1
|
Idris T, Bachmann M, Bacchetta M, Wehrle-Haller B, Chanson M, Badaoui M. Akt-driven TGF-β and DKK1 Secretion Impairs F508del Cystic Fibrosis Airway Epithelium Polarity. Am J Respir Cell Mol Biol 2024; 71:81-94. [PMID: 38531016 DOI: 10.1165/rcmb.2023-0408oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/26/2024] [Indexed: 03/28/2024] Open
Abstract
Epithelial polarity is fundamental in maintaining barrier integrity and tissue protection. In cystic fibrosis (CF), apicobasal polarity of the airway epithelium is altered, resulting in increased apical fibronectin deposition and enhanced susceptibility to bacterial infections. Here, we evaluated the effect of highly effective modulator treatment (HEMT) on fibronectin apical deposition and investigated the intracellular mechanisms triggering the defect in polarity of the CF airway epithelium. To this end, primary cultures of CF (F508del variant) human airway epithelial cells (HAECs) and a HAEC line, Calu-3, knocked down for CFTR (CF transmembrane conductance regulator) were compared with control counterparts. We show that CFTR mutation in primary HAECs and CFTR knockdown cells promote the overexpression and oversecretion of TGF-β1 and DKK1 when cultured at an air-liquid interface. These dynamic changes result in hyperactivation of the TGF-β pathway and inhibition of the Wnt pathway through degradation of β-catenin leading to imbalanced proliferation and polarization. The abnormal interplay between TGF-β and Wnt signaling pathways is reinforced by aberrant Akt signaling. Pharmacological manipulation of TGF-β, Wnt, and Akt pathways restored polarization of the F508del CF epithelium, a correction that was not achieved by HEMT. Our data shed new insights into the signaling pathways that fine-tune apicobasal polarization in primary airway epithelial cells and may provide an explanation to the mitigated efficacy of HEMT on lung infection in people with CF.
Collapse
Affiliation(s)
- Tahir Idris
- Department of Cell Physiology and Metabolism
| | | | | | | | - Marc Chanson
- Department of Cell Physiology and Metabolism
- Department of Pediatrics, Gynecology, and Obstetrics, and
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
2
|
The CFTR Amplifier Nesolicaftor Rescues TGF-β1 Inhibition of Modulator-Corrected F508del CFTR Function. Int J Mol Sci 2022; 23:ijms231810956. [PMID: 36142862 PMCID: PMC9504033 DOI: 10.3390/ijms231810956] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Highly effective cystic fibrosis transmembrane conductance regulator (CFTR) modulators have led to dramatic improvements in lung function in many people with cystic fibrosis (PwCF). However, the efficacy of CFTR modulators may be hindered by persistent airway inflammation. The cytokine transforming growth factor-beta1 (TGF-β1) is associated with worse pulmonary disease in PwCF and can diminish modulator efficacy. Thus, strategies to augment the CFTR response to modulators in an inflammatory environment are needed. Here, we tested whether the CFTR amplifier nesolicaftor (or PTI-428) could rescue the effects of TGF-β1 on CFTR function and ciliary beating in primary human CF bronchial epithelial (CFBE) cells. CFBE cells homozygous for F508del were treated with the combination of elexacaftor/tezacaftor/ivacaftor (ETI) and TGF-β1 in the presence and absence of nesolicaftor. Nesolicaftor augmented the F508del CFTR response to ETI and reversed TGF-β1-induced reductions in CFTR conductance by increasing the expression of CFTR mRNA. Nesolicaftor further rescued the reduced ciliary beating and increased expression of the cytokines IL-6 and IL-8 caused by TGF-β1. Finally, nesolicaftor augmented the F508del CFTR response to ETI in CFBE cells overexpressing miR-145, a negative regulator of CFTR expression. Thus, CFTR amplifiers, but only when used with highly effective modulators, may provide benefit in an inflamed environment.
Collapse
|
3
|
Bradfute SB, Ye C, Clarke EC, Kumar S, Timmins GS, Deretic V. Ambroxol and Ciprofloxacin Show Activity Against SARS-CoV2 in Vero E6 Cells at Clinically-Relevant Concentrations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.08.11.245100. [PMID: 32817934 PMCID: PMC7430564 DOI: 10.1101/2020.08.11.245100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We studied the activity of a range of weakly basic and moderately lipophilic drugs against SARS CoV2 in Vero E6 cells, using Vero E6 survival, qPCR of viral genome and plaque forming assays. No clear relationship between their weakly basic and hydrophobic nature upon their activity was observed. However, the approved drugs ambroxol and ciprofloxacin showed potent activity at concentrations that are clinically relevant and within their known safety profiles, and so may provide potentially useful agents for preclinical and clinical studies in COVID-19.
