovalent interaction. Hence, two conjugates bearing one electron donor and one electron acceptor, respectively, are designed. The two conjugates can individually assemble into tubular supramolecular homopolymers driven by the multiple hydrogen bonding interactions between cyclic peptides. However, the complementary charge transfer interaction between the electron donor and acceptor makes each conjugate more favorable for complexing with its counterpart, resulting in an alternating sequence of the supramolecular copolymer. Following the same principle, more functional supramolecular alternating copolymers are expected to be designed and constructed via other complementary noncovalent interactions (electrostatic interactions, metal coordination interactions, and host-guest interactions, etc.).
Collapse
Affiliation(s)
- Qiao Song
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
- Shenzhen Grubbs Institute, Southern University of Science and Technology Shenzhen 518055 China
| | - Andrew Kerr
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Jie Yang
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Stephen C L Hall
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
- Warwick Medical School, University of Warwick Coventry CV4 7AL UK
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
| |
Collapse
|
26
|
Sarkar A, Sasmal R, Das A, Venugopal A, Agasti SS, George SJ. Tricomponent Supramolecular Multiblock Copolymers with Tunable Composition via Sequential Seeded Growth. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Aritra Sarkar
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Bangalore 560064 India
| | - Ranjan Sasmal
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Bangalore 560064 India
| | - Angshuman Das
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Bangalore 560064 India
| | - Akhil Venugopal
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Bangalore 560064 India
| | - Sarit S. Agasti
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Bangalore 560064 India
| | - Subi J. George
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Bangalore 560064 India
| |
Collapse
|
27
|
Gentile S, Del Grosso E, Prins LJ, Ricci F. Reorganization of Self‐Assembled DNA‐Based Polymers using Orthogonally Addressable Building Blocks**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Serena Gentile
- Department of Chemistry University of Rome, Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Erica Del Grosso
- Department of Chemistry University of Rome, Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Leonard J. Prins
- Department of Chemical Sciences University of Padua Via Marzolo 1 35131 Padua Italy
| | - Francesco Ricci
- Department of Chemistry University of Rome, Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| |
Collapse
|
28
|
Matoba S, Kanzaki C, Yamashita K, Kusukawa T, Fukuhara G, Okada T, Narushima T, Okamoto H, Numata M. Directional Supramolecular Polymerization in a Dynamic Microsolution: A Linearly Moving Polymer's End Striking Monomers. J Am Chem Soc 2021; 143:8731-8746. [PMID: 34060820 DOI: 10.1021/jacs.1c02644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Although directional chain reactions are common in nature's self-assembly processes and in covalent polymerizations, it has been challenging to perform such processes in artificial one-dimensional self-assembling systems. In this paper, we describe a system, employing perylene bisimide (PBI) derivatives as monomers, for selectively activating one end of a supramolecular polymer during its growth and, thereby, realizing directional supramolecular polymerization. Upon introduction of a solution containing only a single PBI monomer into the microflow channel, nucleation was induced spontaneously. The dependency of the aggregation efficiency on the flow rate suggested that the shear force facilitated collisions among the monomers to overcome the activation energy required for nucleation. Next, by introducing a solution containing both monomer and polymer, we investigated how the shear force influenced the monomer-polymer interactions. In situ fluorescence spectra and linear dichroism revealed that growth of the polymers was accelerated only when they were oriented under the influence of shear stress. Upon linear motion of the oriented polymer, polymer growth at that single end became predominant relative to the nucleation of freely diffusing monomers. When applying this strategy to a two-monomer system, the second (less active) monomer reacted selectively at the forward-facing terminus of the first polymer, leading to the creation of a diblock copolymer through formation of a molecular heterojunction. This strategy-friction-induced activation of a single end of a polymer-should be applicable more generally to directional supramolecular block copolymerizations of various functional molecules, allowing molecular heterojunctions to be made at desired positions in a polymer.
