1
|
Vassilopoulou E, Venter C, Roth-Walter F. Malnutrition and Allergies: Tipping the Immune Balance towards Health. J Clin Med 2024; 13:4713. [PMID: 39200855 PMCID: PMC11355500 DOI: 10.3390/jcm13164713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Malnutrition, which includes macro- and micronutrient deficiencies, is common in individuals with allergic dermatitis, food allergies, rhinitis, and asthma. Prolonged deficiencies of proteins, minerals, and vitamins promote Th2 inflammation, setting the stage for allergic sensitization. Consequently, malnutrition, which includes micronutrient deficiencies, fosters the development of allergies, while an adequate supply of micronutrients promotes immune cells with regulatory and tolerogenic phenotypes. As protein and micronutrient deficiencies mimic an infection, the body's innate response limits access to these nutrients by reducing their dietary absorption. This review highlights our current understanding of the physiological functions of allergenic proteins, iron, and vitamin A, particularly regarding their reduced bioavailability under inflamed conditions, necessitating different dietary approaches to improve their absorption. Additionally, the role of most allergens as nutrient binders and their involvement in nutritional immunity will be briefly summarized. Their ability to bind nutrients and their close association with immune cells can trigger exaggerated immune responses and allergies in individuals with deficiencies. However, in nutrient-rich conditions, these allergens can also provide nutrients to immune cells and promote health.
Collapse
Affiliation(s)
- Emilia Vassilopoulou
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece
- Department of Clinical Sciences and Community Health, Univertià degli Studi die Milano, 20122 Milan, Italy
| | - Carina Venter
- Pediatrics, Section of Allergy & Immunology, University of Colorado Denver School of Medicine, Children’s Hospital Colorado, Box B518, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Franziska Roth-Walter
- Messerli Research Institute, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, 1210 Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
2
|
Xue M, Wang Q, Pang B, Zhang X, Zhang Y, Deng X, Zhang Z, Niu W. Association Between Circulating Zinc and Risk for Childhood Asthma and Wheezing: A Meta-analysis on 21 Articles and 2205 Children. Biol Trace Elem Res 2024; 202:442-453. [PMID: 37145255 PMCID: PMC10764583 DOI: 10.1007/s12011-023-03690-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/28/2023] [Indexed: 05/06/2023]
Abstract
Asthma is one of the most frequent chronic diseases in children, and growing focus is placed on the exploration of attributable risk factors. Currently, no consensus has been reached on the implication of circulating zinc in the development of asthma. We aimed to conduct a meta-analysis to examine the association between circulating zinc and risk for childhood asthma and wheezing. We searched PubMed, Web of Science, EMBASE, and Google Scholar from inception until December 1, 2022. All procedures were performed independently and in duplicate. Random-effects model was adopted to derive standardized mean difference (SMD) and 95% confidence interval (95% CI). Statistical analyses were completed using the STATA software. Twenty-one articles and 2205 children were meta-analyzed. Overall, there was a statistically significant association between circulating zinc and risk for childhood asthma and wheezing (SMD: -0.38; 95% CI: -0.60 to -0.17; I2=82.6%, p<0.001), without evidence of publication bias as revealed by Begg's (p=0.608) and Egger (p=0.408) tests. Subgroup analyses showed that children with asthma or wheezing in Middle Eastern countries had significantly lower circulating zinc levels than controls (SMD: -0.42; 95% CI: -0.69 to -0.14; p<0.001; I2=87.1%). Additionally, average circulating zinc levels in asthma children were 0.41 μg/dl lower than that in controls, and the difference was statistically significant (SMD: -0.41; 95% CI: -0.65 to -0.16; p<0.001; I2=83.7%). By contrast, children with wheezing were 0.20 μg/dl lower than that in controls, and no between-group difference was noted (SMD=-0.20; 95% CI: -0.58 to 0.17; p=0.072; I2=69.1%). Our findings indicated that circulating zinc was associated with a significant risk for childhood asthma and its related symptom wheezing.