Collapse
Affiliation(s)
- Steven B Bradfute
- Center for Global Health, Department of Internal Medicine, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Chunyan Ye
- Center for Global Health, Department of Internal Medicine, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Elizabeth C Clarke
- Center for Global Health, Department of Internal Medicine, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Suresh Kumar
- Autophagy, Inflammation and Metabolism (AIM) Center, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Microbiology and Molecular Genetics, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Graham S Timmins
- Autophagy, Inflammation and Metabolism (AIM) Center, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Vojo Deretic
- Autophagy, Inflammation and Metabolism (AIM) Center, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Microbiology and Molecular Genetics, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
4
|
Nirk EL, Reggiori F, Mauthe M. Hydroxychloroquine in rheumatic autoimmune disorders and beyond. EMBO Mol Med 2020; 12:e12476. [PMID: 32715647 PMCID: PMC7411564 DOI: 10.15252/emmm.202012476] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Initially used as antimalarial drugs, hydroxychloroquine (HCQ) and, to a lesser extent, chloroquine (CQ) are currently being used to treat several diseases. Due to its cost‐effectiveness, safety and efficacy, HCQ is especially used in rheumatic autoimmune disorders (RADs), such as systemic lupus erythematosus, primary Sjögren's syndrome and rheumatoid arthritis. Despite this widespread use in the clinic, HCQ molecular modes of action are still not completely understood. By influencing several cellular pathways through different mechanisms, CQ and HCQ inhibit multiple endolysosomal functions, including autophagy, as well as endosomal Toll‐like receptor activation and calcium signalling. These effects alter several aspects of the immune system with the synergistic consequence of reducing pro‐inflammatory cytokine production and release, one of the most marked symptoms of RADs. Here, we review the current knowledge on the molecular modes of action of these drugs and the circumstances under which they trigger side effects. This is of particular importance as the therapeutic use of HCQ is expanding beyond the treatment of malaria and RADs.
Collapse
Affiliation(s)
- Eliise Laura Nirk
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mario Mauthe
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Poschet JF, Perkett EA, Timmins GS, Deretic V. Azithromycin and ciprofloxacin have a chloroquine-like effect on respiratory epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.03.29.008631. [PMID: 32511331 PMCID: PMC7239066 DOI: 10.1101/2020.03.29.008631] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is interest in the use of chloroquine/hydroxychloroquine (CQ/HCQ) and azithromycin (AZT) in COVID-19 therapy. Employing cystic fibrosis respiratory epithelial cells, here we show that drugs AZT and ciprofloxacin (CPX) act as acidotropic lipophilic weak bases and confer in vitro effects on intracellular organelles similar to the effects of CQ. These seemingly disparate FDA-approved antimicrobials display a common property of modulating pH of endosomes and trans-Golgi network. We believe this may in part help understand the potentially beneficial effects of CQ/HCQ and AZT in COVID-19, and that the present considerations of HCQ and AZT for clinical trials should be extended to CPX.