Collapse
Affiliation(s)
- Shota Matoba
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Chisako Kanzaki
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Kae Yamashita
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Takahiro Kusukawa
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Gaku Fukuhara
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan.,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Tetsuo Okada
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Tetsuya Narushima
- Institute for Molecular Science and The Graduate University for Advanced Studies (Sokendai), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Hiromi Okamoto
- Institute for Molecular Science and The Graduate University for Advanced Studies (Sokendai), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Munenori Numata
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| |
Collapse
|
29
|
Gentile S, Del Grosso E, Prins LJ, Ricci F. Reorganization of Self‐Assembled DNA‐Based Polymers using Orthogonally Addressable Building Blocks**. Angew Chem Int Ed Engl 2021; 60:12911-12917. [DOI: 10.1002/anie.202101378] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/11/2021] [Indexed: 01/20/2023]
Affiliation(s)
- Serena Gentile
- Department of Chemistry University of Rome, Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Erica Del Grosso
- Department of Chemistry University of Rome, Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Leonard J. Prins
- Department of Chemical Sciences University of Padua Via Marzolo 1 35131 Padua Italy
| | - Francesco Ricci
- Department of Chemistry University of Rome, Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| |
Collapse
|
30
|
Abstract
Hydrogels comprise a class of soft materials which are extremely useful in a number of contexts, for example as matrix-mimetic biomaterials for applications in regenerative medicine and drug delivery. One particular subclass of hydrogels consists of materials prepared through non-covalent physical crosslinking afforded by supramolecular recognition motifs. The dynamic, reversible, and equilibrium-governed features of these molecular-scale motifs often transcend length-scales to endow the resulting hydrogels with these same properties on the bulk scale. In efforts to engineer hydrogels of all types with more precise or application-specific uses, inclusion of stimuli-responsive sol-gel transformations has been broadly explored. In the context of biomedical uses, temperature is an interesting stimulus which has been the focus of numerous hydrogel designs, supramolecular or otherwise. Most supramolecular motifs are inherently temperature-sensitive, with elevated temperatures commonly disfavoring motif formation and/or accelerating its dissociation. In addition, supramolecular motifs have also been incorporated for physical crosslinking in conjunction with polymeric or macromeric building blocks which themselves exhibit temperature-responsive changes to their properties. Through molecular-scale engineering of supramolecular recognition, and selection of a particular motif or polymeric/macromeric backbone, it is thus possible to devise a number of supramolecular hydrogel materials to empower a variety of future biomedical applications.
Collapse
Affiliation(s)
- Sijie Xian
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Matthew J Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
31
|
Sarkar A, Sasmal R, Das A, Agasti SS, George SJ. Kinetically controlled synthesis of supramolecular block copolymers with narrow dispersity and tunable block lengths. Chem Commun (Camb) 2021; 57:3937-3940. [PMID: 33871492 DOI: 10.1039/d1cc00332a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Synthesis of supramolecular block copolymers (BCPs) from small monomers has been recently attempted. However, the lack of dispersity and length control of the blocky segments limits its functional outcome. Herein we demonstrate the synthesis of well-defined supramolecular BCPs with tunable block lengths by varying the monomer to seed ratio in a kinetically controlled seeded supramolecular polymerization process. Structured Illumination microscopy (SIM) and spectroscopic analyses provide structural characterization of these supramolecular BCPs, which offers various possibilities as axial organic heterostructures.
Collapse
Affiliation(s)
- Aritra Sarkar
- Supramolecular Chemistry Laboratory, New Chemistry Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India.
| | - Ranjan Sasmal
- Supramolecular Chemistry Laboratory, New Chemistry Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India.
| | - Angshuman Das
- Supramolecular Chemistry Laboratory, New Chemistry Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India.
| | - Sarit S Agasti
- Supramolecular Chemistry Laboratory, New Chemistry Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India.
| | - Subi J George
- Supramolecular Chemistry Laboratory, New Chemistry Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India.
| |
Collapse
|
32
|
Kotha S, Mabesoone MFJ, Srideep D, Sahu R, Reddy SK, Rao KV. Supramolecular Depolymerization in the Mixture of Two Poor Solvents: Mechanistic Insights and Modulation of Supramolecular Polymerization of Ionic π‐Systems. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Srinu Kotha
- Department of Chemistry Indian Institute of Technology Hyderabad, Kandi Sangareddy Telangana 502285 India
| | - Mathijs F. J. Mabesoone
- Laboratory of Macromolecular and Organic Chemistry and the Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven The Netherlands
| | - Dasari Srideep
- Department of Chemistry Indian Institute of Technology Hyderabad, Kandi Sangareddy Telangana 502285 India
| | - Rahul Sahu
- Centre for Computational and Data Science Indian Institute of Technology Kharagpur Kharagpur West Bengal 721302 India
| | - Sandeep K. Reddy
- Centre for Computational and Data Science Indian Institute of Technology Kharagpur Kharagpur West Bengal 721302 India
| | - Kotagiri Venkata Rao
- Department of Chemistry Indian Institute of Technology Hyderabad, Kandi Sangareddy Telangana 502285 India
| |
Collapse
|
33
|
Kotha S, Mabesoone MFJ, Srideep D, Sahu R, Reddy SK, Rao KV. Supramolecular Depolymerization in the Mixture of Two Poor Solvents: Mechanistic Insights and Modulation of Supramolecular Polymerization of Ionic π-Systems. Angew Chem Int Ed Engl 2021; 60:5459-5466. [PMID: 33247874 DOI: 10.1002/anie.202011977] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/19/2020] [Indexed: 11/10/2022]
Abstract
Solvents are fundamentally essential for the synthesis and processing of soft materials. Supramolecular polymers (SPs), an emerging class of soft materials, are usually stable in single and mixtures of poor solvents. In contrast to these preconceived notions, here we report the depolymerization of SPs in the mixture of two poor solvents. This surprising behavior was observed for well-known cationic perylene diimides (cPDIs) in the mixtures of water and amphiphilic organic solvents such as isopropanol (IPA). cPDIs form stable SPs in water and IPA but readily depolymerize into monomers in 50-70 vol% IPA containing water. This is due to the selective solvation of the π-surface of cPDIs by alkyl chains of IPA and ionic side chains by water, as evidenced by molecular dynamic simulations. Moreover, by systematically changing the ratio between water and amphiphilic organic solvent, we could achieve an unprecedented supramolecular polymerization both by increasing and decreasing the solvent polarity.