Collapse
Affiliation(s)
- Mei Xue
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Qiong Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Bo Pang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoqian Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Yicheng Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Xiangling Deng
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Zhixin Zhang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China.
- International Medical Services, China-Japan Friendship Hospital, Beijing, China.
| | - Wenquan Niu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
3
|
Wang M, Yan L, Dou S, Yang L, Zhang Y, Huang W, Li S, Lu P, Guo Y. Blood multiple heavy metals exposure and lung function in young adults: A prospective Cohort study in China. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132064. [PMID: 37499499 DOI: 10.1016/j.jhazmat.2023.132064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Abstract
The content of single heavy metal in blood is associated with lung function decline, but there is little evidence on the joint effect of multiple heavy metals on lung function. To explore whether heavy metal mixture exposure is associated with lung function reduction among young adults. The study based on a cohort of 518 students recruited from a college in Shandong, China. We measured their lung function and blood heavy metal concentrations. The BKMR model was used to analyse the association between blood heavy metals mixture levels and lung function, and to identify the critical single heavy metal which contributes most to joint effects. As the sensitivity analysis, we used quantile g-computation model and GLM to explore the joint effect and independent effects of heavy metals. Our findings revealed a significant reduction of FVC and FEV1 levels after exposure to heavy metals mixture. An IQR increase in Cu was associated with a 0.079 L and 0.083 L decrease in FEV1 and FVC, respectively. And an IQR increase in Fe was associated with 0.036 L higher FEV1 and 0.033 L higher FVC. For adults, reducing blood heavy metals concentration might be an effective intervention to protect lung function.
Collapse
Affiliation(s)
- Minghao Wang
- Binzhou Medical University, Yantai, Shandong, China
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, P. R. China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education; Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing 100191, P. R. China
| | - Siqi Dou
- Binzhou Medical University, Yantai, Shandong, China
| | - Liu Yang
- Binzhou Medical University, Yantai, Shandong, China
| | - Yiwen Zhang
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Wenzhong Huang
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Shanshan Li
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Peng Lu
- Binzhou Medical University, Yantai, Shandong, China.
| | - Yuming Guo
- Binzhou Medical University, Yantai, Shandong, China; Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
Quezada-Pinedo HG, van Meel ER, Reiss IK, Jaddoe V, Vermeulen MJ, Duijts L. Maternal hemoglobin and iron status in early pregnancy and risk of respiratory tract infections in childhood: A population-based prospective cohort study. Pediatr Allergy Immunol 2023; 34:e14025. [PMID: 37747749 DOI: 10.1111/pai.14025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/25/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Maternal hemoglobin and iron status measures during pregnancy might affect the developing fetal respiratory system leading to adverse respiratory conditions. Our aim was to assess the associations of maternal hemoglobin and iron status measures during pregnancy with the risk of respiratory tract infections in children until 10 years of age. METHODS In a population-based cohort study among 5134 mother-child pairs, maternal hemoglobin and iron status including ferritin, transferrin, and transferrin saturation were measured during early pregnancy. In children, physician-attended respiratory tract infections from age 6 months until 10 years were assessed by questionnaires. Confounder-adjusted generalized estimating equation modeling was applied. RESULTS After taking multiple testing into account, high maternal ferritin concentrations and low maternal transferrin saturation during pregnancy were associated with an overall increased risk of upper, not lower, respiratory tract infections until age 10 years of the child [OR (95% CI: 1.23 (1.10, 1.38) and 1.28 (1.12, 1.47), respectively)]. High maternal transferrin saturation during pregnancy was associated with a decreased and increased risk of upper respiratory tract infections at 1 and 6 years, respectively, [OR (95% CI: 0.60 (0.44, 0.83) and 1.54 (1.17, 2.02))]. Observed associations were suggested to be U-shaped (p-values for non-linearity ≤.001). Maternal hemoglobin and iron status measures during pregnancy were not consistently associated with child's gastroenteritis and urinary tract infections, as proxies for general infection effects. CONCLUSION High maternal ferritin and low transferrin saturation concentrations during early pregnancy were most consistently associated with an overall increased risk of child's upper, not lower, respiratory tract infections.