Collapse
Affiliation(s)
- Jens F. Poschet
- Departments of Molecular Genetics and Microbiology, University of New Mexico Health Science Center
| | - Elizabeth A. Perkett
- Departments of Pediatrics, University of New Mexico Health Science Center
- Departments of Internal Medicine, University of New Mexico Health Science Center
| | - Graham S. Timmins
- Pharmaceutical Sciences, University of New Mexico Health Science Center
| | - Vojo Deretic
- Departments of Molecular Genetics and Microbiology, University of New Mexico Health Science Center
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Science Center
| |
Collapse
|
6
|
Kim MD, Baumlin N, Yoshida M, Polineni D, Salathe SF, David JK, Peloquin CA, Wanner A, Dennis JS, Sailland J, Whitney P, Horrigan FT, Sabater JR, Abraham WM, Salathe M. Losartan Rescues Inflammation-related Mucociliary Dysfunction in Relevant Models of Cystic Fibrosis. Am J Respir Crit Care Med 2020; 201:313-324. [PMID: 31613648 PMCID: PMC6999107 DOI: 10.1164/rccm.201905-0990oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/09/2019] [Indexed: 12/27/2022] Open
Abstract
Rationale: Despite therapeutic progress in treating cystic fibrosis (CF) airway disease, airway inflammation with associated mucociliary dysfunction remains largely unaddressed. Inflammation reduces the activity of apically expressed large-conductance Ca2+-activated and voltage-dependent K+ (BK) channels, critical for mucociliary function in the absence of CFTR (CF transmembrane conductance regulator).Objectives: To test losartan as an antiinflammatory therapy in CF using CF human bronchial epithelial cells and an ovine model of CF-like airway disease.Methods: Losartan's antiinflammatory effectiveness to rescue BK activity and thus mucociliary function was tested in vitro using primary, fully redifferentiated human airway epithelial cells homozygous for F508del and in vivo using a previously validated, now expanded pharmacologic sheep model of CF-like, inflammation-associated mucociliary dysfunction.Measurements and Main Results: Nasal scrapings from patients with CF showed that neutrophilic inflammation correlated with reduced expression of LRRC26 (leucine rich repeat containing 26), the γ subunit mandatory for BK function in the airways. TGF-β1 (transforming growth factor β1), downstream of neutrophil elastase, decreased mucociliary parameters in vitro. These were rescued by losartan at concentrations achieved by nebulization in the airway and oral application in the bloodstream: BK dysfunction recovered acutely and over time (the latter via an increase in LRRC26 expression), ciliary beat frequency and airway surface liquid volume improved, and mucus hyperconcentration and cellular inflammation decreased. These effects did not depend on angiotensin receptor blockade. Expanding on a validated and published nongenetic, CF-like sheep model, ewes inhaled CFTRinh172 and neutrophil elastase for 3 days, which resulted in prolonged tracheal mucus velocity reduction, mucus hyperconcentration, and increased TGF-β1. Nebulized losartan rescued both mucus transport and mucus hyperconcentration and reduced TGF-β1.Conclusions: Losartan effectively reversed CF- and inflammation-associated mucociliary dysfunction, independent of its angiotensin receptor blockade.
Collapse
Affiliation(s)
- Michael D. Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Nathalie Baumlin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Makoto Yoshida
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Deepika Polineni
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Sebastian F. Salathe
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida
| | - Joseph K. David
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida
| | - Charles A. Peloquin
- College of Pharmacy and Emerging Pathogens Institute, University of Florida, Gainesville, Florida
| | - Adam Wanner
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida
| | - John S. Dennis
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Juliette Sailland
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida
| | - Philip Whitney
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida
| | - Frank T. Horrigan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas; and
| | | | | | - Matthias Salathe
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami School of Medicine, Miami, Florida
| |
Collapse
|
7
|
Helmy SA, El-Mesery M, El-Karef A, Eissa LA, El Gayar AM. Chloroquine upregulates TRAIL/TRAILR2 expression and potentiates doxorubicin anti-tumor activity in thioacetamide-induced hepatocellular carcinoma model. Chem Biol Interact 2017; 279:84-94. [PMID: 29133031 DOI: 10.1016/j.cbi.2017.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/31/2017] [Accepted: 11/09/2017] [Indexed: 01/08/2023]
Abstract
Impaired apoptosis and systemic toxicity of chemotherapeutic drugs make cancer treatment suboptimal. Thus, there is urgency for drug repurposing which facilitates discovery of safe and effective combination therapy. This study aimed to evaluate chloroquine's (CQ) ability to trigger TRAIL/TRAILR2 apoptotic pathway in thioacetamide (TAA)-induced hepatocellular carcinoma (HCC) either alone or in combination with doxorubicin (DOX). Moreover, its ability to attenuate DOX-induced cardiotoxicity was investigated. TAA was injected in male Sprague Dawely rats (200 mg/kg; ip; 2 times/week) for 16 weeks. After the 16th week, rats were further divided into different groups (n = 10) and treated for 7 weeks. CQ group (received CQ 25 mg/kg/day; orally), DOX group (received DOX 1 mg/kg; ip; 2 times/week) and CQ/DOX group. Liver function biomarkers, AFP, hepatic levels of MDA and GSH, serum CK-MB and LDH enzymes activity were measured. Quantitative, Real-Time PCR was used to measure TRAIL, TRAILR2, caspase-8, caspase-9, caspase-3, BCL-2 and TGF-β1 genes expression levels. Necroinflammation and fibrosis were scored by histopathological examination. CQ improved liver functions, reduced AFP level and attenuated HCC progression. CQ induced apoptosis via upregulation of TRAIL/TRAILR2, caspase-8, caspase-3 and caspase-8 genes and downregulation of BCL-2 gene. Moreover, CQ/DOX showed marked decrease in hepatic MDA level, serum CK-MB, LDH enzymes activity, as well as marked increase in hepatic GSH level. In conclusion, this work assess the in vivo efficacy of CQ/DOX combination therapy in this HCC model that not only has enhanced anti-tumor activity but it also protects against DOX-induced cardiotoxicity. Nevertheless, more studies should be performed to illustrate the molecular mechanism of CQ's cardioprotective effect.