Collapse
Affiliation(s)
- Srinu Kotha
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Mathijs F J Mabesoone
- Laboratory of Macromolecular and Organic Chemistry and the Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Dasari Srideep
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Rahul Sahu
- Centre for Computational and Data Science, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Sandeep K Reddy
- Centre for Computational and Data Science, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Kotagiri Venkata Rao
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| |
Collapse
|
34
|
Martínez-Aguirre MA, Li Y, Vanthuyne N, Bouteiller L, Raynal M. Dissecting the Role of the Sergeants in Supramolecular Helical Catalysts: From Chain Capping to Intercalation. Angew Chem Int Ed Engl 2021; 60:4183-4191. [PMID: 33180372 DOI: 10.1002/anie.202012457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Indexed: 11/05/2022]
Abstract
Controlling the properties of supramolecular assemblies requires unveiling the specific interactions between their components. In the present work, the catalytic properties and structure of co-assemblies composed of a benzene-1,3,5-tricarboxamide (BTA) ligand coordinated to copper (the soldier) and seven enantiopure BTAs (the sergeants) have been determined. Whatever the sergeant, the enantioselectivity of the reaction is directly proportional to the optical purity of the supramolecular helices. More strikingly, the role played by the sergeant in the co-assembly process differs significantly: from almost pure intercalator (when it is incorporated in the stacks of the soldier and generates long homochiral helices) to pure chain capper (when it leads to the formation of partly helically biased and short assemblies). The former situation leads to optimal enantioselectivity for the catalytic system under study (58 % ee) while the latter situation leads to very low selectivity (8 % ee). The successful rationalization of this high and unexpected difference is crucial for the development of more efficient catalysts and more elaborate supramolecular systems.
Collapse
Affiliation(s)
- Mayte A Martínez-Aguirre
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005, Paris, France
| | - Yan Li
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005, Paris, France
| | - Nicolas Vanthuyne
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2, UMR 7313, 13397, Marseille Cedex 20, France
| | - Laurent Bouteiller
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005, Paris, France
| | - Matthieu Raynal
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005, Paris, France
| |
Collapse
|
35
|
MacFarlane L, Zhao C, Cai J, Qiu H, Manners I. Emerging applications for living crystallization-driven self-assembly. Chem Sci 2021; 12:4661-4682. [PMID: 34163727 PMCID: PMC8179577 DOI: 10.1039/d0sc06878k] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/12/2021] [Indexed: 01/02/2023] Open
Abstract
The use of crystallization as a tool to control the self-assembly of polymeric and molecular amphiphiles in solution is attracting growing attention for the creation of non-spherical nanoparticles and more complex, hierarchical assemblies. In particular, the seeded growth method termed living crystallization-driven self-assembly (CDSA) has been established as an ambient temperature and potentially scalable platform for the preparation of low dispersity samples of core-shell fiber-like or platelet micellar nanoparticles. Significantly, this method permits predictable control of size, and access to branched and segmented structures where functionality is spatially-defined. Living CDSA operates under kinetic control and shows many analogies with living chain-growth polymerizations of molecular organic monomers that afford well-defined covalent polymers of controlled length except that it covers a much longer length scale (ca. 20 nm to 10 μm). The method has been applied to a rapidly expanding range of crystallizable polymeric amphiphiles, which includes block copolymers and charge-capped homopolymers, to form assemblies with crystalline cores and solvated coronas. Living CDSA seeded growth methods have also been transposed to a wide variety of π-stacking and hydrogen-bonding molecular species that form supramolecular polymers in processes termed "living supramolecular polymerizations". In this article we outline the main features of the living CDSA method and then survey the promising emerging applications for the resulting nanoparticles in fields such as nanomedicine, colloid stabilization, catalysis, optoelectronics, information storage, and surface functionalization.