Collapse
Affiliation(s)
- Hugo G Quezada-Pinedo
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Evelien R van Meel
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Irwin K Reiss
- Department of Pediatrics, Division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Vincent Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marijn J Vermeulen
- Department of Pediatrics, Division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Liesbeth Duijts
- Department of Pediatrics, Division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Stumpf K, Mirpuri J. Maternal Macro- and Micronutrient Intake During Pregnancy: Does It Affect Allergic Predisposition in Offspring? Immunol Allergy Clin North Am 2023; 43:27-42. [PMID: 36411006 DOI: 10.1016/j.iac.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This review article explores the available literature on the association of maternal nutrient intake with development of allergies in offspring. It examines the mechanisms for maternal diet-mediated effects on offspring immunity and dissects recent human and animal studies that evaluate the role of both maternal macro- and micronutrient intake on offspring susceptibility to asthma, eczema, food allergy, and atopy.
Collapse
Affiliation(s)
- Katherine Stumpf
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Boulevard- Suite F3.302, Dallas, TX 75390-9063, USA.
| | - Julie Mirpuri
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Boulevard- Suite F3.302, Dallas, TX 75390-9063, USA.
| |
Collapse
|
6
|
Peroni DG, Hufnagl K, Comberiati P, Roth-Walter F. Lack of iron, zinc, and vitamins as a contributor to the etiology of atopic diseases. Front Nutr 2023; 9:1032481. [PMID: 36698466 PMCID: PMC9869175 DOI: 10.3389/fnut.2022.1032481] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023] Open
Abstract
Micronutritional deficiencies are common in atopic children suffering from atopic dermatitis, food allergy, rhinitis, and asthma. A lack of iron, in particular, may impact immune activation with prolonged deficiencies of iron, zinc, vitamin A, and vitamin D associated with a Th2 signature, maturation of macrophages and dendritic cells (DCs), and the generation of IgE antibodies. In contrast, the sufficiency of these micronutrients establishes immune resilience, promotion of regulatory cells, and tolerance induction. As micronutritional deficiencies mimic an infection, the body's innate response is to limit access to these nutrients and also impede their dietary uptake. Here, we summarize our current understanding of the physiological function of iron, zinc, and vitamins A and D in relation to immune cells and the clinical consequences of deficiencies in these important nutrients, especially in the perinatal period. Improved dietary uptake of iron is achieved by vitamin C, vitamin A, and whey compounds, whereas zinc bioavailability improves through citrates and proteins. The addition of oil is essential for the dietary uptake of beta-carotene and vitamin D. As for vitamin D, the major source comes via sun exposure and only a small amount is consumed via diet, which should be factored into clinical nutritional studies. We summarize the prevalence of micronutritional deficiencies of iron, zinc, and vitamins in the pediatric population as well as nutritional intervention studies on atopic diseases with whole food, food components, and micronutrients. Dietary uptake via the lymphatic route seems promising and is associated with a lower atopy risk and symptom amelioration. This review provides useful information for clinical studies and concludes/emphasizes that a healthy, varied diet containing dairy products, fish, nuts, fruits, and vegetables as well as supplementing foods or supplementation with micronutrients as needed is essential to combat the atopic march.