Collapse
Affiliation(s)
- Sahar A Helmy
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Mohamed El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Amro El-Karef
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Laila A Eissa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Amal M El Gayar
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
8
|
Krick S, Baumlin N, Aller SP, Aguiar C, Grabner A, Sailland J, Mendes E, Schmid A, Qi L, David NV, Geraghty P, King G, Birket SE, Rowe SM, Faul C, Salathe M. Klotho Inhibits Interleukin-8 Secretion from Cystic Fibrosis Airway Epithelia. Sci Rep 2017; 7:14388. [PMID: 29085059 PMCID: PMC5662572 DOI: 10.1038/s41598-017-14811-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/16/2017] [Indexed: 01/08/2023] Open
Abstract
Chronic inflammation is a hallmark of cystic fibrosis (CF) and associated with increased production of transforming growth factor (TGF) β and interleukin (IL)-8. α-klotho (KL), a transmembrane or soluble protein, functions as a co-receptor for Fibroblast Growth Factor (FGF) 23, a known pro-inflammatory, prognostic marker in chronic kidney disease. KL is downregulated in airways from COPD patients. We hypothesized that both KL and FGF23 signaling modulate TGF β-induced IL-8 secretion in CF bronchial epithelia. Thus, FGF23 and soluble KL levels were measured in plasma from 48 CF patients and in primary CF bronchial epithelial cells (CF-HBEC). CF patients showed increased FGF23 plasma levels, but KL levels were not different. In CF-HBEC, TGF-β increased KL secretion and upregulated FGF receptor (FGFR) 1. Despite increases in KL, TGF-β also increased IL-8 secretion via activation of FGFR1 and Smad 3 signaling. However, KL excess via overexpression or supplementation decreased IL-8 secretion by inhibiting Smad 3 phosphorylation. Here, we identify a novel signaling pathway contributing to IL-8 secretion in the CF bronchial epithelium with KL functioning as an endocrine and local anti-inflammatory mediator that antagonizes pro-inflammatory actions of FGF23 and TGF-β.
Collapse
Affiliation(s)
- Stefanie Krick
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Nathalie Baumlin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Sheyla Paredes Aller
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Carolina Aguiar
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Alexander Grabner
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Juliette Sailland
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Eliana Mendes
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Andreas Schmid
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Lixin Qi
- Division of Nephrology and Hypertension, Department of Medicine and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nicolae V David
- Division of Nephrology and Hypertension, Department of Medicine and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Patrick Geraghty
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Gwendalyn King
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Susan E Birket
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Steven M Rowe
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Christian Faul
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Matthias Salathe
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| |
Collapse
|
9
|
Manzanares D, Krick S, Baumlin N, Dennis JS, Tyrrell J, Tarran R, Salathe M. Airway Surface Dehydration by Transforming Growth Factor β (TGF-β) in Cystic Fibrosis Is Due to Decreased Function of a Voltage-dependent Potassium Channel and Can Be Rescued by the Drug Pirfenidone. J Biol Chem 2015; 290:25710-6. [PMID: 26338706 DOI: 10.1074/jbc.m115.670885] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor β1 (TGF-β1) is not only elevated in airways of cystic fibrosis (CF) patients, whose airways are characterized by abnormal ion transport and mucociliary clearance, but TGF-β1 is also associated with worse clinical outcomes. Effective mucociliary clearance depends on adequate airway hydration, governed by ion transport. Apically expressed, large-conductance, Ca(2+)- and voltage-dependent K(+) (BK) channels play an important role in this process. In this study, TGF-β1 decreased airway surface liquid volume, ciliary beat frequency, and BK activity in fully differentiated CF bronchial epithelial cells by reducing mRNA expression of the BK γ subunit leucine-rich repeat-containing protein 26 (LRRC26) and its function. Although LRRC26 knockdown itself reduced BK activity, LRRC26 overexpression partially reversed TGF-β1-induced BK dysfunction. TGF-β1-induced airway surface liquid volume hyper-absorption was reversed by the BK opener mallotoxin and the clinically useful TGF-β signaling inhibitor pirfenidone. The latter increased BK activity via rescue of LRRC26. Therefore, we propose that TGF-β1-induced mucociliary dysfunction in CF airways is associated with BK inactivation related to a LRRC26 decrease and is amenable to treatment with clinically useful TGF-β1 inhibitors.