Collapse
Affiliation(s)
- Liam MacFarlane
- Department of Chemistry, University of Victoria British Columbia Canada
| | - Chuanqi Zhao
- Department of Chemistry, University of Victoria British Columbia Canada
| | - Jiandong Cai
- Department of Chemistry, University of Victoria British Columbia Canada
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Ian Manners
- Department of Chemistry, University of Victoria British Columbia Canada
| |
Collapse
|
36
|
Orvay F, Cerdá J, Rotger C, Ortí E, Aragó J, Costa A, Soberats B. Influence of the Z/E Isomerism on the Pathway Complexity of a Squaramide-Based Macrocycle. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006133. [PMID: 33448095 DOI: 10.1002/smll.202006133] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/25/2020] [Indexed: 05/25/2023]
Abstract
The rising interest on pathway complexity in supramolecular polymerization has prompted the finding of novel monomer designs able to stabilize kinetically trapped species and generate supramolecular polymorphs. In the present work, the exploitation of the Z/E (geometrical) isomerism of squaramide (SQ) units to produce various self-assembled isoforms and complex supramolecular polymerization pathways in methylcyclohexane/CHCl3 mixtures is reported for the first time. This is achieved by using a new bissquaramidic macrocycle (MSq) that self-assembles into two markedly different thermodynamic aggregates, AggA (discrete cyclic structures) and AggB (fibrillar structures), depending on the solvent composition and concentration. Remarkably, UV-vis, 1 H NMR, and FT-IR experiments together with quantum-chemical calculations indicate that these two distinct aggregates are formed via two different hydrogen bonding patterns (side-to-side in AggA and head-to-tail in AggB) due to different conformations in the SQ units (Z,E in AggA and Z,Z in AggB). The ability of MSq to supramolecularly polymerize into two distinct aggregates is utilized to induce the kinetic-to-thermodynamic transformation from AggA to AggB, which occurs via an on-pathway mechanism. It is believed that this system provides new insights for the design of potential supramolecular polymorphic materials by using squaramide units.
Collapse
Affiliation(s)
- Francisca Orvay
- Department of Chemistry, University of the Balearic Islands, Cra. Valldemossa, Km. 7.5, Palma de Mallorca, 07122, Spain
| | - Jesús Cerdá
- Instituto de Ciencia Molecular, Universidad de Valencia, Paterna, 46980, Spain
| | - Carmen Rotger
- Department of Chemistry, University of the Balearic Islands, Cra. Valldemossa, Km. 7.5, Palma de Mallorca, 07122, Spain
| | - Enrique Ortí
- Instituto de Ciencia Molecular, Universidad de Valencia, Paterna, 46980, Spain
| | - Juan Aragó
- Instituto de Ciencia Molecular, Universidad de Valencia, Paterna, 46980, Spain
| | - Antonio Costa
- Department of Chemistry, University of the Balearic Islands, Cra. Valldemossa, Km. 7.5, Palma de Mallorca, 07122, Spain
| | - Bartolome Soberats
- Department of Chemistry, University of the Balearic Islands, Cra. Valldemossa, Km. 7.5, Palma de Mallorca, 07122, Spain
| |
Collapse
|
37
|
Li FZ, Zhou LL, Kuang GC. Supramolecular Engineering Strategy to Construct BODIPY-Based White Light Emission Materials. Chem Asian J 2021; 16:97-101. [PMID: 33230958 DOI: 10.1002/asia.202001297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/22/2020] [Indexed: 12/18/2022]
Abstract
Two kinds of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dyads BDP-OH containing 4-hydroxystyrene groups and BDP-PY bearing pyridinyl units were prepared. In addition, a naphthalene derivative NAP-PY modified by pyridinyl moieties substituent was made. The above three dyads could be used to construct white-light emission (WLE) material by a supramolecular engineering strategy due to their three primary colors of blue, green and red. The supramolecular correlations between the hydroxyl group of BDP-OH and the pyridinyl groups of NAP-PY and BDP-PY were confirmed by 1 H NMR titration, 2D NOESY and FTIR. A fluorescence monitor application was carried out based on the realization of WLE. This work might be useful for designing other WLE supramolecular systems and image display.
Collapse
Affiliation(s)
- Fang-Zhou Li
- State Key Laboratory of Power Metallurgy, Department of Polymer Materials and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Liang-Liang Zhou
- State Key Laboratory of Power Metallurgy, Department of Polymer Materials and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Gui-Chao Kuang
- State Key Laboratory of Power Metallurgy, Department of Polymer Materials and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| |
Collapse
|
38
|
Huo Y, He Z, Wang C, Zhang L, Xuan Q, Wei S, Wang Y, Pan D, Dong B, Wei R, Naik N, Guo Z. The recent progress of synergistic supramolecular polymers: preparation, properties and applications. Chem Commun (Camb) 2021; 57:1413-1429. [DOI: 10.1039/d0cc07247h] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Interactions for forming supramolecular polymers were reviewed together with their unique properties and applications with detailed examples.
Collapse
|
39
|
Jangizehi A, Schmid F, Besenius P, Kremer K, Seiffert S. Defects and defect engineering in Soft Matter. SOFT MATTER 2020; 16:10809-10859. [PMID: 33306078 DOI: 10.1039/d0sm01371d] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Soft matter covers a wide range of materials based on linear or branched polymers, gels and rubbers, amphiphilic (macro)molecules, colloids, and self-assembled structures. These materials have applications in various industries, all highly important for our daily life, and they control all biological functions; therefore, controlling and tailoring their properties is crucial. One way to approach this target is defect engineering, which aims to control defects in the material's structure, and/or to purposely add defects into it to trigger specific functions. While this approach has been a striking success story in crystalline inorganic hard matter, both for mechanical and electronic properties, and has also been applied to organic hard materials, defect engineering is rarely used in soft matter design. In this review, we present a survey on investigations on defects and/or defect engineering in nine classes of soft matter composed of liquid crystals, colloids, linear polymers with moderate degree of branching, hyperbranched polymers and dendrimers, conjugated polymers, polymeric networks, self-assembled amphiphiles and proteins, block copolymers and supramolecular polymers. This overview proposes a promising role of this approach for tuning the properties of soft matter.