Collapse
Affiliation(s)
- Diego G. Peroni
- Section of Paediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Karin Hufnagl
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria,Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Pasquale Comberiati
- Section of Paediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria,Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria,*Correspondence: Franziska Roth-Walter, ;
| |
Collapse
|
7
|
Quezada-Pinedo HG, Jaddoe V, Duijts L, Muka T, Vermeulen MJ, Reiss IKM, Santos S. Maternal iron status in early pregnancy and childhood body fat measures and cardiometabolic risk factors: A population-based prospective cohort. Am J Clin Nutr 2023; 117:191-198. [PMID: 36789938 PMCID: PMC10131616 DOI: 10.1016/j.ajcnut.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/04/2022] [Accepted: 10/28/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Whether maternal iron status during pregnancy is associated with cardiometabolic health in the offspring is poorly known. OBJECTIVES We aimed to assess the associations of maternal iron status during early pregnancy with body fat measures and cardiometabolic risk factors in children aged 10 y. METHODS In a population-based cohort study among 3718 mother-child pairs, we measured ferritin, transferrin, and transferrin saturation during early pregnancy. We obtained child BMI, fat mass index, and android/gynoid fat mass ratio by DXA, subcutaneous fat index, visceral fat index, pericardial fat index, and liver fat fraction by magnetic resonance imaging and assessed systolic and diastolic blood pressure, serum lipids, glucose, insulin, and CRP at 10 y. RESULTS A one-standard deviation score (SDS) higher maternal ferritin was associated with lower fat mass index [difference -0.05 (95% CI: -0.08, -0.02) SDS] and subcutaneous fat index [difference -0.06 (95% CI: -0.10, -0.02) SDS] in children. One-SDS higher maternal transferrin was associated with higher fat mass index [difference 0.04 (95% CI: 0.01, 0.07) SDS], android/gynoid fat mass ratio [difference 0.05 (95% CI: 0.02, 0.08) SDS], and subcutaneous fat index [difference 0.06 (95% CI: 0.02, 0.10) SDS] in children. Iron status during pregnancy was not consistently associated with organ fat and cardiometabolic risk factors at 10 y. CONCLUSIONS Maternal lower ferritin and higher transferrin in early pregnancy are associated with body fat accumulation and distribution but are not associated with cardiometabolic risk factors in childhood. Underlying mechanisms and long-term consequences warrant further study.
Collapse
Affiliation(s)
- Hugo G Quezada-Pinedo
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Division of Neonatology, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Vincent Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Liesbeth Duijts
- Department of Pediatrics, Division of Neonatology, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Division of Respiratory Medicine and Allergology, Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Taulant Muka
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland; Epistudia, Bern, Switzerland
| | - Marijn J Vermeulen
- Department of Pediatrics, Division of Neonatology, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Irwin K M Reiss
- Department of Pediatrics, Division of Neonatology, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Susana Santos
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands; EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Porto, Portugal.
| |
Collapse
|
8
|
Quezada-Pinedo HG, Cassel F, Muckenthaler MU, Gassmann M, Huicho L, Reiss IK, Duijts L, Gaillard R, Vermeulen MJ. Ethnic differences in adverse iron status in early pregnancy: a cross-sectional population-based study. J Nutr Sci 2022; 11:e39. [PMID: 35720171 PMCID: PMC9161035 DOI: 10.1017/jns.2022.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/15/2022] Open
Abstract
We studied ethnic differences in terms of iron status during pregnancy between Dutch women and other ethnicities and explore to what extent these differences can be explained by environmental factors. This cross-sectional population-based study (2002-2006) was embedded in the Generation R study and included a total of 4737 pregnant women from seven ethnic groups (Dutch, Turkish, Moroccan, Cape Verdean, Surinamese-Hindustani, Surinamese-Creole and Antillean). Ethnicity was defined according to the Dutch classification of ethnic background. Ferritin, iron and transferrin were measured in early pregnancy. The overall prevalence of iron deficiency was 7 %, ranging from 4 % in both Dutch and Surinamese-Creoles, to 18 % in Turkish, Moroccan and Surinamese-Hindustani women. Iron overload was most prevalent in Surinamese-Creole (11 %) and Dutch (9 %) women. Socioeconomic factors accounted for 5-36 % of the differences. Income was the strongest socioeconomic factor in the Cape Verdean and Surinamese-Hindustani groups and parity for the Turkish and Moroccan groups. Lifestyle determinants accounted for 8-14 % of the differences. In all groups, the strongest lifestyle factor was folic acid use, being associated with higher iron status. In conclusion, in our population, both iron deficiency and iron overload were common in early pregnancy. Our data suggest that ethnic differences in terms of socioeconomic and lifestyle factors only partly drive the large ethnic differences in iron status. Our data support the development of more specific prevention programmes based on further exploration of socioeconomic inequities, modifiable risk and genetic factors in specific ethnic subgroups, as well as the need for individual screening of iron status before supplementation.