Collapse
Affiliation(s)
- Dahis Manzanares
- From the Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami, Miami, Florida 33136 and
| | - Stefanie Krick
- From the Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami, Miami, Florida 33136 and
| | - Nathalie Baumlin
- From the Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami, Miami, Florida 33136 and
| | - John S Dennis
- From the Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami, Miami, Florida 33136 and
| | - Jean Tyrrell
- Cystic Fibrosis Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Robert Tarran
- Cystic Fibrosis Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Matthias Salathe
- From the Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami, Miami, Florida 33136 and
| |
Collapse
|
10
|
Harris WT, Muhlebach MS, Oster RA, Knowles MR, Noah TL. Transforming growth factor-beta(1) in bronchoalveolar lavage fluid from children with cystic fibrosis. Pediatr Pulmonol 2009; 44:1057-64. [PMID: 19830844 DOI: 10.1002/ppul.21079] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
RATIONALE Transforming factor beta(1) (TGF-beta(1)) genetic polymorphisms have been identified as a modifier of cystic fibrosis (CF) lung disease severity. However, few data link TGF-beta(1) protein levels and clinical markers of CF lung disease severity. OBJECTIVES To determine the association between protein levels of TGF-beta(1) in pediatric CF bronchoalveolar lavage fluid (BALF) and clinical parameters of CF lung disease severity. METHODS Total TGF-beta(1) was measured in BALF from 30 pediatric CF patients and 12 non-CF disease controls undergoing clinically indicated flexible bronchoscopy, and compared to four indicators of clinical disease: infection, inflammation, pulmonary function, and recent/recurrent hospitalization. RESULTS TGF-beta(1) was elevated in CF BALF compared to non-CF controls (135 +/- 15 pg/ml vs. 57 +/- 10 pg/ml, P < 0.01). In CF BALF, increased TGF-beta(1) was associated with elevated BALF PMN % (r = 0.67, P < 0.01). BALF TGF-beta(1) was increased in CF subjects whose FEV(1) after the completion of antibiotic therapy remained below CF age-normative median values (205.9 +/- 20.5 pg/ml vs. 106.4 +/- 24.0, P = 0.01). BALF TGF-beta(1) was increased in CF children hospitalized in the previous year compared to those not recently hospitalized (169.9 +/- 21.6 pg/ml vs. 107.5 +/- 17.5 pg/ml, P = 0.04). Neither the presence of a bacterial pathogen nor bacterial quantity was associated with BALF TGF-beta(1). CONCLUSIONS In CF, BALF TGF-beta(1) is elevated compared to non-CF controls. Increased BALF TGF-beta(1) is associated with neutrophilic inflammation, diminished lung function and recent hospitalization. Further investigation is needed to address mechanisms behind these associations.