Collapse
Affiliation(s)
- Amir Jangizehi
- Johannes Gutenberg University Mainz, Department of Chemistry, Duesbergweg 10-14, D-55128 Mainz, Germany
| | | | | | | | | |
Collapse
|
40
|
Martínez‐Aguirre MA, Li Y, Vanthuyne N, Bouteiller L, Raynal M. Dissecting the Role of the Sergeants in Supramolecular Helical Catalysts: From Chain Capping to Intercalation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mayte A. Martínez‐Aguirre
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire Equipe Chimie des Polymères 4 Place Jussieu 75005 Paris France
| | - Yan Li
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire Equipe Chimie des Polymères 4 Place Jussieu 75005 Paris France
| | - Nicolas Vanthuyne
- Aix Marseille Université Centrale Marseille CNRS, iSm2, UMR 7313 13397 Marseille Cedex 20 France
| | - Laurent Bouteiller
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire Equipe Chimie des Polymères 4 Place Jussieu 75005 Paris France
| | - Matthieu Raynal
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire Equipe Chimie des Polymères 4 Place Jussieu 75005 Paris France
| |
Collapse
|
41
|
Vereroudakis E, Bantawa M, Lafleur RP, Parisi D, Matsumoto NM, Peeters JW, Del Gado E, Meijer EW, Vlassopoulos D. Competitive Supramolecular Associations Mediate the Viscoelasticity of Binary Hydrogels. ACS CENTRAL SCIENCE 2020; 6:1401-1411. [PMID: 32875081 PMCID: PMC7453573 DOI: 10.1021/acscentsci.0c00279] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Indexed: 05/20/2023]
Abstract
Supramolecular polymers are known to form strong and resilient hydrogels which can take up large amounts of water while exhibiting ease of processing and self-healing. They also possess similarities with networks of biological macromolecules. The combination of these features makes supramolecular polymers ideal candidates for studying mechanisms and consequences of self-assembly, which are relevant to biological materials. At the same time, this renders investigations of mixed hydrogels based on different supramolecular compounds necessary, since this substantially widens their applicability. Here, we address unusual viscoelastic properties of a class of binary hydrogels made by mixing fibrillar supramolecular polymers that are formed from two compounds: 1,3,5-benzene-tricarboxamide decorated with aliphatic chains terminated by tetra(ethylene glycol) (BTA) and a 20 kg/mol telechelic poly(ethylene glycol) decorated with the same hydrogen bonding BTA motif on both ends (BTA-PEG-BTA). Using a suite of experimental and simulation techniques, we find that the respective single-compound-based supramolecular systems form very different networks which exhibit drastically different rheology. More strikingly, mixing the compounds results in a non-monotonic dependence of modulus and viscosity on composition, suggesting a competition between interactions of the two compounds, which can then be used to fine-tune the mechanical properties. Simulations offer insight into the nature of this competition and their remarkable qualitative agreement with the experimental results is promising for the design of mixed hydrogels with desired and tunable properties. Their combination with a sensitive dynamic probe (here rheology) offer a powerful toolbox to explore the unique properties of binary hydrogel mixtures.
Collapse
Affiliation(s)
- Emmanouil Vereroudakis
- Institute
of Electronic Structure and Laser, Foundation
for Research and Technology (FORTH), 70013 Heraklion, Crete, Greece
- Department
of Materials Science & Technology, University
of Crete, 71003 Heraklion, Crete, Greece
| | - Minaspi Bantawa
- Department
of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets, N.W., Washington, D.C. 20057, United States
| | - René P.