Collapse
Affiliation(s)
- Hugo G. Quezada-Pinedo
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Division of Neonatology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Florian Cassel
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Martina U. Muckenthaler
- Department of Pediatric Hematology, Oncology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, University Hospital Heidelberg, Heidelberg, Germany
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- School of Medicine, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Luis Huicho
- School of Medicine, Universidad Peruana Cayetano Heredia, Lima, Peru
- Centro de Investigación en Salud Materna e Infantil, Centro de Investigación para el Desarrollo Integral y Sostenible, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Irwin K. Reiss
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Liesbeth Duijts
- Department of Pediatrics, Division of Neonatology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Romy Gaillard
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Marijn J. Vermeulen
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Division of Neonatology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
9
|
Roth-Walter F. Iron-Deficiency in Atopic Diseases: Innate Immune Priming by Allergens and Siderophores. FRONTIERS IN ALLERGY 2022; 3:859922. [PMID: 35769558 PMCID: PMC9234869 DOI: 10.3389/falgy.2022.859922] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Although iron is one of the most abundant elements on earth, about a third of the world's population are affected by iron deficiency. Main drivers of iron deficiency are beside the chronic lack of dietary iron, a hampered uptake machinery as a result of immune activation. Macrophages are the principal cells distributing iron in the human body with their iron restriction skewing these cells to a more pro-inflammatory state. Consequently, iron deficiency has a pronounced impact on immune cells, favoring Th2-cell survival, immunoglobulin class switching and primes mast cells for degranulation. Iron deficiency during pregnancy increases the risk of atopic diseases in children, while both children and adults with allergy are more likely to have anemia. In contrast, an improved iron status seems to protect against allergy development. Here, the most important interconnections between iron metabolism and allergies, the effect of iron deprivation on distinct immune cell types, as well as the pathophysiology in atopic diseases are summarized. Although the main focus will be humans, we also compare them with innate defense and iron sequestration strategies of microbes, given, particularly, attention to catechol-siderophores. Similarly, the defense and nutritional strategies in plants with their inducible systemic acquired resistance by salicylic acid, which further leads to synthesis of flavonoids as well as pathogenesis-related proteins, will be elaborated as both are very important for understanding the etiology of allergic diseases. Many allergens, such as lipocalins and the pathogenesis-related proteins, are able to bind iron and either deprive or supply iron to immune cells. Thus, a locally induced iron deficiency will result in immune activation and allergic sensitization. However, the same proteins such as the whey protein beta-lactoglobulin can also transport this precious micronutrient to the host immune cells (holoBLG) and hinder their activation, promoting tolerance and protecting against allergy. Since 2019, several clinical trials have also been conducted in allergic subjects using holoBLG as a food for special medical purposes, leading to a reduction in the allergic symptom burden. Supplementation with nutrient-carrying lipocalin proteins can circumvent the mucosal block and nourish selectively immune cells, therefore representing a new dietary and causative approach to compensate for functional iron deficiency in allergy sufferers.