Collapse
Affiliation(s)
- William T Harris
- Division of Pulmonology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | | | | | | | | |
Collapse
|
11
|
Basque J, Martel M, Leduc R, Cantin AM. Lysosomotropic drugs inhibit maturation of transforming growth factor-beta. Can J Physiol Pharmacol 2008; 86:606-12. [PMID: 18758509 DOI: 10.1139/y08-063] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transforming growth factor-beta (TGFbeta) is synthesized as a precursor protein, pro-TGFbeta, that must be cleaved by a furin-like proteinase before it becomes biologically active. We hypothesized that alkalinization of the trans-Golgi network (TGN)/endosome system may suppress pro-TGFbeta processing and decrease TGFbeta secretion. This hypothesis was tested in human A549 alveolar epithelial and T98G glioblastoma cell lines and in C57BL/6 mice. Inhibition of furin-like activity with decanoyl-RVKR chloromethylketone suppressed pro-TGFbeta processing, thereby significantly reducing the levels of secreted TGFbeta. Brefeldin A, bafilomycin A1, ammonium chloride, and monensin also prevented pro-TGFbeta processing. The alkalinizing lysosomotropic drugs chloroquine, hydroxychloroquine, amodiaquine, and azithromycin had a similar effect on the overall production of mature bioactive TGFbeta. Reduced levels of secreted TGFbeta were also associated with a decrease in Smad2 signaling. Mice treated with chloroquine showed a decrease in bronchoalveolar lavage fluid TGFbeta. We conclude that alkalinizing lysosomotropic drugs inhibit pro-TGFbeta processing.
Collapse
Affiliation(s)
- Julie Basque
- Pulmonary Research Unit, Faculty of Medicine and Health Sciences, Universite de Sherbrooke, Sherbrooke, Canada
| | | | | | | |
Collapse
|
12
|
Bartling TR, Drumm ML. Oxidative stress causes IL8 promoter hyperacetylation in cystic fibrosis airway cell models. Am J Respir Cell Mol Biol 2008; 40:58-65. [PMID: 18635816 DOI: 10.1165/rcmb.2007-0464oc] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Dysregulated inflammation has been implicated in cystic fibrosis (CF) airway pathophysiology. The expression of inflammatory genes, like interleukin 8 (IL8), involves chromatin remodeling through histone acetylation. Inflammatory gene hyperacetylation could explain inflammatory mediator dysregulation seen in CF airways. CF airways are exposed to high levels of oxidative stress, and oxidative stress increases histone acetylation and inflammatory gene transcription. Loss of cystic fibrosis transmembrane conductance regulator (CFTR) may even reduce protection against oxidative stress. Consequently, increasing oxidative stress would likely lead to an imbalance of histone acetyl-transferase (HAT) and deacetylase (HDAC) stoichiometry and contribute to the heightened inflammatory response seen in the CF airway. We hypothesize that oxidative stress in CF airways causes increased acetylation of inflammatory gene promoters, contributing to transcriptional activity of these loci. Messenger RNA levels of IL8, IL6, CXCL1, CXCL2, CXCL3, and IL1 are significantly elevated in CF epithelial cell models. Histone H4 acetylation is lower at the IL8 promoter of the non-CF cell lines than the CF models. The reducing agent N-acetyl-cysteine decreases IL8 message and promoter H4 acetylation to non-CF levels, suggesting that oxidative stress contributes to IL8 expression in these models. H(2)O(2) treatment causes increased IL-8 acetylation and mRNA in all cells, but less in the CF-model cells. Together these data suggest a model in which cells without functional CFTR are under increased oxidative stress. Our data suggest intrinsic alterations in the HAT/HDAC balance in CFTR-deficient cells, and that oxidative stress contributes to this alteration.
Collapse
Affiliation(s)
- Toni R Bartling
- Department of Genetics, Case Western Reserve University, Cleveland, OH 44106-4948, USA
| | | |
Collapse
|
13
|
Ornatowski W, Poschet JF, Perkett E, Taylor-Cousar JL, Deretic V. Elevated furin levels in human cystic fibrosis cells result in hypersusceptibility to exotoxin A-induced cytotoxicity. J Clin Invest 2007; 117:3489-97. [PMID: 17948127 PMCID: PMC2030457 DOI: 10.1172/jci31499] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 08/14/2007] [Indexed: 11/17/2022] Open
Abstract
Progressive pulmonary disease and infections with Pseudomonas aeruginosa remain an intractable problem in cystic fibrosis (CF). At the cellular level, CF is characterized by organellar hyperacidification, which results in altered protein and lipid glycosylation. Altered pH of the trans-Golgi network (TGN) may further disrupt the protein processing and packaging that occurs in this organelle. Here we measured activity of the major TGN endoprotease furin and demonstrated a marked upregulation in human CF cells. Increased furin activity was linked to elevated production in CF of the immunosuppressive and tissue remodeling cytokine TGF-beta and its downstream effects, including macrophage deactivation and augmented collagen secretion by epithelial cells. As furin is responsible for the proteolytic processing of a range of endogenous and exogenous substrates including growth factors and bacterial toxins, we determined that elevated furin-dependent activation of exotoxin A caused increased cell death in CF respiratory epithelial cells compared with genetically matched CF transmembrane conductance regulator-corrected cells. Thus elevated furin levels in CF respiratory epithelial cells contributes to bacterial toxin-induced cell death, fibrosis, and local immunosuppression. These data suggest that the use of furin inhibitors may represent a strategy for pharmacotherapy in CF.