M. Lafleur
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Daniele Parisi
- Institute
of Electronic Structure and Laser, Foundation
for Research and Technology (FORTH), 70013 Heraklion, Crete, Greece
- Department
of Materials Science & Technology, University
of Crete, 71003 Heraklion, Crete, Greece
| | - Nicholas M. Matsumoto
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | | | - Emanuela Del Gado
- Department
of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets, N.W., Washington, D.C. 20057, United States
| | - E. W. Meijer
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Dimitris Vlassopoulos
- Institute
of Electronic Structure and Laser, Foundation
for Research and Technology (FORTH), 70013 Heraklion, Crete, Greece
- Department
of Materials Science & Technology, University
of Crete, 71003 Heraklion, Crete, Greece
| |
Collapse
|
42
|
Dey P, Rajdev P, Pramanik P, Haag R, Ghosh S. Synthesis of a Cylindrical Micelle from Hydrophilic Polymers Connected with a Single Supramolecular Structure-Directing Unit. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01493] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - Rainer Haag
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | | |
Collapse
|
43
|
Transient dormant monomer states for supramolecular polymers with low dispersity. Nat Commun 2020; 11:3967. [PMID: 32770122 PMCID: PMC7415150 DOI: 10.1038/s41467-020-17799-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/15/2020] [Indexed: 12/13/2022] Open
Abstract
Temporally controlled cooperative and living supramolecular polymerization by the buffered release of monomers has been recently introduced as an important concept towards obtaining monodisperse and multicomponent self-assembled materials. In synthetic, dynamic supramolecular polymers, this requires efficient design strategies for the dormant, inactive states of the monomers to kinetically retard the otherwise spontaneous nucleation process. However, a generalized design principle for the dormant monomer states to expand the scope of precision supramolecular polymers has not been established yet, due to the enormous differences in the mechanism, energetic parameters of self-assembly and monomer exchange dynamics of the diverse class of supramolecular polymers. Here we report the concept of transient dormant states of monomers generated by redox reactions as a predictive general design to achieve monodisperse supramolecular polymers of electronically active, chromophoric or donor-acceptor, monomers. The concept has been demonstrated with charge-transfer supramolecular polymers with an alternating donor-acceptor sequence. Monodisperse and well-defined self-assembled materials can be obtained by fuel-driven temporally controlled supramolecular polymerization via the buffered release of monomers. Here the authors show that a redox-responsive transient dormant state of monomer generated by redox reaction can lead to supramolecular polymers with low dispersity.
Collapse
|
44
|
Ter Huurne GM, Chidchob P, Long A, Martinez A, Palmans ARA, Vantomme G. Controlling the Length of Cooperative Supramolecular Polymers with Chain Cappers. Chemistry 2020; 26:9964-9970. [PMID: 32347608 DOI: 10.1002/chem.202001293] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/09/2020] [Indexed: 11/06/2022]
Abstract
The design and the characterization of supramolecular additives to control the chain length of benzene-1,3,5-tricarboxamide (BTA) cooperative supramolecular polymers under thermodynamic equilibrium is unraveled. These additives act as chain cappers of supramolecular polymers and feature one face as reactive as the BTA discotic to interact strongly with the polymer end, whereas the other face is nonreactive and therefore impedes further polymerization. Such a design requires fine tuning of the conformational preorganization of the amides and the steric hindrance of the motif. The chain cappers studied are monotopic derivatives of BTA, modified by partial N-methylation of the amides or by positioning of a bulky cyclotriveratrylene cage on one face of the BTA unit. This study not only clarifies the interplay between structural variations and supramolecular interactions, but it also highlights the necessity to combine orthogonal characterization methods, spectroscopy and light scattering, to elucidate the structures and compositions of supramolecular systems.
Collapse
Affiliation(s)
- Gijs M Ter Huurne
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, The Netherlands
| | - Pongphak Chidchob
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, The Netherlands
| | - Augustin Long
- CNRS, Centrale Marseille, iSm2, Aix-Marseille Université, 13013, Marseille, France
| | - Alexandre Martinez
- CNRS, Centrale Marseille, iSm2, Aix-Marseille Université, 13013, Marseille, France
| | - Anja R A Palmans
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, The Netherlands
| | - Ghislaine Vantomme
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, The Netherlands
| |
Collapse
|
45
|
Chen X, Zawaski CE, Spiering GA, Liu B, Orsino CM, Moore RB, Williams CB, Long TE. Quadruple Hydrogen Bonding Supramolecular Elastomers for Melt Extrusion Additive Manufacturing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32006-32016. [PMID: 32520520 DOI: 10.1021/acsami.0c08958] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This manuscript describes the versatility of highly directional, noncovalent interactions, i.e., quadruple hydrogen bonding (QHB), to afford novel polyurea segmented supramolecular polymers for melt extrusion three-dimensional (3D) printing processes. The molecular design of the polyurea elastomers features (1) flexible polyether segments and relatively weak urea hydrogen-bonding sites in the soft segments to provide elasticity and toughness, and (2) strong ureido-cytosine (UCyt) QHB in the hard segments to impart enhanced mechanical integrity. The resulting polyureas were readily compression-molded into mechanically-robust, transparent, and creasable films. Optimization of polyurea composition offered a rare combination of high tensile strength (95 MPa), tensile elongation (788% strain), and toughness (94 MJ/m3), which are superior to a commercially available Ninjaflex elastomer. The incorporation of QHB facilitated melt processability, where hydrogen bonding dissociation provided low viscosities at printing temperatures. During cooling, directional self-assembly of UCyt QHB facilitated the solidification process and contributed to part fidelity with the formation of a robust physical network. The printed objects displayed high layer fidelity, smooth surfaces, minimal warpage, and complex geometries. The presence of highly directional QHB effectively diminished mechanical anisotropy, and the printed samples exhibited comparable Young's moduli along (x-y direction, 0°) and perpendicular to (z-direction, 90°) the layer direction. Remarkably, the printed samples exhibited ultimate tensile strains approaching 500% in the z-direction prior to failure, which was indicative of improved interlayer adhesion. Thus, this design paradigm, which is demonstrated for novel polyurea copolymers, suggests the potential of supramolecular polymers with enhanced mechanical performance, melt processability, recyclability, and improved interlayer adhesion for melt extrusion additive manufacturing processes.