Collapse
Affiliation(s)
- Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University of Vienna, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- *Correspondence: Franziska Roth-Walter ;
| |
Collapse
|
10
|
Yu Z, Xu C, Fang C, Zhang F. Causal effect of iron status on lung function: A Mendelian randomization study. Front Nutr 2022; 9:1025212. [PMID: 36590211 PMCID: PMC9798299 DOI: 10.3389/fnut.2022.1025212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background The association between systemic iron status and lung function was conflicting in observational studies. We aim to explore the potential causal relationships between iron status and the levels of lung function using the two-sample Mendelian randomization (MR) design. Methods Genetic instruments associated with iron status biomarkers were retrieved from the Genetics of Iron Status (GIS) consortium (N = 48,972). Summary statistics of these genetic instruments with lung function were extracted from a meta-analysis of UK Biobank and SpiroMeta consortium (N = 400,102). The main analyses were performed using the inverse-variance weighted method, and complemented by multiple sensitivity analyses. Results Based on conservative genetic instruments, MR analyses showed that genetically predicted higher iron (beta: 0.036 per 1 SD increase, 95% confidence interval (CI): 0.016 to 0.056, P = 3.51 × 10-4), log10-transformed ferritin (beta: 0.081, 95% CI: 0.047 to 0.116, P = 4.11 × 10-6), and transferrin saturation (beta: 0.027, 95% CI: 0.015 to 0.038, P = 1.09 × 10-5) were associated with increased forced expiratory volume in 1 s (FEV1), whereas higher transferrin was associated with decreased FEV1 (beta: -0.036, 95% CI: -0.064 to -0.008, P = 0.01). A significant positive association between iron status and forced vital capacity (FVC) was also observed. However, there is no causal association between iron status and FEV1-to-FVC ratio (P = 0.10). Similar results were obtained from the liberal instruments analyses and multiple sensitivity analyses. Conclusion Our study provided strong evidence to support that higher iron status is causally associated with higher levels of FEV1 and FVC, but has no impact on airway obstruction, confirming iron status as an important target for lung function management.
Collapse
Affiliation(s)
- Zhimin Yu
- Department of General Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Chengkai Xu
- Department of General Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Chenggang Fang
- Department of General Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Fangfang Zhang
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Fangfang Zhang
| |
Collapse
|
11
|
Mineral Micronutrients in Asthma. Nutrients 2021; 13:nu13114001. [PMID: 34836256 PMCID: PMC8625329 DOI: 10.3390/nu13114001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 01/01/2023] Open
Abstract
Asthma represents one of the most common medical issues in the modern world. It is a chronic inflammatory disease characterized by persistent inflammation of the airways and disturbances in redox status, leading to hyperresponsiveness of bronchi and airway obstruction. Apart from classical risk factors such as air pollution, family history, allergies, or obesity, disturbances of the levels of micronutrients lead to impairments in the defense mechanisms of the affected organism against oxidative stress and proinflammatory stimuli. In the present review, the impact of micronutrients on the prevalence, severity, and possible risk factors of asthma is discussed. Although the influence of classical micronutrients such as selenium, copper, or zinc are well known, the effects of those such as iodine or manganese are only rarely mentioned. As a consequence, the aim of this paper is to demonstrate how disturbances in the levels of micronutrients and their supplementation might affect the course of asthma.
Collapse
|
12
|
Taeubert MJ, Wiertsema CJ, Vermeulen MJ, Quezada-Pinedo HG, Reiss IK, Muckenthaler MU, Gaillard R. Maternal Iron Status in Early Pregnancy and Blood Pressure Throughout Pregnancy, Placental Hemodynamics, and the Risk of Gestational Hypertensive Disorders. J Nutr 2021; 152:525-534. [PMID: 34647596 PMCID: PMC8826859 DOI: 10.1093/jn/nxab368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/27/2021] [Accepted: 10/08/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND In nonpregnant populations, higher serum ferritin, which reflects high iron stores, is associated with an increased risk of hypertension. We hypothesized that a dysregulated maternal iron status in early pregnancy may lead to impaired gestational hemodynamic adaptations, leading to an increased risk of gestational hypertensive disorders. OBJECTIVES We examined the associations of maternal iron status with maternal blood pressure, placental hemodynamic parameters, and the risks of gestational hypertensive disorders. METHODS In a population-based prospective cohort study among 5983 pregnant women, we measured maternal serum ferritin, transferrin saturation, serum iron, and transferrin concentrations at a median of 13.2 weeks gestation (95% range, 9.6-17.6). Maternal blood pressure was measured in early pregnancy, mid pregnancy, and late pregnancy, and placental hemodynamic parameters in mid pregnancy and late pregnancy were measured by ultrasound. Information on gestational hypertensive disorders was collected from medical records. We examined the associations of maternal early pregnancy iron status with maternal systolic and diastolic blood pressure, placental hemodynamic parameters, and the risks of gestational hypertensive disorders using linear and logistic regression models. RESULTS Higher maternal early pregnancy serum ferritin concentrations were associated with higher systolic and diastolic blood pressure throughout pregnancy in the basic models (P values < 0.05). After adjustment for maternal inflammation, sociodemographic and lifestyle factors, higher maternal early pregnancy serum ferritin concentrations were only associated with a higher early pregnancy diastolic blood pressure [0.27 (95% CI, 0.03-0.51) mmHg per SD score increase in serum ferritin] and with a higher mid pregnancy umbilical artery pulsatility index (P < 0.05). No associations with the risk of gestational hypertensive disorders were present. CONCLUSIONS No consistent associations were present of maternal iron status in early pregnancy with gestational hemodynamic adaptations or the risks of gestational hypertensive disorders. Further studies are needed to examine the potential role of iron metabolism in the development of gestational hypertensive disorders within higher-risk populations.