Collapse
Affiliation(s)
- Wojciech Ornatowski
- Department of Molecular Genetics and Microbiology,
Department of Cell Biology and Physiology,
Department of Pediatrics, and
Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Jens F. Poschet
- Department of Molecular Genetics and Microbiology,
Department of Cell Biology and Physiology,
Department of Pediatrics, and
Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Elizabeth Perkett
- Department of Molecular Genetics and Microbiology,
Department of Cell Biology and Physiology,
Department of Pediatrics, and
Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Jennifer L. Taylor-Cousar
- Department of Molecular Genetics and Microbiology,
Department of Cell Biology and Physiology,
Department of Pediatrics, and
Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Vojo Deretic
- Department of Molecular Genetics and Microbiology,
Department of Cell Biology and Physiology,
Department of Pediatrics, and
Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| |
Collapse
|
14
|
Wood SR, Firoved AM, Ornatowski W, Mai T, Deretic V, Timmins GS. Nitrosative stress inhibits production of the virulence factor alginate in mucoid Pseudomonas aeruginosa. Free Radic Res 2007; 41:208-15. [PMID: 17364947 DOI: 10.1080/10715760601052610] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Alginate is a critical virulence factor contributing to the poor clinical prognosis associated with the conversion of Pseudomonas aeruginosa to mucoid phenotypes in cystic fibrosis (CF). An important mechanism of action is its ability to scavenge host innate-immune reactive species. We have previously analyzed the bacterial response to nitrosative stress by S-nitrosoglutathione (GSNO), a physiological NO radical donor with diminished levels in the CF lung. GSNO substantially increased bacterial nitrosative and oxidative defenses and so we hypothesized a similar increase in alginate production would occur. However, in mucoid P. aeruginosa, there was decreased expression of the majority of alginate synthetic genes. This microarray data was confirmed both by RT-PCR and at the functional level by direct measurements of alginate production. Our data suggest that the lowered levels of innate-immune nitrosative mediators (such as GSNO) in the CF lung exacerbate the effects of mucoid P. aeruginosa, by failing to suppress alginate biosynthesis.
Collapse
Affiliation(s)
- Simon R Wood
- College of Pharmacy, Toxicology Program, Health Sciences Center, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | | | |
Collapse
|
15
|
White NM, Jiang D, Burgess JD, Bederman IR, Previs SF, Kelley TJ. Altered cholesterol homeostasis in cultured and in vivo models of cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 2006; 292:L476-86. [PMID: 17085523 DOI: 10.1152/ajplung.00262.2006] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Determining how the regulation of cellular processes is impacted in cystic fibrosis (CF) is fundamental to understanding disease pathology and to identifying new therapeutic targets. In this study, unesterified cholesterol accumulation is observed in lung and trachea sections obtained from CF patients compared with non-CF tissues, suggesting an inherent flaw in cholesterol processing. An alternate staining method utilizing a fluorescent cholesterol probe also indicates improper lysosomal storage of cholesterol in CF cells. Excess cholesterol is also manifested by a significant increase in plasma membrane cholesterol content in both cultured CF cells and in nasal tissue excised from cftr(-/-) mice. Impaired intracellular cholesterol movement is predicted to stimulate cholesterol synthesis, a hypothesis supported by the observation of increased de novo cholesterol synthesis in lung and liver of cftr(-/-) mice compared with controls. Furthermore, pharmacological inhibition of cholesterol transport is sufficient to cause CF-like elevation in cytokine production in wild-type cells in response to bacterial challenge but has no effect in CF cells. These data demonstrate via multiple methods in both cultured and in vivo models that cellular cholesterol homeostasis is inherently altered in CF. This perturbation of cholesterol homeostasis represents a potentially important process in CF pathogenesis.
Collapse
Affiliation(s)
- Nicole M White
- Department of Pediatrics and Pharmacology, Case Western Reserve University and Rainbow Babies and Children's Hospital, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|