Collapse
Affiliation(s)
- Xi Chen
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Callie E Zawaski
- Department of Mechanical Engineering, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Glenn A Spiering
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Boer Liu
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Christina M Orsino
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Robert B Moore
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Christopher B Williams
- Department of Mechanical Engineering, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Timothy E Long
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
46
|
Sarkar A, Behera T, Sasmal R, Capelli R, Empereur-Mot C, Mahato J, Agasti SS, Pavan GM, Chowdhury A, George SJ. Cooperative Supramolecular Block Copolymerization for the Synthesis of Functional Axial Organic Heterostructures. J Am Chem Soc 2020; 142:11528-11539. [PMID: 32501694 DOI: 10.1021/jacs.0c04404] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Supramolecular block copolymerzation with optically or electronically complementary monomers provides an attractive bottom-up approach for the non-covalent synthesis of nascent axial organic heterostructures, which promises to deliver useful applications in energy conversion, optoelectronics, and catalysis. However, the synthesis of supramolecular block copolymers (BCPs) constitutes a significant challenge due to the exchange dynamics of non-covalently bound monomers and hence requires fine microstructure control. Furthermore, temporal stability of the segmented microstructure is a prerequisite to explore the applications of functional supramolecular BCPs. Herein, we report the cooperative supramolecular block copolymerization of fluorescent monomers in solution under thermodynamic control for the synthesis of axial organic heterostructures with light-harvesting properties. The fluorescent nature of the core-substituted naphthalene diimide (cNDI) monomers enables a detailed spectroscopic probing during the supramolecular block copolymerization process to unravel a nucleation-growth mechanism, similar to that of chain copolymerization for covalent block copolymers. Structured illumination microscopy (SIM) imaging of BCP chains characterizes the segmented microstructure and also allows size distribution analysis to reveal the narrow polydispersity (polydispersity index (PDI) ≈ 1.1) for the individual block segments. Spectrally resolved fluorescence microscopy on single block copolymerized organic heterostructures shows energy migration and light-harvesting across the interfaces of linearly connected segments. Molecular dynamics and metadynamics simulations provide useful mechanistic insights into the free energy of interaction between the monomers as well as into monomer exchange mechanisms and dynamics, which have a crucial impact on determining the copolymer microstructure. Our comprehensive spectroscopic, microscopic, and computational analyses provide an unambiguous structural, dynamic, and functional characterization of the supramolecular BCPs. The strategy presented here is expected to pave the way for the synthesis of multi-component organic heterostructures for various functions.
Collapse
Affiliation(s)
- Aritra Sarkar
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Tejmani Behera
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ranjan Sasmal
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Riccardo Capelli
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi24, 10129 Torino, Italy
| | - Charly Empereur-Mot
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Via Cantonale 2c, CH-6928 Manno, Switzerland
| | - Jaladhar Mahato
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sarit S Agasti
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Giovanni M Pavan
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi24, 10129 Torino, Italy.,Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Via Cantonale 2c, CH-6928 Manno, Switzerland
| | - Arindam Chowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Subi J George
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| |
Collapse
|
47
|
VandenBerg MA, Sahoo JK, Zou L, McCarthy W, Webber MJ. Divergent Self-Assembly Pathways to Hierarchically Organized Networks of Isopeptide-Modified Discotics under Kinetic Control. ACS NANO 2020; 14:5491-5505. [PMID: 32297733 DOI: 10.1021/acsnano.9b09610] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Natural proteins traverse complex free energy landscapes to assemble into hierarchically organized structures, often through stimuli-directed kinetic pathways in response to relevant biological cues. Bioinspired strategies have sought to emulate the complexity, dynamicity, and modularity exhibited in these natural processes with synthetic analogues. However, these efforts are limited by many factors that complicate the rational design and predictable assembly of synthetic constructs, especially in aqueous environments. Herein, a model discotic amphiphile gelator is described that undergoes pathway-dependent structural maturation when exposed to varying application rates of a pH stimulus, investigated by electron microscopy, spectroscopy, and X-ray scattering techniques. Under the direction of a slowly changing pH stimulus, complex hierarchical assemblies result, characterized by mesoscale elongated "superstructure" bundles embedded in a percolated mesh of narrow nanofibers. In contrast, the assembly under a rapidly applied pH stimulus is characterized by homogeneous structures that are reminiscent of the superstructures arising from the more deliberate path, except with significantly reduced scale and concomitantly large increases in bulk rheological properties. This synthetic system bears resemblance to the pathway complexity and hierarchical ordering observed for native structures, such as collagen, and points to fundamental design principles that might be applied toward enhanced control of the properties of supramolecular self-assembly across length scales.