Collapse
Affiliation(s)
- Minerva J Taeubert
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands,Department of Pediatric Oncology, Hematology and Immunology, University Medical Center, Heidelberg, Germany
| | - Clarissa J Wiertsema
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands,Department of Pediatrics, Sophia's Children's Hospital, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marijn J Vermeulen
- Department of Pediatrics, Sophia's Children's Hospital, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Hugo G Quezada-Pinedo
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands,Department of Pediatrics, Sophia's Children's Hospital, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Irwin K Reiss
- Department of Pediatrics, Sophia's Children's Hospital, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Martina U Muckenthaler
- Department of Pediatric Oncology, Hematology and Immunology, University Medical Center, Heidelberg, Germany
| | | |
Collapse
|
13
|
Quezada-Pinedo HG, Mensink-Bout SM, Reiss IK, Jaddoe VWV, Vermeulen MJ, Duijts L. Maternal iron status during early pregnancy and school-age, lung function, asthma, and allergy: The Generation R Study. Pediatr Pulmonol 2021; 56:1771-1778. [PMID: 33657279 PMCID: PMC8251584 DOI: 10.1002/ppul.25324] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Iron deficiency during early life could affect the developing lung and immune system, and influence child's respiratory or allergy outcomes in later life. OBJECTIVE To examine the associations of maternal iron status during early pregnancy with child's lung function, asthma, inhalant allergic sensitization, and physician-diagnosed inhalant allergy at school-age. METHODS In a population-based cohort study, among 3825 mother-child pairs, ferritin, transferrin concentrations, and transferrin saturation were measured from maternal venous blood samples during early pregnancy. In children at the age of 10 years, spirometry was used to determine child's lung function, current asthma and physician-diagnosed inhalant allergy were assessed by questionnaires, and inhalant allergic sensitization was measured by skin prick tests. We used multivariable regression models to examine the associations. RESULTS After adjustment for gestational age at maternal iron status measurement and sociodemographic or lifestyle-related confounders, a higher maternal transferrin concentration was associated with a higher risk of physician-diagnosed inhalant allergy (odds ratio [95% confidence interval]: 1.13 [1.01 to1.26]), but not with lung function, asthma, or inhalant allergic sensitization. This association did not attenuate after further adjustment for maternal hemoglobin levels or early growth factors. We observed no consistent association of maternal ferritin concentrations or transferrin saturation with child's respiratory or allergy outcomes. CONCLUSION Higher maternal transferrin concentrations during pregnancy, reflecting lower serum iron levels, were associated with an increased risk of child's physician-diagnosed inhalant allergy but not lung outcomes. Underlying mechanisms and clinical implications need to be explored.
Collapse
Affiliation(s)
- Hugo G Quezada-Pinedo
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Division of Neonatology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Sara M Mensink-Bout
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Irwin K Reiss
- Division of Neonatology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marijn J Vermeulen
- Division of Neonatology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Liesbeth Duijts
- Division of Neonatology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|