Collapse
Affiliation(s)
- Michael A VandenBerg
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jugal Kishore Sahoo
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Lei Zou
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - William McCarthy
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Matthew J Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
48
|
Sarkar A, Sasmal R, Empereur-mot C, Bochicchio D, Kompella SVK, Sharma K, Dhiman S, Sundaram B, Agasti SS, Pavan GM, George SJ. Self-Sorted, Random, and Block Supramolecular Copolymers via Sequence Controlled, Multicomponent Self-Assembly. J Am Chem Soc 2020; 142:7606-7617. [DOI: 10.1021/jacs.0c01822] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Aritra Sarkar
- New Chemistry Unit and School of Advanced Materials (SAMAt), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Ranjan Sasmal
- New Chemistry Unit and School of Advanced Materials (SAMAt), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Charly Empereur-mot
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Via Cantonale 2c, CH-6928 Manno, Switzerland
| | - Davide Bochicchio
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Via Cantonale 2c, CH-6928 Manno, Switzerland
| | - Srinath V. K. Kompella
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Kamna Sharma
- New Chemistry Unit and School of Advanced Materials (SAMAt), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Shikha Dhiman
- New Chemistry Unit and School of Advanced Materials (SAMAt), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Balasubramanian Sundaram
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Sarit S. Agasti
- New Chemistry Unit and School of Advanced Materials (SAMAt), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Giovanni M. Pavan
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Galleria 2, Via Cantonale 2c, CH-6928 Manno, Switzerland
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi24, 10129 Torino, Italy
| | - Subi J. George
- New Chemistry Unit and School of Advanced Materials (SAMAt), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| |
Collapse
|
49
|
Zhao W, Tropp J, Qiao B, Pink M, Azoulay JD, Flood AH. Tunable Adhesion from Stoichiometry-Controlled and Sequence-Defined Supramolecular Polymers Emerges Hierarchically from Cyanostar-Stabilized Anion-Anion Linkages. J Am Chem Soc 2020; 142:2579-2591. [PMID: 31931561 DOI: 10.1021/jacs.9b12645] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sequence-controlled supramolecular polymers offer new design paradigms for generating stimuli-responsive macromolecules with enhanced functionalities. The dynamic character of supramolecular links present challenges to sequence definition in extended supramolecular macromolecules, and design principles remain nascent. Here, we demonstrate the first example of using stoichiometry-control to specify the monomer sequence in a linear supramolecular polymer by synthesizing both a homopolymer and an alternating copolymer from the same glycol-substituted cyanostar macrocycle and phenylene-linked diphosphate monomers. A 2:1 stoichiometry between macrocycle and diphosphate produces a supramolecular homopolymer of general formula (A)n comprised of repeating units of cyanostar-stabilized phosphate-phosphate dimers. Using a 1:1 stoichiometry, an alternating (AB)n structure is produced with half the phosphate dimers now stabilized by the additional counter cations that emerge hierarchically after forming the stronger cyanostar-stabilized phosphate dimers. These new polymer materials and binding motifs are sufficient to bear normal and shear stress to promote significant and tunable adhesive properties. The homopolymer (A)n, consisting of cyanostar-stabilized anti-electrostatic linkages, shows adhesion strength comparable to commercial superglue formulations based on polycyanoacrylate but is thermally reversible. Unexpectedly, and despite including traditional ionic linkages, the alternating copolymer (AB)n shows weaker adhesion strength more similar to commercial white glue based on poly(vinyl acetate). Thus, the adhesion properties can be tuned over a wide range by simply controlling the stoichiometric ratio of monomers. This study offers new insight into supramolecular polymers composed of custom-designed anion and receptor monomers and demonstrates the utility of emerging functional materials based on anion-anion linkages.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Joshua Tropp
- School of Polymer Science and Engineering , The University of Southern Mississippi , 118 College Drive , Hattiesburg , Mississippi 39406 , United States
| | - Bo Qiao
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Maren Pink
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Jason D Azoulay
- School of Polymer Science and Engineering , The University of Southern Mississippi , 118 College Drive , Hattiesburg , Mississippi 39406 , United States
| | - Amar H Flood
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| |
Collapse
|
50
|
Ghosh G, Dey P, Ghosh S. Controlled supramolecular polymerization of π-systems. Chem Commun (Camb) 2020; 56:6757-6769. [DOI: 10.1039/d0cc02787a] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Externally-initiated controlled supramolecular polymerization of the kinetically trapped aggregated state in a chain growth mechanism can produce well-defined living supramolecular polymers and copolymers.
Collapse
Affiliation(s)
- Goutam Ghosh
- School of Applied and Interdisciplinary Sciences
- Indian Association for the Cultivation Science
- Kolkata
- India
| | - Pradip Dey
- School of Applied and Interdisciplinary Sciences
- Indian Association for the Cultivation Science
- Kolkata
- India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences
- Indian Association for the Cultivation Science
- Kolkata
- India
| |
Collapse
|